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Brauer’s Height Zero Conjecture

By Gunter Malle, Gabriel Navarro, A. A. Schaeffer Fry,

and Pham Huu Tiep

Abstract

We complete the proof of Brauer’s Height Zero Conjecture from 1955

by establishing the open implication for all odd primes.
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1. Introduction

Brauer’s Height Zero Conjecture (BHZ), formulated in 1955 [7], has been

one of the most fundamental and challenging problems in the representation

theory of finite groups. Deeply influencing the research in the field, it is also

a source of many developments in the theory. If p is a prime and B is a

Brauer p-block with defect group D of a finite group G, R. Brauer proved that

|G : D|p is the largest power of p dividing the degrees of all the irreducible

complex characters in B. (In this paper, np denotes the largest power of p

dividing the integer n.) Hence, if χ ∈ Irr(B), the set of irreducible complex

characters in B, then χ(1)p = |G : D|p phχ for some non-negative integer hχ
called the height of χ. The conjecture asserts that χ(1)p = |G : D|p for all

χ ∈ Irr(B) if and only if D is abelian. That is, hχ = 0 for all χ ∈ Irr(B) if and

only if D is abelian.

The “if” implication of the Height Zero Conjecture was proven in [26],

using the classification of finite simple groups, after decades of contributions

by many authors. The “only if” implication was proven for p-solvable groups

in [21]; for p = 2 and blocks of maximal defect (that is, when D is a Sylow 2-

subgroup of G) in [45]; and recently for principal blocks, for every prime, in [36].

Furthermore, building upon work in [46], it was shown in [44] that Brauer’s

Height Zero Conjecture is implied by the inductive Alperin–McKay condition

on simple groups (a strong form of another main conjecture in our field). This

has enabled L. Ruhstorfer to recently prove the Height Zero Conjecture for

p = 2 in [52]. However, the verification of the inductive Alperin–McKay con-

dition on simple groups for odd primes remains an enormous challenge.

In this paper we take a different approach and prove the open direction

of Brauer’s Height Zero Conjecture in the case that p is odd.

Theorem A. Let G be a finite group, let p be an odd prime, and let B

be a p-block of G with defect group D. If χ(1)p = |G : D|p for all χ ∈ Irr(B),

then D is abelian.

As discussed above, this implies

Corollary. Brauer ’s Height Zero Conjecture holds.

A key novelty of our approach is a combined use of new results on blocks

of quasi-simple groups as well as on permutation groups, which allows us to
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tightly control the structure of a minimal counterexample to BHZ and over-

come certain difficulties in proving extendibility of characters from normal

subgroups that were encountered in previous approaches.

There are, at least, two major obstacles for our approach. The first is to

prove that irreducible characters in p-blocks of quasi-simple groups lie in suf-

ficiently many distinct orbits under the action by their automorphism groups.

We think that the following result has independent interest and that it will be

useful in the resolution of other problems.

Theorem B. Suppose that p is an odd prime, S is a quasi-simple group,

and b is a p-block of S with non-cyclic defect groups. Then at least one of the

following statements holds :

(1) Irr(b) contains characters from at least three different Aut(S)-orbits ; or

(2) all characters in Irr(b) have the same degree.

In the presence of blocks with cyclic defect groups, or when all the ir-

reducible characters in b have the same degree (and therefore b is nilpotent

in the sense of Broué–Puig), we will instead use deep results by Koshitani–

Späth, Broué–Puig and Külshammer–Puig ([30], [9], [32]) in order to prove

Theorem A.

The second obstacle to our approach is inherent to Brauer’s Height Zero

Conjecture and independent of any road that is followed to prove it. Suppose

that G is a finite group and σ is an automorphism of order a power of p of

G that stabilises a p-block B of G, a defect group D of B, and a p-block bD
of CG(D) that induces B. If D is abelian, Brauer’s Height Zero conjecture

(and the inductive Alperin–McKay condition) implies that all the irreducible

characters of B are fixed by σ if and only if σ acts trivially on D. In fact, we

will need a more sophisticated version of the following result for quasi-simple

groups (see Theorem 4.1).

Theorem C. Suppose that p is an odd prime and that S is a quasi-simple

group such that Z(S) is a cyclic p′-group. Let b be a p-block of S with abelian

defect group D. Suppose that σ is an automorphism of S of p-power order that

fixes all the irreducible characters of b, normalises D, and stabilises a block bD
of CS(D) that induces b. Then σ acts trivially on D.

In Section 2, we prove the needed result on permutation groups and other

technical results that we will use in the proof of Theorem A. In Section 3,

we prove Theorem B. Section 4 is devoted to the proof of a refined version of

Theorem C and its needed generalisations. Finally, in Section 5, Theorem A

is proved. As was the case in the proof of the other direction of BHZ, as well

as the cases of maximal defect for p = 2 and for principal blocks, our proof

(including the result on permutations groups that we have mentioned as well

as Theorems B and C) relies on the Classification of Finite Simple Groups.
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2. Preliminary results

In this section, we first prove a consequence of [20] that we will use in the

proof of Theorem A.

Theorem 2.1. Let p > 2 be a prime, n > 1, and let G < Sym(Ω) = Sn

be a subgroup such that G = Op′(G) 6= 1. Then there is a partition

Ω = ∆1 t∆2 t∆3,

with |∆1|, |∆2| > 0 and |∆3| ≥ 0 such that the index of ∩3
i=1 StabG(∆i) in G is

divisible by p. Moreover, one can choose this partition to have ∆3 = ∅, unless

G has a simple quotient S such that one of the following holds :

(1) S = Aaps−1 with 1 ≤ a ≤ p− 1, s ≥ 1 and (a, s) 6= (1, 1); or

(2) p = 3 and S = C3 or SL3(2).

Proof. (i) First we consider the case that G is primitive on Ω. In this

case, applying [20, Th. 2] we obtain a partition Ω = ∆1 t ∆2 with p | [G :

∩2
i=1 StabG(∆i)], unless G has a simple quotient S and (S, p) are as in (1), in

fact with S = An acting on n = aps − 1 points, or we are in (2), in fact with

G = ASL3(2) or AΓL1(8), acting on the eight vectors of F3
2 = 〈e1, e2, e3〉F2 .

In the former case, choosing

∆1 = {1}, ∆2 = {2, 3, . . . , p}, ∆3 = {p+ 1, p+ 2, . . . , n},

we have

[G :
3⋂
i=1

StabG(∆i)] = p

Ç
n

p

å
.

In the latter case, choosing

∆1 = {0}, ∆2 = {e1, e2}, ∆3 = F3
2 r {0, e1, e2},

we see that StabG(∆i) has order dividing 8 and so its index in G is divisible

by p = 3.

(ii) Now assume that G is transitive but imprimitive on Ω. Let Ω = ∪mi=1Ωi

be a G-invariant partition of Ω, with 1 ≤ |Ωi| = n/m < n, and m chosen to

be smallest possible subject to these conditions. Let B := ∩mi=1 StabG(Ωi) be

the base subgroup. Then G/B permutes the m > 1 blocks Ωi transitively,

so 1 6= G/B. Since G = Op′(G), we again have G/B = Op′(G/B). Now

G/B satisfies the assumptions on G, and G/B acts transitively, faithfully, and
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primitively (by minimality of m) on {Ω1, . . . ,Ωm}. A desired partition for

G/B on this set gives rise to a desired partition on Ω.

(iii) Finally, we consider the case where G acts intransitively on Ω =

{1, . . . , n}. Suppose that Ω1, . . . ,Ωm are all G-orbits on Ω, and let Ki denote

the kernel of G acting on Ωi. Since G 6= 1, G must act non-trivially on at least

one Ωi. So we may assume that 1 6= G/K1. But G = Op′(G), so p divides

|G/K1|, and in fact G/K1 = Op′(G/K1). Now G/K1 satisfies the assumptions

on G, and G/K1 acts transitively (and faithfully) on Ω1. If Ω1 = ∆1 t∆2 is a

desired partition for G/K1, then

Ω = ∆1 t
(
∆2 ∪ (Ω r Ω1)

)
is a desired partition for G. If Ω1 = ∆1 t ∆2 t ∆3 is a desired partition for

G/K1 with ∆3 6= ∅, then

Ω = ∆1 t∆2 t
(
∆3 ∪ (Ω r Ω1)

)
is a desired partition for G. �

For the first part of Theorem 2.1, see also [16, Lemma 3.2].

Next we study the structure of some almost simple groups. In the case

where S̄ is a simple group of Lie type, we will use the notation Inndiag(S̄) as

described in [22, Th. 2.5.12]; for other simple groups S̄ , we use the convention

that Inndiag(S̄) = S̄.

Proposition 2.2. Let p be an odd prime, and let S be a quasi-simple

group. Let S̄ :=S/Z(S), S̄≤H≤Aut(S), and assume that Op′(H/S̄)=H/S̄.

(a) Then H/S̄ has a normal p-complement.

(b) Suppose that p ≥ 5 and that S is not of Lie type An, 2An. Then H/S̄ is

a cyclic p-group. The same is true if p = 3 but S is not of Lie type An,
2An, D4 or E6(εq) with 3|(q − ε), ε ∈ {±1}.

(c) In general, if H ≤ Inndiag(S̄), then H/S̄ is a cyclic p-group.

Proof. (i) Note that H/S̄ is embedded in Out(S̄). If S̄ is an alternating

or sporadic simple group, then Out(S̄) is a 2-group and hence the statements

are obvious. Suppose that S̄ is a simple group of Lie type. In this case, the

structure of Out(S̄) is described in [22, Th. 2.5.12], and we will now verify (a)

and (b).

Assume in addition that S is not of type D4 when p = 3. Then the

assumption Op′(H/S̄) = H/S̄ implies that H̄ := H/S̄ is contained in O o A,

where O = Outdiag(S̄) is abelian and A is a cyclic p-group. In particular,

(a) holds in this case. Given the assumptions in (b), we have that either O

is a cyclic p′-group of order at most 4, or S is of type D2m and O is a Klein

4-group. In the former case, Aut(O ∩ H̄) is of order at most 2. Hence H̄

centralises O ∩ H̄, O ∩ H̄ ≤ Z(H̄), and H̄/(O ∩ H̄) ↪→ A is cyclic. Thus H̄ is

abelian, with cyclic Sylow p-subgroup, and the statement follows. In the latter
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case, A centralises O (see [22, Th. 2.5.12(h)]), so again H̄ is abelian, and we

are again done.

Now we complete the proof of (a) in the case where S is of type D4 over

Frf , where r is any prime, and p = 3. In this case, Out(S̄) = O o (Cf ×S3),

so H̄ is contained in Oo (Ce×C3), where e is the 3-part of f . Since O = 1 or

O = C2 × C2, the claim follows.

(ii) For (c), just note that Inndiag(S̄)/S̄ is either cyclic or of p′-order. �

Next we prove some results on blocks that will be useful later on. Our

notation for block theory mostly follows [43].

Lemma 2.3. Suppose that NEG and let b be a G-invariant block of N with

defect group D. Let bD be a block of DCN (D) inducing b with defect group D.

Let T be the stabiliser of bD in NG(D). If B is a block of G covering b, then

there is a defect group D0 of B such that D0 ∩ N = D and D0 ≤ T . Also,

NG(D) = NN (D)T . Furthermore, T = (T ∩N)D0 if G/N is a p-group.

Proof. Since b is G-invariant, we have G = NNG(D) by the Frattini argu-

ment. Now b0 = b
NN (D)
D is the Brauer First Main correspondent of b. Since b is

NG(D)-invariant, it follows that b0 is NG(D)-invariant by the uniqueness in the

Brauer correspondence. By the Harris–Knörr correspondence [43, Th. 9.28],

let B0 be the unique block of NG(D) that induces B and covers b0. Let D0 be

a defect group of B0, which by [43, Th. 9.28] is a defect group of B. By Knörr’s

theorem [43, Th. 9.26], we have that D0 ∩NN (D) is a defect group of b0, and

therefore D0 ∩ N = D0 ∩NN (D) = D. Since b0 is NG(D)-invariant and b0
covers an NN (D)-orbit of blocks of DCN (D), we have NG(D) = NN (D)T by

the Frattini argument, where we recall that T is the stabiliser of bD in NG(D).

By the Fong–Reynolds Theorem 9.14 of [43], there exists an NG(D)-conjugate

of D0 contained in T .

Suppose then that Dx
0 ≤ T , where x ∈ NG(D), and Dx

0 is a defect group

of bT , the block of T that is the Fong–Reynolds correspondent of B0 over bD.

Then Dx
0 is a defect group of B. Also Dx

0 ∩N = (D0∩N)x = Dx = D, and this

proves the first part. For the final part, notice that T/(T ∩ N) is a p-group.

Furthermore, (bD)T∩N is the Fong–Reynolds correspondent of b0 over bD. By

uniqueness, it follows that (bD)T∩N is T -invariant (using that b0 and bD are

T -invariant). Also, notice that (bD)T∩N is the only block of T ∩N covering bD,

using [43, Cor. 9.21]. We conclude that bT covers (bD)T∩N , a block with defect

group D. Since (bD)T∩N is T -invariant and bT is the only block of T covering

it ([43, Cor. 9.6]), we have T = (T ∩N)Dx
0 , by [43, Th. 9.17], for instance. �

Proposition 2.4. Let N E G, and let B be a p-block of G with abelian

defect groups. Suppose that G/N is a p-group and that B covers a G-invariant

block b of N with defect group D. Suppose bD is a block of CN (D) with defect
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group D that induces b. If x ∈ NG(D) is a p-element that fixes bD, then

[x,D] = 1.

Proof. Since B has abelian defect groups, notice that D is abelian by

Knörr’s theorem [43, Th. 9.26]. Let T be the stabiliser of bD in NG(D). By

Lemma 2.3, there is a defect group D0 of B such that D0∩N = D, D0 ≤ T , and

T = (T∩N)D0. Since by hypothesis D0 is abelian, we have T = (T∩N)CT (D).

Then (T ∩N)/CN (D) is a p′-group by [43, Th. 9.22]. Therefore T/CT (D) is

a p′-group, and the result follows. �

Recall that a block B of a finite group G is called quasi-primitive if when-

ever N EG, then B covers a unique block of N .

Proposition 2.5. Suppose that B is a quasi-primitive p-block of a finite

group G such that all the irreducible characters of B have height zero. Let

N EG, and let b be a block of N covered by B. If θ ∈ Irr(b), then |G : Gθ| is

not divisible by p.

Proof. We use Dade’s group K = G[b]. (See, for instance, [42] for an

introduction to this object.) Then all the irreducible characters of b are K-

invariant (see, for instance, [29, Lemma 3.2(a)]). In particular, θ isK-invariant.

Also, KEGb = G, where Gb is the stabiliser of b in G. Also if B′ is the (unique)

block of K covered by B, then B′G = B and B is the only block of G covering

B′. (See [42, Th. 3.5].) Since B covers b, let χ ∈ Irr(B) be over θ. Let

η ∈ Irr(K) be under χ and over θ. Since χ is over η, it follows that the block

of η is necessarily B′. By hypothesis, B′ is G-invariant. By [43, Cor. 9.18], we

have that |G : Gη| is prime to p. Since ηN = vθ for some v ≥ 1, it follows that

Gη ≤ Gθ and therefore |G : Gθ| is also not divisible by p. �

In order to prove Theorem A, we will need the block theory above a

nilpotent block, and above a block with cyclic defect group.

Theorem 2.6. Let G be a finite group, and let N E G. Let b be a G-

invariant nilpotent block of N with defect group Q. Then there exist a p-

subgroup P of G such that Q = P ∩N , a finite group L with a Sylow p-subgroup

P , a central p′-extension L′ of L by Z ≤ Z(L′) and µ ∈ Irr(Z), such that

(a) PN/N ∈ Sylp(G/N).

(b) We have QEL and G/N ∼= L/Q. If |Z(G)| is not divisible by p, Z(G) ≤ N
and QZ(G) < N , then |L′ : Z(L′)| < |G : Z(G)|.

(c) There is a bijection B 7→ B′ between the blocks of G that cover b and the

blocks of L′ that cover the block of µ preserving defect groups. Also, there

is a height preserving bijection Irr(B)→ Irr(B′).

Proof. These are consequences of the theory of blocks above nilpotent

blocks developed in [32]. This is also described in Section 8.12 of [33]. (See
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also Section 7.2 of [53]). The existence of P , the fact that P ∩N = Q and that

PN/N is a Sylow p-subgroup of G/N follow from 8.12.5 and 8.12.6 of [33].

The existence of L and the fact that P ∈ Sylp(L), that QEL and that L/Q ∼=
G/N are part of the statement in 8.12.5. Theorem 8.12.5 also provides a

bijection between the blocks of G covering b and the blocks of a certain twisted

group algebra OαL of L, and corresponding blocks are Morita equivalent (see

Remark 8.12.8). In Remark 8.12.8, the existence of L′ and the relationship

with OαL is given.

Corollary 9.2.5 of [33] says that a perfect isometry preserves heights, and

any of Corollary 9.3.3 or 9.3.4 imply that a Morita equivalence induces a perfect

isometry. Then 9.7.1 of [33] implies that any Morita equivalence given by a

bimodule with source of rank prime to p induces isomorphisms between defect

groups. This is restated as part of 9.11.2 of [33].

This covers all but the last inequality in (b). So, assume |Z(G)| is not

divisible by p, Z(G) ≤ N and QZ(G) < N . Then

|L′ : Z(L′)| ≤ |L| = |G/N ||Q| = |G/N ||QZ(G) : Z(G)| < |G : Z(G)|. �

Theorem 2.7. Suppose N E G are finite groups and B is a p-block of

G with defect group D covering a G-invariant block b0 of N , where p is odd.

