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Brauer’s Height Zero Conjecture

By GUNTER MALLE, GABRIEL NAVARRO, A. A. SCHAEFFER FRY,
and PuAM Huu TIEP

Abstract

We complete the proof of Brauer’s Height Zero Conjecture from 1955
by establishing the open implication for all odd primes.
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1. Introduction

Brauer’s Height Zero Conjecture (BHZ), formulated in 1955 [7], has been
one of the most fundamental and challenging problems in the representation
theory of finite groups. Deeply influencing the research in the field, it is also
a source of many developments in the theory. If p is a prime and B is a
Brauer p-block with defect group D of a finite group G, R. Brauer proved that
|G : D|, is the largest power of p dividing the degrees of all the irreducible
complex characters in B. (In this paper, n, denotes the largest power of p
dividing the integer n.) Hence, if x € Irr(B), the set of irreducible complex
characters in B, then x(1), = |G : D|,p/x for some non-negative integer h,
called the height of x. The conjecture asserts that x(1), = |G : D|, for all
X € Irr(B) if and only if D is abelian. That is, h, = 0 for all x € Irr(B) if and
only if D is abelian.

The “if” implication of the Height Zero Conjecture was proven in [26],
using the classification of finite simple groups, after decades of contributions
by many authors. The “only if” implication was proven for p-solvable groups
n [21]; for p = 2 and blocks of maximal defect (that is, when D is a Sylow 2-
subgroup of G) in [45]; and recently for principal blocks, for every prime, in [36].
Furthermore, building upon work in [46], it was shown in [44] that Brauer’s
Height Zero Conjecture is implied by the inductive Alperin-McKay condition
on simple groups (a strong form of another main conjecture in our field). This
has enabled L. Ruhstorfer to recently prove the Height Zero Conjecture for
p =2 in [52]. However, the verification of the inductive Alperin—-McKay con-
dition on simple groups for odd primes remains an enormous challenge.

In this paper we take a different approach and prove the open direction
of Brauer’s Height Zero Conjecture in the case that p is odd.

THEOREM A. Let G be a finite group, let p be an odd prime, and let B
be a p-block of G with defect group D. If x(1), = |G : D|, for all x € Irr(B),
then D is abelian.

As discussed above, this implies
COROLLARY. Brauer’s Height Zero Conjecture holds.

A key novelty of our approach is a combined use of new results on blocks
of quasi-simple groups as well as on permutation groups, which allows us to
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tightly control the structure of a minimal counterexample to BHZ and over-
come certain difficulties in proving extendibility of characters from normal
subgroups that were encountered in previous approaches.

There are, at least, two major obstacles for our approach. The first is to
prove that irreducible characters in p-blocks of quasi-simple groups lie in suf-
ficiently many distinct orbits under the action by their automorphism groups.
We think that the following result has independent interest and that it will be
useful in the resolution of other problems.

THEOREM B. Suppose that p is an odd prime, S is a quasi-simple group,
and b is a p-block of S with non-cyclic defect groups. Then at least one of the
following statements holds:

(1) Irr(b) contains characters from at least three different Aut(S)-orbits; or
(2) all characters in Irr(b) have the same degree.

In the presence of blocks with cyclic defect groups, or when all the ir-
reducible characters in b have the same degree (and therefore b is nilpotent
in the sense of Broué-Puig), we will instead use deep results by Koshitani—
Spath, Broué-Puig and Kiilshammer-Puig ([30], [9], [32]) in order to prove
Theorem A.

The second obstacle to our approach is inherent to Brauer’s Height Zero
Conjecture and independent of any road that is followed to prove it. Suppose
that G is a finite group and o is an automorphism of order a power of p of
G that stabilises a p-block B of G, a defect group D of B, and a p-block bp
of Cg(D) that induces B. If D is abelian, Brauer’s Height Zero conjecture
(and the inductive Alperin-McKay condition) implies that all the irreducible
characters of B are fixed by o if and only if ¢ acts trivially on D. In fact, we
will need a more sophisticated version of the following result for quasi-simple
groups (see Theorem 4.1).

THEOREM C. Suppose that p is an odd prime and that S is a quasi-simple
group such that Z(S) is a cyclic p’-group. Let b be a p-block of S with abelian
defect group D. Suppose that o is an automorphism of S of p-power order that
fizes all the irreducible characters of b, normalises D, and stabilises a block bp
of Cs(D) that induces b. Then o acts trivially on D.

In Section 2, we prove the needed result on permutation groups and other
technical results that we will use in the proof of Theorem A. In Section 3,
we prove Theorem B. Section 4 is devoted to the proof of a refined version of
Theorem C and its needed generalisations. Finally, in Section 5, Theorem A
is proved. As was the case in the proof of the other direction of BHZ, as well
as the cases of maximal defect for p = 2 and for principal blocks, our proof
(including the result on permutations groups that we have mentioned as well
as Theorems B and C) relies on the Classification of Finite Simple Groups.
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2. Preliminary results

In this section, we first prove a consequence of [20] that we will use in the
proof of Theorem A.

THEOREM 2.1. Let p > 2 be a prime, n > 1, and let G < Sym(Q2) = &,
be a subgroup such that G = Op/(G) % 1. Then there is a partition

Q=A1UAU A3,

with |A1l,|Az| > 0 and |As| > 0 such that the index of N?_; Stabg(4;) in G is
divisible by p. Moreover, one can choose this partition to have As = &, unless
G has a simple quotient S such that one of the following holds:

(1) S =™_gps—1 withl1 <a<p-—1,s>1 and (a,s) # (1,1); or

(2) p=3 and S = Cj5 or SL3(2).

Proof. (i) First we consider the case that G is primitive on . In this
case, applying [20, Th. 2] we obtain a partition Q = A; U Ag with p | [G :
N2, Stabg(A;)], unless G has a simple quotient S and (S,p) are as in (1), in
fact with S = 2, acting on n = ap® — 1 points, or we are in (2), in fact with
G = ASL3(2) or ATL;(8), acting on the eight vectors of F3 = (e1, 2, €3)F, .

In the former case, choosing

Ay ={1}, As={2,3,...,p}, As={p+1,p+2,...,n},

we have

3
G : ﬂ Stabg(A;)] = p(n)
=1 p

In the latter case, choosing
Al = {0}, Ag = {61,62}, Ag = Fg AN {O, 61,62},

we see that Stabg(4A;) has order dividing 8 and so its index in G is divisible
by p = 3.

(ii) Now assume that G is transitive but imprimitive on Q. Let = U™, €;
be a G-invariant partition of €2, with 1 < |Q;| = n/m < n, and m chosen to
be smallest possible subject to these conditions. Let B := N, Stabg(€2;) be
the base subgroup. Then G/B permutes the m > 1 blocks €; transitively,
so 1 # G/B. Since G = O (G), we again have G/B = OP (G/B). Now
G/ B satisfies the assumptions on G, and G/ B acts transitively, faithfully, and
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primitively (by minimality of m) on {Q4,...,Qy,}. A desired partition for
GG /B on this set gives rise to a desired partition on €.

(iii) Finally, we consider the case where G acts intransitively on =
{1,...,n}. Suppose that 4,...,Q,, are all G-orbits on 2, and let K; denote
the kernel of G acting on §2;. Since G # 1, G must act non-trivially on at least
one Q;. So we may assume that 1 # G/K;. But G = O (G), so p divides
|G/K1], and in fact G/K; = O (G/K,). Now G/K] satisfies the assumptions
on GG, and G/K; acts transitively (and faithfully) on Q. If Q1 = AU As is a
desired partition for G/Kj, then

Q:A1U(A2U(Q\Ql))
is a desired partition for G. If Q1 = Ay U Ay LI Ag is a desired partition for
G/K; with Az # &, then
Q=A1UA U (A3U (2N Q)
is a desired partition for G. O

For the first part of Theorem 2.1, see also [16, Lemma 3.2].

Next we study the structure of some almost simple groups. In the case
where S is a simple group of Lie type, we will use the notation Inndiag(S) as
described in [22, Th. 2.5.12]; for other simple groups S , we use the convention

that Inndiag(S) = S.

PROPOSITION 2.2. Let p be an odd prime, and let S be a quasi-simple
group. Let S:=S/Z(S), S<H<Aut(S), and assume that O (H/S)=H/S.
(a) Then H/S has a normal p-complement.

(b) Suppose that p > 5 and that S is not of Lie type A, ?A,. Then H/S is
a cyclic p-group. The same is true if p = 3 but S is not of Lie type A,,
2An, Dy or Eg(eq) with 3|(q —¢€), € € {£1}.

(c) In general, if H < Inndiag(S), then H/S is a cyclic p-group.

Proof. (i) Note that H/S is embedded in Out(S). If S is an alternating
or sporadic simple group, then Out(S) is a 2-group and hence the statements
are obvious. Suppose that S is a simple group of Lie type. In this case, the
structure of Out(S) is described in [22, Th. 2.5.12], and we will now verify (a)
and (b).

Assume in addition that S is not of type Dy when p = 3. Then the
assumption OF (H/S) = H/S implies that H := H/S is contained in O x A,
where O = Outdiag(S) is abelian and A is a cyclic p-group. In particular,
(a) holds in this case. Given the assumptions in (b), we have that either O
is a cyclic p’-group of order at most 4, or S is of type Da,, and O is a Klein
4-group. In the former case, Aut(O N H) is of order at most 2. Hence H
centralises ONH, ONH < Z(H), and H/(ON H) — A is cyclic. Thus H is

abelian, with cyclic Sylow p-subgroup, and the statement follows. In the latter
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case, A centralises O (see [22, Th. 2.5.12(h)]), so again H is abelian, and we
are again done.

Now we complete the proof of (a) in the case where S is of type D4 over
F,s, where r is any prime, and p = 3. In this case, Out(S) = O x (Cf x G3),
so H is contained in O x (C, x C3), where e is the 3-part of f. Since O = 1 or

O = (5 x (5, the claim follows.
(i) For (c), just note that Inndiag(S)/S is either cyclic or of p’-order. [J

Next we prove some results on blocks that will be useful later on. Our
notation for block theory mostly follows [43].

LEMMA 2.3. Suppose that N<G and let b be a G-invariant block of N with
defect group D. Let bp be a block of DCy(D) inducing b with defect group D.
Let T be the stabiliser of bp in Ng(D). If B is a block of G covering b, then
there is a defect group Do of B such that Do NN = D and Dy < T. Also,
Ng(D) = Nny(D)T. Furthermore, T = (T'N N)Dq if G/N is a p-group.

