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Haplotype-level allelic characterization facilitates research on the functional,
evolutionary and breeding-related features of extremely large and complex
plantgenomes. We report a 21.7-Gb chromosome-level haplotype-resolved
assembly in Pinus densiflora. We found genome rearrangements involving
translocations and inversions between chromosomes1and 3 of Pinus species
and a proliferation of specific long terminal repeat (LTR) retrotransposons
(LTR-RTs) in P. densiflora. Evolutionary analyses illustrated that tandem

and LTR-RT-mediated duplications led to anincrement of transcription
factor (TF) genesin P. densiflora. The haplotype sequence comparison
showed allelicimbalances, including presence-absence variations of

genes (PAV genes) and their functional contributions to flowering and
abiotic stress-related traits in P. densiflora. Allele-aware resequencing
analysis revealed PAV gene diversity across P. densiflora accessions. Our
study provides insights into key mechanisms underlying the evolution of
genome structure, LTR-RTs and TFs within the Pinus lineage as well as allelic
imbalances and diversity across P. densiflora.

Recent advances in sequencing technologies with computational
methods allow the generation of genome assemblies of individual
haplotypes in both animals and plants' . Haplotype-resolved or
allele-aware assembly is anapproach to assemble haplotype sequences
via accurate separation of allelic variations, which has been omitted
in the consensus genome assembly>*. In plants, haplotype-resolved
assembly has mainly beenimplemented for complex genomes such as
autopolyploid or highly heterozygous diploid species®°. For example,

allele-defined genome sequences revealed accurate chromosomal
inversions in autohexaploid sugarcane’ and allele-specific insertion
or deletion of trait-related genes controlling apple color® and vanillin
compound’, respectively. Moreover, accurate assessment of allelic
variationin the alfalfagenomeenabled rapid and precise application of
genome-editing methods, suggesting that haplotype-resolved genome
data will facilitate functional analysis and breeding-related research
in plants®. However, haplotype-resolved assembly has thus far only
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beenapplied to afew angiosperm plants or crop species, even though
precise characterization of allelic variation is essential for successful
functional and evolutionary studies of the large and complex gymno-
sperm genomes.

The pine (genus Pinus) is amajor conifer that contains 113 diverse
species predominantly distributed in northern temperate forests™ .
Pinus species play multiple environmental roles including water con-
servation, soil stabilization and preservation of natural habitatsin the
global forest ecosystem. The wood of Pinus species has many uses in
construction, furniture and manufacturing industries™". Pine trees
would also be one of the resources to mitigate the adverse effects
of increased levels of atmospheric carbon dioxide, with long-term
impacts on global forest economic and ecological systems®™*.

Althoughthegenomesof Pinusspeciesvaryinsize from20t040 Gb,
they tend to have well-preserved diploid karyotypes (2n =24)"*, To
date, complete draft genomes of Pinus taeda® and Pinus lambertiana®
and the recently published chromosome-scale genome of Pinus
tabuliformis®™ have been reported. These genomic data revealed
that retrotransposons with large introns played a role in the evolu-
tion of the Pinus genome and identified candidate genes involved in
the pathogen-induced stress response and floral development™"*?°,
However, many questions remain about the specific components
of genome evolution, the comprehensive repertoire and evolution-
ary process of trait-related genes and haplotype characteristics. To
understand these issues, we generated a chromosome-scale and
haplotype-resolved genome assembly of P. densiflora, the Korean
red pine. We demonstrate (1) the genome evolution of Pinus species
via genome rearrangements and accumulation of specific LTR-RTs,
(2) Pinus-specific copy number expansion of TF genes and tandem
and LTR-RT-mediated duplications of these TFs in P. densiflora, (3)
haplotype-specific genes and their functional roles in P. densiflora
and (4) comprehensive allelic diversity across P. densiflora accessions.

Results

Assembly, annotation and characteristics of P. densiflora

We generated a total of 4.35 Tb of raw sequences, including 644 Gb
(30x) of PacBio high-fidelity (HiFi) and 1.95 Tb (90x) of Hi-C reads for
de novo assembly and 967 Gb (45x) of Illumina paired-end reads with
791 Gb (36x%) of 10x Genomics data for quality assessment to construct
achromosome-scale haplotype-resolved assembly representing the
P.densifloragenome that had approximately an estimated size 0f22.7 Gb
witha heterozygosity of 1.6% based on 21-mer analyses (Supplementary
Tableland Extended DataFig.1a,b). We performed assembly and phasing
using both HiFiand Hi-Creads, generating atotal of 21.7 Gb of assemblies
with 24.7 Mb of contig N50 in P. densiflora haplotypes A and B (HA and
HB), respectively (Table1). After manual curation of order and orienta-
tionin chromosomes of each haplotype using a Hi-C map, we verified
that20.7 Gband 20.8 Gb (95.1% and 95.5%) of HA and HB were anchored
to12 chromosomes ranginginsize from1.2t02.3 Gb with 62.9 and 64.7
gaps per1Gb, respectively (Fig. 1a, Table 1and Extended Data Fig. 2a,b).
Wethen evaluated the quality of genome assembly and phasing through
multiple approaches. We first estimated base-level accuracy and verified
aquality value (QV) of 50.3 and ak-mer completeness 0of 98.9% (Table1),
indicating highaccuracy of the pine genome assembly. To assess phasing
accuracy, we verified haplotype-specific k-mer frequency data using
paired-end and 10x reads and observed evenly bisected peaks and frac-
tions onthe haplotype-specific k-mer graphs (Extended Data Fig.1b). This
indicates even k-mer distribution of paired-end and 10x reads in each
haplotype. Moreover, we detected 2.5% of switch errors between haplo-
types (Table1). We predicted atotal of 44,233 and 44,215 protein-coding
genesin HA and HB, which were found to have benchmarking universal
single-copy orthologs (BUSCO) completeness scores of 95.9% and 95.3%,
respectively (Table 1). These multiple quality assessments validate the
high contiguity and accuracy of the allele-aware chromosome-level
assembly and annotation of the P. densiflora genome.

Table 1| Genome features and assembly quality of
P. densiflora

P. densiflora

HA HB
Total length of scaffolds (Mb) 21,738 21,759
Number of scaffolds 2,006 1,849
Scaffold N50 (Mb) 1,792 1,815
Number of gaps per Gb 62.9 647
Percentage of Ns in scaffold 0.0006% 0.0006%
Number of contigs 3,370 3,254
Total length of contigs (Mb) 21,738 21,758
Contig N50 (bp) 24,694,369 24,662,732
Contig N80 (bp) 10,773,074 10,665,449
Contig N90 (bp) 5,971,694 6,057,413

50.3 (HA, 50.2; HB, 50.4)
98.9% (HA, 78.7%; HB, 78.9%)

Base pair QV

k-mer completeness

Assigned 951% 95.5%
Switch errors 2.5%

LAI 22.0 22.0

Gene number 44,233 44,215

CDS average length (bp) 1,064 1,064
Matched BUSCOs (%) 1,318 (95.9%) 1,311 (95.3%)
Complete BUSCOs (%) 1,252 (911%) 1,244 (90.5%)
Missing BUSCOs (%) 57 (41%) 64 (4.7%)

CDS, coding sequence; LAI, LTR Assembly Index.

Toinvestigate genomic differences between P. densiflora and other
Pinus species™"”?°, we conducted genome-to-genome alignments
between P. densiflora HA and three Pinus genomes (P. tabuliformis,
P.taeda and P. lambertiana) (Fig.1b and Extended DataFig. 3a). Intotal,
23.8 Gb (94%) of the P. tabuliformis genome was aligned to 20.7 Gb (95%)
of the P. densiflora HA genome, suggesting an approximate genome
size difference of 3.1 Gb between the genomes of P. densiflora and
P.tabuliformis (Extended DataFig.3a). The alignment proportions were
gradually decreased within 68% of P. taeda and 34% of P. lambertianato
70% and 37% of the P. densiflora HA genome, respectively (Fig. 1b and
Extended Data Fig. 3a). This indicates increased genomic differences
between P. densiflora and P. tabuliformis, P. taeda and P. lambertiana,
in order. We examined aligned regions of P. densiflora HA to the
P.tabuliformis genome and detected occasional genomic duplication
in P. tabuliformis (Fig. 1b). For example, the clear genomic duplica-
tions on the specific regions in chromosome 9 of P. tabuliformis were
observed when compared to the corresponding regions in chromo-
some 9a with the presence of duplicated single-copy orthologous
BUSCO genes (Fig. 1b).