Suppose that N is the central product of the G-conjugates of a component S

of G. Suppose that the block b0 covers the block b of S and that D0 = D ∩ S
is cyclic and non-central in S. Let D1 = D ∩ N , and let b1 be the block of

NN (D1) that induces b0. Let B1 be the block of NG(D1) with defect group D

that covers b1 and induces B. If all characters in Irr(B) have height zero, then

all characters in Irr(B1) have height zero.

Proof. By [30, Ths. 1.1 and 7.6], the block b of S satisfies the induc-

tive Alperin–McKay condition. (In fact, the “intermediate subgroup” in [30,

Def. 7.2], is the normaliser of the corresponding defect group.) We apply The-

orem 6.1 and Proposition 6.2 of [44], noticing that we do not need to assume

that the simple group S/Z(S) satisfies the inductive Alperin–McKay condi-

tion, because we know that blocks of S involved in our statement have cyclic

defect groups (and therefore satisfy the inductive Alperin–McKay condition).

Notice that D1 is a p-radical subgroup of N since it is the defect group of b1.

If f is any block of N with defect group D1, using that N is the central

product of G-conjugates of S, then f covers a unique block of S with defect

group D1 ∩ S = D0, which is cyclic. Hence, by [44, Prop. 6.2], there is an

NG(D1)-equivariant bijection

Ω : Irr(N |D1)→ Irr(NN (D1)|D1)

such that

(Gθ, N, θ) ∼b (NG(D1)θ′ ,NN (D1), θ′)
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for every θ ∈ Irr(b0), where θ′ = Ω(θ). (Here Irr(N |D1) is the set of char-

acters of N belonging to blocks with defect group D1. The definition of

block isomorphism of character triples denoted above with ∼b is given in [44,

Def. 3.6].) Now, we apply [44, Cor. 3.10] to construct a height preserving bi-

jection Irr(B|θ) → Irr(B1|θ′). Since Ω(Irr(b0)) = Irr(b1) by [44, Th. 6.1(b)],

we easily conclude that all irreducible characters in B1 have height zero. �

The following gives a shorter proof of a generalisation of the main result

of [31].

Theorem 2.8. Suppose that N,M EG with G = NM . Let B be a block

of G that covers a unique block bN∩M of N ∩M . Then there is a defect group

D of B such that D = (D ∩N)(D ∩M).

Proof. We argue by induction on |G : N |+ |G : M |+ |G|. We may assume

that N,M < G. Let bN be a block of N covered by B and bM a block of M

covered by B, both covering bN∩M . Let T = GbN be the stabiliser of bN , and

by the Fong–Reynolds theorem, let bT be the block of T that induces B and

covers bN . If T < G, then by induction there is a defect group D of bT (and

therefore of B) such that

D = (D ∩N)(D ∩ T ∩M) ≤ (D ∩N)(D ∩M).

We thus may assume that bN and bM are G-invariant.

Now, let us fix a defect group D of B. Let X = M ∩ ND, so that

X/(N ∩M) is a p-group. Thus bN∩M is covered by a unique block bX of X.

Also the unique block bND that covers bN has defect group D by Problem 9.4

of [43]. If ND < G, by induction there is n ∈ ND such that

Dn = (Dn ∩N)(Dn ∩X) = (D ∩N)n(D ∩X)n,

using that X END. Hence

D = (D ∩N)(D ∩X) ≤ (D ∩N)(D ∩M).

So we may assume G = ND = MD; in particular, G/N andG/M are p-groups.

Suppose that N ≤ Y EG, where Y < G, and let bY be the unique block

of Y covering bN . Let Z = M ∩Y , and let bZ be the unique block of Z covering

bN∩M . Thus bZ is G-invariant, and covered by B. By induction, there is a

defect group D1 of B such that D1 = (D1 ∩ Y )(D1 ∩M). Now, since bY is

G-invariant, we have that D1 ∩ Y is a defect group of bY . Again by induction,

there is y ∈ Y such that

Dy
1 ∩ Y = (Dy

1 ∩N)(Dy
1 ∩ Z).

Hence, D1 ∩ Y = (D1 ∩N)(D1 ∩ Z). Thus D1 = (D1 ∩N)(D1 ∩M), and we

are done.
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So we may assume |G : N | = p = |G : M |. Also, G = (N ∩ M)D,

using Fong’s Theorem 9.17 of [43]. Since G = (N ∩ M)D, we have that

N = (N∩M)(N∩D) and M = (N∩M)(M∩D). In particular, N∩D 6= M∩D.

Since D/(D∩N∩M) is Cp×Cp, we necessarily have D = (D∩N)(D∩M). �

Corollary 2.9. Suppose that G = S1 ∗ · · · ∗ Sm is a central product of

its subgroups Si, 1 ≤ i ≤ m. If B is a block of G with defect group D, then

D = (D ∩ S1) · · · (D ∩ Sm).

Proof. Use induction on m and Theorem 2.8; see also [53, Lemma 7.5].

�

The following elementary result will be used in the final step of our proof

of Theorem A.

Lemma 2.10. Suppose that N EG are finite groups with G/N a p-group.

Let Q E G be such that Q ∩ N = 1. Let b be a G-invariant block of N , and

let B be the block of G that covers b. Let b̄ be the unique block of NQ/Q that

corresponds to b under the natural isomorphism, and let B̄ be the unique block

of G/Q that covers b̄. Then D/Q is a defect group of B̄.

Proof. We know that the block B̄ is contained in a unique block B̃ of G.

(See the remark before Theorem 7.6 of [43].) Let E/Q be a defect group of B̄.

Let τ ∈ Irr(b), and consider

γ := τ × 1Q ∈ Irr(N ×Q).

The block of N × Q that contains γ is only covered by B by [43, Cor. 9.6].

Then γ, considered as a character of NQ/Q, lies in b̄. Let ψ ∈ Irr(B̄) over γ.

Then ψ, considered as a character of G, lies over τ , and therefore ψ ∈ Irr(B).

It follows that Irr(B) ∩ Irr(B̄) 6= ∅, and hence B̄ is contained in B. (See the

remark before Theorem 9.9 of [43].) Consequently, B̃ = B. By [43, Th. 9.9(a)],

we have E/Q ≤ D/Q. Notice that b̄ is G-invariant by uniqueness. Therefore

(E/Q)(NQ/Q) = G/Q by [43, Th. 9.17]. By the same reason, DN = G. Also,

(E/Q) ∩ (NQ/Q) is a defect group of b̄, and D ∩N is a defect group of b (by

[43, Th. 9.26]). In particular, |E ∩NQ| = |Q||D ∩N |. Then

|E/Q| = |G : NQ||D ∩N | = |D/Q|,
and the proof is complete. �

3. Orbits of characters in a block

In this section, we prove Theorem B, which we now restate.

Theorem 3.1. Suppose that p is an odd prime, S is a quasi-simple group

and b is a p-block of S with non-cyclic defect groups. Then at least one of the

following statements holds :

(1) there exist characters α, β, γ ∈ Irr(b) that belong to three different Aut(S)-

orbits ; or
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(2) all characters in Irr(b) have the same degree.

We remark that in the proof of Theorem A in Section 5, Theorem 3.1

is only needed for blocks with abelian defect groups. However, the more

general statement may be of independent interest, and its proof is not sub-

stantially different. We also remark that the assumption of non-cyclic de-

fect groups is needed. For example, for certain values of q with p || (q − 1),

there is a cyclic quasi-isolated block of SL2(q) with characters from only two

Aut(SL2(q))-orbits.

Throughout, for A a group acting on a group G as automorphisms and a

block b of G, we write kA(b) for the number of distinct A-orbits of characters of

G whose intersection with Irr(b) is non-empty. In the situation of Theorem 3.1,

our aim will be to show
kAut(S)(b) ≥ 3.

We also use cd(b) to denote the set of distinct character degrees in Irr(b).

3.1. Initial considerations. We begin by considering cases that can be

completed more computationally.

Proposition 3.2. Let p ≥ 3 be a prime, S a quasi-simple group such that

S/Z(S) is one of the sporadic simple groups, the Tits group 2F4(2)′, G2(2)′,
2G2(3)′ = L2(8), or a simple group of Lie type with exceptional Schur multi-

plier. Let b be a p-block for S with non-cyclic defect and |cd(b)| > 1. Then

kAut(S)(b) ≥ 3. In particular, Theorem 3.1 holds for these groups.

Proof. This can be seen using the GAP Character see, e.g., Library [57].

We note that the groups with exceptional Schur multipliers are listed in [22,

Table 6.1.3]. �

Proposition 3.3. Let p ≥ 3 a prime, and let S be quasi-simple such that

S/Z(S) = An, with 5 ≤ n ≤ 8. Then |cd(b)| ≥ 3 for every non-cyclic p-block b

of S. In particular, Theorem 3.1 holds for these groups.

Proof. This can again be seen using GAP and the GAP character table

library. �

Proposition 3.4. Let S = Ân be the double cover of the alternating

group An, with n ≥ 9. Suppose that p ≥ 3 is a prime, and let b be a p-

block of S with non-cyclic defect groups. Then kAut(S)(b) ≥ 3. In particular,

Theorem 3.1 holds for these groups.

Proof. Recall that Aut(S) = Sn. If b is a p-block of An, then kSn(b) ≥
k(̃b)/2, where b̃ is a p-block of Sn above b. By [50, Prop. 11.4], we have

k(̃b) = k(p, w), where w is the so-called weight of b̃ and k(p, w) is as in [50,

(3.11)]. But note that k(p, w)/2 > 2 for p ≥ 3 and w ≥ 2. Hence kSn(b) ≥ 3.

If, instead, b is a block of S lying over the (unique) non-trivial character of

Z(S), then kŜn(b) ≥ k(̃b)/2, where now b̃ is a so-called spin block of Ŝn above
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b and Ŝn is a double cover of Sn inducing all automorphisms of S. In this

case, we have an analogous invariant k(̃b) = k̂±(p̄, w) (see [50, Prop. (13.4)]).

Since b is non-cyclic, we have w > 1, and using the definitions in [50, §13], we

see again that k̂±(p̄, w)/2 > 2, and we have kAut(S)(b) ≥ 3 as desired. �

We also need to consider the groups of Lie type that arise as the fixed

points of a simple, simply connected linear algebraic group under a Steinberg

endomorphism but are not quasi-simple. Throughout, we let

(3.4.1) E := {SL2(2), SU3(2), Sp4(2)}.

Proposition 3.5. Let p ≥ 3, and let B be a p-block of a group G ∈ E,

with positive defect. Then |cd(B)| ≥ 2. If B is non-cyclic, then |cd(B)| ≥ 3.

Proof. This can be seen using the GAP character table library. �

We remark that the groups SL2(3), G2(2), 2B2(2), 2G2(3), and 2F4(2),

which also occur as fixed points of simple, simply connected groups but are

not quasi-simple, also satisfy the above statement, with the exception of the

cyclic 3-blocks of SL2(3). However, we will not need this here.

Next, we deal with the Suzuki, Ree, and triality groups.

Proposition 3.6. Let S be quasi-simple such that S̄ := S/Z(S) is a

Suzuki, Ree, or triality group 2B2(q2), 2G2(q2), 2F4(q2), or 3D4(q). Let p ≥ 3

be a prime and let b be a p-block of S with non-cyclic defect groups. Then

kAut(S)(b) ≥ 3. In particular, Theorem 3.1 holds for these groups.

Proof. Note that the Schur multiplier of S̄ is trivial or S was considered

already in Proposition 3.2, so we assume S̄ = S. First suppose p | q2, so that

S = 2G2(q2) or 3D4(q). Then by a theorem of Humphreys [24], S has exactly

two blocks, namely the principal block and a block of defect zero containing

only the Steinberg character. By observing the list of unipotent character

degrees in [14, §13.9], we see that there are at least three distinct character

degrees in the principal block.

Now suppose 3 ≤ p - q2. Then Sylow p-subgroups of 2B2(q2) and 2G2(q2)

are cyclic. Let S = 2F4(q2), with q2 = 22f+1. Here from [34, Bem. 1], if

p - (q2 − 1), then each semisimple p′-element s in the dual group S∗ defines

a unique block of positive defect containing the Lusztig series E(S, s). If p

divides (q2 − 1), then such an s defines a unique block of positive defect if

s is of class type t2 or t3, and three such blocks for s = 1 or of type t1 in

the notation of [55]. In the latter two cases, only one of the three blocks has

non-cyclic defect. In each case, we can see from the centraliser structures and

conjugacy class types in [55], together with the fact that field automorphisms

permute Lusztig series via E(S, s)α = E(S, sα
∗
) for α∗ ∈ Aut(S∗) dual to α (see

[47, Cor. 2.4]), that there are at least three characters in the relevant blocks
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that cannot be conjugate under field automorphisms of S. In the case that

S = 3D4(q), we may argue similarly to above, taking into consideration the

results of [15, Lemma 5.9] and the structure of centralisers and tori discussed

in loc. cit. �

3.2. Reducing to quasi-isolated blocks. Let p be an odd prime, and let G

be a simple algebraic group of simply connected type over Fr for some prime r.

Let q be a power of r and F : G→G a Frobenius endomorphism with respect

to an Fq-structure. Write G :=GF for the corresponding finite reductive group.

Let ι : G ↪→ ‹G be a regular embedding as in [12, (15.1)] (see also [19, §1.7]),

and write ‹G := ‹GF . Let (G∗, F ) be dual to (G, F ), so that G∗ is simple of

adjoint type, and let (‹G∗, F ) be dual to (‹G, F ). We will write G∗ := G∗
F

and‹G∗ := ‹G∗F . We further have a dual F -equivariant epimorphism ι∗ : ‹G∗ � G∗

induced by ι. Now, with this setting, Aut(G) is induced by ‹GoD, where D is

the group generated by appropriately chosen graph and field automorphisms

(see, e.g., [22, Th. 2.5.1]).

The set Irr(G) is a disjoint union of Lusztig series E(G, s) (also called ratio-

nal series), where s runs over G∗-conjugacy class representatives of semisimple

elements of G∗. If s̃ ∈ ‹G∗ is such that ι∗(s̃) = s, then the series E(G, s) consists

of the constituents of the restrictions of the characters in E(‹G, s̃) to G (see [12,

Prop. 15.6]).

We next consider the case of groups of Lie type in defining characteristic,

i.e., when r = p.

Proposition 3.7. Assume S is quasi-simple such that S/Z(S) is a simple

group of Lie type defined in characteristic p ≥ 3. Let b be a p-block of S with

non-cyclic defect groups. Then kAut(S)(b) ≥ 3. In particular, Theorem 3.1

holds for these groups.

Proof. Let G = GF be as above such that S̄ := S/Z(S) = G/Z(G). We

may assume G is the full covering group of S̄, as the exceptional covers have

been discussed in Proposition 3.2, and that S̄ is not of Suzuki or Ree type, from

Proposition 3.6. By applying [43, Th. 9.9], it suffices to prove the statement

for G, since p - |Z(G)|. Now, every p-block of G is either maximal defect or of

defect zero [24], and the blocks of maximal defect are in bijection with the char-

acters of Z(G), via their central character. Let θ ∈ Irr(Z(G)) correspond to b.

Given this, and by inspection of the character tables for SL2(q), SL3(εq),

and Sp4(q) (see [19, see, e.g., 2.6 and references in Table 2.4]), we see there

are at least three character degrees for each block of positive defect in these

cases, so we further assume that G is not one of these groups. Furthermore, we

may assume Z(G) 6= 1 as any non-solvable group has at least four irreducible

characters.
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Let T ≤ G be a maximal torus. We claim that there is s ∈ T ∗, a maxi-

mal torus of G∗ in duality with T , such that the characters in the (rational)

Lusztig series E(G, s) lie above θ. Indeed, as Z(G) ≤ T , there is θ̃ ∈ Irr(T ) with

θ̃|Z(G) = θ, and then by the character formula, also RG
T (θ̃)|Z(G) = RG

T (θ̃)(1)θ.

So taking (T ∗, s) dual to (T, θ) we find s as claimed. Again by the character

formula, RG
T (µθ̃)|Z(G) = RG

T (µθ̃)(1)θ for all µ ∈ Irr(T ) with µ|Z(G) = 1, and so

by duality RG∗
T∗ (st)|Z(G) = RG∗

T∗ (st)(1)θ for all t ∈ T ∗ ∩ [G∗, G∗] (see the proof

of [46, Lemma 4.4(ii)]). Note that we may choose s =: s1 to have order only

divisible by primes dividing |G∗ : [G∗, G∗]| = |Z(G)|.
As G is not of types A1, A2,

2A2, B2, there are at least two Zsigmondy

primes `2, `3 dividing |G∗| but not |Z(G)|. Applying the above claim to suit-

able maximal tori Ti ≤ G, i = 2, 3, we may choose semisimple elements si with

order divisible by `i and possibly by some primes dividing |G∗/[G∗, G∗]|. This

ensures that |si|, i = 1, 2, 3, are pairwise distinct. Hence the disjoint series

E(G, si), i = 1, 2, 3, contain distinct characters above θ not conjugate under

Aut(G) by [47, Cor. 2.4], completing the proof. �

Given Proposition 3.7, we now assume that r 6= p for the remainder of

Section 3.

If s ∈ G∗ is a p′-element, as is customary we write Ep(G, s) for the union⋃
t E(G, st) where t ranges over the p-elements of G∗ commuting with s. Then

Ep(G, s) is a union of p-blocks ofG, and for each block B with Irr(B) ⊆ Ep(G, s),
we have that Irr(B) ∩ E(G, s) is non-empty (see [12, Th. 9.12]). At times, we

will write E(G, p′) to denote the union of the series E(G, s) for s ∈ G∗ ranging

over semisimple p′-elements.

A fundamental result of Bonnafé–Rouquier [6] yields that the blocks in

Ep(G, s) are Morita equivalent to so-called quasi-isolated blocks of suitable Levi

subgroups. In the more general setting of a finite reductive group H := HF ,

that is, the fixed points of a connected reductive group H under a Frobenius

morphism F : H→ H endowing H with an Fq-rational structure, a block of H

is called quasi-isolated if it lies in Ep(H, s) for a semisimple p′-element s ∈ H∗
such that CH∗(s) is not contained in any proper F -stable Levi subgroup of H∗.