Proof. Since b is G-invariant, we have G = NN¢g(D) by the Frattini argu-
ment. Now by = ng(D)
N¢(D)-invariant, it follows that by is Ng(D)-invariant by the uniqueness in the
Brauer correspondence. By the Harris-Knorr correspondence [43, Th. 9.28],
let By be the unique block of Ng(D) that induces B and covers by. Let Dy be
a defect group of By, which by [43, Th. 9.28] is a defect group of B. By Knorr’s
theorem [43, Th. 9.26], we have that Dy "Ny (D) is a defect group of by, and
therefore Dy NN = Dy N Ny (D) = D. Since by is Ng(D)-invariant and by
covers an Ny (D)-orbit of blocks of DCy (D), we have Ng(D) = Ny (D)T by
the Frattini argument, where we recall that T" is the stabiliser of bp in Ng(D).
By the Fong—Reynolds Theorem 9.14 of [43], there exists an N¢g(D)-conjugate
of Dg contained in T'.

Suppose then that Dj < T, where x € Ng(D), and Df is a defect group
of br, the block of T' that is the Fong—Reynolds correspondent of By over bp.
Then Dj is a defect group of B. Also DfNN = (DyNN)* = D* = D, and this
proves the first part. For the final part, notice that T//(T N N) is a p-group.
TNN i the Fong-Reynolds correspondent of by over bp. By
uniqueness, it follows that (bp)?™V is T-invariant (using that by and bp are
T-invariant). Also, notice that (bp)T™ is the only block of TN N covering bp,
using [43, Cor. 9.21]. We conclude that by covers (bp)T™V, a block with defect
group D. Since (bp)T™V is T-invariant and br is the only block of T' covering
it ([43, Cor. 9.6]), we have "= (T'N N)D§, by [43, Th. 9.17], for instance. O

is the Brauer First Main correspondent of b. Since b is

Furthermore, (bp)

ProprosITION 2.4. Let N I G, and let B be a p-block of G with abelian
defect groups. Suppose that G/N is a p-group and that B covers a G-invariant
block b of N with defect group D. Suppose bp is a block of Cn (D) with defect
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group D that induces b. If © € Ng(D) is a p-element that fizes bp, then
[x,D] = 1.

Proof. Since B has abelian defect groups, notice that D is abelian by
Knorr’s theorem [43, Th. 9.26]. Let T be the stabiliser of bp in Ng(D). By
Lemma 2.3, there is a defect group Dy of B such that DgNN = D, Dy < T, and
T = (T'NN)Dy. Since by hypothesis Dy is abelian, we have T' = (TNN)Cr(D).
Then (TN N)/Cn(D) is a p’-group by [43, Th. 9.22]. Therefore T/Cp(D) is
a p’-group, and the result follows. O

Recall that a block B of a finite group G is called quasi-primitive if when-
ever N < G, then B covers a unique block of N.

PROPOSITION 2.5. Suppose that B is a quasi-primitive p-block of a finite
group G such that all the irreducible characters of B have height zero. Let

N <G, and let b be a block of N covered by B. If 6 € Irr(b), then |G : Gy is
not divisible by p.

Proof. We use Dade’s group K = G[b]. (See, for instance, [42] for an
introduction to this object.) Then all the irreducible characters of b are K-
invariant (see, for instance, [29, Lemma 3.2(a)]). In particular, # is K-invariant.
Also, K<Gy = G, where Gy is the stabiliser of b in G. Also if B’ is the (unique)
block of K covered by B, then B'® = B and B is the only block of G covering
B'. (See [42, Th. 3.5].) Since B covers b, let x € Irr(B) be over 6. Let
n € Irr(K) be under x and over . Since y is over 7, it follows that the block
of 1 is necessarily B’. By hypothesis, B’ is G-invariant. By [43, Cor. 9.18], we
have that |G : G| is prime to p. Since ny = v for some v > 1, it follows that
Gy < Gy and therefore |G : Gy| is also not divisible by p. O

In order to prove Theorem A, we will need the block theory above a
nilpotent block, and above a block with cyclic defect group.

THEOREM 2.6. Let G be a finite group, and let N I G. Let b be a G-
tnvariant nilpotent block of N with defect group Q). Then there exist a p-
subgroup P of G such that Q = PNN, a finite group L with a Sylow p-subgroup
P, a central p'-extension L' of L by Z < Z(L') and p € Irr(Z), such that
(a) PN/N € Syl,(G/N).

(b) We have Q<L and G/N = L/Q. If |Z(G)| is not divisible by p, Z(G) < N
and QZ(G) < N, then |L' : Z(L)| < |G : Z(G)|.

(c) There is a bijection B +— B’ between the blocks of G that cover b and the
blocks of L' that cover the block of u preserving defect groups. Also, there
is a height preserving bijection Irr(B) — Irr(B’).

Proof. These are consequences of the theory of blocks above nilpotent
blocks developed in [32]. This is also described in Section 8.12 of [33]. (See
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also Section 7.2 of [53]). The existence of P, the fact that PN N = @ and that
PN/N is a Sylow p-subgroup of G/N follow from 8.12.5 and 8.12.6 of [33].
The existence of L and the fact that P € Syl,(L), that Q@ < L and that L/Q =
G/N are part of the statement in 8.12.5. Theorem 8.12.5 also provides a
bijection between the blocks of G covering b and the blocks of a certain twisted
group algebra O, L of L, and corresponding blocks are Morita equivalent (see
Remark 8.12.8). In Remark 8.12.8, the existence of L' and the relationship
with O, L is given.

Corollary 9.2.5 of [33] says that a perfect isometry preserves heights, and
any of Corollary 9.3.3 or 9.3.4 imply that a Morita equivalence induces a perfect
isometry. Then 9.7.1 of [33] implies that any Morita equivalence given by a
bimodule with source of rank prime to p induces isomorphisms between defect
groups. This is restated as part of 9.11.2 of [33].

This covers all but the last inequality in (b). So, assume |Z(G)| is not
divisible by p, Z(G) < N and QZ(G) < N. Then

L' Z(L)| < |L| = |G/N||Q| = |G/N[|QZ(G) : Z(G)| < |G- Z(G)|. O

THEOREM 2.7. Suppose N <G are finite groups and B is a p-block of
G with defect group D covering a G-invariant block by of N, where p is odd.
Suppose that N is the central product of the G-conjugates of a component S
of G. Suppose that the block by covers the block b of S and that Do = DN S
is cyclic and non-central in S. Let D1 = D N N, and let by be the block of
Nny(Dy) that induces by. Let By be the block of Ng(D1) with defect group D
that covers by and induces B. If all characters in Irr(B) have height zero, then
all characters in Irr(By) have height zero.

Proof. By [30, Ths. 1.1 and 7.6], the block b of S satisfies the induc-
tive Alperin-McKay condition. (In fact, the “intermediate subgroup” in [30,
Def. 7.2], is the normaliser of the corresponding defect group.) We apply The-
orem 6.1 and Proposition 6.2 of [44], noticing that we do not need to assume
that the simple group S/Z(S) satisfies the inductive Alperin-McKay condi-
tion, because we know that blocks of S involved in our statement have cyclic
defect groups (and therefore satisfy the inductive Alperin—-McKay condition).
Notice that D; is a p-radical subgroup of IV since it is the defect group of b;.
If f is any block of N with defect group D;, using that IV is the central
product of G-conjugates of S, then f covers a unique block of S with defect
group D1 NS = Dy, which is cyclic. Hence, by [44, Prop. 6.2], there is an
N¢(Dq)-equivariant bijection

Q: II‘I‘(N|D1) — II‘I‘(NN(Dl)‘Dl)

such that
(Go, N,0) ~y (Ng(D1)er, Ny (Dy),0")
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for every 6 € Irr(bg), where 6 = Q(6). (Here Irr(N|D;) is the set of char-
acters of N belonging to blocks with defect group D;. The definition of
block isomorphism of character triples denoted above with ~j is given in [44,
Def. 3.6].) Now, we apply [44, Cor. 3.10] to construct a height preserving bi-
jection Irr(B|6) — Irr(B1|#’). Since Q(Irr(by)) = Irr(by) by [44, Th. 6.1(b)],
we easily conclude that all irreducible characters in By have height zero. [J

The following gives a shorter proof of a generalisation of the main result
of [31].

THEOREM 2.8. Suppose that N, M G with G = NM. Let B be a block
of G that covers a unique block bynnr of NN M. Then there is a defect group
D of B such that D = (DN N)(DnNM).

Proof. We argue by induction on |G : N|+ |G : M|+ |G|. We may assume
that N, M < G. Let by be a block of N covered by B and bj; a block of M
covered by B, both covering bynar. Let T' = Gy, be the stabiliser of by, and
by the Fong—Reynolds theorem, let by be the block of T' that induces B and
covers by. If T' < G, then by induction there is a defect group D of by (and
therefore of B) such that

D=(DNN)DNTNM)<(DNN)DnM).

We thus may assume that by and by; are G-invariant.

Now, let us fix a defect group D of B. Let X = M N ND, so that
X/(N N M) is a p-group. Thus bynas is covered by a unique block by of X.
Also the unique block byp that covers by has defect group D by Problem 9.4
of [43]. If ND < G, by induction there is n € ND such that

D'"=(D"NN)D"NnX)=(DNN)"(DNnX)",
using that X < ND. Hence
D=(DNN)(DnNX)<(DNN)DnNM).

So we may assume G = ND = M D; in particular, G/N and G /M are p-groups.

Suppose that N <Y <G, where Y < G, and let by be the unique block
of Y covering by. Let Z = M NY, and let bz be the unique block of Z covering
bnny- Thus by is G-invariant, and covered by B. By induction, there is a
defect group D; of B such that D; = (D1 NY)(D; N M). Now, since by is
G-invariant, we have that D1 NY is a defect group of by. Again by induction,
there is y € Y such that

DinNY = (DINN)DJ{nZ).

Hence, D1 NY = (D1 NN)(D1NZ). Thus Dy = (D1 N N)(Dy N M), and we
are done.
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So we may assume |G : N| = p = |G : M|. Also, G = (NN M)D,
using Fong’s Theorem 9.17 of [43]. Since G = (N N M)D, we have that
N = (NNM)(NND) and M = (NNM)(MND). In particular, NND # MAD.
Since D/(DNNNM) is Cp x Cp, we necessarily have D = (DNN)(DNM). O

COROLLARY 2.9. Suppose that G = S1 % --- % Sy, is a central product of
its subgroups S;, 1 < ¢ < m. If B is a block of G with defect group D, then

Proof. Use induction on m and Theorem 2.8; see also [53, Lemma 7.5].
O

The following elementary result will be used in the final step of our proof
of Theorem A.

LEMMA 2.10. Suppose that N <G are finite groups with G/N a p-group.
Let Q@ < G be such that QNN = 1. Let b be a G-invariant block of N, and
let B be the block of G that covers b. Let b be the unique block of NQ/Q that
corresponds to b under the natural isomorphism, and let B be the unique block

of G/Q that covers b. Then D/Q is a defect group of B.