When comparing the P.densifloraHA and P. tabuliformis genomes,
we verified genome rearrangements between chromosomes 1and 3
(Extended Data Fig. 3b). To comprehensively understand the history
of genome structure evolution among Pinus species, we collected and
mapped genetic markers of P. taeda®, P. densiflora® and Pinus thunbergii*®
to P. densiflora and P. tabuliformis genomes (Fig. 1c and Extended
Data Fig. 4a-c). Given the genome structures conserved between
P. taeda and P. densiflora, along with the phylogenetic relationships
among Pinus species, it appears that the short arms of chromosomes
land 3 in P. taeda and P. densiflora remained conserved but under-
went translocation to the short arm of chromosome 3 and transloca-
tion withiinversion to the long arm of chromosome 1, respectively, in
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Fig.1| Genomic characteristics of P. densiflora. a, The genomic landscape

of HA (right) and HB (left) of P. densiflora. The outer track represents the

12 chromosomes (chr). The inner tracks (1-5) represent (1) gene density,

(2) repeat content, (3) allelic variations in genic regions, (4) PAV and ASE genes
and (5) Arabidopsis FOGs using awindow size of 30 Mb. b, Genome-to-genome
alignment of P. densiflora HA with other Pinus species. The color gradient from
white to red represents gene-poor and gene-rich chromosome regions (top). The
color gradient from white to green represents the increase in matched alignment
lengthin each Pinus genome with the P. densiflora genome, while the height of
the bar represents the alignment length in the P. densiflora genome with other
Pinus genomes. Q1-Q3, quartiles 1-3; min, minimum; max, maximum. The blue
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dashed lineindicates the total proportion of matched genome sequences in
the P. densiflora genome from other Pinus species. Asterisks (*) denote the top
three highly duplicated regions in chromosome 9 of P. tabuliformis. Bottom,
comparison of specific regions on chromosome 9 between P. densiflora HA and

P. tabuliformisthat are duplicated in P. tabuliformis. ¢, Genome rearrangements
between chromosomes 1and 3 in Pinus species. Physical and genetic maps of
Pinus species are depicted. The diagram shows representative markers and
mapped blocks (with awindow size of 60 Mb) in the genomes of P. densiflora and
P. tabuliformis, represented by red or blue colors, respectively, along with marker
names. LG, linkage group. In accordance with P. densiflora, the red and blue colors
for lines, blocks and backgrounds represent chromosomes 1and 3, respectively.

the shared ancestral lineage of P. tabuliformis and P. thunbergii after
their divergence (Fig. 1c). Our data also suggest an inversion that
occurred in the short arm of chromosome 3 in the ancestral lineage
of P. tabuliformis and P. thunbergii while conserving the long arm of

chromosomelinP. taedaand P. densiflora (Fig.1c). These resultsimply
that genome rearrangementsin chromosomes1and 3 have led to the
formation of heterokaryotypes in P. tabuliformis and P. thunbergii.
Taken together, our findings demonstrate evolutionary forces
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acting on these Pinus species, resulting in variations in genome size
and structure.

LTR-RTs driving genome evolution in Pinus

LTR-RTs are prominent components of enormous gymnosperm
genomes. However, the Pinus-specific repertoire of LTR-RTs remains
poorly characterized. We identified a total of 13.1 Gb (60% of the total
genome) of LTR-RTs in each haplotype of P. densiflora, comprising gypsy
(44%) and copia (16%) elements (Supplementary Table 2). Specifically,
we found distinct repertories of LTR-RTs in Pinus compared to other
gymnosperms. The tat of gypsyand oryco of copia elements were abun-
dantin Pinus (Fig.2a and Supplementary Table 2). Phylogenetic analysis
using LTR-RTsin P. densiflora HA and eight other gymnosperm genomes
revealed that alarge number of specific LTR-RTs clustered as distinct
lineages in Pinus (Fig. 2b). We verified that crm_3, reina_3, athila 2,
tat 2 and tat_4 of gypsy with tork_1, sire_3, oryco_3 and oryco_4 of copia
were particularly abundant in P. densiflora and other Pinus genomes
(Fig.2b,c). Theseresults suggest that specific LTR-RT subgroups evolved
viaselective amplificationin P. densiflora and other Pinus species, con-
tributing to the extremely enormous genome size of Pinus.

Toexplore the evolutionary history of Pinus-dominant subgroups,
we estimated the insertion time of LTR-RTs in P. densiflora HA and other
Pinus genomes. The results show that most of the dominant LTR-RT
gypsy subgroups expanded in an extremely recent period, whereas
the copiasubgroups have accumulated relatively earlier in P. densiflora
(Fig.2d). More specifically, LTR-RTs inreina_3, athila_2 and tat 2 (gypsy)
and sire_3 (copia) were massively accumulated 2-6 million years ago
(MYA), indicating arecent burst of these subgroups, whereas the major
insertions of crm_3 and tat_4ingypsyand tork_1,oryco_3 and oryco_4in
copiatook place16-22 MYA, indicating relatively earlier accumulation
ofthese LTR-RTs (Fig. 2d). Compared to other Pinus species, we found
lower amounts and earlier insertion periodsin the P. lambertiana and
P. taeda genomes than those in the P. densiflora and P. tabuliformis
genomes (Fig. 2¢,d). Considering the high contiguity of P. densiflora and
P. tabuliformis genomes containing recent LTR-RTs**, our data provide
insight into the comprehensive evolutionary history of the dominant
LTR-RTs, generating extremely large pine genomes via both a recent
burstand an earlier insertion.

We explored the genomic distribution of the dominant LTR-RT
subgroups on the 12 chromosomes of P. densiflora HA to investigate
whichsubgroups contribute to the expansion of gene-rich or gene-poor
regions (Fig. 2e and Extended Data Fig. 5a,b). Tat 2 and tat_4 of gypsy
mainly accumulated in gene-poor regions, whereas tork_1, oryco_3 and
oryco_4 of copiawere frequently foundingene-richregions (Fig.2e and
Extended DataFig. 5a). For instance, tork_1,oryco_3 and oryco_4 on chro-
mosome 10 and tork_1 on chromosome 12 were enriched in gene-rich
regions, indicating co-localized distribution of genes with these sub-
groups (Fig. 2e). By contrast, tat_2 and tat_4 exhibited a negative cor-
relation with the number of genes on the same chromosomes (Fig. 2e).
Overall, tat_2 tended to be associated with gene-poor regions, while
oryco_3 and oryco_4 were frequently observed in gene-rich regions
across many chromosomes (Fig. 2e and Extended DataFig. 5a). These
results suggest that specific gypsy and copia subgroups contributed
to the expansion and diversification of both gene-rich and gene-poor
regions in the P. densiflora genome. Our findings provide insight into
the evolutionand diversification of enormous genomesin P. densiflora
and other Pinus species, driven by unbalanced insertions and the
evolution of specific LTR-RT lineages.