(In such a situation, s is also called quasi-isolated.)

The following setup will be useful. Let H be an F -stable Levi subgroup of

G and H := HF . Let H0 := [H,H] and H0 := HF
0 , so that H0 is semisimple

of simply connected type, by [38, Prop. 6.20(c) and 12.14]. Then by [19,

Cor. 1.5.16], H0 is isomorphic to a direct product
∏k
i=1 H

Fi
i , where each Hi is

simple of simply connected type and Fi is a Frobenius morphism obtained as

some power of F . Write Hi := HFi
i . Let B be a p-block of H, and let B′ be a

block of H0 covered by B. Then B′ is isomorphic to a tensor product ⊗ki=1Bi,

where Bi is a block of Hi for each 1 ≤ i ≤ k.
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Recall from (3.4.1) that E = {SL2(2), SU3(2), Sp4(2)}. Note that Hi is

perfect (and hence quasi-simple) unless Hi ∈ E∪{SL2(3)} (see [38, Th. 24.17]).

(Indeed, note that the excluded groups G2(2), 2B2(2), 2G2(3), and 2F4(2)

cannot occur as an Hi since F is a Frobenius endomorphism and G2 does not

occur as a component of a Levi subgroup of the other types.) Since G is defined

in characteristic distinct from p and |SL2(3)| is only divisible by the primes

2 and 3, we further will not need to consider SL2(3) in what follows. In the

following, we will write

k̄Aut(Hi)(Bi) :=

{
kAut(Hi)(Bi) if Hi 6∈ E,

|cd(Bi)| if Hi ∈ E.

Hypothesis 3.8. Keep the notation and situation of the previous para-

graph. For a positive integer c, let B be a p-block of H such that there exists

a block B′ as above that satisfies at least one of the following three conditions:

(3.8.1) there exists some i with 1 ≤ i ≤ k such that k̄Aut(Hi)(Bi) ≥ c;
(3.8.2) there exist i, j with 1 ≤ i 6= j ≤ k such that k̄Aut(Hi)(Bi) ≥ c− 1 and,

furthermore, k̄Aut(Hj)(Bj) ≥ 2;

(3.8.3) B′ is cyclic of positive defect, and there exists some i with 1 ≤ i ≤ k

such that Bi is cyclic and k̄Aut(Hi)(Bi) ≥ c− 1.

Proposition 3.9. Let G := GF be as above. Let H be an F -stable,

proper Levi subgroup of G and H := HF . Let p be an odd prime not dividing

q and B be a non-cyclic p-block of H with |cd(B)| > 1. Then

(a) in the notation above, any block B′ of H0 covered by B has positive defect ;

(b) if B satisfies Hypothesis 3.8 for some positive integer c, then kAut(H)(B)≥c.
Proof. Keep the notation above, and let B′ be a block of H0 covered by B.

First, assume B′ is defect zero. Write Irr(B′) = {θ1}, and let T := Hθ1 be the

inertia subgroup for θ1 in H. Since H/H0 is abelian and restrictions from H to

H0 are multiplicity-free (a result of Lusztig — see [12, Th. 15.11]), Gallagher’s

theorem and Clifford correspondence imply that every element of Irr(H | θ1)

is of the form (βθ̂1)H , where θ̂1 is an extension of θ1 to T and β is a (linear)

character of T/H0. In particular, every member of Irr(B) is of this form, and

hence |cd(B)| = 1, a contradiction. This shows (a).

We now assume that B satisfies Hypothesis 3.8 for c and aim to show

kAut(H)(B) ≥ c.
Note that this is trivial when c = 1, so we assume throughout that c ≥ 2. We

claim that it suffices to show that

(3.9.1) kAut(H0)(B
′) ≥ c.

Indeed, if this is the case, write θ1, . . . , θc for representatives in Irr(B′) of

c distinct orbits. Then by [43, Th. 9.4], there must be at least c characters

χ1, . . . , χc in B, lying above θ1, . . . , θc, respectively. Now H0 is characteristic in
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H (indeed, it is generated by all unipotent elements of H by [19, Rem. 1.5.13],

as H0 is simply connected since H is a Levi subgroup of the simply connected

group G), so is stabilised by any automorphism of H. Then, if χi and χj
are Aut(H)-conjugate for i 6= j, then θi and θj are Aut(H)-conjugate and

hence Aut(H0)-conjugate, a contradiction. Thus, we wil prove, at least in the

cases (3.8.1) and (3.8.2), that (3.9.1) holds.

Now, in the case of (3.8.1), we may without loss assume k̄Aut(H1)(B1) ≥ c.
Let χ1, χ2 ∈ Irr(B1) lie in distinct Aut(H1)-orbits on Irr(B1) if Hi 6∈ E or have

distinct degrees if Hi ∈ E. First assume that H1 is not isomorphic to any

Hi for 2 ≤ i ≤ k. Let X := H2 × · · · × Hk, and let α ∈ Aut(H0). By [1],

for (h, 1X) ∈ H1 ×X with h ∈ H1, we have α(h, 1X) = (α1(h), α′1(h)), where

α1 ∈ Aut(H1) and α′1 ∈ Hom(H1,Z(X)) are defined by α. Now, assume

(χ1 ⊗ ϕ)α = χ2 ⊗ ϕ, where ϕ ∈ Irr(B2 ⊗ · · · ⊗Bk). Then considering elements

of the form (h, 1X) with h ∈ H1, we see that χα1
1 (h)θ(h) = χ2(h) for some

linear character θ ∈ Irr(H1). (Namely, θ is the composition of α′1 with the

unique irreducible constituent of ϕ|Z(X).) If H1 6∈ E, this contradicts that χ1

and χ2 are not conjugate under Aut(H1), since θ must be trivial. If H1 ∈ E, it

contradicts that χ1(1) 6= χ2(1). Hence in either case χ1⊗ϕ cannot be Aut(H0)-

conjugate to χ2⊗ϕ. This shows kAut(H0)(B
′) ≥ c. In the case that H0 contains

multiple isomorphic copies of H1, a similar argument holds, taking instead X

to be the (possibly trivial) product of those Hi such that Bi 6∼= B1 under this

isomorphism and χ1 ⊗ · · · ⊗ χ1 (one for each copy of B1) in place of χ1.

Arguing similarly, in case (3.8.2), we obtain kAut(H0)(B
′) ≥ c, and in

case (3.8.3) we obtain kAut(H0)(B
′) ≥ c− 1.

Now, assume we are in the situation of (3.8.3), so B′ is cyclic but B is not,

and B′ has positive defect. Then p divides |H/H0|, and we let H0 ≤ Hp ≤ H be

such that Hp/H0 ∈ Sylp(H/H0). Let Bp be the (unique) block of Hp above B′.

Then we have c − 1 non-Aut(H)-conjugate characters in Bp lying above the

non-Aut(H0)-conjugate characters θ1, . . . , θc−1 of Irr(B′). We claim that there

is at least one more character in Irr(Bp) that is not Aut(H)-conjugate to these.

Let (H∗, F ) be dual to (H, F ), and write H∗ := H∗F . Let s ∈ H∗ be

a semisimple p′-element such that Irr(B) ⊆ Ep(H, s). Let H0 ↪→ H be the

inclusion map, and let s0 be the image of s under the induced dual epimor-

phism H∗ � H∗0. Then Irr(B′) ⊆ Ep(H0, s0). Then at least one of these c− 1

characters, say θ1, can be assumed to lie in E(H0, s0) using [12, Th. 9.12].

Let ι : H ↪→ ‹H be a regular embedding, as in [12, (15.1)], and write‹H := ‹HF . Note that ι|H0 is also a regular embedding of H0 into ‹H and we have

H0 = [‹H,‹H] and H0CHC‹H. Let s̃ ∈ ‹H∗ be a semisimple p′-element such that

ι∗(s̃) = s. Then by [12, Prop. 15.6], E(H, s) is the set of constituents of the

restrictions to H of characters in E(‹H, s̃), and we may further define E(Hp, s)

to be the set of constituents of restrictions of characters from E(H, s) to Hp.
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Similarly, for x̃ any semisimple element of ‹H∗ and x = ι∗(x̃), we define E(Hp, x)

to be the set of constituents of restrictions of characters from E(‹H, x̃) to Hp.

Then by [11, Prop. 1.3], θ1 extends to a character χ in E(Hp, s), which

is hence a member of Irr(Bp) ∩ E(Hp, s). Then χβ ∈ Irr(Bp) for every β ∈
Irr(Hp/H0). Now, recall that characters of ‹H/H0 are in bijection with elements

of Z(‹H∗) (see [12, (15.2)]). We write ˆ̃z for the character of ‹H/H0 correspond-

ing to z̃ ∈ Z(‹H∗). Choose β := ˆ̃z for 1 6= z̃ ∈ Z(‹H∗) of p-power order. Then

χβ ∈ E(Hp, sz), where z := ι∗(z̃) and is not ‹H-conjugate to χ by definition of

E(Hp, sz) and E(Hp, s). Together with the fact that sz cannot be H∗-conjugate

to ϕ∗(s) for any automorphism ϕ∗ since s is p′ and z is a p-element, this tells

us that χ cannot be Aut(H)-conjugate to χβ (see [47, Cor. 2.4]).

Further, since χβ lies above θ1, it is not Aut(H)-conjugate to a charac-

ter above θi for i 6= 1. Then letting χc ∈ Irr(B) above χβ and χ1, . . . , χc−1 ∈
Irr(B) above χ, θ2, . . . , θc−1, respectively, χ1, . . . , χc are non-Aut(H)-conjugate

members of Irr(B), as desired. �

Remark 3.10. In our application of Proposition 3.9 and Lemma 3.12 be-

low, we really only require kAut(G)H (B) ≥ c, rather than kAut(H)(B) ≥ c. Then

we remark that since the automorphisms of G respect the product structure

of H0, we could replace each k̄Aut(Hi)(Bi) with kAut(Hi)(Bi) in Hypothesis 3.8,

and then the statements of Proposition 3.9 and Lemma 3.12 hold with the

condition kAut(H)(B) ≥ c replaced with kAut(G)H (B) ≥ c.
In the notation above, note that if B is quasi-isolated, then so is each Bi.

Indeed, let (H∗, F ) be dual to (H, F ), and write H∗ := H∗F . Let Irr(B) ⊆
Ep(H, s) for a quasi-isolated semisimple p′-element s ∈ H∗. Let H0 = [H,H],

and keep the rest of the notation from the paragraph before Hypothesis 3.8.

Note that the inclusion map H0 ↪→ H is a central isotypy in the sense of [3,

Def. 2.A] and [19, 1.3.21], and so is the induced dual epimorphism H∗ � H∗0,

by [19, 1.7.11]. Then if s0 ∈ H∗0 is the image of s under the latter map,

[3, Prop. 2.3] yields that s0 is also quasi-isolated. In particular, any block B′

of H0 covered by B is quasi-isolated, and hence so are the blocks B1, . . . , Bk.

(Indeed, if s0 is quasi-isolated, let s0 correspond to
∏
si under the isomorphism

with
∏

HFi
i . If si is not quasi-isolated in Hi, then neither is its preimage in

the corresponding F -simple factor of H0, in the notation of [19, 1.5.14]. But

this would contradict that s0 is quasi-isolated.)

Remark 3.11. With this and Proposition 3.9, note that if each (quasi-

isolated) Bi satisfies

(3.11.1) k̄Aut(Hi)(Bi) ≥

{
c if Bi is non-cyclic,

c− 1 if Bi is cyclic,

then our (quasi-isolated) block B will satisfy kAut(H)(B) ≥ c.
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Throughout, when L is an F -stable Levi subgroup of H, we use RH
L to

denote Lusztig’s twisted induction with respect to any parabolic subgroup P of

H containing L as a Levi complement. In our situation, since we may exclude

groups considered in Proposition 3.2 and E7(2) and E8(2) since they have trivial

outer automorphism group, we have that twisted induction is independent of

the choice of P by [19, Th. 3.3.8]. Hence, as is customary, we will suppress the

parabolic subgroup from the notation.

Lemma 3.12. As above, let G := GF and let p - q be an odd prime.

Assume that kAut(H)(B) ≥ c for each F -stable Levi subgroup H of G and each

non-cyclic quasi-isolated p-block B of HF with |cd(B)|>1. Then kAut(G)(b)≥c
for each non-cyclic p-block b of G such that |cd(b)| > 1.

Proof. Let b be a non-cyclic block of G such that |cd(b)| > 1. If b is quasi-

isolated, our assumption yields that the statement holds for b, with H=G.

Otherwise, by [6], b is Morita equivalent to a quasi-isolated block of a proper

Levi subgroup H := HF of G. In particular, this Bonnafé–Rouquier Morita

equivalence is induced by the map RG
H. Let B be the Bonnafé–Rouquier corre-

spondent for b in H. Note that by [26, Th. 1.3], B is non-cyclic if and only if b

is. Further, by the character formula [12, Th. 8.16] for RG
H, we have |cd(B)| > 1

if and only if |cd(b)| > 1.

Now, by the proof of [37, Lemma 3.5], we have

Aut(G)b = Inn(G)Aut(G)H,B,

and RG
H is Aut(G)H,B-equivariant. By assumption, kAut(H)(B), and hence

kAut(G)H,B (B), is at least c. Then we have kAut(G)H,B (b) ≥ c, proving that also

kAut(G)(b) ≥ c. �

3.3. e-Harish-Chandra theory and blocks. In this subsection, we allow G

to be any Levi subgroup of a simple algebraic group of simply connected type

and F : G → G a Frobenius endomorphism with respect to an Fq-rational

structure. Thanks to the work of Broué–Malle–Michel [8], Cabanes–Enguehard

[11], and Kessar–Malle [27], we have a parametrisation of blocks of G := GF

in terms of e-Harish-Chandra theory. (See, e.g., [19, §3.5] for the notions of

e-torus, e-split Levi subgroups and e-cuspidal characters of (G, F ).)

Namely, by [27, Th. A], if p ≥ 3 is a prime not dividing q and e is the order

of q modulo p, then there is a bijection from the set of G-conjugacy classes of

e-Jordan quasi-central cuspidal pairs (L, λ) of G with λ ∈ E(LF , p′) to the set

of p-blocks of G. (See [27, Def. 2.1, 2.12] for the definitions.) We will write

bG(L, λ) for the block corresponding to (L, λ). Then all irreducible constituents

of RG
L (λ) lie in bG(L, λ) by [27, Th. A]. The next lemma allows us to say more

about characters lying in bG(L, λ) and could be useful for other applications.

Here we write d1 for the map on class functions given by composition with the

characteristic function on p′-elements of a group.
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Lemma 3.13. Let b = bG(L, λ) be a p-block of G = GF in Ep(G, s) for

s ∈ L∗F a semisimple p′-element. Let t ∈ Z(L∗)F be a p-element. Then

Irr(b) ∩ E(G, st) 6= ∅.

Proof. By what we recalled above, all constituents of RG
L (λ) lie in Irr(b),

so 0 6= d1(RG
L (λ)) has some non-zero constituent in b. Let t̂ denote the linear

character of LF corresponding to t ∈ Z(L∗)F (see [19, Prop. 2.5.20]). Since d1

commutes with Lusztig induction [19, Prop. 3.3.17] and |t̂| = |t| is a p-power,

d1(RG
L (t̂λ)) = RG

L (d1(t̂λ)) = RG
L (d1(λ)) = d1(RG

L (λ)) 6= 0,

so d1(RG
L (t̂λ)) has a component in b as well, which means that RG

L (t̂λ) has

a constituent lying in Irr(b). But all constituents of RG
L (t̂λ) are contained in

E(GF , st) (see [19, Prop. 3.3.20]). �

For G a connected reductive group such that [G,G] is simply connected,

we say that a block of G = GF is of quasi-central defect if it covers a block

of [G,G]F that has a defect group contained in Z([G,G]F ). (In particular,

when G is simple, being of quasi-central defect is equivalent to having central

defect.)

Corollary 3.14. Let G = GF be as above, and let b be a block in Ep(G, s)
with non-trivial defect. Then Irr(b) contains at least two characters not conju-

gate under Aut(G), where one of the characters lies in E(G, s) and the other

one outside of E(G, p′).

Proof. First, by the result of Hiss [12, Th. 9.12] we have Irr(b) ∩ E(G, s)

6= ∅. Now write b = bG(L, λ) with L ≤ G an e-split Levi subgroup whose dual

L∗ ≤ G∗ contains s. If L is proper in G, it centralises a non-trivial e-torus

of G and thus its dual centralises a non-trivial e-torus of G∗. Thus there is a

p-element 1 6= t ∈ Z(L∗)F ≤ CG∗(s), and Irr(b)∩E(G, st) 6= ∅ by Lemma 3.13.

If L = G, the quasi-central defect group D of b is normal in G, hence there

exist characters in b non-trivial on D (see, e.g., [43, Th. 9.4]) that again cannot

lie in E(G, p′) (see, e.g., [11, Prop. 1.2(v)]). Arguing as before, characters in

E(G, p′) and E(G, st) cannot be Aut(G)-conjugate. �

Note that in the context of Theorem 3.1, we are interested in the case

c = 3 of Hypothesis 3.8, and hence Corollary 3.14 implies that we now only

need to deal with non-cyclic blocks.

The next observation deals with unipotent blocks, and may be of interest

for other applications. For this statement, we relax the assumption that p is

odd, and if p = 2, we define e to be the order of q modulo 4. We remark

that for ε ∈ {±1}, we write Ln(εq) for the group Ln(q) when ε = +1 and

Un(q) when ε = −1, with analogous conventions for related groups SLn(εq),

PGLn(εq), and GLn(εq).
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Lemma 3.15. Let G be a connected reductive group in characteristic r

such that [G,G] is simply connected, and let F : G→ G be a Frobenius endo-

morphism. Let p be a prime, and let b be a unipotent p-block of G := GF that

is not of quasi-central defect. Then Irr(b) contains two unipotent characters

whose degrees have different r-parts. In particular, these cannot be Aut(G)-

conjugate.