Proof. We know that the block B is contained in a unique block B of G.
(See the remark before Theorem 7.6 of [43].) Let E/Q be a defect group of B.
Let 7 € Irr(b), and consider

vi=7x1g e ir(N x Q).
The block of N x @ that contains v is only covered by B by [43, Cor. 9.6].
Then +, considered as a character of NQ/Q, lies in b. Let ¢ € Irr(B) over .
Then v, considered as a character of G, lies over 7, and therefore ¢ € Irr(B).
It follows that Irr(B) N Irr(B) # @, and hence B is contained in B. (See the
remark before Theorem 9.9 of [43].) Consequently, B = B. By [43, Th. 9.9(a)],
we have E/Q < D/Q. Notice that b is G-invariant by uniqueness. Therefore
(E/Q)(NQ/Q) = G/Q by [43, Th. 9.17]. By the same reason, DN = G. Also,
(E/Q)N (NQ/Q) is a defect group of b, and D N N is a defect group of b (by
[43, Th. 9.26]). In particular, |[ENNQ| = |Q||D N N|. Then
[E/Q| = |G : NQ|[DNN|=|D/Q|,
and the proof is complete. O

3. Orbits of characters in a block
In this section, we prove Theorem B, which we now restate.

THEOREM 3.1. Suppose that p is an odd prime, S is a quasi-simple group
and b is a p-block of S with non-cyclic defect groups. Then at least one of the
following statements holds:

(1) there exist characters a, 8,7 € Irr(b) that belong to three different Aut(S)-
orbits; or
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(2) all characters in Irr(b) have the same degree.

We remark that in the proof of Theorem A in Section 5, Theorem 3.1
is only needed for blocks with abelian defect groups. However, the more
general statement may be of independent interest, and its proof is not sub-
stantially different. We also remark that the assumption of non-cyclic de-
fect groups is needed. For example, for certain values of ¢ with p || (¢ — 1),
there is a cyclic quasi-isolated block of SLo(g) with characters from only two
Aut(SLz(q))-orbits.

Throughout, for A a group acting on a group G as automorphisms and a
block b of G, we write k4(b) for the number of distinct A-orbits of characters of
G whose intersection with Irr(b) is non-empty. In the situation of Theorem 3.1,
our aim will be to show

Eaut(s)(b) > 3.
We also use cd(b) to denote the set of distinct character degrees in Irr(b).

3.1. Initial considerations. We begin by considering cases that can be
completed more computationally.

PROPOSITION 3.2. Letp > 3 be a prime, S a quasi-simple group such that
S/Z(S) is one of the sporadic simple groups, the Tits group *F4(2)", Ga(2)',
2Ga(3) = La(8), or a simple group of Lie type with exceptional Schur multi-
plier. Let b be a p-block for S with non-cyclic defect and |cd(b)| > 1. Then
Eaut(s)(b) = 3. In particular, Theorem 3.1 holds for these groups.

Proof. This can be seen using the GAP Character see, e.g., Library [57].
We note that the groups with exceptional Schur multipliers are listed in [22,
Table 6.1.3]. O

PROPOSITION 3.3. Let p > 3 a prime, and let S be quasi-simple such that
S/Z(S) =, with 5 <n <8. Then |cd(b)| > 3 for every non-cyclic p-block b
of S. In particular, Theorem 3.1 holds for these groups.

Proof. This can again be seen using GAP and the GAP character table
library. ([

PROPOSITION 3.4. Let S = 2, be the double cover of the alternating
group A, with n > 9. Suppose that p > 3 is a prime, and let b be a p-
block of S with non-cyclic defect groups. Then kayy(s)(b) > 3. In particular,
Theorem 3.1 holds for these groups.

_ Proof. Recall that Aut(S) = &y. If b is a p-block of 2, then ke, (b) >
k(b)/2, where b is a p-block of &,, above b. By [50, Prop. 11.4], we have

k(b) = k(p,w), where w is the so-called weight of b and k(p,w) is as in [50,
(3.11)]. But note that k(p,w)/2 > 2 for p > 3 and w > 2. Hence kg, (b) > 3.
If, instead, b is a block of S lying over the (unique) non-trivial character of

Z(S), then kg (b) > k(b)/2, where now b is a so-called spin block of S, above
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b and @5” is a double cover of &,, inducing all automorphisms of S. In this
case, we have an analogous invariant k(b) = k*(p, w) (see [50, Prop. (13.4)]).
Since b is non-cyclic, we have w > 1, and using the definitions in [50, §13], we
see again that k¥ (p,w)/2 > 2, and we have Eaut(s)(b) > 3 as desired. O

We also need to consider the groups of Lie type that arise as the fixed
points of a simple, simply connected linear algebraic group under a Steinberg
endomorphism but are not quasi-simple. Throughout, we let

(3.4.1) ¢ := {SL(2),SU3(2), Sp,(2)}.

ProrosITION 3.5. Let p > 3, and let B be a p-block of a group G € €,
with positive defect. Then |cd(B)| > 2. If B is non-cyclic, then |cd(B)| > 3.

Proof. This can be seen using the GAP character table library. O

We remark that the groups SLz(3), Go(2), 2B2(2), 2Ga(3), and 2F4(2),
which also occur as fixed points of simple, simply connected groups but are
not quasi-simple, also satisfy the above statement, with the exception of the
cyclic 3-blocks of SLy(3). However, we will not need this here.

Next, we deal with the Suzuki, Ree, and triality groups.

PROPOSITION 3.6. Let S be quasi-simple such that S := S/Z(S) is a
Suzuki, Ree, or triality group *Ba(q?), 2Ga(q?), 2F4(q?), or 3Dy(q). Let p >3
be a prime and let b be a p-block of S with non-cyclic defect groups. Then
k:Aut(S)(b) > 3. In particular, Theorem 3.1 holds for these groups.

Proof. Note that the Schur multiplier of S is trivial or S was considered
already in Proposition 3.2, so we assume S = S. First suppose p | ¢?, so that
S = 2Ga(¢?) or 3Dy(q). Then by a theorem of Humphreys [24], S has exactly
two blocks, namely the principal block and a block of defect zero containing
only the Steinberg character. By observing the list of unipotent character
degrees in [14, §13.9], we see that there are at least three distinct character
degrees in the principal block.

Now suppose 3 < pt¢>. Then Sylow p-subgroups of 2Ba(q?) and 2Ga(q?)
are cyclic. Let S = 2Fy(¢?), with ¢> = 22/*1. Here from [34, Bem. 1], if
p 1 (¢> — 1), then each semisimple p’-element s in the dual group S* defines
a unique block of positive defect containing the Lusztig series £(S,s). If p
divides (¢*> — 1), then such an s defines a unique block of positive defect if
s is of class type to or t3, and three such blocks for s = 1 or of type ¢; in
the notation of [55]. In the latter two cases, only one of the three blocks has
non-cyclic defect. In each case, we can see from the centraliser structures and
conjugacy class types in [55], together with the fact that field automorphisms
permute Lusztig series via £(S, s)* = £(S, ") for o* € Aut(S*) dual to a (see
[47, Cor. 2.4]), that there are at least three characters in the relevant blocks
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that cannot be conjugate under field automorphisms of S. In the case that
S = 3Dy4(q), we may argue similarly to above, taking into consideration the
results of [15, Lemma 5.9] and the structure of centralisers and tori discussed
in loc. cit. O

3.2. Reducing to quasi-isolated blocks. Let p be an odd prime, and let G
be a simple algebraic group of simply connected type over F, for some prime .
Let g be a power of r and F': G— G a Frobenius endomorphism with respect
to an Fg-structure. Write G := G for the corresponding finite reductive group.

Let o: G < G be a regular embedding as in [12, (15.1)] (see also [19, §1.7]),
and write G := G Let (G*, F) be dual to (G, F), so that G* is simple of
adjoint type, and let (a*,F) be dual to (é, F). We will write G* := G*" and
G* := G*F. We further have a dual F -equivariant epimorphism ¢*: G* - G*
induced by ¢. Now, with this setting, Aut(G) is induced by G x D, where D is
the group generated by appropriately chosen graph and field automorphisms
(see, e.g., [22, Th. 2.5.1]).

The set Irr(G) is a disjoint union of Lusztig series £(G, s) (also called ratio-
nal series), where s runs over G*-conjugacy class representatives of semisimple
elements of G*. If § € G* is such that t*(5) = s, then the series £(G, s) consists
of the constituents of the restrictions of the characters in &€ (5, 3) to G (see [12,
Prop. 15.6]).

We next consider the case of groups of Lie type in defining characteristic,
i.e., when r = p.

PROPOSITION 3.7. Assume S is quasi-simple such that S/Z(S) is a simple
group of Lie type defined in characteristic p > 3. Let b be a p-block of S with
non-cyclic defect groups. Then kAut(S)(b) > 3. In particular, Theorem 3.1
holds for these groups.

Proof. Let G = G¥' be as above such that S := S/Z(S) = G/Z(G). We
may assume G is the full covering group of S, as the exceptional covers have
been discussed in Proposition 3.2, and that S is not of Suzuki or Ree type, from
Proposition 3.6. By applying [43, Th. 9.9], it suffices to prove the statement
for G, since p 1 |Z(G)|. Now, every p-block of G is either maximal defect or of
defect zero [24], and the blocks of maximal defect are in bijection with the char-
acters of Z(G), via their central character. Let 6 € Irr(Z(G)) correspond to b.

Given this, and by inspection of the character tables for SLa(q), SL3(eq),
and Sp,(q) (see [19, see, e.g., 2.6 and references in Table 2.4]), we see there
are at least three character degrees for each block of positive defect in these
cases, so we further assume that G is not one of these groups. Furthermore, we
may assume Z(G) # 1 as any non-solvable group has at least four irreducible
characters.
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Let T < G be a maximal torus. We claim that there is s € T, a maxi-
mal torus of G* in duality with 7', such that the characters in the (rational)
Lusztig series £(G, s) lie above 0. Indeed, as Z(G) < T, there is 6 € Irr(T) with
é|Z(G) = 0, and then by the character formula, also R%@NZ(G) = R$(0)(1)6.
So taking (7%, s) dual to (T,0) we find s as claimed. Again by the character
formula, R%(uéﬂz(g) = RS (0)(1)6 for all p € Irr(T') with tlz(e =1, and so
by duality R$: (st)|z(q) = RS- (st)(1)6 for all t € T* N [G*,G*] (see the proof
of [46, Lemma 4.4(ii)]). Note that we may choose s =: s; to have order only
divisible by primes dividing |G* : [G*, G*]| = |Z(G)].