Evolution of TFsin Pinus

Toinvestigate the evolutionary process of gene families in P. densiflora,
we compared 44,233 genes in P. densifloraHA with genes in nine angio-
sperms and ten gymnosperms including three Pinus species (Extended
Data Fig. 6a). We found substantially expanded gene families in
P.densifloraand other Pinus genomes. Many genesin these gene families

contained conserved domains associated with disease resistance genes
(nucleotide-binding and leucine-rich repeats) and TFs, particularly AP2,
MYB, NAC, MADS box and LFY TFs (Extended Data Fig. 6b). Interest-
ingly, we observed that genes carrying these conserved domains were
abundantly co-localized with transposable elements (TEs), suggesting
that their evolution and expansion might have been facilitated by TEs
in Pinus genomes (Extended Data Fig. 6¢). However, the numbers of
those TFs were notably higher in the P. densiflora genome than the
average numbers in other Pinus genomes, suggesting that fewer TFs
were annotated in other Pinus genomes (Extended Data Fig. 6d). Due to
theinaccuracy of TF annotations, given the underestimation of conifer
TFsinthe public database® as well as the biased number of TFsin anno-
tations among Pinus genomes, we updated annotations of TFsamong
three other Pinus species, seven gymnosperms and nine angiosperms
(Supplementary Table 3). We newly identified 21,299 TF genes in 19
speciesincluding 10,916 (51%) in three Pinus genomes (Supplementary
Table 3 and Supplementary Datal).

On average, we identified a total of 21,376, 15,581 and 21,092 TFs
consisting of 48 subfamilies in Pinus, seven gymnosperm and nine
angiosperm genomes, respectively, indicating a 2.4-fold and 2.2-fold
higher number in Pinusthan in other gymnosperms and angiosperms,
respectively (Fig. 3a and Supplementary Table 3). In particular, we
found that 11 TF families were significantly over-represented in P. den-
siflora and other Pinus species compared to gymnosperms as well as
angiosperms, implying a Pinus-specific copy number expansion of
these TF families (Fig. 3b, Extended Data Fig. 7a and Supplementary
Table 3). Subsequently, we conducted phylogenetic analyses of the 11
expanded TFsin 20 plantgenomes, revealing that certain TF subgroups,
such as AP2_2, AP2_11, MYB_4 and MADS(M)_6 (M type MADS box),
formed extremely large Pinus-specific lineages (Fig. 3c and Extended
Data Fig. 7b). This suggests that the expansion of these TF subgroups
has resulted in imbalanced TF repertoires between Pinus and other
plantlineages.

Ourinvestigation unveiled that the Pinus-dominant TF subgroups
were mainly generated through tandem duplication (TD) or dispersed
duplication (DSD) inthe P. densiflora genome (Fig. 3d and Supplemen-
tary Table 4). Forexample, the AP2_2,AP2 11, MYB_4,NAC_4 and TCP_2
subgroups contained a higher proportion of tandem duplicated genes
thanthe proportion of TDsinwhole genes (Fig. 3d and Supplementary
Table 5). The genomic distribution of genes in these TD-dominant
subgroups revealed a prevalence of tandem arrays on specific chro-
mosomes (Fig. 3e). By contrast,the MADS(M)_6,NF-YA 2,LFY_2,LFY_3
and LFY_4 subgroups expanded mainly via DSD with scattered gene
distribution across the P. densiflora genome (Fig. 3d,e). Moreover,
we found a remarkable co-localization of genes in the DSD-dominant
subgroups with LTR-RTs compared to genes in the TD-dominant sub-
groups (Fig. 3f). Along with the genomic structures of some genes in
the DSD-dominant subgroups, these results suggest that TF genes have
undergone massive expansion in P. densiflora via LTR-RT-mediated
retroduplication (Fig. 3g,h). We detected aclear presence of retrogenes
asdescribedin previous studies* in the DSD-dominant subgroups with
diminished exon numbers compared to parental genes, LTRs and polyA
tails (Fig. 3g). Overall, retrogenes were abundant in the DSD-dominant
subgroups and had asmall number of exons compared to normal genes,
suggesting that LTR-RT-driven retroduplication was one of the key
evolutionary machineries to create a large number of specific TFs in
the P. densiflora genome (Fig. 3h). LTR-RT-mediated retroduplication
hasbeenexemplified by the tandemly arrayed resistance gene families
in pepper”.In contrast to the previous study®, our dataillustrate that
LTR-RTs have led to the expansion of dispersedly located TFs across
chromosomes in P. densiflora, suggesting that LTR-RTs facilitate the
expansion of diverse gene families in a species-specific manner. Our
findings elucidate the expansion of Pinus TFs and their tandem and
LTR-RT-driven gene duplicationsin the P. densiflora genome, resulting
inthe diversification of TFsin pine.
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Fig.2|Evolutionary dynamics of LTR-RTs in Pinus. a, Proportions of the

gypsy and copia subfamilies of LTR-RTs in nine gymnosperms. b, Phylogenetic
relationship of the gypsy (left) and copia (right) subfamilies in P. densiflora HA
and other gymnosperms. Colors represent the nine gymnosperms (top right).
The outer and inner rings indicate subfamilies and subgroups, respectively.

¢, Aheatmap for the number of LTR-RTs in the gypsy and copia subgroups.

d, Theinsertion time (MYA) of dominant subgroupsin four Pinus species. e, The
correlation between the number of genes and LTR-RTs in the gypsy and copia
subgroups on chromosomes 10 and 12 of P. densiflora HA. For each chromosome,

the top correlation plots show LTR-RT subgroups that are positively, negatively
or neutrally correlated with gene density. Line colors indicate LTR-RT subgroups.
The number of genes (top) and LTR-RTs (bottom) are plotted as density within
30-Mbintervals. The color gradient from white to red, blue and green represents
the increased number of genes, negatively correlated LTR-RTs with genes and
positively correlated LTR-RTs with genes, respectively. Asterisks (*) denote

the major positive and negative regions with genes for each chromosome and
subgroup. The scientific names of the species are listed in Methods.
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subgroups, respectively. The correlation coefficients (r) between the number of
genes co-localized with LTR-RTs and duplication pairs are displayed. g, Specific
examples of retrogenes in dispersed duplicated TFs. Boxes and lines indicate exons
andintrons, respectively. h, The number of retrogenes in the LFY, MADS(M) and
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and normal genes in DSD-dominant subgroups (bottom). Box plots represent
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the box plots. The scientific names of the species are listed in Methods.
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Allelic variations between two haplotypes

Weidentified a total of 6,915,720 and 6,937,699 variationsin 31,277 and
31,243 generegions of P. densiflora HA and HB, respectively (Extended
DataFig. 8a). Similar to heterozygous plant genomes?, 29,492 (52%) and
29,411(52%) genes in P. densifloraHA and HB had nonsynonymous, indel
and/or structural variations (SVs) in the coding sequences (Extended
DataFig.8a). This suggests that the amino acid alteration resulting from
these variations led to the generation of geneimbalances between the
two haplotypes. Next, we identified 2,634 and 2,616 PAV genes in HA
and HB, respectively, and 1,324 allele-specific expressed (ASE) genesin
both haplotypesin additionto 40,275 common allelic genes (Extended
DataFig.8b and Supplementary Table 6). Gene ontology (GO) descrip-
tionsand domain repertoires revealed that the majority of PAV and ASE
genes have potential involvement in biological processes relevant to
bioticand abiotic stresses, including TFs and disease resistance genes
containing MYB, AP2 and leucine-rich repeat domains (Extended Data
Fig.8c,d). We then verified the sequences of several PAV TFs and their
corresponding regions in the P. densiflora genome (Extended Data
Fig.9a). We observed frameshift mutations leading to the generation
of premature stop codonsin MADS box, NAC, MYB, NF-YAand AP2 TFs
incertain haplotypes, therefore indicating the haplotype-specific pres-
ence of these genesinthe opposite haplotype (Extended DataFig. 9a).
Validationexperiments of representative ASE genes revealed significant
haplotype-preferred expression, consistent with the expression pattern
observed in the RNA-seq data (Extended Data Fig. 9b).