Proof. We first assume that G = [G,G] is simple of simply connected

type. Suppose G is of exceptional type. Let e be as defined above and let

b = bG(L, λ) for some unipotent quasi-central e-cuspidal pair (L, λ) (see [27,

Th. A]). Note that our assumption b has non-central defect groups and G is

simple means we have G 6= L := LF . Then [14, §13.9] and [8, Tables 1 and 2]

include the decomposition of RG
L (λ) and the relative Weyl group WG(L, λ)

for many of the relevant blocks, and [8, Table 3] includes information about

remaining cases where L is a torus and WG(L, λ) is non-cyclic. By studying the

characters in these decompositions, whose degrees are available in [14, §13.9],

and at times applying Ennola duality (see [8, Th. 3.3]), we see there are at least

two characters in RG
L (λ) whose degrees have distinct r-parts, except possibly

when L is a torus. In the latter situation, we have L is the centraliser of a

Sylow e-torus, e is regular for G, and λ = 1. Then b is the principal block of

G and is the unique block containing p′-degree unipotent characters. Hence b

contains at least 1G and StG, and the claim holds.

Now suppose G is of classical type. Note that by [10, Th. (i)], we may

replace G with a group of the same rational type. If p = 2, we are done

taking 1G and StG, since there is a unique unipotent block in this case (see

[12, Th. 21.14]). So, we also assume p ≥ 3.

First, let G = SLn(εq). Let e′ be the order of εq modulo p. The unipotent

blocks of G are parametrised by e′-cores of partitions of n. Assume b is labelled

by the e′-core λ, with n = e′w + |λ|. As b has non-central defect, w ≥ 1. Let

µ1 = (λ1 + e′w, λ2, . . . , λk) and µ2 = (λ1, . . . , λk, 1
e′w), two partitions of n

labelling distinct unipotent characters χ1, χ2 in b. Then the degree formulas

[19, Props. 4.3.1 and 4.3.5] show that χ1(1) and χ2(1) have distinct r-part.

Now let G be one of Sp2n(q), SO2n+1(q), or SOε
2n(q), and let e′ be the order

of q2 modulo p. Now the unipotent blocks of G (or in the case G = SOε
2n(q),

the blocks of GOε
2n(q) lying above unipotent blocks of G) are parametrised by

e′-cores (if p | (qe
′ − 1)) or cocores (if p | (qe

′
+ 1)) of appropriate symbols

(see [8, pp. 48–52] and [10, Th.]). Suppose b (or a block above in GOε
2n(q))

is labelled by the e′-core (X;Y ), with n = e′w + rnk(X;Y ). (Here rnk(X;Y )

is the rank of the symbol, defined in [19, p. 301].) Let X = (x1, . . . , xa) and

Y = (y1, . . . , yc) with xi < xi+1 and yi < yi+1 for each i. Again we have w ≥ 1,
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and we may consider the two unipotent characters in Irr(b) labelled by

(0, 1, 2, . . . , e′w − 1, x1 + e′w, x2 + e′w, . . . , xa + e′w;

1, 2, . . . , e′w, y1 + e′w, y2 + e′w, . . . , yc + e′w)

and

(x1, . . . , xa−1, xa + e′w;Y ).

Here the degree formula [19, Prop. 4.4.7] shows that these two characters will

have distinct r-part.

If b is instead labelled by an e′-cocore, Olsson’s process of e′-twisting of

symbols ([49, p. 235]) shows there is a bijection between symbols (X ′;Y ′) with

e′-core (X;Y ) and symbols (‹X ′;‹Y ′) with e′-cocore (‹X;‹Y ), where (‹X;‹Y ) is

the e′-twist of (X;Y ). Further, e′-twisting does not change the entries of the

symbol, i.e., (X ′;Y ′) and its e′-twist (‹X ′;‹Y ′) satisfy X ′ ∪Y ′ = ‹X ′ ∪‹Y ′. Hence

from the formula [19, Prop. 4.4.7], we see that the r-part of the characters

corresponding to the symbols (X ′;Y ′) and (‹X ′;‹Y ′) are the same, and we are

done with the case where G = [G,G] is simple.

In the general case, we have b lies above a block B of [G,G]F whose defect

groups are non-central. We may write [G,G]F as a direct product of groups

of the form Gi = GFi
i , where Gi is simple of simply connected type and Fi

is some power of F . Then B is a tensor product of blocks Bi of Gi, at least

one of which, say Bj , must have non-central defect groups. Then from above,

Irr(Bj) contains at least two unipotent characters with different r-parts, and

therefore the statement also holds for B. Since the unipotent characters in b

are extensions of those in B, this completes the proof. �

3.4. Type A. We begin by considering the case of finite linear and unitary

groups. In this subsection, we fix S̄ = Ln(εq), G = SLn(εq), G∗ = PGLn(εq),

and ‹G = GLn(εq) ∼= ‹G∗.
The blocks of ‹G have been well-studied, with the parametrisation of the

blocks of ‹G given in [18] and a reduction to smaller-rank linear and unitary

groups given in [39]. We use these to prove that Theorem 3.1 holds in the case

that S̄ = S/Z(S) = Ln(εq) and that Hypothesis 3.8 holds for c = 3 and blocks

of G. Again in this case, we will provide a slightly more general result.

Proposition 3.16. Let G = SLn(εq) such that Ln(εq) is simple, and let

p be an odd prime with p - q.
(a) Let B be a p-block of G with non-cyclic defect. Then kAut(G)(B) ≥ 3.

(b) Theorem 3.1 holds when S/Z(S) = Ln(εq).

Proof. Keep the notation from above. Note that in this case, ‹G∗ ∼= ‹G =

GLn(εq) and G∗ = PGLn(εq) ∼= ‹G/Z(‹G), and recall from the discussion in

Section 3.2 that ‹GoD induces all automorphisms on Ln(εq). From Section 3.1,
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we may assume that G is the (non-exceptional) Schur covering group for Ln(εq).

Let e′ be the order of εq modulo p.

Note that in the situation of (b), we have S ∼= G/Z, where Z ≤ Z(G) is

some central subgroup. Further, writing Zp for the Sylow p-subgroup of Z, we

may identify the blocks of G/Z with blocks of G/Zp, using [43, Th. 9.9]. Hence

we may assume Z = Zp is a p-subgroup in Z(G). Then it suffices to show (b)

in the case that e′ = 1 with S = G/Zp a quotient by some non-trivial central

p-group and to show (a).

Let B be a non-cyclic block of G, and suppose s is a semisimple p′-element

of G∗ such that B lies in Ep(G, s). In the context of (b), we further assume

here that B̄ is a block of G/Zp with non-cyclic defect groups dominated by B,

so that Irr(B̄) is comprised of those members of Irr(B) that are trivial on Zp.

Applying Corollary 3.14, it suffices for (a) to show that there are at least

two non-Aut(G)-conjugate members of Irr(B) ∩ E(G, s) or two non-Aut(G)-

conjugate members of Irr(B) outside of E(G, p′). For (b), note that every

member of E(G, s) lies above the same character ωs of Z(G), by [4, 11.1(d)],

and that ωs must be trivial on Zp (and in fact on Z(G)p ∈ Sylp(Z(G))) since s

is a p′-element. In particular, every member of Irr(B)∩E(G, s) may be viewed

as a character of B̄. Hence for (b), it suffices to show that there are at least

two non-Aut(G)-conjugate members of Irr(B) ∩ E(G, s), or that there are at

least two non-Aut(G)-conjugate members of Irr(B) lying outside of E(G, p′)

and trivial on Z(G)p.

Let s̃ ∈ ‹G∗ ∼= ‹G be a semisimple p′-element mapping to s under the natural

epimorphism ‹G∗ � G∗, and let ‹B be a block of ‹G in Ep(‹G, s̃) covering B.

(Indeed, such a setup exists using [12, Th. 9.12 and Prop. 15.6].) Let ‹D and

D be defect groups of ‹B and B, respectively, satisfying D = ‹D ∩G. Now,

C‹G∗(s̃) ∼= k∏
i=1

GLmi((εq)
δi),

where δi and mi are positive integers. (See [18, §1] for details.) Note that q− ε
divides (εq)δi − 1 for each i. Write Gi := GLmi((εq)

δi) for 1 ≤ i ≤ k.

According to [18, Th. (7A)], Jordan decomposition maps

Irr(‹B) ∩ E(‹G, s̃)
to

Irr(B′) ∩ E(C‹G∗(s̃), 1),

where B′ =
∏k
i=1Bi is some unipotent block of C‹G∗(s̃) with Bi a unipotent

block of Gi. Let ei be the order of (εq)δi modulo p. Then ‹B (and B′) is

determined by certain ei-core partitions λi. Namely, writing mi := eiwi + |λi|
for each 1 ≤ i ≤ k, [39, Th. (1.9)] yields that the number of characters in

Irr(‹B) and the defect group of ‹B are the same as for the principal block of∏k
i=1 GLeiwi((εq)

δi).
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In particular, note that if some Bi has non-central defect, then Bi, and

hence B′, contains at least two unipotent characters of distinct degree, by

Lemma 3.15. In this case, Irr(‹B) ∩ E(‹G, s̃) contains at least two characters of

distinct degree, which must lie above two characters in Irr(B) ∩ E(G, s) lying

in distinct Aut(G)-orbits.

To complete the proof of (a) and (b) it therefore suffices to assume that

each Bi has central defect, which forces mi = eiwi = 1 for each 1 ≤ i ≤ l,

where without loss we assume that Bi has trivial defect groups for l < i ≤ k.

Here note that Gi ∼= C(εq)δi−1 is cyclic for 1 ≤ i ≤ l and a defect group for ‹B
is isomorphic to a Sylow p-subgroup of

∏l
i=1C(εq)δi−1. Since ‹B is non-cyclic,

note that l ≥ 2.

Suppose χi∈ Irr(B) lies under members of E(‹G, s̃t̃i), i=1, 2, for p-elements

t̃i∈C‹G∗(s̃). Assume χ1 is Aut(G)-conjugate to χ2. Then (s̃t̃1)α is ‹G∗-conjugate

to s̃t̃2z for some z ∈ Z(‹G∗) and α ∈ D. It follows that t̃α1 is conjugate to t̃2zp,

and hence they share the same set of eigenvalues, where zp is the p-part of z.

To complete the proof of (a), we therefore aim to exhibit t̃1 and t̃2 such that

this cannot be the case.

When l≥3, elements of ‹G∗corresponding to (x, 1, . . . , 1) and (x, y, 1, . . . , 1)

for p-elements 1 6= x ∈ G1, 1 6= y ∈ G2 have different multiplicities for the

eigenvalue 1, and hence we obtain t̃1, t̃2 satisfying t̃α1 is not ‹G∗-conjugate to t̃2z

for any z ∈ Z(‹G∗) and α ∈ D.

Now suppose l = 2. If p - (q− ε), then p-elements corresponding to (x, 1),

(x, y) with 1 6= x ∈ G1, 1 6= y ∈ G2 again satisfy the claim, since p - |Z(‹G∗)|.
Hence we assume that p | (q− ε). Note that this forces p | ((εq)δi − 1) for each

i = 1, 2.

If p2 | ((εq)δ1 − 1), say, then elements t̃1, t̃2 corresponding to (x, 1) and

(xp, 1) with |x| = p2 have the desired property. We therefore can assume that

p || ((εq)δ1 − 1), so that also p || (q − ε), in which case D = ‹D ∩ G is cyclic,

and we are done with (a).

To complete the proof of (b), we wish to show that such t̃1 and t̃2 exist

such that ωt̃i are further trivial on Z(‹G)p. For this, it suffices to find t̃1 and t̃2

lying in [‹G∗, ‹G∗] ∼= G. Recall that here p | gcd(n, q− ε). In this case, note that

ei = 1 for 1 ≤ i ≤ k since (q− ε) | ((εq)δi −1), so that Bi is the unique block in

E(Gi, 1) for each 1 ≤ i ≤ k, and hence ‹B is the unique block in Ep(‹G, s̃). This

also forces l = k, and E(‹G, s̃) contains only one character.

Recall that ‹D is isomorphic to a Sylow p-subgroup of the (in this case

abelian) group C‹G∗(s̃) and in fact by [18, Th. (3C)], if we identify ‹G with ‹G∗,
we may take ‹D to be a Sylow p-subgroup of C‹G∗(s̃). This way, we also iden-

tify G with [‹G∗, ‹G∗] and have that D = ‹D ∩ G is viewed as a subgroup of
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C‹G∗(s̃)∩ [‹G∗, ‹G∗]. Let D̄ = D/Zp be a defect group for B̄. It suffices to argue

that D/Z(G)p contains at least two non-trivial non-Aut(G)-conjugate elements

when |cd(B)| > 1. (Indeed, this would yield p-elements of C‹G∗(s̃) that lie in

G ∼= [‹G∗, ‹G∗] and are not Aut(G)-conjugate to Z(‹G∗)p-multiples of one an-

other.) Hence we may assume D/Z(G)p is elementary abelian, as otherwise

two non-identity elements of D/Z(G)p with distinct orders satisfy the claim.

If k ≥ 4, then D/Z(G)p is generated by at least two elements, and as

before we may find such elements whose eigenvalue structures do not allow

them to be Aut(G)-conjugate.

If k = 2 and δ1 = δ2, then this forces p | δ1, since p | n = 2cδ1 for

some positive integer c. Further, note that since D is not cyclic, we know

((εq)δ1 − 1)p > (q − ε)p. Then choosing the embeddings into ‹G of elements of

the form (y, y−1) with |y| = ((εq)δ1 − 1)p and (x, 1) with |x| = (q − ε)p, we see

these elements lie in G (since (x, 1) is embedded into ‹G with eigenvalues

(x, xεq, . . . , x(εq)δ1−1
, 1, . . . , 1) = (x, . . . , x, 1, . . . , 1),

and therefore has determinant 1) and cannot be Aut(G)-conjugate to Z(G)p-

multiples of one another. Hence we may assume that δ1 > δ2. Then note

that, again studying the embedding of elements (s1, s2) ∈ C(εq)δ1−1×C(εq)δ2−1

into ‹G∗, we see that s̃ cannot be ‹G∗-conjugate to s̃z for any 1 6= z ∈ Z(‹G∗).
Hence the unique character of E(‹G, s̃) restricts irreducibly to G, and similarly

every member of E(‹G, s̃t̃) for t̃ ∈ C‹G∗(s̃) a p-element also restricts irreducibly.

Since C‹G∗(s̃t̃) = C‹G∗(s̃) for each such t̃, we see every element of Irr(‹B), and

hence of Irr(B), will have the same degree, a contradiction.

So, we finally assume k = 3. Arguing like above, we may assume δ1 =

δ2 = δ3, so C‹G∗(s̃) ∼= G3
1. If p || ((εq)δ1 − 1), then p || (q − ε), so we have that

Zp = Z(G)p and D̄ is cyclic, a contradiction. So we see p2 | ((εq)δ1 − 1). But

then we also have p2 | |Z(G)p|, since otherwise D/Z(G)p contains elements of

order p2, contradicting our assumption that D/Z(G)p is elementary abelian.

In particular, p2 | n. Then here since n = 2c · 3δ1, we have p | δ1. Hence we

are done by considering elements (y, y−1, 1) and (x, 1, 1) with x, y analogous

to the case k = 2 above. �

3.5. Other classical groups. For (G, F ) a connected reductive group and

Frobenius morphism F emitting an Fq-rational structure and s ∈ G∗ semi-

simple, we write

JG
s : ZE(GF , s)→ ZE(CG∗(s)

F , 1)

for a Jordan decomposition as in [19, Th. 2.6.22]. Recall from [19, Prop. 3.3.20]

that for K ≤ G an F -stable Levi subgroup with dual K∗ ≤ G∗ and s ∈ K∗,

Lusztig induction induces a map RG
K : ZE(KF , s)→ ZE(GF , s).
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We next consider the case of other classical groups, specifically for quasi-

isolated blocks.

Proposition 3.17. Let G be simple of simply connected type such that

G = GF is quasi-simple of type Bn(q) with n ≥ 2, Cn(q) with n ≥ 3, Dn(q)

with n ≥ 4 or 2Dn(q) with n ≥ 4. Let p be an odd prime not dividing q. Then

if B is a non-cyclic quasi-isolated p-block of G, we have kAut(G)(B) ≥ 3.

Proof. As before, let ι : G ↪→ ‹G be a regular embedding, even taking

the embedding as in [19, Ex. 1.7.4], and write ‹G = ‹GF . Let B be a non-

cyclic quasi-isolated block in Ep(G, s), and let ‹B ⊆ Ep(‹G, s̃) be a block of ‹G
lying above B, where ι∗(s̃) = s is a quasi-isolated p′-element of G∗. Let e

be the order of q modulo p. By what we recalled from [27], let (L, λ) be the

e-Jordan cuspidal pair of ‹G such that ‹B is the unique block of ‹G containing

all constituents of R
‹G
L (λ).

Note that we may assume s̃ ∈ L∗ for a dual Levi subgroup L∗ ≤ ‹G∗ of L.

Then since F is a Frobenius endomorphism and C‹G∗(s̃) is connected and has

only components of classical type, by [19, Th. 3.3.7] the Mackey formula holds,

and by [19, Th. 4.7.2],

(3.17.1) JK
s̃ ◦R

K
K1

= R
CK∗ (s̃)
CK∗1

(s̃) ◦ J
K1

s̃

for any F -stable Levi subgroups K∗1 ≤ K∗ ≤ ‹G∗ containing s̃ so, in particular,

for K∗1 = L∗.