As G is not of types A, A, %Ay, By, there are at least two Zsigmondy
primes /o, {3 dividing |G*| but not |Z(G)|. Applying the above claim to suit-
able maximal tori T; < G, i = 2,3, we may choose semisimple elements s; with
order divisible by ¢; and possibly by some primes dividing |G*/[G*, G*]|. This
ensures that |s;|, ¢ = 1,2,3, are pairwise distinct. Hence the disjoint series
E(G,s;), i = 1,2,3, contain distinct characters above 6 not conjugate under
Aut(G) by [47, Cor. 2.4], completing the proof. O

Given Proposition 3.7, we now assume that r # p for the remainder of
Section 3.

If s € G* is a p'-element, as is customary we write £,(G, s) for the union
¢ £(G, st) where t ranges over the p-elements of G* commuting with s. Then
Ep(G, s) is a union of p-blocks of G, and for each block B with Irr(B) C &,(G, s),
we have that Irr(B) N E(G, s) is non-empty (see [12, Th. 9.12]). At times, we
will write £(G,p’) to denote the union of the series £(G, s) for s € G* ranging
over semisimple p’-elements.

A fundamental result of Bonnafé-Rouquier [6] yields that the blocks in
&p(G, s) are Morita equivalent to so-called quasi-isolated blocks of suitable Levi
subgroups. In the more general setting of a finite reductive group H := HY,
that is, the fixed points of a connected reductive group H under a Frobenius
morphism F': H — H endowing H with an F,-rational structure, a block of
is called quasi-isolated if it lies in E,(H, s) for a semisimple p’-element s € H*
such that Cy-(s) is not contained in any proper F-stable Levi subgroup of H*.
(In such a situation, s is also called quasi-isolated.)

The following setup will be useful. Let H be an F-stable Levi subgroup of
G and H := HY. Let Hy := [H,H] and Hy := H{', so that Hy is semisimple
of simply connected type, by [38, Prop. 6.20(c) and 12.14]. Then by [19,
Cor. 1.5.16], Hy is isomorphic to a direct product Hle HZF ‘ where each H; is
simple of simply connected type and F; is a Frobenius morphism obtained as
some power of F'. Write H; := Hfl Let B be a p-block of H, and let B’ be a
block of Hy covered by B. Then B’ is isomorphic to a tensor product ®§:1Bi>
where B; is a block of H; for each 1 <73 < k.
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Recall from (3.4.1) that € = {SL2(2),SU3(2),Sp4(2)}. Note that H; is
perfect (and hence quasi-simple) unless H; € €U{SLy(3)} (see [38, Th. 24.17]).
(Indeed, note that the excluded groups Ga(2), 2B2(2), 2G2(3), and 2F4(2)
cannot occur as an H; since F is a Frobenius endomorphism and Go does not
occur as a component of a Levi subgroup of the other types.) Since G is defined
in characteristic distinct from p and |[SLa(3)| is only divisible by the primes
2 and 3, we further will not need to consider SL2(3) in what follows. In the

following, we will write
- kaw(m)(Bi) if H; ¢ €,
k V(B;) = ’
Hypothesis 3.8. Keep the notation and situation of the previous para-

graph. For a positive integer ¢, let B be a p-block of H such that there exists
a block B’ as above that satisfies at least one of the following three conditions:
(3.8.1) there exists some i with 1 <4 < k such that kaue(m,)(Bi) > ¢
(3.8.2) there exist 4,7 with 1 <7 # j <k such that kaye(g,)(Bi) > ¢ — 1 and,
furthermore, kauy(m;)(Bj) > 2;
(3.8.3) B’ is cyclic of positive defect, and there exists some i with 1 <i <k
such that B; is cyclic and ]_'CAut(Hi)(Bi) >c—1.

PROPOSITION 3.9. Let G := GT be as above. Let H be an F-stable,
proper Levi subgroup of G and H := HY. Let p be an odd prime not dividing
q and B be a non-cyclic p-block of H with |cd(B)| > 1. Then

(a) in the notation above, any block B' of Hy covered by B has positive defect;
(b) if B satisfies Hypothesis 3.8 for some positive integer ¢, then kayy(my(B) > c.

Proof. Keep the notation above, and let B’ be a block of Hy covered by B.
First, assume B’ is defect zero. Write Irr(B’) = {61}, and let T := Hp, be the
inertia subgroup for ¢y in H. Since H/Hj is abelian and restrictions from H to
Hj are multiplicity-free (a result of Lusztig — see [12, Th. 15.11]), Gallagher’s
theorem and Clifford correspondence imply that every element of Irr(H | 6;)
is of the form (86,)", where 0; is an extension of 0; to T and £ is a (linear)
character of T/Hy. In particular, every member of Irr(B) is of this form, and
hence |cd(B)| =1, a contradiction. This shows (a).

We now assume that B satisfies Hypothesis 3.8 for ¢ and aim to show

kaw(m)(B) = c.
Note that this is trivial when ¢ = 1, so we assume throughout that ¢ > 2. We
claim that it suffices to show that
(391) kAut(Ho)(B,) Z C.
Indeed, if this is the case, write 61,...,60. for representatives in Irr(B’) of

¢ distinct orbits. Then by [43, Th. 9.4], there must be at least ¢ characters
X1,---,Xc in B, lying above 61, ..., 6., respectively. Now H is characteristic in
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H (indeed, it is generated by all unipotent elements of H by [19, Rem. 1.5.13],
as Hy is simply connected since H is a Levi subgroup of the simply connected
group G), so is stabilised by any automorphism of H. Then, if x; and x;
are Aut(H )-conjugate for i # j, then 6; and 0; are Aut(H)-conjugate and
hence Aut(Hj)-conjugate, a contradiction. Thus, we wil prove, at least in the
cases (3.8.1) and (3.8.2), that (3.9.1) holds.

Now, in the case of (3.8.1), we may without loss assume %Aut(Hl)(Bl) > c.
Let x1, x2 € Irr(By) lie in distinct Aut(H;)-orbits on Irr(B;) if H; ¢ € or have
distinct degrees if H; € €. First assume that H; is not isomorphic to any
H; for 2 < i < k. Let X := Hy x --- X Hy, and let « € Aut(Hp). By [1],
for (h,1x) € Hy x X with h € Hy, we have a(h,1x) = (a1(h), o (h)), where
a1 € Aut(H;) and o) € Hom(H;,Z(X)) are defined by a. Now, assume
(X1 ® p)* = x2® p, where p € Irr(By ® - - - ® By). Then considering elements
of the form (h,1x) with h € Hj, we see that x{'(h)0(h) = x2(h) for some
linear character 6 € Irr(Hy). (Namely, 6 is the composition of o} with the
unique irreducible constituent of ¢|zx).) If H1 ¢ €, this contradicts that x;
and x2 are not conjugate under Aut(H;), since § must be trivial. If H; € €, it
contradicts that x1(1) # x2(1). Hence in either case x1 ®¢ cannot be Aut(Hp)-
conjugate to x2 ® . This shows kau(m,)(B’) > c. In the case that Ho contains
multiple isomorphic copies of Hp, a similar argument holds, taking instead X
to be the (possibly trivial) product of those H; such that B; 2 B; under this
isomorphism and y; ® --- ® x1 (one for each copy of Bj) in place of xi.

Arguing similarly, in case (3.8.2), we obtain kaum,)(B’) > ¢, and in
case (3.8.3) we obtain kayuy(m,)(B') > ¢ — 1.

Now, assume we are in the situation of (3.8.3), so B’ is cyclic but B is not,
and B’ has positive defect. Then p divides |H/Hp|, and we let Hy < H, < H be
such that Hy,/Hg € Syl,(H/Hy). Let By, be the (unique) block of H;, above B’.
Then we have ¢ — 1 non-Aut(H )-conjugate characters in B, lying above the
non-Aut(Hp)-conjugate characters 61, ...,0._1 of Irr(B’). We claim that there
is at least one more character in Irr(B)) that is not Aut(H )-conjugate to these.

Let (H*,F) be dual to (H, F), and write H* := H*". Let s € H* be
a semisimple p’-element such that Irr(B) C &,(H,s). Let Hy — H be the
inclusion map, and let sy be the image of s under the induced dual epimor-
phism H* — Hf. Then Irr(B’) C &,(Ho, o). Then at least one of these ¢ — 1
characters, say 61, can be assumed to lie in £(Hy, so) using [12, Th. 9.12].

Let t: H < H be a regular embedding, as in [12, (15.1)], and write
H = HF. Note that t|m, is also a regular embedding of Hy into H and we have
H, = [H,H] and Hy<<H < H. Let 5 € H* be a semisimple p/-element such that
t*(8) = s. Then by [12, Prop. 15.6], £(H, s) is the set of constituents of the
restrictions to H of characters in £ (ﬁ ,5), and we may further define £(H,, s)
to be the set of constituents of restrictions of characters from £(H,s) to H,.
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Similarly, for # any semisimple element of H* and z = ¢ *(x), we define E(H)p, x)
to be the set of constituents of restrictions of characters from & (H z) to Hp.

Then by [11, Prop. 1.3], 6; extends to a character x in £(Hp,s), which
is hence a member of Irr(B,) N E(Hy,s). Then xf € Irr(B),) for every 3 €
Irr(Hp,/Hy). Now, recall that characters of H /Hy are in bijection with elements
of Z(ﬁ*) (see [12, (15.2)]). We write % for the character of H/Ho correspond-
ing to z € Z(ﬁ*) Choose 8 :=Z for 1 # % € Z(H*) of p-power order. Then
xB € E(Hp, sz), where z := ¢*(Z) and is not H- conjugate to x by definition of
E(Hp, sz) and E(Hp, s). Together with the fact that sz cannot be H*-conjugate
to ¢*(s) for any automorphism ¢* since s is p’ and z is a p-element, this tells
us that x cannot be Aut(H )-conjugate to x5 (see [47, Cor. 2.4]).