Utilization of orthologous genes from model plants acceler-
ates the identification of important trait-related genes in relatively
less-characterized plant species such as gymnosperms?. We detected
2,344 and 2,367 functional orthologous genes (FOGs) of Arabidopsisin
HA and HB, respectively, as potential candidates for functional genes in
P.densiflora (Extended DataFig. 9cand Supplementary Table 7). Among
them, FOGs consisted of 173 PAV genes, including 75inHAand 98 in HB,
69 ASE genes and 2,200 common alleles, respectively (Extended Data
Fig.9c). Thisindicates that there are 144 distinct FOGsinHA and 167 in
HB. GO analysis detected diverse cellular functions and multicopy gene
families among these FOGs, including protein kinases, leucine-rich
repeats and TFs (Extended Data Fig. 9d). Our findings emphasize that
haplotype-resolved genome assembly enables the identification and
characterization of allelic variation and haplotype-specific patterns of
gene expressionin the large diploid genome of P. densiflora.

Functional relevance of TFs and Arabidopsis FOGs

Giventhe presence of many TFsinthe repertoire of PAV genes, we first
conducted functional experiments on two validated PAV TFs, MADS
box and NAC, to elucidate their contributions to biological traits in
P. densiflora (Fig. 4a,b). Pd03G22920A (MADS box) was specifically
annotatedinHA, where al-bpinsertion (A) in the first exonled to pre-
mature translation terminationin the corresponding region (Extended
DataFig. 9a). To clarify the function of Pd03G22920A in P. densiflora, we
generated transgenic Arabidopsis plants overexpressing Pd03G22920A
(Pd03G22920A-0x). Three independent alleles of Pd03G22920A-0x
Arabidopsis exhibited earlier flowering than the non-transgenic wild
type (Fig. 4a). To validate these morphological differences, transgenic
T,lineswere generated, and stably inherited flowering phenotypes were
obtained with a significantly reduced number of leaves (Fig. 4a). This
indicates that Pd03G22920A may play akey role in the flowering char-
acteristics of P. densiflora. Next, we performed acomprehensive com-
parisonof protein structure and amino acid sequences between known
Pinus functional genes and their orthologous genes in P. densiflora.
Of them, PANAC3 (Pd05G27460A), the orthologous gene of PpNAC3
(Pinus pinaster NAC3)%, was specifically identified in P. densiflora HA
(Fig. 4b). Due to a nonsynonymous mutation (C/T) between HA and
HB, premature translation termination in the third exon of PANAC3in
P. densiflora HB was generated (Extended Data Fig. 9a). Although the
C-terminal region of NAC TFs are intrinsically disordered, which can

cause adecrease in template modeling (TM) score due to the inability
toalign predicted structures between protein pairs®**, the TM score of
the entire proteins encoded by PpNAC3 and PANAC3 was 0.50, indicat-
ing a highly conserved protein structure (Fig. 4b). Furthermore, the
amino acid similarity between these proteins was 95.3%, and the TM
score for the N-terminal region containing the NAM domain region
(DR) was 0.99, indicating a high probability of functional equivalence
with PpNAC3 (Fig.4b).In addition, we observed that PANAC3 was abun-
dantly expressed inroots and significantly induced under abiotic stress
conditions such as salinity and cold, consistent with the expression
pattern of PpDNAC3 (ref. 29) (Fig. 4b). These collective findings suggest
acomparablerole for PANAC3in P. densiflora.In addition, we also con-
ducted overexpression analysis of the AP2 allele gene (Pd03G15540)
in Arabidopsis and observed a prominent late flowering phenotype
(Fig.4c). Specifically, Pd03G15540-ox plants exhibited anotable delay in
the transition from vegetative to reproductive stages compared to both
wild types at the same time point (7 weeks old) and at alater time point
(4 weeks old). This finding suggests a potential role of Pd03G15540 in
the regulation of flowering in P. densiflora.

Tospeculate about the function of Arabidopsis FOGsin P.densiflora,
we selected orthologous genes of AtTOMS (ATSG0O8040), AtTOM6
(AT1G49410), AtEXPA1S5 (AT2G03090) and AtABCI12 (AT3G21580)
to use established function-location data in Arabidopsis**** and
performed subcellular localization analysis of the corresponding
proteins. The results showed that both PATOMS (Pd06G27970) and
PATOMG6 (Pd09G30900) co-localized with mitochondrial mark-
ers, while PAEXPA15 (Pd05G28920) and PAABCI12 (Pd02G22940)
co-localized with the plasmamembrane marker and chloroplast marker
in Nicotiana benthamianaleaves, respectively (Fig. 4d). Thisindicates
that their association with different cellular compartments is consistent
with the subcellular distribution patterns observed for Arabidopsis
gene products® ¥, Taken together, our multiple approaches to charac-
terize the gene function of PAV TFs as well as allele TF and Arabidopsis
FOGs highlight the practical importance of the haplotype-resolved
P.densifloragenome as aninvaluable resource for functional genomics.

PAV gene diversity across wild accessions of P. densiflora

Haplotype genome-based resequencing analysis facilitates precise
detection of allelic variations, particularly beneficial for species with
alarge genome™®*. To explore allelic imbalance across P. densiflora
species, we conducted haplotype-informative variation detection by
integrating linear and graph-based mapping of 8.8 Tb of resequencing
datafrom 30 wild accessions (13.5x coverage per individual) aligned to
the haplotype-resolved P. densiflora genome (Fig.5). When we examined
the number of allele, PAV and absent reference genes across accessions
by calculating the cumulative count of genes, we observed a gradual
decrease in allele genes accompanied by a corresponding increase in
PAV genes (Fig. 5a). Specifically, we verified 21,216 allele genes con-
sistently presentinall accessions, while 20,374 allele genes exhibited
imbalanced patterns and transformed into 20,162 PAV genes across
one or more accessions, resulting in the generation of 25,412 pan-PAV
genes in 31accessions, including the reference genome (Fig. 5a and
Supplementary Table 8). Thisimplies that many allele genes could exist
as PAV genes in different accessions, highlighting the importance of
the haplotype genome-based variation analysis to accurately capture
the pool of allelic variation. Domain repertoires of PAV genes revealed
that changing fromallele to PAV genes was predominantly observedin
multicopy gene families, playing crucial rolesin biological processes,
suchasdisease resistance genes and TFs, including leucine-rich repeat,
PPRrepeat family, MYB and AP2 genes (Fig. 5b). Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysisillustrated that several key genes
related to metabolic pathways, such as those for proline and acetate,
arepresentasallele genesin the reference genome; however, they were
altered to PAV genesin one or more accessions (Fig. 5c). These data indi-
cate that haplotype-informative variation detection enabled prediction
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and P< 0.01, respectively, based on a one-sided unpaired Student’s ¢-test. At least
two biological replicates were used. Error bars indicate s.e.m. L0, leaf O h; L24,
leaf24 h; SO, stem O h; S24, stem 24 h; RO, root O h; R24, root 24 h. ¢, Late flowering
and leaf morphology phenotypes of Pd03G15540 (AP2) in stable transgenic
Arabidopsis of the gene under the 35S overexpressing promoter. Scale bars, 5 cm.
d, Subcellular localization of Arabidopsis proteins encoded by FOGs fused to
fluorescence proteins, including PdATOMS-mRuby3 (Pd06G27970), PATOM6~
mRuby3 (Pd09G30900), PAEXPA15-moxVenus (Pd05G28920) and PAABCI12-
moxVenus (Pd02G22940) transiently expressed in tobacco leaf epidermal cells
(PATOMS, n=16;PATOM6, n =15; PAEXPA15, n =18; PdAABCI12, n = 22). At least two
biological replicates were used. Scale bars, 20 pm.

of PAV genes in accessions that can be functionally important. This
approach also demonstrates efficiency, particularly for complex giga
genomes to avoid omission of haplotype-specific variation.