Also note that CL∗(s̃) is an e-split Levi subgroup of C‹G∗(s̃) (by [23,

Prop. 2.12]) and (by definition of e-Jordan cuspidality), (CL∗(s̃), J
L
s̃ (λ)) is an

e-cuspidal pair. Write H∗ := C‹G∗(s̃) and M∗ := CL∗(s̃), a Levi subgroup

of H∗, and let H,M ≤ ‹G be dual to H∗ and M∗, respectively. Then (M, ψ),

with ψ := JM∗
1 ◦JL

s̃ (λ), is an e-Jordan cuspidal pair for H defining a unipotent

block b of H := HF . Then by [8, Th. 3.11] and [27, Th. A], we have that

Irr(b) ∩ E(H, 1) is the set of constituents of RH
M(ψ). From this, we see that

Jordan decomposition induces an injection

Irr(b) ∩ E(H, 1) ↪→ Irr(‹B) ∩ E(‹G, s̃).
Let t ∈ C‹G∗(s̃) = (H∗)F be a p-element, and let ‹G(t) ≤ ‹G and H(t) ≤ H

be F -stable Levi subgroups in duality with C‹G∗(t) and CH∗(t), respectively.

Applying [10, Th. (iii)] to both ‹B and b and applying (3.17.1) to (‹G,G(t), s̃) as

well as to its analogue for (H∗,H(t)∗, 1), we obtain further that Irr(‹B)∩E(‹G, s̃t)
is non-empty if and only if Irr(b) ∩ E(H, t) is non-empty. More specifically,

χ ∈ E(‹G, s̃t) is in Irr(‹B) if and only if ψ ∈ E(H, t) lies in Irr(b), where ψ is

the character such that J
‹G
s̃t (χ) = JH

t (ψ). Further, by [11, Prop. 5.1], b and ‹B
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have isomorphic defect groups. Let Db
∼= D‹B and DB be defect groups of b, ‹B

and B, respectively, chosen so that DB = D‹B ∩G.

Now, by [3, (2.2)], we have ι∗ (H∗) = CG∗(s)
◦. Since B is quasi-isolated,

the latter has only classical components, of the forms listed in [3, Table II].

Hence the components of H are of the forms dual to these.

By [10, Th. (i)], the unipotent characters in b are independent of isogeny

type. Let H0 := [H,H]F , and let b′ be the unipotent block of H0 below b and

b′′ the corresponding unipotent block of [H,H]Fsc, where [H,H]sc denotes the

simply connected covering of the semisimple group [H,H]. Applying Corol-

lary 3.14 and Lemma 3.15, we may assume Z([H,H]Fsc)p is a defect group

of b′′, and each of b, b′ and b′′ contain exactly one unipotent character. As-

sume [H,H]Fsc has a factor of type Am(εqδ) for some m, δ ≥ 1 and ε ∈ {±1}
with dp(εq

δ) = 1, where dp(εq
δ) denotes the order of εqδ modulo p. Then,

Am(εqδ) has a unique unipotent p-block, which must contain the trivial and

Steinberg characters, contradicting that b contains a unique unipotent charac-

ter. Thus, since all components of H are classical, Z([H,H]Fsc)p is trivial, so

p - |Z(H0)|, and we obtain that Db = Z(H)p from [10, Th. (ii)]. Then using [11,

Lemma 4.16, Def. 4.3], we see that D‹B can be taken to be equal to Db = Z(H)p.

Since ‹G/GZ(‹G) is a 2-group, we know Z(‹G)p ∩ G = 1, so D‹B is a direct

product of DB and Z(‹G)p, so DB
∼= D‹B/Z(‹G)p and Z(H)p/Z(‹G)p must be

non-cyclic. However, from our list of possible structures in [3, Table II], we

see that Z(H)p/Z(‹G)p is trivial or cyclic, unless G is of type Dn and H is

of type An−3. In this case, although s is quasi-isolated, s̃ is not, and H is a

Levi subgroup of ‹G. From our discussions above and using, for example, the

descriptions of possible (CG∗(s)
◦)F in [35, see, e.g., 2], we have H0 = An−3(εq)

with dp(εq) 6= 1, and Z(H)p/Z(‹G)p
∼= C2

(q+ε)p
coming from a torus C2

q+ε ≤ H.

Let θ be the unique unipotent character in b. We have

Irr(b) = {θt̂ | t ∈ Z(H∗)Fp },

where t 7→ t̂ is the isomorphism Z(H∗)F → Irr(H/H0) guaranteed by [19,

Prop. 2.5.20]. Now, a construction for ‹G ∼= ‹G∗ is presented in [19, Ex. 1.7.4]

using tori constructed in [19, Ex. 1.5.6]. The element s and its centraliser in

G∗ are described in terms of root systems in [3]. With this, we can see Z(H∗)

through this construction, and we calculate that there are elements t1, t2 of

order p in Z(H∗)F \ Z(‹G∗) such that t1 is not ‹G∗D-conjugate to t2z for any

z ∈ Z(‹G∗)p. Since ‹G o D induces Aut(G) and [13, Th. 3.1] tells us Jordan

decomposition for ‹G can be chosen to be D-equivariant, then as in the proof of

Proposition 3.16 we obtain two non-Aut(G)-conjugate characters in ‹B\E(‹G, p′)
lying above non-Aut(G)-conjugate members of Irr(B). �
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3.6. Remaining quasi-isolated blocks.

Proposition 3.18. Let G be such that G := GF is quasi-simple of type

En(q) with 6 ≤ n ≤ 8, 2E6(q), F4(q) or G2(q). Let p be an odd prime not

dividing q. Then if B is a non-cyclic quasi-isolated p-block of G, we have

kAut(G)(B) ≥ 3.

Proof. Let B lie in Ep(G, s), where s is a quasi-isolated semisimple p′-

element of G∗. Let e be the order of q modulo p. In our situation, thanks to

[27, Rem. 2.2], the notions of e-Jordan cuspidality and e-cuspidality coincide.

When p is good for G, the e-Jordan quasi-central cuspidal pairs are the same

as the e-Jordan cuspidal pairs by [27, Th. A(d,e)].

Assume (G, χ) is quasi-central e-cuspidal. Then since G = [G,G], [26,

Prop. 2.5] implies that bG(G, χ) is of central defect. However, then bG(G, χ)

is cyclic.

Hence from now on, we may assume B = bG(L, λ) with (L, λ) an e-Jordan

quasi-central cuspidal pair of G with G 6= LF and λ ∈ E(LF , s). Further, from

Lemma 3.15 and Corollary 3.14, we may assume B is not unipotent. From

here, we consider separately the cases that p is bad and that p is good.

First let p ≥ 3 be bad for G. Here the block distributions for E(G, s)

are given in [26, Tables 2–4, 6–9], or by Ennola duality with those results.

(Namely, when e = 2, one formally replaces q with −q in the results for e = 1

— see [26, p. 16]; also, the results for 2E6(q) are obtained from those of E6(q)

by switching the roles of e = 1 and e = 2 — see [26, pp. 21].) From this and

the knowledge of the degrees of characters in E(G, s) for each CG∗(s) listed,

(obtained by Jordan decomposition from the unipotent character degrees of

groups of small rank), we see that B ∩E(G, s) contains at least two characters

that are not Aut(G)-conjugate in the cases with non-cyclic defect. (Here we

may use [26, Prop. 2.7] to understand the defect groups.) Hence we are done

in this case, by applying Corollary 3.14.

Next assume p ≥ 5 is a good prime for G. First suppose e ≥ 3. In this

case, the block distributions for E(G, s) are given in [23, Tables 2, 3, 5, 7, 8],

through a description of the decompositions of RG
L (λ). With this information,

combined with the knowledge of the character degrees in CG∗(s) and again

using Corollary 3.14, we see there are at least three non-Aut(G)-conjugate

characters when the defect group is non-cyclic.

Finally, if p ≥ 5 is a good prime for G with e ∈ {1, 2}, the decompositions

of RG
L (λ) and the groups WG(L, λ) are the same as those given in [26, Tables

2–4, 6–9] for the bad prime case. But, note that now each (L, λ) gives a

distinct block by [27, Th. A], and the same considerations as before complete

the proof. �
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Corollary 3.19. Let G be simple of simply connected type such that

G := GF is quasi-simple. Let p - q be an odd prime, and let B be a quasi-

isolated p-block of G. Then kAut(G)(B)≥3 if B is non-cyclic and kAut(G)(B)≥2

if B is cyclic of positive defect.

Proof. This now follows from Corollary 3.14 and Propositions 3.6, 3.16,

3.17, and 3.18. �

Proposition 3.20. Let G be simple of simply connected type such that

G := GF is quasi-simple, and let p - q be an odd prime. Let H be an F -stable

Levi subgroup of G, and let B be a non-cyclic quasi-isolated p-block of H := HF

with |cd(B)| > 1. Then kAut(H)(B) ≥ 3.

Proof. Using Corollary 3.19 and Proposition 3.5, we have that H satis-

fies Hypothesis 3.8 with respect to c = 3 (see also Remark 3.11). Hence by

Proposition 3.9, the statement holds. �

3.7. Proof of Theorem B. We are now ready to complete the proof of

Theorem B. Recall that, thanks to Section 3.1 and Proposition 3.7, we only

need to consider groups of Lie type in non-defining characteristic.

Theorem 3.21. Theorem 3.1 holds when S is quasi-simple such that

S/Z(S) is a simple group of Lie type defined in characteristic r 6= p.

Proof. By Section 3.1, we may assume that the simple group S̄ := S/Z(S)

has a non-exceptional Schur multiplier, and that S is not of Suzuki or Ree type.

Let G be the Schur cover of S̄, so that G = GF is the group of fixed points

of some simple, simply connected algebraic group G in characteristic r under

some Frobenius morphism F . Assume first that p - |Z(G)|. Then it suffices to

show the statement for G, since the irreducible characters in a block of S will

be the same as those in the block of G dominating it, viewed via inflation. As

in the proof of Lemma 3.12, we have that b is Morita equivalent to a quasi-

isolated block B of H, where H = HF for an F -stable Levi subgroup H of G.

Now, by Proposition 3.20 together with Lemma 3.12, we have kAut(G)(b) ≥ 3.

Now suppose that p divides |Z(G)|. Then since p is odd, we have that G

is SLn(εq) or E6(εq) for some ε ∈ {±1} and some power q of r. In the first

case, p | gcd(n, q− ε) and Proposition 3.16(b) finishes the proof. In the second

case, p = 3 | (q − ε).
So, we finally assume that S̄ = E6(εq) = G/Z(G) and p = 3 | (q − ε).

Let b̄ be a 3-block of S̄ with non-cyclic defect groups such that |cd(b̄)| > 1,

and let b be the block of G dominating b̄ lying in E3(G, s) for some semisimple

3′-element s ∈ G∗. Let H be an F -stable Levi subgroup of G minimal with

the property that CG∗(s) ≤ H∗, so that s is quasi-isolated in H∗. Let B be
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the block of H = HF in Bonnafé–Rouquier correspondence with b, and let B̄

be its image in H/Z(G). Then B̄ is also not cyclic, by [26, Th. 7.16].

Arguing exactly as in the fourth paragraph of [28, p. 13], either CG∗(s) =

C◦G∗(s) = H∗ consists only of components of type A, or H0 := [H,H] is of

type D4 or D5.

In the first case, B is the tensor product of some unipotent block of H

with the linear character ŝ corresponding to s ∈ Z(H∗)F . Let B′ be the

unipotent 3-block of H0 covered by B ⊗ ŝ−1. Using Lemma 3.15 or in fact

checking directly for groups of type A of rank at most 5, we see B′ contains

at least two unipotent characters of distinct degree unless either CG∗(s) is

abelian or H0 contains only components of the form A2(−εq). If CG∗(s) is

abelian, then every member of E3(H, s), hence Irr(B), and hence Irr(b), has

the same degree. Now, the unipotent blocks of A2(εq) consist of one defect zero

block and the principal block containing the trivial and Steinberg characters.

Then if H0 contains only components of the form A2(−εq) and B′ does not

contain two characters of distinct degree, then B′ has trivial defect groups,

which contradicts Proposition 3.9(a) unless again |cd(B)| = |cd(b)| = 1.

So we may assume B′ contains at least two unipotent characters of distinct

degree, so Irr(B) ∩ E(H, s), and hence Irr(b) ∩ E(G, s), contains at least two

characters of distinct degrees. Recall that the members of Irr(b) ∩ E(G, s) are

trivial on Z(G), since s is 3′, and can therefore be viewed as characters in

Irr(b̄). Further, the images of the characters in Irr(B) ∩ E(H, s) under d1 are

linearly independent by [11, Th. 1.7]. Hence there must be at least one more

member of Irr(B̄), and therefore at least one member of Irr(b̄) lying outside of

E(G, s), which as before is not Aut(G)-conjugate to the members of E(G, s).

Now consider the case H0 = [H,H] is of type D4 or D5. Note that

H0 = HF
0 is simply connected of type D4 or D5, and hence has centre of 2-power

order. Then a (quasi-isolated) block B′ of H0Z(G)/Z(G) ∼= H0 lying under B̄

contains at least three, respectively two, characters in distinct Aut(H0)-orbits

from Proposition 3.17 and Corollary 3.14 if B′ is non-cyclic, respectively cyclic.

If B′ is non-cyclic, then arguing exactly as in the situation of Proposition 3.9(a)

and Lemma 3.12, but with H0Z(G)/Z(G)CH/Z(G) taking the place of H0CH,

completes the proof. So, assume B′ is cyclic. Note that H = H0Z
◦(H), and

H0Z
◦(H)F /Z(G) is normal in H/Z(G) with 3′-index, so that a block B′′′ of

this group under B̄ is non-cyclic. Further, this group can be identified with a

3′-quotient of H0×Z◦(H)F /Z(G), and hence we may identify B′′′ with a block

B′⊗B′′ of H0×Z◦(H)F /Z(G), where B′′ has non-trivial defect groups. Then

taking two non-Aut(H)-conjugate members of B′′ (these exist since B′′ is a

tensor product of the unique block of the Sylow 3-subgroup of Z◦(H)F /Z(G)

with some character of 3′ order), we obtain kAut(H)(B̄) ≥ 3 and kAut(G)(b̄) ≥ 3,

again arguing as in Propositions 3.9 and Lemma 3.12. �
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4. Invariant blocks and defect groups

This section is devoted to the proof of the following result on blocks of

quasi-simple groups (which will imply Theorem C):

Theorem 4.1. Let p be an odd prime and S a quasi-simple group with

Z = Z(S), S̄ := S/Z . Let b be a p-block of S with an abelian, non-cyclic defect

group D, and let bD be a block of CS(D) with defect group D inducing b. For

parts (a) and (c), in the cases S̄ = E6(εq) with p = 3|(q − ε) and ε ∈ {±1},
assume in addition that BHZ for the prime p holds for all groups of order

smaller than |S̄|.

(a) Suppose that S̄ ≤ H ≤ Aut(S), A := H/S̄ has a normal p-complement

and a cyclic Sylow p-subgroup Q. Assume b is H-invariant, and for every

χ ∈ Irr(b), we have that |A : Aχ| is p′. If x ∈ NH(D) is a p-element that

fixes bD, then [x,D] = 1.

(b) Suppose that S̄ ≤ H ≤ Aut(S) and Op′(H/S̄) = H/S̄. Also assume that

every χ ∈ Irr(b) is H-invariant. Set J := Inndiag(S̄) if S is of Lie type,

and J = S̄ otherwise. Then HJ/J is a p′-group.

(c) Suppose p - |Z|, and let S/Z ≤ K/Z ≤ Aut(S) with K/S an abelian

p-group. If every irreducible character in b extends to K , then the defect

groups of the K-block covering b are abelian.

4.1. First reductions. We keep the notation of Theorem 4.1 throughout

the section. In particular, p is always an odd prime. For the proof, we discuss

the various possibilities for S and p according to the classification of finite

simple groups. By assumption, |D| > 1 and thus p divides |S|.
Lemma 4.2. In the situation of Theorem 4.1(a), assume Q is normal

in A. Then we may assume A = Q 6= 1.

Proof. If Q is normal in A, all orbits of Q on Irr(b) will have p′-length as

well, and all p-elements in A lie in Q. So we are done if we can show the claim

when A = Q. Furthermore, if Q = 1, any p-element x ∈ NH(D) that fixes bD
centralises D by Proposition 2.4. �

Lemma 4.3. In the situation of Theorem 4.1(c) assume K/S is cyclic.

Then the claim in 4.1(c) is a consequence of 4.1(a).

Proof. Since every irreducible character in b extends to K, the block b is

K-invariant. Let B be the unique block of K covering b. By Lemma 2.3, let

D̂ be a defect group of B such that D̂ ∩ S = D and D̂ ≤ T , where T is the

stabiliser of bD in NK(D). Let x ∈ D̂. Then [x,D] = 1 by (a), and therefore

D ≤ Z(D̂). As D̂/D is cyclic, this shows D̂ is abelian. �

Proposition 4.4. For the proof of Theorem 4.1, we may assume that

S/Z(S) is simple of Lie type in characteristic different from p.
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Proof. If S̄ is an alternating group, a sporadic group, or the Tits simple

group, then |Out(S)| is a 2-power. Hence 4.1(a) follows from Proposition 2.4

(applied to G = N = S), while 4.1(b) and (c) hold trivially. The same argu-

ments apply whenever p - |Out(S̄)|.
Now assume S̄ is simple of Lie type in characteristic p > 2. If S̄ has an

exceptional covering group (see [38, Table 24.3]), then Out(S) is a 2-group,

and we can conclude as above. Hence we may assume |Z| is prime to p and p

divides |Out(S)|. By [24] any p-block of S has either full defect or defect zero.

Thus our assumption on D being abelian forces S̄ = L2(q) for some q = pf , so

we may take S = SL2(q). This group has two p-blocks of maximal defect, the

principal block B0(S) and a block B containing all faithful characters (see [24]).