Further, since x3 lies above 61, it is not Aut(H )-conjugate to a charac-
ter above 6; for ¢ # 1. Then letting x. € Irr(B) above xf and x1,...,Xc—1 €
Irr(B) above x, 02, ..., 0.1, respectively, x1, ..., X. are non-Aut(H )-conjugate
members of Irr(B), as desired. O

Remark 3.10. In our application of Proposition 3.9 and Lemma 3.12 be-
low, we really only require k), (B) > ¢, rather than kp gy (B) > ¢. Then
we remark that since the automorphisms of G respect the product structure
of Hy, we could replace each EAut(Hi)(Bi) with kaue(m,)(Bi) in Hypothesis 3.8,
and then the statements of Proposition 3.9 and Lemma 3.12 hold with the
condition kayu gy (B) > c replaced with kauy ), (B) > c

In the notation above, note that if B is quasi-isolated, then so is each B;.
Indeed, let (H*, F) be dual to (H, F), and write H* := H*I". Let Irr(B) C
Ep(H, s) for a quasi-isolated semisimple p’-element s € H*. Let Hy = [H, H],
and keep the rest of the notation from the paragraph before Hypothesis 3.8.
Note that the inclusion map Hy < H is a central isotypy in the sense of |3,
Def. 2.A] and [19, 1.3.21], and so is the induced dual epimorphism H* — H,
by [19, 1.7.11]. Then if sy € H{ is the image of s under the latter map,
[3, Prop. 2.3] yields that sq is also quasi-isolated. In particular, any block B’
of Hy covered by B is quasi-isolated, and hence so are the blocks By,..., Bg.
(Indeed, if s¢ is quasi-isolated, let s correspond to [] s; under the isomorphism
with HHZF ¢, If s; is not quasi-isolated in H;, then neither is its preimage in
the corresponding F-simple factor of Hy, in the notation of [19, 1.5.14]. But
this would contradict that sg is quasi-isolated.)

Remark 3.11. With this and Proposition 3.9, note that if each (quasi-
isolated) B; satisfies

_ c if B; is non-cyclic,
(311.1) kAUt(Hi)(BZ) = {c —1 if B; is cyclic,
then our (quasi-isolated) block B will satisfy kauem)(B) > c.
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Throughout, when L is an F-stable Levi subgroup of H, we use RE to
denote Lusztig’s twisted induction with respect to any parabolic subgroup P of
H containing L as a Levi complement. In our situation, since we may exclude
groups considered in Proposition 3.2 and E7(2) and Eg(2) since they have trivial
outer automorphism group, we have that twisted induction is independent of
the choice of P by [19, Th. 3.3.8]. Hence, as is customary, we will suppress the
parabolic subgroup from the notation.

LEMMA 3.12. As above, let G := G and let p ¥ ¢ be an odd prime.
Assume that k:Aut(H)(B) > ¢ for each F-stable Levi subgroup H of G and each
non-cyclic quasi-isolated p-block B of HY with [cd(B)|>1. Then kayc)(b) >c¢
for each non-cyclic p-block b of G such that |cd(b)| > 1.

Proof. Let b be a non-cyclic block of G such that |cd(b)| > 1. If b is quasi-
isolated, our assumption yields that the statement holds for b, with H=G.
Otherwise, by [6], b is Morita equivalent to a quasi-isolated block of a proper
Levi subgroup H := HF of G. In particular, this BonnaféRouquier Morita
equivalence is induced by the map RS. Let B be the Bonnafé—Rouquier corre-
spondent for b in H. Note that by [26, Th. 1.3], B is non-cyclic if and only if b
is. Further, by the character formula [12, Th. 8.16] for RS, we have |cd(B)| > 1
if and only if |cd(b)| > 1.

Now, by the proof of [37, Lemma 3.5], we have

Aut(G)p = Inn(G)Aut(G) u,B,

and RS is Aut(G)p,p-equivariant. By assumption, kauyz)(B), and hence
kaut(@)y 5 (B), is at least c. Then we have kauy(a), ;(b) > ¢, proving that also
Eaut(a(b) = e O

3.3. e-Harish-Chandra theory and blocks. In this subsection, we allow G
to be any Levi subgroup of a simple algebraic group of simply connected type
and F' : G — G a Frobenius endomorphism with respect to an [Fy-rational
structure. Thanks to the work of Broué-Malle-Michel [8], Cabanes-Enguehard
[11], and Kessar-Malle [27], we have a parametrisation of blocks of G := G¥
in terms of e-Harish-Chandra theory. (See, e.g., [19, §3.5] for the notions of
e-torus, e-split Levi subgroups and e-cuspidal characters of (G, F').)

Namely, by [27, Th. A], if p > 3 is a prime not dividing ¢ and e is the order
of ¢ modulo p, then there is a bijection from the set of G-conjugacy classes of
e-Jordan quasi-central cuspidal pairs (L, \) of G with A € £(L¥, p’) to the set
of p-blocks of G. (See [27, Def. 2.1, 2.12] for the definitions.) We will write
ba (L, A) for the block corresponding to (L, A). Then all irreducible constituents
of RE()) lie in bg (L, \) by [27, Th. A]. The next lemma allows us to say more
about characters lying in bg(L, A) and could be useful for other applications.
Here we write d' for the map on class functions given by composition with the
characteristic function on p’-elements of a group.



BRAUER’S HEIGHT ZERO CONJECTURE 575

LEMMA 3.13. Let b = bg(L,\) be a p-block of G = G in £,(G,s) for
s € L* a semisimple p'-element. Let t € Z(L*)T be a p-element. Then
Irr(b) N E(G, st) # 2.

Proof. By what we recalled above, all constituents of RE () lie in Irr(b),
s0 0 # d'(RE(\)) has some non-zero constituent in b. Let ¢ denote the linear
character of LY corresponding to ¢t € Z(L*)¥ (see [19, Prop. 2.5.20]). Since d*
commutes with Lusztig induction [19, Prop. 3.3.17] and || = |¢| is a p-power,

d'(RE (EN)) = RE (d'(EN)) = RE (d' (V) = d"(RE (V) #0,

so d*(RE(f)\)) has a component in b as well, which means that RS (f\) has
a constituent lying in Irr(b). But all constituents of RE(f)) are contained in
E(GF, st) (see [19, Prop. 3.3.20]). O

For G a connected reductive group such that [G, G] is simply connected,
we say that a block of G = G is of quasi-central defect if it covers a block
of [G,G]¥ that has a defect group contained in Z(|G,G]"). (In particular,
when G is simple, being of quasi-central defect is equivalent to having central
defect.)

COROLLARY 3.14. Let G = GF be as above, and let b be a block in &G, s)
with non-trivial defect. Then Irr(b) contains at least two characters not conju-

gate under Aut(G), where one of the characters lies in £(G,s) and the other
one outside of E(G,p’).

Proof. First, by the result of Hiss [12, Th. 9.12] we have Irr(b) N E(G, s)
# &. Now write b = bg(L, A\) with L < G an e-split Levi subgroup whose dual
L* < G* contains s. If L is proper in G, it centralises a non-trivial e-torus
of G and thus its dual centralises a non-trivial e-torus of G*. Thus there is a
p-element 1 # t € Z(L*) < Cg+(s), and Irr(b)NE(G, st) # @ by Lemma 3.13.
If L = G, the quasi-central defect group D of b is normal in G, hence there
exist characters in b non-trivial on D (see, e.g., [43, Th. 9.4]) that again cannot
lie in £(G,p') (see, e.g., [11, Prop. 1.2(v)]). Arguing as before, characters in
E(G,p') and E(G, st) cannot be Aut(G)-conjugate. O

Note that in the context of Theorem 3.1, we are interested in the case
¢ = 3 of Hypothesis 3.8, and hence Corollary 3.14 implies that we now only
need to deal with non-cyclic blocks.

The next observation deals with unipotent blocks, and may be of interest
for other applications. For this statement, we relax the assumption that p is
odd, and if p = 2, we define e to be the order of ¢ modulo 4. We remark
that for € € {£1}, we write L,(eq) for the group L,(q) when ¢ = +1 and
U,(q) when e = —1, with analogous conventions for related groups SL,(eq),
PGL,(eq), and GL,(eq).
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LEMMA 3.15. Let G be a connected reductive group in characteristic r
such that |G, G] is simply connected, and let F': G — G be a Frobenius endo-
morphism. Let p be a prime, and let b be a unipotent p-block of G := GT' that
is not of quasi-central defect. Then Irr(b) contains two unipotent characters
whose degrees have different r-parts. In particular, these cannot be Aut(G)-
conjugate.

Proof. We first assume that G = [G, G] is simple of simply connected
type. Suppose G is of exceptional type. Let e be as defined above and let
b = bg(L, \) for some unipotent quasi-central e-cuspidal pair (L, \) (see [27,
Th. A]). Note that our assumption b has non-central defect groups and G is
simple means we have G # L := L. Then [14, §13.9] and [8, Tables 1 and 2]
include the decomposition of RE()\) and the relative Weyl group We(L, )
for many of the relevant blocks, and [8, Table 3| includes information about
remaining cases where L is a torus and W (L, ) is non-cyclic. By studying the
characters in these decompositions, whose degrees are available in [14, §13.9],
and at times applying Ennola duality (see [8, Th. 3.3]), we see there are at least
two characters in RE()\) whose degrees have distinct r-parts, except possibly
when L is a torus. In the latter situation, we have L is the centraliser of a
Sylow e-torus, e is regular for G, and A = 1. Then b is the principal block of
G and is the unique block containing p’-degree unipotent characters. Hence b
contains at least 1¢ and St¢g, and the claim holds.

Now suppose G is of classical type. Note that by [10, Th. (i)], we may
replace G with a group of the same rational type. If p = 2, we are done
taking 1 and Stg, since there is a unique unipotent block in this case (see
[12, Th. 21.14]). So, we also assume p > 3.

First, let G = SLy,,(eq). Let €’ be the order of eg modulo p. The unipotent
blocks of G are parametrised by €’-cores of partitions of n. Assume b is labelled
by the €’-core A, with n = ¢’w + |\|. As b has non-central defect, w > 1. Let
1 = (M + €w,Ag, .., A) and po = (A, ..., Mk, 19%), two partitions of n
labelling distinct unipotent characters x1, x2 in b. Then the degree formulas
[19, Props. 4.3.1 and 4.3.5] show that (1) and x2(1) have distinct r-part.

Now let G be one of Spy,,(q), SO2,+1(q), or SO5,,(q), and let €’ be the order
of ¢ modulo p. Now the unipotent blocks of G (or in the case G = SO%,,(q),
the blocks of GOS,,(¢) lying above unipotent blocks of G) are parametrised by
e'-cores (if p | (¢ — 1)) or cocores (if p | (¢¢ + 1)) of appropriate symbols
(see [8, pp. 48-52] and [10, Th.]). Suppose b (or a block above in GOS,(q))
is labelled by the e’-core (X;Y), with n = €¢’w + rnk(X;Y"). (Here rnk(X;Y)
is the rank of the symbol, defined in [19, p. 301].) Let X = (x1,...,2,) and
Y = (y1,...,¥c) with x; < z;41 and y; < y;4+1 for each i. Again we have w > 1,
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and we may consider the two unipotent characters in Irr(b) labelled by
(0,1,2,...,¢w—1,21 + €w, 20 + €'w, ..., x4 + €'w;
1,2,...,¢dw,y1 + dw,yo + w, ..., y. + w)
and
(X1, Ta1,Tq + w;Y).
Here the degree formula [19, Prop. 4.4.7] shows that these two characters will
have distinct r-part.