To explore allele and PAV gene diversity across P. densiflora
species, weinvestigated the genome-wide distribution of allele and
PAV reference genes in the P. densiflora genome and 30 accessions

(Fig.5d and Extended Data Fig.10). When examining the density level
of PAV genes, we observed that many allele genes in the reference
genome appear as PAV genes throughout chromosome regions in
accessions (Fig. 5d and Extended Data Fig. 10). Observing PAV-rich
regions with high PAV gene density, we noticed that these regions
were sporadically verified in specific or most accessions (Fig. 5d).
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Fig. 5| Allele and PAV gene diversity across 30 wild accessions of P. densiflora.
a, The cumulative number of allele, PAV and absent genes is plotted in a graph
ordered by the phylogenetic relationships among P. densiflora and 30 wild
accessions. The green, blue and red dots indicate allele, PAV and absent genes,
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metabolic pathway completeness of the reference (ref) and pan genes based
on KEGG annotation. The color scale from white to red indicates low to high
pathway completeness. OAA, oxaloacetate; PEP, phosphoenolpyruvate; TCA,
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This suggests that PAV gene diversity across accessions has primar-
ily been generated mainly by conversion of allele to PAV genes in
PAV-richregions. For example, it was reported that overexpressing
PaZTL (Picea abies ZTL), which contains three functional domains,
LOV (DR1), F box (DR2) and Kelch motifs (DR3), inhibits flowering
in transgenic Arabidopsis*°. The orthologous gene of PaZTL, PdZTL
(Pd08G34040), existsasan allele inthe reference genome. However,
this gene was predicted to be a PAV gene in many accessions due to
avariety of variation types leading to premature termination, thus
excluding its crucial domain (Fig. 5e). The variation types were cat-
egorized into four cases based on the location of the premature stop
codon caused by the frameshift mutation or stop acquisition. Protein
structure and sequences of PaZTL and PdZTL were found to be very
similar, showing a TM score of 0.71for the entire region, with 97.8%
amino acid similarity and an average TM score of 0.99 for the three
DRs (Fig. 5f). This suggests highly conserved protein sequences and
structures between the proteins. By examining the protein structural
features for each variation type, it was found that the Kelch motif
structure in DR3, one of the functional domains, is not formed in
casesland 2 with TM scores of 0.23 and 0.24, respectively (Fig. 5f).
In cases 3 and 4, the Kelch motif structure in DR3 is partially formed
with oneand three Kelchrepeats, respectively, with TM scores of 0.25
and 0.39. This suggests that theincomplete protein structure, lacking
astable B-propeller in functional DRs, may contribute to abnormal
gene formation in one haplotype of some P. densiflora accessions.
Our findings highlight variable allele and PAV gene diversity among
P.densifloraaccessions and demonstrate the necessity of allele-aware
variation studies using accurate haplotype-resolved assembly, espe-
cially for complex giga genomes.

Discussion

Allele-defined genome-based research is becoming increasingly feasi-
bleandindispensable for comprehensive analysis of extremelylarge and
complex plantgenomes. Here, we present a haplotype-resolved assem-
bly of the P. densiflora genome with high contiguity, omission-reduced
gene annotation and accurate haplotype separation. This represents
an important stride toward enabling effective haplotype-resolved
functional and breeding studies of gymnosperm genomes. We com-
prehensively demonstrated that genomic duplications, chromosomal
rearrangements and the expansion of specific LTR-RT subgroups have
contributed tothe diversity in genome size and structure among Pinus
species. Theintensive comparison of TF families in Pinus, gymnosperms
and angiosperms using updated annotations unveiled remarkably
expanded TF repertoires in Pinus and their evolutionary processes
via a burst of specific TF families by TD and LTR-RT-mediated DSD in
the P. densiflora genome. Our findings with the updated resources
provideinsightinto the mechanism underlying extreme copy number
evolution of important gene families. Characterization of haplotype
variation elucidated allelicimbalances between haplotypes with their
functionalroles in shaping P. densiflora traits, such as flowering regula-
tionand abiotic stress resistance. Moreover, haplotype-aware variant
detection allowed us to construct an unbiased pool of allelicinforma-
tion across P. densiflora accessions, suggesting the importance of a
haplotype genome-based approach to accurately understand gene
diversity among individuals within species. Finally, our findings with
the haplotype-resolved genome assembly provide crucial insights
for acomprehensive understanding of Pinus genome evolution and
haplotype characteristics in P. densiflora.
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Methods

Plant material and genome sequencing

A 15-year-old tree, grafted with a scion from P. densiflora (Jeon-
gipumsong, Korean Natural Monument No. 103), was maintained
at the Korea Forest Research Institute for genome sequencing®.
High-molecular-weight genomic DNA (gDNA) was extracted from
cambium tissue using the modified CTAB method*. After assessing
the quality and quantity of the gDNA using a Femto Pulse system with
the Agilent 2100 Bioanalyzer (Agilent Technologies), it was used for
sequencing. For PacBio HiFilong-read sequencing, atotal of 15 pg gDNA
was prepared for library construction with a preliminary evaluation
of gDNA length using the Femto Pulse system (Agilent Technologies).
HiFi SMRTbell libraries were constructed using the SMRTbell prep kit
3.0 (Pacific Biosciences) following size selection performed with the
BluePippinsystem (Sage Science). Subsequently, sequencing was con-
ducted using SMRT cells (Pacific Biosciences) on the Revio sequencing
platform. After sequencing, consensus HiFireads were generated using
CCS software with default parameters. The same DNA samples were
also sequenced on the Illumina NovaSeq 6000 platform with a read
length of 150 bp and aninsert size of 350-550 bp. The 10x linked read
library prepared using the Chromium Genome Reagent Kit and the Hi-C
library prepared using the Dovetail Omni-CKit were also sequenced on
thellluminaNovaSeq 6000 platform with 2 x 150-bp paired-end reads
following the manufacturer’s protocol. Total RNA was isolated from
four tissues (current-year shoots, needles, female flowers and imma-
ture cones) using TRIzol reagent®. After confirming the purity and the
integrity of the RNA, the full-length complementary DNA (cDNA) library
was generated using the Clontech SMARTer PCR cDNA Synthesis Kit,
following the isoform sequencing (Iso-seq) protocol, and was subse-
quently used for Iso-seq on the PacBio Sequelll platform. Resequencing
datafor30wild accessions of P. densiflorawere obtained from the Korea
Forest Research Institute (Supplementary Table 8). Insummary, fresh
leaves were collected from 30 randomly distributed wild accessions
across Korea for DNA extraction. Qualified gDNA was extracted using
the DNeasy Plant Mini Kit (Qiagen) and used to construct paired-end
sequencinglibraries with the [llumina TruSeq DNA NanoKit. The librar-
ieswerethensequenced onthellluminaNovaSeq 6000 platform with
151-bp paired-end reads, aiming for a target coverage of 14 .

Genome assembly and phasing

Theinitial contigassembly for the two sets of haplotypes (HA and HB)
was performed by Hifiasm version 0.19.5-r587 with default param-
eters using the PacBio HiFiand Hi-C reads. Redundant haplotigs were
eliminated during the implementation of Hifiasm with purge_dups.
The contigs within each haplotype were reordered and clustered to
generate chromosome-level scaffolding using the ALLHiC pipeline**
(default parameters were employed for all steps except -k 12’ for the
number of chromosomes). P. tabuliformis, aclosely related species with
awell-assembled genome, was used for the ‘prune’ function. Finally,
we manually checked and curated order and orientation errors based
onHi-C contact maps usingJuicebox* to achieve achromosome-level
haplotype-resolved assembly of P. densiflora.