Since |Out(S)| is divisible by p, Q must induce field automorphisms of order p,

so p|f . By order reasons, the image of Q is central in Out(S), so by Lemma 4.2

we may assume A = Q. Now by inspection of the generic character table given,

e.g., in [19, Ex. 2.1.17 and Table 2.6], there exist irreducible characters in B0(S)

as well as in B not stabilised by Q. Hence the theorem holds in this case. �

Proposition 4.5. Theorem 4.1 holds for S an exceptional covering group

of a simple group of Lie type in characteristic different from p.

Proof. The simple groups with exceptional covering groups are listed in

[38, Table 24.3]. Arguing as in the proof of Proposition 4.4, we need only

consider the ones with Out(S) not a p′-group, which are L3(4), U6(2), O+
8 (2),

2B2(8) and 2E6(2), and the only relevant prime is p = 3. Assume S̄ = U6(2)

or 2E6(2) and that 3 divides |H/S̄|, respectively |K/S|. Since any outer auto-

morphism of order 3 permutes the three involutions in the Schur multiplier of

S̄ cyclically and the block b is invariant under H, respectively K, the relevant

covering groups are S = S̄ and S = 3.S̄ only, which are not exceptional cov-

erings. In all other cases, using [57], the 3-blocks of an exceptional covering

group S turn out to have either cyclic or non-abelian defect, whence the claim

follows. �

Proposition 4.6. Theorem 4.1 holds for S a Suzuki or Ree group.

Proof. By Proposition 4.4, we may assume p is not the defining character-

istic of S and S 6∼= 2F4(2)′. Now the Sylow p-subgroups of the Suzuki and the

small Ree groups are cyclic for any such p ≥ 3. For S = 2F4(q2) with q2 > 2,

the only p-block with non-cyclic defect groups is the principal block b = B0(S),

and its defect groups are abelian when p > 3 (see [34]). Now Out(S) is cyclic

so, in particular, its Sylow p-subgroup is normal; also J = S̄. By Lemma 4.2

we may assume A = Q, and by Lemma 4.3 it suffices to show 4.1(a) and 4.1(b).

But then the only p-block of H above b is the principal block B = B0(H). By

[34, Bem. 3] all characters in b have height 0, and if all orbits of Q on Irr(b)
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have p′-size, the same is true for the characters in Irr(B). But then by the

main result of [36], the Sylow p-subgroups of H are abelian. Alternatively, by

inspection of the character table [34], the assumption of 4.1(a) is in fact never

satisfied for A 6= 1; this establishes 4.1(a), as well as 4.1(b). �

4.2. Some results on p-blocks. To deal with groups of Lie type for non-

defining primes we first observe some general facts on blocks of finite reductive

groups that may be of independent interest.

Let G be a Levi subgroup of a simple linear algebraic group of simply

connected type over an algebraically closed field of positive characteristic and

F : G → G a Frobenius endomorphism with respect to an Fq-rational struc-

ture. Let G∗ be a group in duality with G with corresponding Frobenius

endomorphism again denoted F . We let p ≥ 3 be a prime not dividing q and

denote by e the order of q modulo p.

Recall that any p-block b of G := GF has the property that Irr(b) ⊆
Ep(G, s) for some semisimple p′-element s ∈ G∗ :=G∗F (see, e.g., [12, Th. 9.12]).

Furthermore, by [27, Th. A] there is a bijection between p-blocks b of GF and

GF -classes of e-Jordan-cuspidal pairs (L, λ) of G of quasi-central p-defect, with

λ lying in a p′-Lusztig series of Irr(LF ) such that all constituents of RG
L (λ) are

contained in Irr(b). We write

(L, λ) 7→ bG(L, λ)

for this map.

Lemma 4.7. Let d ≥ 1 and L be a maximal proper d-split Levi subgroup

of G. Then |NG(L)F /LF | is not divisible by a prime bigger than max{2, d}.
Proof. The maximal proper d-split Levi subgroups L of G above the cen-

traliser of a fixed Sylow d-torus S of G are in one-to-one correspondence with

the maximal parabolic subgroups of the relative Weyl group

W = NG(S)F /CG(S)F

of S [19, Prop. 3.5.12]. Moreover, if L corresponds to W1 ≤W , then

NG(L)F /LF ∼= NW (W1)/W1

(see [38, Prop. 26.4]). The claim is thus reduced to a question in reflection

groups. For these, there is an immediate reduction to the irreducible case.

The latter can be checked case by case using the explicit description of the

various relative Weyl groups given in [19, 3.5.11–3.5.15]. For example, when G

is of classical type, then W = G(m, 1, n) or G(m, 2, n) for suitable m ∈ {d, 2d}
and n ≥ 1, for which the assertion is easily verified. �

The following somewhat surprising result may be of independent interest.

Here, by a field automorphism of G we mean any conjugate of an automorphism

induced by a Frobenius endomorphism F0 of G commuting with F .
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Proposition 4.8. Let σ be a field automorphism of G = GF of order p,

and let γ = στ , where τ is an inner-diagonal automorphism of G. Then any

p-block of G of non-quasi-central defect contains characters in a Lusztig series

that is not γ-stable.

Proof. Let b be a p-block of G of non-quasi-central defect. As above,

b = bG(L, λ) for some e-split Levi subgroup L of G, proper since b has non-

quasi-central defect. By assumption, up to conjugation, σ is induced by a

Frobenius endomorphism F0 of G commuting with F , with respect to an Fq0-

rational structure on G where q = qp0 . Then q0 also has order e modulo p. In

particular, any e-torus of (G, F0) is also an e-torus of (G, F ), and conversely,

any F0-stable e-torus of (G, F ) is also an e-torus of (G, F0). The same relations

hold for e-split Levi subgroups since these are the centralisers of e-tori.

By [56, 5.6], σ induces a field automorphism σ∗ of G∗ = G∗F of the same

order. Let L∗ ≤ G∗ be in duality with L, an e-split Levi subgroup of (G∗, F )

that is F0-stable, hence e-split in (G∗, F0). Let L∗1 ≥ L∗ be a maximal (proper)

e-split Levi subgroup of (G∗, F0). Thus, T1 := Z(L∗1)Φe is an e-torus of (G∗, F )

and (G∗, F0) of rank 1, and so TF
1 and TF0

1 have cyclic Sylow p-subgroups [38,

Prop. 25.7], with |TF
1 |p > |T

F0
1 |p since |Φe(q)|p > |Φe(q0)|p. Thus a generator

t of (TF
1 )p is not fixed by σ∗; that is, tσ

∗
= ta 6= t for some integer a.

We claim that CG∗((T
F
1 )p) = CG∗((T1)Φe). Indeed, if p is a good prime

for G, then this is [10, Prop. 2.1(ii)+(iii)]. Otherwise, G has a factor of

exceptional type and p = 3 (so e = 1, 2) or G = E8, p = 5 and e = 1, 2, 4. In

the latter cases, the explicit description of maximal e-split Levi subgroups in

[19, §3.5] together with the fact [26, Table 1] that there are no quasi-isolated

elements of order pk, k ≥ 2, in G∗ shows the claim.

Now assume there exists g ∈ G∗ with ta = tg, so conjugation by g makes

an orbit of length p on 〈t〉 = (TF
1 )p. Then g normalises (TF

1 )p and hence also

CG∗((T
F
1 )p)

F = CG∗((T1)Φe)
F = L∗F1 .

But by Lemma 4.7, NG∗(L
∗
1)F /L∗F1 has order prime to p (since p > e), which

contradicts the assumption that g makes an orbit of length p on 〈t〉. Hence

t, tσ
∗

are not G∗-conjugate.

Now let s ∈ G∗ be a semisimple p′-element such that Irr(b) ⊆ Ep(G, s).
Since Irr(b) contains the constituents of RG

L (λ), we may assume s ∈ L∗F . So

t ∈ Z(L∗F1 ) ≤ Z(L∗F ) ≤ CG∗(s).

Note that st and (st)σ
∗

are not G∗-conjugate, since neither are their p-parts.

Thus, by [56, Prop. 7.2] the Lusztig series E(G, st) ⊂ Irr(G) is not σ-invariant.

Since E(G, st) ∩ Irr(b) 6= ∅ by Lemma 3.13, the statement follows in the case

γ = σ.
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It remains to consider the case γ = στ where τ is not an inner automor-

phism of G. Note that every semisimple conjugacy class of G∗ is stable under

inner-diagonal automorphisms of G∗. (Indeed, Inndiag(G∗) is induced by the

action of (G̃∗)F on G∗ for some regular embedding G∗ ↪→ ‹G∗ = Z(G̃∗)G∗.) It

follows that τ fixes the rational series E(G, st) in the preceding paragraph, and

hence γ again does not stabilise E(G, st), which contains characters from b. �

By Propositions 4.4, 4.5 and 4.6, to complete the proof of Theorem 4.1 we

may assume S is a central quotient of a group G = GF as above for G simple.

We now distinguish two situations:

(4.8.1) p does not divide |Z(G)|, and G6∼= D4(q) with p = 3

and

(4.8.2) p divides |Z(G)|, or G ∼= D4(q) with p = 3.

Proposition 4.9. Theorem 4.1 holds in Case (4.8.1).

Proof. Let (G, F ) be such that S is a central quotient of G = GF . Let b

be a p-block of S of non-trivial defect. Since in Case (4.8.1) the order of Z(G)

is prime to p, we may consider b as a block of G. For the groups in (4.8.1), the

only outer automorphisms of p-power order are field automorphisms modulo

J = Inndiag(S̄). So by Lemma 4.3, it suffices to prove parts (a) and (b) of

Theorem 4.1, with Q 6= 1 in the case of 4.1(a), or p divides |HJ/J | in the

case of 4.1(b). Then H contains an element γ as in Proposition 4.8. But then

Proposition 4.8 shows that the assumptions of 4.1(a), (b) are not satisfied. �

4.3. The groups in Case (4.8.2).

Proposition 4.10. Theorem 4.1 holds for S̄ = O+
8 (q) and p = 3.

Proof. Let b be a 3-block of S. Since Z(G) has order prime to 3, we

may consider b as a block of G and thus assume S = G. To prove any part of

Theorem 4.1, it suffices to show that |H/S̄|, respectively |K/S|, is coprime to 3.

Assume the contrary that H, respectively K, contains an element σ that

induces an outer automorphism of order 3 of S̄. By Proposition 4.8 we may

assume σ induces a triality graph automorphism modulo inner-diagonal and

field automorphisms. We have 3|(q2 − 1), so e ∈ {1, 2}. Write b = bG(L, λ).

Let L∗ ≤ G∗ be dual to L. Let L∗1 ≥ L∗ be a maximal (proper) e-split Levi

subgroup of G∗. Then L∗1 is either of type A3 or A3
1. If all maximal e-split

Levi subgroups above L∗ are of type A3
1, then L∗ itself must be of type A3

1.

A computation inside the Weyl group shows that the Levi subgroup of type

W (A3
1) of W (D4) has index 2 in its normaliser. Thus, by [11, Lemma 4.16] a

defect group of b is Z(L)F3 , hence cyclic, which was excluded.

Thus we may choose L∗1 of type A3. Let t be a generator of the cyclic

group Z(L∗1)F3 . Note that there are three G∗-classes of Levi subgroups of
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type A3 in G∗, each of which is fixed by inner-diagonal and field automor-

phisms, and permuted transitively by σ∗. It follows that the G∗-class of t is

not σ∗-invariant. We can now conclude as in the proof of Proposition 4.8 that

b contains characters that are not σ-stable. �

We now show an extension of Proposition 4.8 to groups of type A.

Proposition 4.11. Let G = SLn, and assume that p divides |Z(GF )|.
Let b = bG(L, λ) be a p-block of G = GF with abelian defect, and assume

Z◦(L)Φe has rank at least 2. Suppose F = F p0 for a Frobenius endomorphism

F0 of G, and let σ be the automorphism of G induced by F0. Then for any

inner-diagonal automorphism τ of G, Irr(b) contains a character that is not

στ -stable and is trivial on Z(G)p.

Proof. We have G = SLn(εq) and G∗ = PGLn(εq), with ε ∈ {±1}. The

assumption on |Z(GF )| forces p|(q − ε). First consider the case ε = 1. Then

e = 1. Let L∗ ≤ G∗ be dual to L. Up to replacing L∗ by a G∗F -conjugate

we may assume that F0 acts on Z(L∗)Φ1 = Z(L∗) by the q0-power map, where

q = qp0 . Now Z(L∗)Φ1 has rank at least two, so there exist at least two maximal

proper 1-split Levi subgroups L∗1,L
∗
2 ≥ L∗, with Z(L∗i ) a 1-torus of Z(L∗) of

rank 1. Let ti be a generator of the cyclic Sylow p-subgroup of Z(L∗i )
F . Then

preimages t̃i of ti in GLn(q) (under the natural quotient map) can be taken

as diagonal matrices where t̃i has mi eigenvalues ζ, a primitive kth root of

unity with k = |Z(L∗i )
F |p = |ti| (a p-power), and all other eigenvalues 1, with

1 ≤ m1 < m2 < n say. We have tσi = F0(ti) = tq0i , so ti is not σ-stable.

Let a1, a2 be integers not both divisible by p such that

m1a1 +m2a2 ≡ 0 (mod k).

Then t̃ := t̃a11 t̃
a2
2 has determinant 1, so lies in SLn(q), whence

t := ta11 t
a2
2 ∈ [G∗, G∗].

By [46, Prop. 4.5] this means that any character in E(G, st), for s ∈ L∗ a

semisimple p′-element has Z(G)p in its kernel. Furthermore, the class of t is

not σ-stable. Now t̃ has eigenvalues ζa1+a2 , ζa2 and 1, and at least two of those

are distinct by the choice of a1, a2. Thus, either

CGLn(q)(t̃) = GLn1(q)×GLn−n1(q)

for a suitable 1 ≤ n1 < n, or

CGLn(q)(t̃) = GLm1(q)×GLm2−m1(q)×GLn−m2(q).

All of these have automiser of order at most 2 unless m1 = m2 −m1 = n/3

when it is S3. Assume we are in the latter case and p = 3. If L∗ itself is of this

form, then the defect groups of b are non-abelian, being a non-trivial extension

of Z(L∗)F3 with a Sylow 3-subgroup of the automiser of LF [11, Lemma 4.16].
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Otherwise, L∗ has strictly smaller rank, and then we may choose the L∗i such

that the centraliser of t̃ is not of this special form. We may then complete the

argument as in the proof of Proposition 4.8.

If ε = −1 (so G is unitary), we may argue in an entirely similar fashion. �

The proof actually shows that the assumption on abelian defect groups

can be dropped when either p ≥ 5, or p = 3 and in addition L is not of type

A3
n/3−1.

Proposition 4.12. Theorem 4.1 holds for S̄ = Ln(εq), ε ∈ {±1} and

p | (q − ε).

Proof. By our previous reductions and Proposition 4.9 we may assume S

is a central quotient of G = SLn(εq). Let b be a p-block of S with abelian

non-cyclic defect and b̃ the p-block of G dominating it. Then by the proof of

[2, Th. 5], one of the following holds for any block B of GLn(εq) lying above b̃:

(4.12.1) B has abelian defect groups; or

(4.12.2)

p = 3, n = 3m, and Irr(B) ⊆ E3(GLn(εq), s), with

C := CGLn(εq)(s) ∼= GL3((εq)m)

for some semisimple 3′-element s∈GLn(εq), and ((εq)m−1)3 =3.

Now first assume that H or K induce an automorphism γ = στ , where σ

is a field automorphism of S of order p, and τ ∈ J = Inndiag(S). That is, σ

is induced by a field automorphism F0 of G, where after conjugation we may

assume F = F p0 . As p|(q − ε) and q is a pth power, in fact we have p2|(q − ε),
and so we are in case (4.12.1). Also note that if b̃ = bG(L, λ), then Z◦(L)Φe

has rank at least 2 since b̃ has non-cyclic defect. But then by Proposition 4.11

the block b̃ contains an irreducible character of G not fixed by γ and trivial on

Z(G)p, hence a character of b. Thus the assumptions of any of the parts (a),

(b), and (c) in Theorem 4.1 are not satisfied.

So we may now assume that the p-elements in H and K only induce

diagonal automorphisms. In particular, this establishes 4.1(b) and shows that

K/S is cyclic. Hence by Lemma 4.3 it suffices to prove 4.1(a); moreover, using

Lemma 4.2 we may assume H/S̄ is a p-group contained in J/S̄.

Suppose we are in the situation of (4.12.1). Since GLn(εq) induces all

diagonal automorphisms on G and thus on S and since H/S̄ is a cyclic p-group,

we can find a p-element g ∈ GLn(εq) such that G1 := 〈G, g〉 induces H while

acting on S. Furthermore, G C G1 ≤ GLn(εq) and G1/G is a p-group. Since

every character in b is H-invariant, b̃ is G1-invariant, and since the defect

groups of any G1-block lying above b̃ are abelian, the statement follows from

Proposition 2.4.
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Finally we consider the situation of (4.12.2). Recall our hypothesis that

the defect group D of b is abelian but non-cyclic. As shown in the proof of

[2, Th. 5], |D| ≤ 32, whence |D| = 32. On the other hand, B has defect

groups of order 34, and (q − ε)3 = 3, so the defect groups of b̃ have order (at

least) 33. It follows that S is a quotient of G by a central subgroup Z of order

z divisible by 3. By Lemma 4.2 we may assume |H/S̄| = (q− ε)3 = 3, and that

H is induced by the conjugation action of G1 := 〈G, g〉 ≤ GLn(εq) for some

3-element g. As G1/G is a 3-group, b̃ lies under a unique 3-block B1 of G1 and

so B1 lies under B. Since BHZ holds for b by [2], every character θ ∈ Irr(b)

has height zero, so the 3-part of its degree is

d := |Ln(εq)|3/32 = |GLn(εq)|3/34.