If b is instead labelled by an e’-cocore, Olsson’s process of €'-twisting of
symbols ([49, p. 235]) shows there is a bijection between symbols (X’;Y”) with
¢/-core (X:;Y) and symbols (X';Y’) with ¢/-cocore (X;Y), where (X:;Y) is
the ¢/-twist of (X;Y). Further, ¢/-twisting does not change the entries of the
symbol, i.e., (X’;Y”) and its e’-twist (le; ?’) satisfy X' UY' = X' UY". Hence
from the formula [19, Prop. 4.4.7], we see that the r-part of the characters
corresponding to the symbols (X’;Y”) and (X’;Y’) are the same, and we are
done with the case where G = [G, G] is simple.

In the general case, we have b lies above a block B of [G, G]¥" whose defect
groups are non-central. We may write [G, G] as a direct product of groups
of the form G; = GZF ‘. where G; is simple of simply connected type and F;
is some power of F'. Then B is a tensor product of blocks B; of G;, at least
one of which, say Bj, must have non-central defect groups. Then from above,
Irr(Bj) contains at least two unipotent characters with different r-parts, and
therefore the statement also holds for B. Since the unipotent characters in b
are extensions of those in B, this completes the proof. [l

3.4. Type A. We begin by considering the case of finite linear and unitary
groups. In this subsection, we fix S = L, (eq), G = SLy(eq), G* = PGL,(¢€q),
and G = GL,(eq) = G*.

The blocks of G have been well-studied, with the parametrisation of the
blocks of G given in [18] and a reduction to smaller-rank linear and unitary
groups given in [39]. We use these to prove that Theorem 3.1 holds in the case
that S = S/Z(S) = Ly(eq) and that Hypothesis 3.8 holds for ¢ = 3 and blocks
of G. Again in this case, we will provide a slightly more general result.

PROPOSITION 3.16. Let G = SLy(eq) such that Ly (eq) is simple, and let
p be an odd prime with p 1 q.
(a) Let B be a p-block of G with non-cyclic defect. Then kayyy(B) > 3.
(b) Theorem 3.1 holds when S/Z(S) = Ly(eq).

Proof. Keep the notation from above. Note that in this case, GG =
GL,(eq) and G* = PGL,(eq) = G/Z(G), and recall from the discussion in

Section 3.2 that G x D induces all automorphisms on L, (eq). From Section 3.1,
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we may assume that G is the (non-exceptional) Schur covering group for L, (eq).
Let €’ be the order of eg modulo p.

Note that in the situation of (b), we have S = G/Z, where Z < Z(G) is
some central subgroup. Further, writing Z,, for the Sylow p-subgroup of Z, we
may identify the blocks of G/Z with blocks of G/Z,, using [43, Th. 9.9]. Hence
we may assume Z = Z, is a p-subgroup in Z(G). Then it suffices to show (b)
in the case that ¢’ = 1 with S = G/Z, a quotient by some non-trivial central
p-group and to show (a).

Let B be a non-cyclic block of G, and suppose s is a semisimple p’-element
of G* such that B lies in &,(G, s). In the context of (b), we further assume
here that B is a block of G /Z, with non-cyclic defect groups dominated by B,
so that Irr(B) is comprised of those members of Irr(B) that are trivial on Z,.

Applying Corollary 3.14, it suffices for (a) to show that there are at least
two non-Aut(G)-conjugate members of Irr(B) N E(G, s) or two non-Aut(G)-
conjugate members of Irr(B) outside of £(G,p’). For (b), note that every
member of (G, s) lies above the same character ws of Z(G), by [4, 11.1(d)],
and that ws must be trivial on Z, (and in fact on Z(G), € Syl,(Z(G))) since s
is a p/-element. In particular, every member of Irr(B) N E(G, s) may be viewed
as a character of B. Hence for (b), it suffices to show that there are at least
two non-Aut(G)-conjugate members of Irr(B) N E(G, s), or that there are at
least two non-Aut(G)-conjugate members of Irr(B) lying outside of £(G,p’)
and trivial on Z(G)p

Let s € G* ~ G bea semisimple p’-element mapping to s under the natural
epimorphism G* — G*, and let B be a block of G in & (G s) covering B.
(Indeed, such a setup exists using [12, Th. 9.12 and Prop. 15.6].) Let D and
D be defect groups of B and B , respectively, satisfying D = DNG. Now,

k
C.(® = [[CLuns (),

where 0; and m; are positive integers. (See [18, §1] for details.) Note that ¢ —e
divides (eq)% — 1 for each i. Write Gy := GLy,,((eq)%) for 1 <i < k.
According to [18, Th. (7A)], Jordan decomposition maps

Irr(E) N 5(5,3')

rr(B) N €(Cq. (3. 1),

where B’ = Hle B; is some unipotent block of C, (s) with B; a unipotent

block of G;. Let e; be the order of (eq)® modulo p. Then B (and B') is
determined by certain e;-core partitions \;. Namely, writing m; := e;w; + |\
for each 1 < ¢ < k, [39, Th. (1.9)] yields that the number of characters in
Irr( ) and the defect group of B are the same as for the principal block of

Hz:l GLeiwi ((GQ) )

to
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In particular, note that if some B; has non-central defect, then B;, and
hence B’, contains at least two unipotent characters of distinct degree, by
Lemma 3.15. In this case, Irr(g) né (5, S) contains at least two characters of
distinct degree, which must lie above two characters in Irr(B) N E(G, s) lying
in distinct Aut(G)-orbits.

To complete the proof of (a) and (b) it therefore suffices to assume that
each B; has central defect, which forces m; = e;w; = 1 for each 1 < i < [,
where without loss we assume that B; has trivial defect groups for [ < ¢ < k.
Here note that G; & C(eq)‘%—l is cyclic for 1 <7 <[ and a defect group for B
is isomorphic to a Sylow p-subgroup of Hé:l C(eq)(s_l. Since B is non-cyclic,
note that { > 2.

Suppose x; € Irr(B) lies under members of E(CNJ, 5ti), i=1,2, for p-clements
ti € Cz.(5). Assume x; is Aut(G)-conjugate to x2. Then (5t1)% is G*-conjugate
to stoz for some z € Z(a*) and o € D. Tt follows that £ is conjugate to 2z,
and hence they share the same set of eigenvalues, where z, is the p-part of z.
To complete the proof of (a), we therefore aim to exhibit #; and #, such that
this cannot be the case.

When [ > 3, elements of 5*corresponding to(z,1,...,1)and (z,y,1,...,1)
for p-elements 1 # =z € G, 1 # y € Gy have different multiplicities for the
eigenvalue 1, and hence we obtain t1, o satisfying %V‘f is not a*-conjugate to toz
for any z € Z(CNJ*) and a € D.

Now suppose [ = 2. If pf (¢ — €), then p-elements corresponding to (z, 1),
(z,y) with 1 # x € G1, 1 # y € G2 again satisfy the claim, since p { |Z(a*)|
Hence we assume that p | (¢ — €). Note that this forces p | ((eq)®% — 1) for each
i=1,2.

If p? | ((eq)’ — 1), say, then elements #;,% corresponding to (z,1) and
(xP, 1) with |z| = p? have the desired property. We therefore can assume that
p || ((eq)® — 1), so that also p || (¢ — €), in which case D = D NG is cyclic,
and we are done with (a).

To complete the proof of (b), we wish to show that such t1 and o exist
such that w; are further trivial on Z(a)p. For this, it suffices to find #; and ¢,
lying in [G*, G*] 2 G. Recall that here p | ged(n, ¢ — €). In this case, note that
e; = 1for 1 <i < ksince (¢—e€) | ((eq)® —1), so that B; is the unique block in
&(G;, 1) for each 1 <14 < k, and hence B is the unique block in Sp(a,éj. This
also forces | =k, and & (5, 5) contains only one character.

Recall that D is isomorphic to a Sylow p-subgroup of the (in this case
abelian) group Cg, (5) and in fact by [18, Th. (3C)], if we identify G with G*,
we may take D to be a Sylow p-subgroup of Cg, (5). This way, we also iden-
tify G with [5*75*] and have that D = D N G is viewed as a subgroup of
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Ca.(5)N [G*,G*]. Let D = D/Z, be a defect group for B. It suffices to argue
that D/Z(G), contains at least two non-trivial non-Aut(G)-conjugate elements
when [cd(B)| > 1. (Indeed, this would yield p-elements of Cg,(s) that lie in
G = [5*,5*] and are not Aut(G)-conjugate to Z(a*)p—multiples of one an-
other.) Hence we may assume D/Z(G), is elementary abelian, as otherwise
two non-identity elements of D/Z(G), with distinct orders satisfy the claim.

If k > 4, then D/Z(G), is generated by at least two elements, and as
before we may find such elements whose eigenvalue structures do not allow
them to be Aut(G)-conjugate.

If £k = 2 and 6; = d2, then this forces p | 1, since p | n = 294y for
some positive integer c. Further, note that since D is not cyclic, we know
((eq)® — 1), > (¢ — €),- Then choosing the embeddings into G of elements of
the form (y,y~!) with |y| = ((eq)®* — 1), and (=, 1) with |z| = (g — €),, we see
these elements lie in G (since (z, 1) is embedded into G with eigenvalues

(:v,:veq,...,:U(Eq)él_l,l,...,l) =(z,...,z,1,...,1),

and therefore has determinant 1) and cannot be Aut(G)-conjugate to Z(G),-
multiples of one another. Hence we may assume that 6; > J2. Then note
that, again studying the embedding of elements (s1, s2) € C 11 X C(eq)52 1

into G*, we see that § cannot be G*-conjugate to 3z for any 1 # z € Z(G*)
Hence the unique character of £ (G, S) restricts irreducibly to G, and similarly
every member of £ (CNJ, 5t) for t € Cz.(5) a p-element also restricts irreducibly.
Since Cg. (3t) = Cg.(8) for each such 1, we see every element of Irr(E), and
hence of Irr(B), will have the same degree, a contradiction.

So, we finally assume k = 3. Arguing like above, we may assume §; =
g = 03, s0 Cz.(3) = G3. If p || ((eq)® — 1), then p || (¢ — €), so we have that
Zp = Z(G),, and D is cyclic, a contradiction. So we see p? | ((eq)’* —1). But
then we also have p? | |Z(G),|, since otherwise D/Z(G), contains elements of
order p?, contradicting our assumption that D/ Z(G)p is elementary abelian.
In particular, p? | n. Then here since n = 2¢- 36, we have p | d;. Hence we
are done by considering elements (y,y ', 1) and (x,1,1) with z,y analogous
to the case k = 2 above. O

3.5. Other classical groups. For (G, F') a connected reductive group and
Frobenius morphism F' emitting an Fj-rational structure and s € G* semi-
simple, we write

JC: 2E(GE,s) = ZE(Cg-(s)F)1)

for a Jordan decomposition as in [19, Th. 2.6.22]. Recall from [19, Prop. 3.3.20]
that for K < G an F-stable Levi subgroup with dual K* < G* and s € K*,
Lusztig induction induces a map RG: ZE(KF, s) — ZE(GT, s).
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We next consider the case of other classical groups, specifically for quasi-
isolated blocks.