Gene annotation

To annotate protein-coding genes in the two haplotypes, we applied
several strategies, including whole-gene annotation using the MAKER
version 2.31.10 (ref. 46) pipeline, structure-based orthologous gene
annotation with Arabidopsis functional genes (FOGs) using GeMoMa
version1.6.1(ref. 47) and finally in-depth reannotation of TF gene fami-
lies using TGFam-Finder version 1.01 (ref. 48). First, we primarily used
the MAKER pipeline to annotate whole-gene models, whichintegrates
protein homology evidence, transcript mapping and ab initio predic-
tions. Theinput data for the MAKER pipeline were prepared as follows.
The protein-coding sequences of P. tabuliformis, P. taeda, P. lamberti-
ana, A. trichopoda, P. trichocarpa, A. thaliana and O. sativa were used

for alignment to support protein homology evidence. PacBio Iso-seq
was used to assemble high-confidence full-length cDNA transcripts
using pbmma2 version1.10.0 (aMinimap2 wrapper for PacBio data) and
Iso-seq collapse version 3.8.2. These transcripts served as transcript
evidence. For abinitio prediction, SNAP** and AUGUSTUS version 3.2.3
(ref.50) were used with anin-house training set comprising full-length
genes from transcriptome and protein-based annotation data. After
gene prediction using MAKER, we further refined the gene models by
filtering them based onthe annotation edit distance scores defined by
MAKER and their deficiencies in transcript or homology evidence. To
accurately incorporate Arabidopsis FOGs into the annotation of the
two haplotypes, we performed homolog-based gene prediction using
10,356 Arabidopsisfunctional genes identified in TAIR (ftp://ftp.arabi-
dopsis.org) following the default parameters of the GeMoMa version
1.6.1 (ref. 47) pipeline. Furthermore, TF genes were annotated using
TGFam-Finder version1.01 (ref. 48). The Pfam IDs of target DNA-binding
domains, designated as ‘TARGET_DOMAIN_ID’, were assigned based
on the PlantTFDB® classification (https://planttfdb.gao-lab.org).
Considering the relatively longer length of introns in gymnospermes,
‘$EXTENSION_LENGTH’ and ‘SMAX_INTRON_LENGTH’ were set to
1Mb. Finally, the annotation results from multiple approaches were
integrated to generate a final set of annotated protein-coding genes
for each haplotype.

For functional annotation, we used InterProScan version
5.22-61.0 (ref. 51) (-f tsv -appl Pfam) and hmm-search to identify con-
served domains using the Pfam*> and HMM®? databases. GO analysis
was conducted to analyze the putative functions of protein-coding
genes using the OmicsBox platform with Blast2GO** annotation and
mapping algorithms.

Assessment of genome assembly and annotation quality

We performed multiple assessments to validate the quality of genome
assembly, phasing and annotation. Base pair quality was assessed
using Merqury version 1.3 (ref. 55) software. Meryl databases were
created using Illumina and 10x Genomics reads with a 21-mer size.
Subsequently, Merqury was used to estimate QV scores and k-mer com-
pleteness. We also used the LTR Assembly Index** tool, wrappedin the
LTR_retriever” pipeline with default parameters, to obtain standard-
ized quality index values for each haplotype genome. Using Juicebox*,
we manually curated each chromosome based on the quality of Hi-C
contact mapsto consolidate contiguous Hi-C hits. For gene annotation
quality assessment, we used BUSCO version 5.0 (ref. 58) with the embryo-
phyta_odbl10 database to evaluate the quality of gene annotations in
P. densiflora (Table 1). In addition, we evaluated genome phasing by
calculating switch errors between the two haplotype assemblies using
calc_switchErr*® with default parameters. We also assessed haplotype
phasing using the copy number spectrum results from Merqury. The
‘spectra-asm’ plot was employed to track the multiplicity of k-mers
found in each haplotype, and we manually confirmed the balance of
peaks and fractions depicted in the haplotype-specific k-mer graphs.

Annotation of TEs and LTR-RTs

Toidentify repeat sequencesin the two haplotypes of the P. densiflora
genome, we generated the de novo repeat library using RepeatMod-
eler2version 2.0.1 (ref. 60) and annotated the library based on model
databases of TEsin Deep TE® with default parameters. Using the de novo
library, we annotated TEs in P. densiflora HA and HB using Repeat-
Masker version 4.1.1 (ref. 62). Moreover, we used the LTR_retriever*’
pipeline for in-depth structural annotation of LTR-RTs. Specifically,
LTRharvest® (-maxlenltr 7000 -mindistltr 100 -similar 80) was used
toidentify genomic positions of LTR-RTs, and LTRdigest®* was used to
annotate internal features of LTR-RTs for further evolutionary analysis.
For accurate analyses, we annotated TEs and LTR-RTs in three Pinus
species and five other gymnosperm species using the same pipeline
and parameters.
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Comparison of P. densiflora and other Pinus genomes
Homologous synteny blocks between P. densifloraHA and P. tabuliformis
were identified using MCScanX® (-s 3 -m 50). Syntenic blocks were
visualized using the Circos®® software package. For whole-genome-
versus-genome alignment, the genomes of P. tabuliformis, P. taeda and
P.lambertiana were used as query sequences, while the P. densiflora
HA genome served as the reference sequence in Minimap2 (ref. 67)
(-x asm20). Next, the alignment coverage (nonredundant aligned
length/window size ratio) was estimated based on the genomic loca-
tion of the HA genome in P. densiflora, with awindow size of 30 Mb.

To accurately examine chromosomal rearrangements between
chromosomes1and 3 of P. densiflora and P. tabuliformis, we performed
comparative mapping of genetic markers from P. densiflora, P. taeda
and P. thunbergii to the genome of P. densiflora and P. tabuliformis.
We obtained 1,007 SNP marker sequences for P. densiflora from the
National Institute of Forest Science”. We also collected 341 and 333
genetic marker sequences for P. taeda® and P. thunbergii** from previ-
ousstudies, respectively. The marker sequences were searched against
the entire genomes of P. densiflora and P. tabuliformis using BLASTN
with an e-value cutoff of 1 x 107, Only the top hit for each marker was
subjected to comparative mapping. We then linked the same marker
hits and compared their locationsin each genome based on the physi-
cal positions of the linkage group on the genetic map. The divergence
time between Pinus species was estimated using TimeTree5 (https://
timetree.org/).

Comparative and evolutionary analyses of LTR-RTs

To explore the phylogenetic relationships among LTR-RTs in gymno-
sperms, we designed reverse transcriptase (RT) sets for P. densifloraHA
and eight other gymnosperm genomes to represent the tremendous
number of RT domains in these gymnosperm species as an input data-
set. We examined motif combinations within individual RT domains
using the MEME version 5.1.1 (ref. 68) (-V -time 180000000 -mod
zoops -nmotifs 150 -minw 10 -maxw 50 -objfun se -markov_order 0)
and MAST® algorithms.

Given the abundance of motif combinations, we randomly
selected and subsequently reduced the RT domain set. The amino
acidsequences of the RT domainingypsy and copia were aligned using
the fftns module in MAFFT version 7.470 (ref. 70), and poorly aligned
regions were removed using TrimAl version 1.4.rev22 (ref. 71) (-gt 0.1).
RAXML version 8.2.12 (ref. 72) was used to build a maximum likelihood
tree with prior selection of the best suitable model, DUMMY2F and
DUMMY2 for gypsy and copia elements, respectively (-m PROTGAM-
MAAUTO -p12345). The maximum likelihood trees for gypsy and copia
elements were supported by 500 bootstraps with random parsimony
seeds (-mDUMMY2F/DUMMY2-p 12345 -x12345-#500). The excluded
RT domain sequences in the phylogenetic tree were assigned to each
subgroup using BLASTP against selected RT domain sequences in
the tree (-evalue 1e-30 -outfmt 7 -num_threads 1 -max_target_seqs
100 -perc_identity 80). The results were visualized using heatmaps
by subgroup.

To calculate the insertion time for LTR-RTs, we extracted the
5 and 3’ LTR sequences for each LTR-RT and aligned them using PRANK
version 170427 (ref. 73) (-showtree -f=paml). We then estimated the
nucleotide distance (K) between 5’ and 3’ LTRs through maximum likeli-
hood analysis using the baseml module from PAML version 4.9 (ref. 74)
with default parameters. Theinsertiontime (7) for each LTR-RT was cal-
culated using the formula 7= K/2r, where the nucleotide substitution
rate (r) was assumed to be 2.2 x 107 based on a previous study*. The
species tree and divergence times among the selected gymnosperms
were predicted using TimeTree5 (https://timetree.org/).