By assumption, θ is g-invariant, so, viewed as G-character, it extends to a

character of G1, which is still trivial at Z. Thus the degrees of all characters

in Irr(B1) that are trivial at Z have 3-part d.

By [2, Th. 1], Irr(B) consists of all characters in E(GLn(εq), st) for t a

3-element in C = GL3((εq)m). As θ is trivial at Z and lies under some such

character, using [46, Prop. 4.5] we see that the order of det(st) divides (q−ε)/z.
But s is 3′ and t is a 3-element, so the order of det(s) divides (q − ε)/z. Let

ω ∈ F×
q2

be of order 3, and consider

t := diag(1, ω, ω2) ∈ SL3((εq)m) < C.

Then t centralises s and, as det(t) = 1, det(st) = det(s) has order dividing

(q−ε)/z. Again by [46, Prop. 4.5], the semisimple character χst∈E(GLn(εq),st)

is trivial at Z. Any irreducible constituent ψ of the restriction of χst to G1

is also trivial at Z. By uniqueness of B1, we have ψ ∈ Irr(B1). Since G1 has

3′-index in GLn(εq),

ψ(1)3 = χst(1)3 = |GLn(εq)|3/|CC(t)|3
= |GLn(εq)|3/((εq)m − 1)3

3 = |GLn(εq)|3/33 = 3d,

and this is a contradiction. �

Proposition 4.13. Let S̄ = E6(εq), ε ∈ {±1} with 3|(q−ε). Assume that

BHZ for p = 3 holds for all groups of order smaller than |S̄|. Then Theorem 4.1

holds for S̄ at p = 3.

Proof. Let b be a 3-block of S with non-cyclic abelian defect groups, and

let b̂ = bG(L, λ) be the block of G = GF dominating it. So b = b̂ if and only

if S = G. Again we first show that field automorphisms of order 3 modulo

J := Inndiag(S̄) do not point-wise fix all irreducible characters in b. First let

ε = 1, so G = E6(q) and e = 1. Set Z := (Z◦(L∗)F )3, a 3-group of rank

at least 2. Assume F = F 3
0 , and accordingly write q = q3

0. Now F0 acts by

x 7→ xq0 on Z. Let L∗i , i = 1, 2, be two distinct maximal 1-split Levi subgroups
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of G∗ containing the dual Levi L∗ ≤ G∗ of L and ti ∈ Z(L∗i )
F
3 ≤ Z generators

of the Sylow 3-subgroups. Let ai ∈ Z not both divisible by 3 be such that

t := ta11 t
a2
2 ∈ [G∗, G∗]. Then we have F0(t) = tq0 6= t. Note that t has order

divisible by 9.

Now L′ := CG∗(t) is either a maximal proper 1-split Levi subgroup of

G∗ or equal to the intersection L∗1 ∩L∗2, a Levi subgroup of semisimple rank 4.

Assume for a moment that L′ does not have type D4. Now NG∗(〈t〉) normalises

CG∗(t) = L′. But the automiser of the latter does not contain elements of

order 3 by Lemma 4.7, respectively by inspection. Thus, t is not G∗F -conjugate

to F0(t), and we may complete the argument as in Proposition 4.11 to see that

Irr(b̂) contains characters trivial on Z(G)F in Lusztig series not fixed by F0.

If L′ has type D4, its automiser is the symmetric group of degree 3. By a

computation in the reflection representation of the Weyl group using [57], there

are generators x, y of the Sylow 3-subgroup of Z(L′)F such that an element

w of order 3 in the automiser acts by x 7→ y 7→ (xy)−1. (Note that Z(L′)F

lies in a maximally split torus on which the Weyl group naturally acts.) Then

t := xwx−1 = x−1y is a 3-element in [G∗, G∗]. Now w acts by tw = x−1y−2,

while F0 sends every element in Z(L′) to its qth power. So again, t is not

G∗-conjugate to F0(t), and we conclude as before.

The above result already establishes 4.1(b) and shows that K/S is cyclic

in 4.1(c). By Lemma 4.3, it remains to prove 4.1(a), and we may now assume

H only induces diagonal automorphisms of S, and in fact H = G∗ using

Lemma 4.2. First assume S = G. Let G ↪→ ‹G be a regular embedding, and

let G̃ := ‹GF . Then any defect group of b is contained in a maximally split

torus of G, and thus defect groups of any block b̃ of G̃ above b are contained

in a maximally split torus of G̃ (see [26, Th. 1.2(b)] for quasi-isolated blocks

and [11, Lemma 4.16] for the others) and so are abelian. Since G̃ induces all

diagonal automorphisms of G, we are done by applying Proposition 2.4 (and

arguing as in case (4.12.1) of the proof of Proposition 4.12).

Finally, assume S = G/Z(G) is the simple group (which is isomorphic to

[G∗, G∗] ≤ G∗ = H as duality keeps the root system of type E6). Consider the

block b̃ of G∗ covering b. If b̃ has abelian defect groups, then the statement

again follows from Proposition 2.4. Assume b̃ has a non-abelian defect group D̃,

and is not quasi-isolated. Then its Morita-equivalent Jordan correspondent

block b̃1, of a group of order less than |G∗|/3 = |S̄|, also has non-abelian

defect by [5, Th. 1.1]. By assumption, b̃1 satisfies BHZ, so contains a character

of positive height. But then so does b̃ since the Bonnafé–Rouquier Morita

equivalence [6] preserves heights. Also by assumption, b has abelian defect,

and hence all characters in Irr(b) possess height zero by the main result of [26].

Now the existence of characters of positive height in b̃ implies that G∗ does

not fix all characters in Irr(b). On the other hand, if b̃ is quasi-isolated then
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defect groups of b are non-abelian or cyclic by [26, Prop. 4.3 and Th. 1.2(b)]

and [17, pp. 353–354].

For the twisted type groups, that is ε = −1, entirely similar considerations

apply. �

Corollary 4.14. Let p be an odd prime, and let S be a quasi-simple

group. Let S̄ := S/Z(S), S̄ ≤ H ≤ Aut(S), and assume Op′(H/S̄) = H/S̄.

If b is a p-block of S with abelian, non-cyclic defect groups such that every

character in b is H-invariant, then H/S̄ is a cyclic p-group.

Proof. The statement follows from Proposition 2.2(b) unless S̄ is of type

An, 2An, or p = 3 and S̄ is of type D4 or E6(εq) with 3|(q−ε) and ε ∈ {±1}. In

the latter cases, for J := Inndiag(S), we have p - |HJ/J | by Propositions 4.9,

4.10, 4.12, and 4.13. By assumption, H/S̄, and hence HJ/J , has no non-trivial

p′-quotient. Thus H ≤ J , and the claim follows from Proposition 2.2(c). �

5. Proofs of Theorems A and C

5.1. Proof of Theorem A. Now we proceed to prove the “only if” impli-

cation of Brauer’s Height Zero Conjecture for primes p > 2. Suppose B is a

p-block of G with defect group D, and assume all χ ∈ Irr(B) have height zero.

We want to show that D is abelian. We will assume that G is a counterexample

to BHZ, first with |G/Z(G)| smallest possible, and then with |G| smallest possi-

ble. By the Gluck–Wolf theorem [21], G is not p-solvable. Recall that if H ≤ G
and N EG, then |H : Z(H)| ≤ |G : Z(G)| and |G/N : Z(G/N)| ≤ |G : Z(G)|.

Step 1. B is a quasi-primitive block; that is, if N EG and e is a block of

N covered by B, then e is G-invariant.

This follows by Fong–Reynolds ([43, Th. 9.14]) and induction.

Step 2. If N is a proper normal subgroup of G, then D ∩ N is abelian.

In particular, Op′(G) = G, D is not contained in any proper normal subgroup

of G, and Q := Op(G) is abelian.

Suppose N is a proper normal subgroup of G and e is a p-block of N

covered by B. By [43, Th. 9.26], we have D ∩N is a defect group of e, using

that e is G-invariant (by Step 1). Let ξ ∈ Irr(e). By [43, Th. 9.4], there is

some χ ∈ Irr(B) (of height zero) lying over ξ. By [41, Lemma 2.2], we have

that ξ has height zero. Hence D ∩N is abelian by minimality of G.

Now, if Op′(G) < G, then D = D ∩ Op′(G) is abelian by the previous

claim applied to N = Op′(G), a contradiction. Finally, since Q = Op(G) < G

and Q ≤ D, the claim applied to N = Q shows that Q = Q ∩D is abelian.

Now let
C := CG(Q),

so that Q ≤ C.
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Step 3. We have that Z(G) has p′-order. In particular, we may assume

that C < G or that Q = 1. Also, if LEG is a non-trivial p-group, then D/L

is abelian.

Suppose that 1 < L is a normal p-subgroup of G. Then there is a block

B̄ of G/L contained in B with defect group D/L by [43, Th. 9.9(b)]. By the

definition of heights, all irreducible characters in B̄ have height zero. Thus

D/L is abelian, by BHZ applied to G/L.

Assume now that 1 < L is a central p-subgroup. Let δ ∈ Irr(D), and

let ν ∈ Irr(L) be under δ. Let χ ∈ Irr(B) over ν. Since χ has height zero,

it follows that ν extends to some linear ν̃ ∈ Irr(D), by [40, Th. 4.4], using

that ν is G-invariant. By Gallagher’s Corollary 6.17 of [25], we have δ = ν̃β

for some β ∈ Irr(D/L). Since D/L is abelian by the previous paragraph, we

conclude that δ(1) = 1. Hence D is abelian, contrary to the choice of G. Hence

p - |Z(G)|.
Step 4. If Z := Op′(G), then Z = Z(G) and Z is cyclic.

Let θ ∈ Irr(Z) such that the p-block {θ} of Z is covered by B. We know

that θ is G-invariant. We prove this step using the language of θ-blocks and

character triples (see [51].) We have that (G,Z, θ) is a character triple. By

Problems 8.12 and 8.13 of [43], there exists an ordinary-modular character

triple (G∗, Z∗, θ∗) isomorphic to (G,Z, θ), which we can construct as in [51,

Th. 3.4]. Hence Z∗ has order not divisible by p and is central in G∗. Since

G/Z is isomorphic to G∗/Z∗, we have that Z∗ = Op′(G
∗). If

σ : Irr(G|θ)→ Irr(G∗|θ∗)
denotes the associated standard bijection, we have σ(Irr(B)) = Irr(B∗) for

a unique p-block B∗ of G∗. In particular, Irr(B) = Irr(B|θ) is a θ-block.

Since σ(χ)(1) = χ(1)/θ(1), then σ(χ)(1)p = χ(1)p for χ ∈ Irr(B), and so all

characters in Irr(B∗) have the same height (zero).

Let D∗ be a defect group for B∗. We show next that D and D∗ are

isomorphic, hence if D∗ is abelian, then so is D. Since

|G : D|p = χ(1)p = σ(χ)(1)p = |G∗ : D∗|p

and |G|p = |G∗|p, we have that |D| = |D∗|. If Dθ/Z is a θ-defect group of B,

then, by [51, Def. 4.1], we have Dθ/Z ∼= D∗Z∗/Z∗ ∼= D∗. By [51, Th. 5.1],

we have that Dθ/Z ≤ DZ/Z, replacing D by a G-conjugate, if necessary. By

comparing orders, we have that Dθ/Z = DZ/Z is isomorphic to D. Therefore

D and D∗ are isomorphic.

Notice that |G∗ : Z(G∗)| ≤ |G∗ : Z∗| = |G : Z| ≤ |G : Z(G)|, using that

Z(G) ≤ Z (by Step 3). Therefore, if |G∗ : Z(G∗)| < |G : Z(G)|, then we are

done by applying BHZ to G∗. In the case of equality, we have Z = Z(G).

Finally, we show that Z is cyclic. Let {λ} be the block of Z covered by B,
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where λ ∈ Irr(Z). Let K = ker(λ). Hence, K is contained in ker(χ) for all

χ ∈ Irr(B). If K > 1, then we apply [43, Th. 9.9(c)] and BHZ to G/K. The

choice of G shows that K = 1 and therefore, that Z is cyclic.

From now on, let E(X) denote the layer of a finite group X.

Step 5. We have that C is not p-solvable and E(G) 6= 1.

Assume that C is p-solvable. As Op′(C) = Z is central, we have Op(C/Z)

= QZ/Z. Since C is p-solvable, we have CC/Z(QZ/Z) = QZ/Z. This implies

C = QZ. By [45, Lemma 3.4], then Irr(B) = Irr(G|λ) for some λ ∈ Irr(Z).

Let P ∈ Sylp(G), and let λ̂ = 1P ⊗ λ ∈ Irr(P × Z). Then λ̂G has p′-degree,

and therefore it contains some p′-degree irreducible constituent χ. Now, χ

lies over λ, and therefore χ ∈ Irr(B). We conclude that P is a defect group

of B. By hypothesis, p does not divide τ(1) for every τ ∈ Irr(B), whence P

(and hence D) is abelian by the main result of [46]. Since G is a minimal

counterexample, C is not p-solvable.

Next, assume that E(G) = 1. Then E(C) = 1 and

F∗(C) = F(C) = Op′(F(C))×Op(C).

Now, Op(G) = Q ≤ Op(C) ≤ Op(G), whence Op(C) = Q is central in C, and

Op′(F(C)) ≤ Op′(G) = Z is central in G. It follows that

C = CC(F∗(C)) ≤ F∗(C),

and so C is p-solvable, a contradiction to the previous conclusion.

Step 6. Let S be a component of G, and let N be the normal subgroup of

G generated by the G-conjugates of S. Let e be the block of N covered by B,

and let b be the only block of S that is covered by e. Then e is not nilpotent.

In particular, there are α, β ∈ Irr(b) with different degrees.

First notice that b is the only block covered by e, because N is a central

product of the different G-conjugates of S. In particular, every irreducible

character of S is N -invariant. Suppose that e is nilpotent. Let N1 = NZ(G),

and let e1 be the unique block of N1 covered by B and covering b. It is clear that

e1 is nilpotent, using the definition of nilpotent blocks. (See [53, Lemma 7.5].)

We have that D1 := D ∩ N1 is a defect group of e1 (see [43, Th. 9.26]). By

Theorem 2.6, there is a finite group L′ with |L′ : Z(L′)| < |G : Z(G)|, where L′

has a block B′ with defect group D and such that all the irreducible characters

of B′ have height zero. Therefore D is abelian by BHZ applied to L′. Thus e

is not nilpotent.

If all the irreducible characters in b have the same degree, then all the

irreducible characters in e, a central product of the G-conjugates of b, also

have the same degree. Then by [48, Prop. 1 and Th. 3], we have that D ∩N
is abelian with inertial index one. By Broué–Puig [9, 1.ex.3], the block e is

nilpotent, and we are again done.
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Step 7. Let S be any component of G. Suppose B′ is the E(G)-block

covered by B and b is the S-block covered by B′. Then b has non-cyclic defect

groups. In particular, no component of G has cyclic Sylow p-subgroups.

By Step 6, b has non-central defect groups (since any block with central

defect groups is nilpotent, by [9, 1.ex.1]). Suppose that b has cyclic defect

groups. Consider the central product N of the different G-conjugates of S,

so that N E G. Let D1 := D ∩ N , so that G = NG(D1)N . Let b0 be the

block of N covered by B. Let b1 be the Brauer first main correspondent of b0,

which is the block of NN (D1) that induces b0. Let B1 be the unique block

of NG(D1) that covers b1 and induces B (by the Harris–Knörr Theorem 9.28

of [43]), which is a block with defect group D. By Theorem 2.7, we conclude

that all the irreducible characters of B1 have height zero. If NG(D1) < G, by

BHZ applied to NG(D1) we will have that D is abelian, a contradiction. Hence

D1EG. In this case, D1 ≤ Q. Since [Q,N ] = 1, we conclude that D1 ≤ Z(N),

and b0 is nilpotent, in contradiction with Step 6.

Step 8. All components of G are normal in G.

Suppose that S1 is a non-normal component, and write the normal sub-

group N in Step 6 as N = S1 ∗S2 ∗ · · · ∗Sm, a central product of m > 1 compo-

nents, where G/N permutes S1, . . . , Sm transitively. In particular, S1, . . . , Sm
are isomorphic to each other, and we fix an isomorphism between S1 and any Si.

Again by Step 1, B covers a unique block e of N that is G-invariant, and

e is then the central product of blocks bi of Si, 1 ≤ i ≤ m. By Step 6, each

Irr(bi) contains characters of different degrees. Furthermore, as before, the

block e has defect group D ∩N , which is abelian by Step 2. It follows that bi
has abelian defect groups, which are non-cyclic by Step 7. By Theorem 3.1,

Irr(bi) contains at least three Aut(Si)-orbits, say of αi, βi, and γi. For each i

and given the fixed isomorphism between S1 and Si, we can view α1, β1, and

γ1 as Si-characters. Relabeling αi, βi, and γi if necessary, we may assume that

(5.1.1)

αi is not Aut(Si)-conjugate to β1 or γ1,

βi is not Aut(Si)-conjugate to α1 or γ1, and

γi is not Aut(Si)-conjugate to α1 or β1.

Since m > 1, the (transitive) permutation action of G on the set {S1, . . . , Sm}
is non-trivial, and so the kernel K of this action is a proper normal subgroup

of G containing N , and from Step 2 we have Op′(G/K) = G/K. Now applying

Theorem 2.1 to G/K we obtain a partition

{S1, . . . , Sm} = ∆1 t∆2 t∆3

such that ∩3
i=1 StabG/N (∆i) has index divisible by p in G/N . Setting

θ := θ1 ⊗ θ2 ⊗ · · · ⊗ θm,
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where θi = αi if Si ∈ ∆1, θi = βi if Si ∈ ∆2, and θi = γi if Si ∈ ∆3, we then

see that B covers the N -block of θ.