ProprosITION 3.17. Let G be simple of simply connected type such that
G = GT is quasi-simple of type B, (q) with n > 2, Cp(q) with n > 3, Dy(q)
with n > 4 or 2Dy (q) with n > 4. Let p be an odd prime not dividing q. Then
if B is a non-cyclic quasi-isolated p-block of G, we have kayuya)(B) = 3.

Proof. As before, let +: G — G be a regular embedding, even taking
the embedding as in [19, Ex. 1.7.4], and write G = GF. Let B be a non-
cyclic quasi-isolated block in £,(G, s), and let B C Sp(g,fs) be a block of G
lying above B, where (*(5) = s is a quasi-isolated p’-element of G*. Let e
be the order of ¢ modulo p. By what we recalled from [27], let (L, A) be the
e-Jordan cuspidal pair of G such that B is the unique block of G containing
all constituents of RE ()).

Note that we may assume s € L* for a dual Levi subgroup L* < G* of L.
Then since F' is a Frobenius endomorphism and Cg, (3) is connected and has
only components of classical type, by [19, Th. 3.3.7] the Mackey formula holds,
and by [19, Th. 4.7.2],

(3.17.1) JX o R = Rg; % o JK1
for any F-stable Levi subgroups K < K* < G* containing s so, in particular,
for Kj = L*.

Also note that Cr:(s) is an e-split Levi subgroup of Cg.(5) (by [23,
Prop. 2.12]) and (by definition of e-Jordan cuspidality), (Cr+(3), JE())) is an
e-cuspidal pair. Write H* := Cg.(5) and M* := Cr+(5), a Levi subgroup
of H*, and let H/ M < G be dual to H* and M*, respectively. Then (M, 1)),
with 1 := JM o J%‘(A), is an e-Jordan cuspidal pair for H defining a unipotent
block b of H := HY. Then by [8, Th. 3.11] and [27, Th. A], we have that
Irr(b) N E(H, 1) is the set of constituents of RE:(1). From this, we see that
Jordan decomposition induces an injection

Irr(b) N E(H, 1) < Ire(B) N E(G, 3).

Let t € Cg.(5) = (H*)F be a p-element, and let a(t) < G and H(t) <H
be F-stable Levi subgroups in duality with Cg. (t) and Ca-(t )7 respectively.
Applying [10, Th. (iii)] to both B and b and applylng (3.17.1) to (G G(t),s) as
well as to its analogue for (H*, H(t)*, 1), we obtain further that Irr(B)NE(G, 5t)
is non-empty if and only if Irr(b) N E(H, t) is non-empty. More specifically,
X € E(G st) is in Irr(B )}f and only if ¢ € £(H,t) lies in Irr(b), where 9 is
the character such that Jg(x) = JH(3). Further, by [11, Prop. 5.1], b and B
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have isomorphic defect groups. Let D, = Dz and Dp be defect groups of b, B
and B, respectively, chosen so that Dp = D5 N G.

Now, by [3, (2.2)], we have /* (H*) = Cg~(s)°. Since B is quasi-isolated,
the latter has only classical components, of the forms listed in [3, Table II].
Hence the components of H are of the forms dual to these.

By [10, Th. (i)], the unipotent characters in b are independent of isogeny
type. Let Hy := [H,H]¥, and let & be the unipotent block of Hy below b and
" the corresponding unipotent block of [H, H]E, where [H, H]s. denotes the
simply connected covering of the semisimple group [H,H]. Applying Corol-
lary 3.14 and Lemma 3.15, we may assume Z([H,H}SFC)p is a defect group
of b”, and each of b, and b” contain exactly one unipotent character. As-
sume [H, H]Z has a factor of type A,,(e¢’) for some m,d > 1 and € € {1}
with d,(eq®) = 1, where dp(eq’) denotes the order of e¢® modulo p. Then,
A, (e¢) has a unique unipotent p-block, which must contain the trivial and
Steinberg characters, contradicting that b contains a unique unipotent charac-
ter. Thus, since all components of H are classical, Z([H, H]f;)p is trivial, so
p1|Z(Ho)l|, and we obtain that D, = Z(H),, from [10, Th. (ii)]. Then using [11,
Lemma 4.16, Def. 4.3], we see that D can be taken to be equal to Dy, = Z(H),,.

Since G/GZ(G) is a 2-group, we know Z(g)p NG =1, s0 Dy is a direct
product of Dp and Z(a)p, so Dp = DE/Z(a)p and Z(H)p/Z(a)p must be
non-cyclic. However, from our list of possible structures in [3, Table II], we
see that Z(H)p/Z(a)p is trivial or cyclic, unless G is of type D,, and H is
of type A,_3. In this case, although s is quasi-isolated, s is not, and H is a
Levi subgroup of G. From our discussions above and using, for example, the
descriptions of possible (Cg~(5)°)!" in [35, see, e.g., 2], we have Hy = A,,_3(€q)

with dp(eq) # 1, and Z(H),/Z(G),, = C(2q+€)p coming from a torus C§+E < H.

Let 0 be the unique unipotent character in b. We have
- F
Irr(b) = {0t | t € Z(H"), },

where t — £ is the isomorphism Z(H*)" — Irr(H/Hy) guaranteed by [19,
Prop. 2.5.20]. Now, a construction for G = G* is presented in [19, Ex. 1.7.4]
using tori constructed in [19, Ex. 1.5.6]. The element s and its centraliser in
G* are described in terms of root systems in [3]. With this, we can see Z(H")
through this construction, and we calculate that there are elements t1,ts of
order p in Z(H*)"\ 2(5*) such that ¢1 is not G*D-conjugate to toz for any
z € Z(CNJ*)p. Since G x D induces Aut(G) and [13, Th. 3.1] tells us Jordan
decomposition for G can be chosen to be D-equivariant, then as in the proof of
Proposition 3.16 we obtain two non-Aut(G)-conjugate characters in B \& (5 0
lying above non-Aut(G)-conjugate members of Irr(B). O
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3.6. Remaining quasi-isolated blocks.

PROPOSITION 3.18. Let G be such that G := GT' is quasi-simple of type
En(q) with 6 < n < 8, 2Eg(q), Fa(q) or Ga(q). Let p be an odd prime not
dividing q. Then if B is a non-cyclic quasi-isolated p-block of G, we have
kAut(G’) (B) > 3.

Proof. Let B lie in &,(G,s), where s is a quasi-isolated semisimple p'-
element of G*. Let e be the order of ¢ modulo p. In our situation, thanks to
[27, Rem. 2.2], the notions of e-Jordan cuspidality and e-cuspidality coincide.
When p is good for GG, the e-Jordan quasi-central cuspidal pairs are the same
as the e-Jordan cuspidal pairs by [27, Th. A(d,e)].

Assume (G, x) is quasi-central e-cuspidal. Then since G = [G, G|, [26,
Prop. 2.5] implies that bg(G, x) is of central defect. However, then bg(G, x)
is cyclic.

Hence from now on, we may assume B = bg(L, \) with (L, \) an e-Jordan
quasi-central cuspidal pair of G with G # L and A € £(L¥, s). Further, from
Lemma 3.15 and Corollary 3.14, we may assume B is not unipotent. From
here, we consider separately the cases that p is bad and that p is good.

First let p > 3 be bad for G. Here the block distributions for £(G,s)
are given in [26, Tables 24, 6-9], or by Ennola duality with those results.
(Namely, when e = 2, one formally replaces ¢ with —¢ in the results for e = 1
— see [26, p. 16]; also, the results for 2Eg(q) are obtained from those of Eg(q)
by switching the roles of e = 1 and e = 2 — see [26, pp. 21].) From this and
the knowledge of the degrees of characters in £(G,s) for each Cg+(s) listed,
(obtained by Jordan decomposition from the unipotent character degrees of
groups of small rank), we see that BN E(G, s) contains at least two characters
that are not Aut(G)-conjugate in the cases with non-cyclic defect. (Here we
may use [26, Prop. 2.7] to understand the defect groups.) Hence we are done
in this case, by applying Corollary 3.14.

Next assume p > 5 is a good prime for G. First suppose e > 3. In this
case, the block distributions for £(G, s) are given in [23, Tables 2, 3, 5, 7, 8],
through a description of the decompositions of R ()\). With this information,
combined with the knowledge of the character degrees in Cg+(s) and again
using Corollary 3.14, we see there are at least three non-Aut(G)-conjugate
characters when the defect group is non-cyclic.

Finally, if p > 5 is a good prime for G with e € {1, 2}, the decompositions
of R&()\) and the groups Wg(L, \) are the same as those given in [26, Tables
2-4, 6-9] for the bad prime case. But, note that now each (L,\) gives a
distinct block by [27, Th. A], and the same considerations as before complete
the proof. O
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COROLLARY 3.19. Let G be simple of simply connected type such that
G = GI is quasi-simple. Let p t q be an odd prime, and let B be a quasi-
isolated p-block of G. Then ki (q)(B) >3 if B is non-cyclic and kauyq)(B) > 2
if B is cyclic of positive defect.

Proof. This now follows from Corollary 3.14 and Propositions 3.6, 3.16,
3.17, and 3.18. U

ProprosITION 3.20. Let G be simple of simply connected type such that
G := GF is quasi-simple, and let p 1q be an odd prime. Let H be an F-stable
Levi subgroup of G, and let B be a non-cyclic quasi-isolated p-block of H = HY
with |ed(B)| > 1. Then kpuywy(B) = 3.

Proof. Using Corollary 3.19 and Proposition 3.5, we have that H satis-
fies Hypothesis 3.8 with respect to ¢ = 3 (see also Remark 3.11). Hence by
Proposition 3.9, the statement holds. O

3.7. Proof of Theorem B. We are now ready to complete the proof of
Theorem B. Recall that, thanks to Section 3.1 and Proposition 3.7, we only
need to consider groups of Lie type in non-defining characteristic.

THEOREM 3.21. Theorem 3.1 holds when S is quasi-simple such that
S/Z(S) is a simple group of Lie type defined in characteristic r # p.

Proof. By Section 3.1, we may assume that the simple group S := S/Z(S)
has a non-exceptional Schur multiplier, and that S is not of Suzuki or Ree type.