Reannotation and phylogenetic and duplication analyses of TFs
Thereannotation of TFsin 19 plant genomes (three Pinus, seven other
gymnosperms and nine angiosperms listed in Supplementary Table 9)

was performed using TGFam-Finder version1.01 (ref. 48) with the same
parameters used for the annotation of TFsin P. densiflora.

For comparative evolutionary analyses of TFs in P. densiflora HA
and 19 species (Pinus tabuliformis, Pinus taeda, Pinus lambertiana,
Picea abies, Pseudotsuga menziesii, Abies alba, Ginko biloba, Gnetum
montanum, Taxus chinensis, Torreya grandis, Amborella trichopoda,
Zea mays, Oryza sativa, Allium sativum, Capsicum annuum,
Arabidopsis thaliana, Helianthus annuus, Phyllostachys edulis and
Populus trichocarpa; Supplementary Table 9), we first performed
phylogenetic analysis following the methods described in previous
studies”™’®. In detail, TF genes encoding an intact DNA-binding
domainwere selected from11 Pinus-dominant TF families. The protein
sequences of theseintact TFs were aligned using the fftns module from
MAFFT version 7.470 (ref. 70) and trimmed with TrimAl version 1.4.rev22
(ref. 71) (-gt 0.3). Phylogenetic trees were constructed using IQTREE
version 2.0.6 (ref. 77) (-msub nuclear -alrt 1000 -B 1000 -safe), and
subgroups were assigned based on the phylogenetic relationships and
widely known subfamily classifications defined in previous studies.
The remaining partial TFs excluded from the tree were assigned to
eachsubgroup through BLASTP similarity searches (outfmt 7 -seg yes
-evalue le-10 -max_target_seqs 50).

Toidentify gene duplication patterns across the 11 TF subgroups,
we used DupGen_finder’ (https://github.com/qiao-xin/DupGen_
finder) to predict recently duplicated gene pairs and their duplication
types. Initially, we conducted an all-by-all BLAST for whole genes in
P.densifloraHA using default parameters to prepare the input dataset
for DupGen_finder. Subsequently, the duplication types of gene pairs
within the 11 TF subgroups were identified using in-house Perl scripts.

Identification of allelic variation and PAV and ASE genes
between P. densiflorahaplotypes
To identify genomic variation between haplotypes, we used the
nucmer program in MUMmer version 4.0 (ref. 79) to align the HA and
HB genomes using default parameters. SVs were reported using the
‘show-diff’ functionin both HA and HB genomes. SNPs and indels were
alsoidentified using the ‘show-snps’ function with default parameters.
Moreover, SNPs and indels within gene regions were annotated using
SnpEff version 5.1 (ref. 80), assuming an upstream and downstream
length of 2 kb (-ud 2000).

To classify PAV and ASE genes, we first defined allelic genes in
P. densiflora HA and HB based on reciprocal BLAST best matches and
the genomic location of genes. When the gene was annotated in only
one haplotype, it was classified as a PAV if counterpart genomic regions
did not contain its allelic gene after verification using Exonerate version
2.2.0(ref. 81) (-model protein2genome-percent 50). For ASE genes, we
conducted transcriptome analysis across various tissues of P. densiflora
and categorized them by organs including (1) stem for immature
stem-derived cambium, mature stem-derived cambium, immature
stem-derived developing xylem, mature stem-derived developing
xylem and immature whole stem, (2) leaf for young needle, (3) root for
mainrootand (4) shoot apical meristem®., RNA-seq expression profiles
were obtained following the New Tuxedo® protocol. Differentially
expressed genesineachtissue wereidentified using DESeq2 (ref. 84) in
the Rmodule with |log, (fold change)| > 1. Finally, ASE genes are defined
as genes with alleles differentially expressed in at least one tissue.

Identification of Arabidopsis functional orthologous genesin
P. densiflorahaplotypes

To determine the orthologous relationship between Arabidopsis
functionalgenesand annotated orthologous genes fromthe Arabidopsis
functional genes using GeMoMaversion1.6.1(ref. 47) intwo haplotypes
of the P. densiflora genome, we performed reciprocal BLAST searches
with 10,356 Arabidopsis functional genes and putative Arabidopsis
FOGsinbothHA and HB. When a putative FOG, classified asacommon
allele or aPAV or ASE gene, was reciprocally best matched to a specific
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Arabidopsis functional gene, we inferred an orthologous relationship
and categorized it accordingly asa common allele, PAV and ASE FOG.

Experimental validation of PAV and ASE genes

Nucleic acids were extracted from P. densiflora. gDNA from leaf tissue
was isolated using the DNeasy Plant Mini Kit (Qiagen), following the
protocol provided by the manufacturer. Total RNA was extracted from
leaf, stemand root tissues using the CTAB method. Subsequently, cDNA
was synthesized using the PrimeScript I 1st Strand cDNA Synthesis Kit
(Takara). For sequence confirmation of PAV genes and validation of ASE
gene expression, the concentration (ug ml™) and quality (A260/A230
and A260/A280 ratios) of the nucleic acids were determined using the
NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific) and
visually verified on a 1.0% agarose gel. Primers were designed based
on haplotype-specific variations in gDNA and cDNA sequences (Sup-
plementary Table 10). PCR for sequence validation of PAV genes was
performed with aninitial denaturation at 95 °C for 5 min, followed by
40 cycles of denaturation at 95 °C for 30 s, annealing at 58 °C for 30 s
and extension at 72 °C for 1 min, with a final elongation step at 72 °C
for 5 min. PCR products were used after purification and subsequently
subjected to sequencing. To ensure accurate detection of SNPs based
onoverlapping nucleotide peaks, chromatograms were validated using
KB Basecaller version 1.4.1 (ref. 85) with quality values assigned to each
base pair in the PCR product. Quantitative real-time PCR was used to
identify tissue-abundant and haplotype-unbalanced expression of
ASEs. Each reaction was analyzed in triplicate using an Exicycler 96
Real-Time Quantitative Thermal Cycler (Bioneer) and initiated with
a pre-denaturation step at 95 °C for 10 min, followed by 40 cycles of
denaturationat 95 °Cfor5s,annealingat 60 °C for 25 s and extension at
72°Cfor30 s, withafinal extension at 65 °C for 5 min. Transcriptlevels
ofthe genes were measured, and relative quantification was calculated
using the 2724 algorithm.

Functional validation of P. densiflora PAV genes and
Arabidopsis orthologous genes

For ectopic overexpression of Pd03G22920A (MADS box) and
Pd03G15540 (AP2) intransgenic Arabidopsis, Agrobacterium containing
the corresponding genes under the 35S promoter in the binary vectors
was used for Arabidopsis transformation via the floral dip method®®.
Col-0 was used as wild type. One-week-old T, seedlings resistant to
8 mg I glufosinate ammonium (MilliporeSigma) were transferred
to soil (3 BMé6:1 vermiculite:1 perlite) from Y2 Murashige and Skoog
(MilliporeSigma) supplemented with 1% sucrose (MilliporeSigma),
adjusted to pH5.7 and hardened with 2.4% Phytagel (MilliporeSigma).
Plants were grown in a controlled environmental growth room with
a16/8 h light/dark cycle under 130 pmol m™2s™ light at 22-24 °C and
45-55% humidity. In the given growth condition, wild-type plants
flowered after 2-3 weeks with 6.2 rosette leaves on average. T, seeds
were harvested from a Pd03G22920A (MADS box)-transgenic T, plant
and grown to quantify flowering time to confirm the early flowering
phenotype of Pd03G22920A-overexpressing transgenic Arabidopsis
plants. Anunpaired Student’s t-test was performed to examine statisti-
cal significance with Prism 10 (GraphPad).