Consider any g ∈ G that fixes θ, and suppose that Sg1 = Sj . Note that

θ|Sj is a multiple of θj , and θg|Sj is a multiple of αg1. Again using the fixed

isomorphism S1
∼= Sj and writing every xg with x ∈ S1 as xσ for a suitable σ ∈

Aut(Sj), we can write αg1 as ασ1 , and so θj = ασ1 and thus α1 and θj are Aut(Sj)-

conjugate. Since neither βj nor γj are Aut(Sj)-conjugate to α1 by (5.1.1), θj
must be αj , which means Sj ∈ ∆1 by the choice of the θi’s. This argument,

applied to any Si, shows that g stabilises the partition ∆1 t∆2 t∆3. Thus

Gθ/N ≤
3⋂
i=1

StabG/N (∆i),

and so p divides |G : Gθ|. But this contradicts Proposition 2.5.

Step 9. If S is a (normal by Step 8) component of G, then Z(S) is of

p′-order. Also, if D is any defect group of B and R := D∩S, then G = SCG(R),

and [D,R] = 1. Furthermore, every α ∈ Irr(b) (where b is the S-block covered

by B) is G-invariant, and extends to DS. Moreover, G/SCG(S) is a p-group.

First we prove that there is a defect group D of B satisfying that

[D,D ∩ S] = 1

and G = SCG(S ∩ D). Let b be the block of S covered by B. Notice that

CG(S) ≤ K := G[b]EG, the Dade group, by the definition of G[b]. (See [42],

for instance.) Also, notice that R = D ∩ S is a defect group of b, and that

G = SNG(R), by the Frattini argument. Let bR be a block of CS(R) with de-

fect group R inducing b, and let T =NG(R)bR . By Lemma 2.3, there is a defect

group D∗ of B such that D∗ ∩ S=R and D∗≤T . For the sake of notation, we

assume that D∗ = D. Let H :=G/CG(S) and S̄=SCG(S)/CG(S). By Propo-

sition 2.2, we have that G/SCG(S) has a normal p-complement U/SCG(S).

Since |G : U | is a power of p, and B covers a unique block of U , we have

G = UD, by [43, Th. 9.17]. Now, every τ ∈ Irr(b) has the property that

|G : Gτ | is coprime to p, by Proposition 2.5. Let x ∈ D. Let W = U〈x〉. Since

|G : Gτ | is p′, then G = UGτ , so |W : Wτ | is also p′ for every τ ∈ Irr(b). So

the hypotheses of Theorem 4.1(a) are satisfied with the group W/CG(S) and

every p-element x ∈ D. Moreover, by the choice of G, BHZ holds for all finite

groups X with |X/Z(X)| < |G/Z(G)|, in particular for all groups of order less

than |S/Z(S)|. We conclude by Theorem 4.1(a) that [x,R] = 1 for x ∈ D.

Hence D ≤ SCG(R)EG. If SCG(R) < G, we are done by Step 2.

Now, let D1 := D∩K. By [42, Th. 3.5(ii)], we have D1 = RCD(R) = RD,

and we conclude that D = D1. Hence K = G by Step 2. (Recall that K is

normal in G.) Therefore every α ∈ Irr(b) is G-invariant (by [29, Lemma

3.2(a)], for instance). By Corollary 4.14, we have that H/S̄ is a p-group. Thus

G/SCG(S) is a p-group.
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Let θ ∈ Irr(b). Then θ lies under some χ ∈ Irr(B), which by hypothesis

has height zero. By [40, Th. 4.4], we have that θ extends to SDg for some

g ∈ G. Therefore θ = θg
−1

extends to SD, as claimed.

Now, we prove that if g ∈ G, then [Dg, Dg∩S] = 1 and G = SCG(Dg∩S).

Indeed, since S is normal in G, we have that [Dg, Dg ∩ S] = [D,D ∩ S]g = 1.

The second part follows because Dg ∩ S is a defect group of b, and therefore

Dg ∩ S = Rs for some s ∈ S. Thus G = SCG(R) = SCG(Rs).

Suppose 1 < Zp is a Sylow p-subgroup of Z(S). By Step 3, D/Zp is abelian.

Since Zp ≤ Op(S) ≤ D ∩ S, we have that SD/S is abelian. In this case, the

block b̃ of SD that covers b has defect group D (by [43, Probl. 9.4], using that

b is G-invariant) and, as we saw, all irreducible characters of b extend to SD.

Using that and the fact that SD/S is abelian, it follows that all irreducible

characters in b̃ restrict irreducibly to S. In this case, we easily check that all

the irreducible characters in b̃ have height zero. If SD < G, then we are done

by minimality of G. So we may assume that SD = G. Since [D,R] = 1, we

have that Zp ≤ Z(G). By Step 3, this is not possible. We conclude that Zp = 1

and thus p - |Z(S)|.

Final Step. From Step 9, we conclude that

(5.1.2) G/K is a p-group,

where

K :=
⋂

S component of G

SCG(S) = E(G)CG(E(G)) = ECG(E), E := E(G)Z.

We also have F = EQ for

F := F∗(G) = F(G)E(G) = (Q× Z) ∗E(G).

If F = G, then G is a central product of an abelian group with quasi-simple

groups. However, in this case BHZ holds for G by the quasi-simple case [28],

using Corollary 2.9. Hence we may assume F < G.

Next we show that

(5.1.3) K/F is a p′-group.

Indeed, let T := CG(E), which contains Q. Let c1 be the block of T covered

by B, using Step 1. By minimality of G, c1 has an abelian defect group D1.

Note that

(5.1.4) CT (Q) = CG(F ) ≤ F ∩ T = QZ.

Hence, by [45, Lemma 3.4] we have that c1 = Irr(T |λ) for the character λ ∈
Irr(Z) that lies under B. By inducing 1P1 × λ ∈ Irr(P1Z) to T , where P1 ∈
Sylp(T ) contains Q, we see that there is some p′-degree irreducible character

ν of T over λ. As ν lies in c1, c1 has maximal defect, and hence D1 ∈ Sylp(T ).
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Hence the abelian p-group D1 centralises Q, and so D1 ∈ CT (Q) = QZ, i.e.,

D1 = Q, proving (5.1.3).

By Step 1, there is a unique block e of E and a unique block f of F covered

by B; in particular, e is covered by f . Let D be any defect group of B. Then

D ∩ F is abelian by Step 2 (since F < G). Let

R := D ∩ E,

so that R is a defect group of the E-block e. Write

E = Z ∗ S1 ∗ · · · ∗ Sn,

where Si, 1 ≤ i ≤ n, are the components of G, which all are normal in G by

Step 8. Since Di := D ∩ Si is a defect group of the unique Si-block bi covered

by e, by Corollary 2.9 we have R = D1 × · · · × Dn (being a direct product

since Z(E) = Z is a p′-group). By Step 9, we have that [D,R] = 1. Also, since

[Q,E] = 1 and the Z(Si) are p′-groups by Step 9, we have

(5.1.5) Q ∩ E = 1 and F = Q× E.

Let c2 be the unique block of C = CG(Q) covered by B, using Step 1. By

[43, Cor. 9.21], we have that B is the unique block of G that covers c2. By

(5.1.4), C ∩K = CK(Q) = F . Since K/F is a normal Hall p-complement of

G/F by (5.1.2) and (5.1.3), we have that C/F is a p-group. Therefore C/E is

a p-group by (5.1.5). By [43, Cor. 9.6], c2 is the only block of C covering e.

Now, fix some ρ ∈ Irr(e), and consider any χ ∈ Irr(G|ρ). We claim that χ

lies in B. If γ ∈ Irr(C) lies under χ and over ρ, then we see that γ lies in c2.

In particular, χ lies in a block that covers c2, and therefore χ lies in B, as

claimed. Recall that G/K is a p-group by (5.1.2), and by Step 1, any block

c3 of K covered by B is G-invariant. By [43, Cor. 9.6], B is the unique block

of G that covers c3. By [43, Cor. 9.18], and using the height zero hypothesis,

for every τ ∈ Irr(c3) that lies under χ, we have p - χ(1)/τ(1). But K/F is a

p′-group by (5.1.3) and F = E ×Q by (5.1.5) with Q abelian. It follows that

p - χ(1)/ρ(1). Hence G/E has abelian Sylow p-subgroups by [46, Th. A], and

so

(5.1.6) D/(D ∩ E) is abelian.

Now, if Q > 1, then D/Q is abelian by Step 3, and since D/(D ∩ E)

is abelian by (5.1.6), we obtain [D,D] ≤ Q ∩ E = 1 using (5.1.5), i.e., D is

abelian, and we arrive at a contradiction. Thus we have shown

(5.1.7) Q = 1.

For each i, recall that bi is the unique Si-block covered by e. Then any

θi ∈ Irr(bi) is G-invariant and extends to

Hi := SiD
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by Step 9. We also have that Hi/Si is a p-group, and [D,D] ≤ D ∩ E by

(5.1.6). If d ∈ D ∩ E, we can write d = xs ∈ E = SiCE(Si) with s ∈ Si
and x ∈ CE(Si). Thus x = ds−1 ∈ Hi centralises Si, i.e., x ∈ CHi(Si) and

d ∈ SiCHi(Si). It follows that [D,D] ≤ D ∩ E ≤ SiCHi(Si), and so

(5.1.8) Hi/SiCHi(Si) is an abelian p-group.

We also note that CHi(Si) has a normal p-complement — indeed,

CHi(Si) ∩ Si = Z(Si)

is a p′-group (by Step 9), and CHi(Si)/Z(Si) ↪→ Hi/Si is a p-group. So

CHi(Si) = Z(Si) o Qi for a Sylow p-subgroup Qi of CHi(Si). But then

Qi ≤ CHi(Si) centralises Z(Si), so in fact

CHi(Si) = Z(Si)×Qi
and Qi = Op(CHi(Si)) CHi. Note that Op(Hi) ∩ Si ≤ Op(Si) = 1, implying

Op(Hi) = Qi. Recall that the unique block b̃i of Hi that covers bi has defect

group D, by [40, Lemma 2.2]; in particular, Qi CD.

Now Si naturally embeds in

Li := Hi/Qi

as a normal subgroup. Our goal now is to apply Theorem 4.1(c) to Li with

respect to the quasi-simple group

S̄i := SiQi/Qi ∼= Si

and the block b̄i of S̄i that is naturally isomorphic to bi. If yQi ∈ Li centralises

SiQi/Qi (modulo Qi), then [y, Si] ≤ Qi. As Si EHi, we must have

[y, Si] ⊆ Si ∩Qi = 1,

so y ∈ CHi(Si) = Z(Si)×Qi. Thus CLi(S̄i) = Z(S̄i), and

(5.1.9) Li/S̄i ∼= Hi/SiQi = Hi/SiCHi(Si) is an abelian p-group

by (5.1.8).

Next we show that each θi ∈ Irr(b̄i) extends to Li. By Step 9, θi,

considered as a character of Si, has an extension θ̂i to Hi. Restricting to

SiQi = Si ×Qi, we have

θ̂i|Si×Qi = θi ⊗ λ
for a unique linear character λ ∈ Irr(Qi). In particular, λ is Hi-invariant. Re-

call that Di = D ∩ Si, and we have Di ∩ Qi ≤ Si ∩ Qi = 1, so we can view λ

as a character of DiQi that is trivial at Di, and D-invariant. Since the charac-

ters in Irr(bi) are Hi-invariant, they are also Hi-invariant when considered as

characters of b̄i. By Corollary 4.14 applied to Li with respect to the block b̄i,

we have that

Hi/SiCHi(Si) = SiD/(Si ×Qi) ∼= D/(Di ×Qi)
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is cyclic. Hence λ extends to a (linear) character ν of D/Di
∼= Hi/Si. Now,

viewing ν as a linear character of Hi/Si, we have that θ̂iν̄ restricts to θi on Si
and trivial on Qi, and thus θi extends to Li, as wanted.

Since bi and b̄i are isomorphic, in particular, DiQi/Qi is a defect group

of b̄i. Since D is a defect group of b̃i, by Lemma 2.10, we have that D/Qi is

a defect group of the block b̄i of Li = Hi/Qi. As θi extends to Li for every

θi ∈ Irr(b̄i), and Li/S̄i is an abelian p-group by (5.1.9), we see that every

character in b̄i has height 0. Applying Theorem 4.1(c) to the block b̄i of S̄i
(which again holds in the case p = 3 and Si is of type E6 or 2E6, by minimality

of G), we see that D/Qi is abelian, and thus

[D,D] ≤ Qi ≤ CG(Si).

This is true for all components Si, so [D,D] centralises E = E(G)Z. Since

Q = 1 by (5.1.7), we have E = F . It follows that

[D,D] ≤ CG(E) = CG(F ) ≤ F,

and hence [D,D] ≤ Z(F ), and the latter group is a p′-group, again because

Op(G) = Q = 1 by (5.1.7). Consequently, [D,D] = 1, contrary to the choice

of G as a minimal counterexample. �

5.2. Proof of Theorem C. Having proved Theorem A, and hence BHZ for

the prime p, we now see that the extra assumption for types E6(εq) in Theo-

rem 4.1(a) is always satisfied. Hence Theorem C follows from Theorem 4.1(a) if

the defect group D is not cyclic. So suppose now that we have a quasi-simple

group S with Z(S) cyclic and p′-prime, that σ is a p-power order automor-

phism of S fixing all the irreducible characters of a block b of S with cyclic

defect group D, and that σ stabilises a block bD of CG(D) that induces b.

We want to show that σ fixes the elements of D. Let N = NG(D). Then

bN = (bD)N is the Brauer First Main correspondent of b. By [30], we know

that b satisfies the Alperin–McKay inductive condition. In particular, there

is a bijection Irr(b) → Irr(bN ) that commutes with the action of σ. Hence,

all irreducible characters in bN are σ-invariant too. By [43, Th. 9.12], there

is a unique irreducible character θ ∈ Irr(bD) with D ⊆ ker θ. In particular,

θ is σ-invariant. Also, the stabiliser T of bD in N is the stabiliser of θ in N .

Also T/CG(D) is a p′-group by [43, Th. 9.22]. If bT is the Fong–Reynolds

block of T covering bD corresponding to bN , then all irreducible characters in

bT are σ-invariant, by the uniqueness in the Fong–Reynolds correspondence.

Notice that bT is the only block of T that covers bD, by [43, Cor. 9.21]. Fi-

nally, let λ ∈ Irr(D) be with o(λ) = |D|, and consider the irreducible character

θλ ∈ Irr(bD), constructed in [43, Th. 9.12]. Let η ∈ Irr(T |θλ), which necessarily

belongs to bT and is therefore σ-invariant. Since T/CG(D) is a p′-group and

o(σ) is a power of p, we have that some T -conjugate of θλ is σ-invariant, by a
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counting argument. Since θ is T -invariant, then (θλ)t = θλt for t ∈ T . Hence,

we deduce that µ = λt is σ-invariant for some t ∈ T . Since o(µ) = |D|, we have

that µ is faithful. Therefore, µ(dσ) = µ(d) for all d ∈ D implies that dσ = d

for all d ∈ D. �

We conclude the paper with two remarks. First, the assumption p > 2 is

crucial for our approach: the conclusions of Proposition 2.2 and Corollary 4.14,

which play a key role at various steps of the proof of Theorem A, do not hold

when p = 2.

Secondly, we would like to point out that Brauer’s Height Zero Conjecture

implies its so-called projective version, as shown in [54], as well as the version

for θ-blocks in [51].
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[3] C. Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra 33

no. 7 (2005), 2315–2337. MR 2153225. Zbl 1096.20037. https://doi.org/10.1081/

AGB-200063602.
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[9] M. Broué and L. Puig, A Frobenius theorem for blocks, Invent. Math. 56

no. 2 (1980), 117–128. MR 0558864. Zbl 0425.20008. https://doi.org/10.1007/

BF01392547.

http://www.ams.org/mathscinet-getitem?mr=2241597
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1103.20016
https://doi.org/10.1007/s00013-005-1547-z
http://www.ams.org/mathscinet-getitem?mr=1676855
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0930.20008
https://doi.org/10.1006/jabr.1998.7661
http://www.ams.org/mathscinet-getitem?mr=2153225
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1096.20037
https://doi.org/10.1081/AGB-200063602
https://doi.org/10.1081/AGB-200063602
http://www.ams.org/mathscinet-getitem?mr=2274998
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1157.20022
http://numdam.org/item/AST_2006__306__R1_0/
http://numdam.org/item/AST_2006__306__R1_0/
http://www.ams.org/mathscinet-getitem?mr=3612005
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1471.20028
https://doi.org/10.4007/annals.2017.185.2.5
http://www.ams.org/mathscinet-getitem?mr=2010739
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1054.20024
https://doi.org/10.1007/s10240-003-0013-3
http://www.ams.org/mathscinet-getitem?mr=0083490
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0073.01403
http://www.ams.org/mathscinet-getitem?mr=1235832
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0843.20012
http://www.numdam.org/item/AST_1993__212__7_0/
http://www.ams.org/mathscinet-getitem?mr=0558864
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0425.20008
https://doi.org/10.1007/BF01392547
https://doi.org/10.1007/BF01392547


BRAUER’S HEIGHT ZERO CONJECTURE 605

[10] M. Cabanes and M. Enguehard, On unipotent blocks and their ordinary char-

acters, Invent. Math. 117 no. 1 (1994), 149–164. MR 1269428. Zbl 0817.20046.

https://doi.org/10.1007/BF01232237.

[11] M. Cabanes and M. Enguehard, On blocks of finite reductive groups and

twisted induction, Adv. Math. 145 no. 2 (1999), 189–229. MR 1704575. Zbl 0954.

20023. https://doi.org/10.1006/aima.1998.1814.

[12] M. Cabanes and M. Enguehard, Representation Theory of Finite Reduc-

tive Groups, New Math. Monogr. 1, Cambridge Univ. Press, Cambridge, 2004.

MR 2057756. Zbl 1069.20032. https://doi.org/10.1017/CBO9780511542763.
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