For subcellular localization of Arabidopsis FOGs in N. bentha-
miana plants, Arabidopsis FOGs were cloned in a binary vector to
be expressed as fusion proteins with various fluorescent proteins
ectopically in N. benthamiana leaves under the 35S constitutively
overexpressing promoter. Fusion proteins were expressed in plant
cells by Agrobacterium-mediated transient gene expression®. Corre-
spondingsubcellular compartment markers were coexpressed as ref-
erences. MT-moxVenus and PM-mCherry constructs indicate markers
for mitochondriaand plasma membrane, respectively®®. A transgenic
N. benthamiana plant expressing NRIP1-mCerulean was used as a
reference for the chloroplastic localization of ABCI12 (ref. 89). Confo-
cal microscope images were acquired with Leica TCS SP8 STED and

Zeiss LSM 980 laser scanning confocal microscopes. All images were
acquired with a x40 1.2-NA C-Apochromat water-immersion objec-
tive with405-nm (mCerulean, 1.5%), 514-nm (moxVenus, 15-20%) and
561-nm (mCherry, 15-20% and mRuby3, 50%) laser lines. Images were
processed using FijilmageJ°°. mCherry and mRuby3 are pseudocolored
inmagenta, while moxVenus and cerulean are pseudocoloredin green
and cyan, respectively.

Comparison of P. densiflora PAV genes with known Pinus func-
tional genes was conducted by considering similarity inboth sequence
and protein structure. Protein structure prediction was carried out
using AlphaFold2 (ref. 91), and visualization was accomplished using
ChimeraX®?. The similarity between the Pinus functional gene and
its orthologous PAV genes in P. densiflora was quantified based on
protein structure using the TM score”. We estimated the expression
of orthologous PAV genes in P. densiflora under abiotic stress condi-
tions. Briefly, the propagated clones were subjected to salinity and cold
stress treatments by exposing themto 250 mM NaCland 4 °Cfor 0 and
24 h, respectively. The control group comprised clones that were not
exposed to any abiotic stress. Each treatment time point consisted of
at least two biological replicates, including the control group. Other
environmental conditions were maintained at a constant level. To
analyze gene expression, fresh leaves, stems and roots were collected
fromeachgroup. Quantitative real-time PCR was performed using the
same protocol as that used for ASE validation, and the primers used
for assessing abiotic stress expression are listed in Supplementary
Table10.

Linear and graph-based analyses of resequencing data for
P.densiflora accessions
Givenrecentstudies thatapplied disparate methods for variant detec-
tion depending on the type of variant to enhance accuracy’ ", we
used a linear reference-based approach to detect small variants such
asSNPsorindelsandagraphreference-based analysis to explore large
SV variants. To analyze SNPs and indels (1-49 bp), we performed vari-
antcalling vialinear reference genome alignment for HA and HB using
resequencing dataof 30 accessions. Raw resequencing reads from 30
P. densiflora accessions were trimmed using CLC Assembly Cell (CLC
bio) (-¢20-f33-m70). The cleanreads were iteratively mapped toeach
haplotype using BWA-MEM® with default parameters. Mapped reads
were sorted using SAMtools’®, and duplicated reads were marked using
MarkDuplicates from Picard (available at https://broadinstitute.github.
io/picard/; Picard Toolkit 2019). Subsequently, variants were called
using Genome Analysis Toolkit (GATK) version 4.1.6.0 (ref. 99) with the
following functions: call germline with HaplotypeCaller (-ERC GVCF),
import and merge GVCFs of 30 accessions with GenomicDBImport,
assign genotype with GenotypeGVCF and filter only SNPs and indels
with VariantFiltration (‘QD < 2.0||MQ < 40.0||FS > 60.0||SOR > 3.0 ||
MQRankSum<-12.5 || ReadPosRankSum<-8.0||GQ < 20.0’ for SNPs;
all criteria the same with SNPsbut ‘FS >200.0||SOR >10.0’ for indels).
Because it was known that graphreference-based alignment miti-
gatesreferencebias, especially in SV detection'°'°2, we benchmarked
thisapproach by graphically reflecting our haplotype variationin the
reference genome. We constructed a haplotype variation-aware graph
reference for HA and HB using PanGenome Graph Builder'® (default
parameters except ‘-n 2’ for number of haplotypes). We converted
and indexed the graph reference (GFA format) appropriately to use
in vg toolkit' as follows: we converted GFA to VG format using ‘vg
convert’ and indexed the graph using ‘vg autoindex’ to obtain the
topological (xg) index. Allreads from 30 accessions were then aligned
to the haplotype-aware graph reference using ‘vg giraffe’ with default
parameters. The compressed read coverage index was calculated
using ‘vg pack’ with mapping quality filtration (-Q 5), snarls were com-
puted using ‘vg snarls’,and variants were genotyped using ‘vg call’ with
default parameters. We retained only large SVs (=50 bp) in VCF. Finally,
variant information of SNPs, indels and SVs from each accession was
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incorporated into a single VCF format considering nonredundant
positions. A SNP-based maximum likelihood phylogenetic tree was
constructed using RAXML version 8.2.12 (ref. 72) with the best amino
acid model PMB and empirical base frequency.

To examine the diversity of allele and PAV genes in the reference
genome across accessions, we predicted the types of variationsin the
reference genes within each accession. Variants were annotated with
SnpEff version 5.1 (ref. 80) using default parameters and categorized
based ontheirsize and impact onthe gene.Inaddition, the annotated
variants were filtered to retain only those predicted to be high-impact
variants, whichincluded protein-disrupting variants such as frameshift
variants, stop acquisition and loss of exons including a stop or start
codon, etc. We assumed that, if a particular gene contained one or
more high-impact variants in its coding region, it could be omitted.
Finally, we classified reference genes in each accession as allele, PAV
orabsent genes. The completeness of various metabolic pathways was
determined using KEGG Decoder'*.

Statistics and reproducibility

Statistical details, including the number of replicates, statistical meth-
odsand Pvalues, arereported in the legends of Figs. 1-5 and Extended
DataFigs.1-10 or are described in the main text. For each experiment,
atleasttwo biological replicates were performed. No statistical method
was used to predetermine sample size, and no data were excluded from
the analyses. The experiments were not randomized. The investiga-
tors were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The genome assembly and annotation data for the haplotypes of
P.densifloraand the genotype information generated from resequenc-
ing analysis of P. densiflora accessions have been deposited in figshare+
(https://doi.org/10.25452/figshare.plus.25546534)', Resequencing
datahavebeen deposited at the NCBISRA under BioProject accession
number PRJNA1089250.

Code availability

The related code has been deposited in GitHub (https://github.com/
minjeongjj/pinus_densiflora_haplotype_genome) and Zenodo (https://
doi.org/10.5281/zenod0.12791823)'%, All software used in this study is
publicly available as described in Methods and Reporting Summary.
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Extended Data Fig. 1| The k-mer analysis for genome size estimation and
polymorphism of P. densiflora. a, 21 k-mer depth distribution for genome size
estimation. The x-axis indicates the k-mer depth and the y-axis indicates the
frequency of k-mers. The dotted line represents the peak value. b, Haplotype-
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specific k-mer assembly spectrum (spectra-asm) plot from Merqury results.
The graph shows k-mer proportion of haplotype-specific (red and blue), shared
(green), and read-only (grey). The red and blue lines represent the evenly
bisected the haplotype specific portion of k-mers, respectively.
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Extended Data Fig. 2| Hi-C contact map for each of the 12 chromosomes in the P. densiflora genome. a, Haplotype A (HA). b, Haplotype B (HB). The color scale from
white to red indicates low to high contact probability.
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HB.d, Domain repertoire (left) and GO descriptions in biological process (right)
of allele, PAV, and ASE genes. The pink, blue, and orange bars indicate allele, PAV,
and ASE genes, respectively.

Extended DataFig. 9 | Validation of PAVs and ASEs in P. densiflora and
characterization of Arabidopsis functional orthologous genes (FOGs).

a, Sequence validation of haplotype-specific presence of PAVs. b, Tissue
abundant and haplotype unbalanced expression of ASEs in leaf, stem, and root.
Asterisks (**) denote a significance level of P < 0.01based on a one-sided unpaired
Student’s t-test. At least two biological replicates are used. Error bars indicate

the SE. The brown boxes and black lines indicate exons and introns, respectively.
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