Let G be the Schur cover of S, so that G = G is the group of fixed points
of some simple, simply connected algebraic group G in characteristic r under
some Frobenius morphism F'. Assume first that p 1 |Z(G)|. Then it suffices to
show the statement for G, since the irreducible characters in a block of S will
be the same as those in the block of G dominating it, viewed via inflation. As
in the proof of Lemma 3.12, we have that b is Morita equivalent to a quasi-
isolated block B of H, where H = HY for an F-stable Levi subgroup H of G.
Now, by Proposition 3.20 together with Lemma 3.12, we have k) (b) > 3.

Now suppose that p divides |Z(G)|. Then since p is odd, we have that G
is SL,,(eq) or Eg(eq) for some € € {+1} and some power g of r. In the first
case, p | ged(n, ¢ — €) and Proposition 3.16(b) finishes the proof. In the second
case, p =3 | (¢ —€).

So, we finally assume that S = Eg(eq) = G/Z(G) and p = 3 | (¢ — e).
Let b be a 3-block of S with non-cyclic defect groups such that |cd(b)| > 1,
and let b be the block of G' dominating b lying in £3(G, s) for some semisimple
3’-element s € G*. Let H be an F-stable Levi subgroup of G minimal with
the property that Cg«(s) < H*, so that s is quasi-isolated in H*. Let B be
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the block of H = H in Bonnafé Rouquier correspondence with b, and let B
be its image in H/Z(G). Then B is also not cyclic, by [26, Th. 7.16].

Arguing exactly as in the fourth paragraph of [28, p. 13], either Cg+(s) =
Cg-(s) = H* consists only of components of type A, or Hy := [H,H] is of
type D4 or Ds.

In the first case, B is the tensor product of some unipotent block of H
with the linear character s corresponding to s € Z(H*)F Let B’ be the
unipotent 3-block of Hy covered by B ® §~'. Using Lemma 3.15 or in fact
checking directly for groups of type A of rank at most 5, we see B’ contains
at least two unipotent characters of distinct degree unless either Cg+(s) is
abelian or Hy contains only components of the form Ag(—eq). If Cg+(s) is
abelian, then every member of &(H, s), hence Irr(B), and hence Irr(b), has
the same degree. Now, the unipotent blocks of As(eq) consist of one defect zero
block and the principal block containing the trivial and Steinberg characters.
Then if Hy contains only components of the form As(—eq) and B’ does not
contain two characters of distinct degree, then B’ has trivial defect groups,
which contradicts Proposition 3.9(a) unless again |cd(B)| = |cd(b)| = 1.

So we may assume B’ contains at least two unipotent characters of distinct
degree, so Irr(B) N £(H, s), and hence Irr(b) N E(G, s), contains at least two
characters of distinct degrees. Recall that the members of Irr(b) N E(G, s) are
trivial on Z(QG), since s is 3/, and can therefore be viewed as characters in
Irr(b). Further, the images of the characters in Irr(B) N E(H,s) under d' are
linearly independent by [11, Th. 1.7]. Hence there must be at least one more
member of Irr(B), and therefore at least one member of Irr(b) lying outside of
E(G, s), which as before is not Aut(G)-conjugate to the members of (G, s).

Now consider the case Hy = [H,H] is of type Dy or Ds. Note that
Hy = Hg is simply connected of type D4 or D5, and hence has centre of 2-power
order. Then a (quasi-isolated) block B’ of HyZ(G)/Z(G) = Hy lying under B
contains at least three, respectively two, characters in distinct Aut(Hy)-orbits
from Proposition 3.17 and Corollary 3.14 if B’ is non-cyclic, respectively cyclic.
If B’ is non-cyclic, then arguing exactly as in the situation of Proposition 3.9(a)
and Lemma 3.12, but with HyZ(G)/Z(G)< H/Z(G) taking the place of Hy<{H,
completes the proof. So, assume B’ is cyclic. Note that H = HyZ°(H), and
HoyZ°(H)¥ /Z(G) is normal in H/Z(G) with 3'-index, so that a block B"” of
this group under B is non-cyclic. Further, this group can be identified with a
3'-quotient of Hy x Z°(H)¥/Z(G), and hence we may identify B” with a block
B'® B" of Hy x Z°(H)¥ /Z(G), where B” has non-trivial defect groups. Then
taking two non-Aut(H )-conjugate members of B” (these exist since B” is a
tensor product of the unique block of the Sylow 3-subgroup of Z°(H)!' /Z(G)
with some character of 3" order), we obtain kg (sry(B) > 3 and k:Aut(G)(l_)) >3,
again arguing as in Propositions 3.9 and Lemma 3.12. U
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4. Invariant blocks and defect groups

This section is devoted to the proof of the following result on blocks of
quasi-simple groups (which will imply Theorem C):

THEOREM 4.1. Let p be an odd prime and S a quasi-simple group with
Z =17(S), S:=S/Z. Letb be a p-block of S with an abelian, non-cyclic defect
group D, and let bp be a block of Cg(D) with defect group D inducing b. For
parts (a) and (c), in the cases S = Eg(eq) with p = 3|(q — €) and € € {1},
assume in addition that BHZ for the prime p holds for all groups of order
smaller than |S|.

(a) Suppose that S < H < Aut(S), A := H/S has a normal p-complement
and a cyclic Sylow p-subgroup Q. Assume b is H-invariant, and for every
x € Irr(b), we have that |A : Ay| is p'. If v € Ny (D) is a p-element that
fizes bp, then [z, D] = 1.

(b) Suppose that S < H < Aut(S) and O (H/S) = H/S. Also assume that
every x € Irr(b) is H-invariant. Set J := Inndiag(S) if S is of Lie type,
and J = S otherwise. Then HJ/J is a p'-group.

(c) Suppose p 1 |Z|, and let S/Z < K/Z < Aut(S) with K/S an abelian
p-group. If every irreducible character in b extends to K, then the defect
groups of the K-block covering b are abelian.

4.1. First reductions. We keep the notation of Theorem 4.1 throughout
the section. In particular, p is always an odd prime. For the proof, we discuss
the various possibilities for S and p according to the classification of finite
simple groups. By assumption, |D| > 1 and thus p divides |S|.

LEMMA 4.2. In the situation of Theorem 4.1(a), assume @ is normal
in A. Then we may assume A = Q # 1.

Proof. Tf @ is normal in A, all orbits of @ on Irr(b) will have p’-length as
well, and all p-elements in A lie in (. So we are done if we can show the claim
when A = @. Furthermore, if @ = 1, any p-element z € Ny (D) that fixes bp
centralises D by Proposition 2.4. (|

LEMMA 4.3. In the situation of Theorem 4.1(c) assume K/S is cyclic.
Then the claim in 4.1(c) is a consequence of 4.1(a).

Proof. Since every irreducible character in b extends to K, the block b is
K-invariant. Let B be the unique block of K covering b. By Lemma 2.3, let
D be a defect group of B such that DNS =D and D < T, where T is the
stabiliser of bp in Ng (D). Let z € D. Then [z, D] = 1 by (a), and therefore
D < Z(D). As D/D is cyclic, this shows D is abelian. O

PROPOSITION 4.4. For the proof of Theorem 4.1, we may assume that
S/Z(S) is simple of Lie type in characteristic different from p.
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Proof. If S is an alternating group, a sporadic group, or the Tits simple
group, then |Out(S)| is a 2-power. Hence 4.1(a) follows from Proposition 2.4
(applied to G = N = S), while 4.1(b) and (c) hold trivially. The same argu-
ments apply whenever p { |Out(S)].

Now assume S is simple of Lie type in characteristic p > 2. If S has an
exceptional covering group (see [38, Table 24.3]), then Out(S) is a 2-group,
and we can conclude as above. Hence we may assume |Z| is prime to p and p
divides |Out(S)|. By [24] any p-block of S has either full defect or defect zero.
Thus our assumption on D being abelian forces S = Ly(g) for some q = p’, so
we may take S = SLy(q). This group has two p-blocks of maximal defect, the
principal block By(S) and a block B containing all faithful characters (see [24]).
Since |Out(.9)] is divisible by p, @ must induce field automorphisms of order p,
so p|f. By order reasons, the image of @ is central in Out(S), so by Lemma 4.2
we may assume A = (). Now by inspection of the generic character table given,
e.g., in [19, Ex. 2.1.17 and Table 2.6], there exist irreducible characters in By(S)
as well as in B not stabilised by (). Hence the theorem holds in this case. [J

PROPOSITION 4.5. Theorem 4.1 holds for S an exceptional covering group
of a simple group of Lie type in characteristic different from p.

Proof. The simple groups with exceptional covering groups are listed in
[38, Table 24.3]. Arguing as in the proof of Proposition 4.4, we need only
consider the ones with Out(S) not a p’-group, which are L3(4), Ug(2), Og (2),
2B,(8) and 2Eg(2), and the only relevant prime is p = 3. Assume S = Ug(2)
or 2Eg(2) and that 3 divides |H /S|, respectively |K/S|. Since any outer auto-
morphism of order 3 permutes the three involutions in the Schur multiplier of
S cyclically and the block b is invariant under H, respectively K, the relevant
covering groups are S = S and S = 3.5 only, which are not exceptional cov-
erings. In all other cases, using [57], the 3-blocks of an exceptional covering
group S turn out to have either cyclic or non-abelian defect, whence the claim
follows. O

PROPOSITION 4.6. Theorem 4.1 holds for S a Suzuki or Ree group.

Proof. By Proposition 4.4, we may assume p is not the defining character-
istic of S and S % ?F4(2)". Now the Sylow p-subgroups of the Suzuki and the
small Ree groups are cyclic for any such p > 3. For S = 2Fy(¢?) with ¢ > 2,
the only p-block with non-cyclic defect groups is the principal block b = By(.S),
and its defect groups are abelian when p > 3 (see [34]). Now Out(S) is cyclic
so, in particular, its Sylow p-subgroup is normal; also J = S. By Lemma 4.2
we may assume A = (), and by Lemma 4.3 it suffices to show 4.1(a) and 4.1(b).
But then the only p-block of H above b is the principal block B = By(H). By
[34, Bem. 3] all characters in b have height 0, and if all orbits of @ on Irr(b)
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have p’-size, the same is true for the characters in Irr(B). But then by the
main result of [36], the Sylow p-subgroups of H are abelian. Alternatively, by
inspection of the character table [34], the assumption of 4.1(a) is in fact never
satisfied for A # 1; this establishes 4.1(a), as well as 4.1(b). O

4.2. Some results on p-blocks. To deal with groups of Lie type for non-
defining primes we first observe some general facts on blocks of finite reductive
groups that may be of independent interest.

Let G be a Levi subgroup of a simple linear algebraic group of simply
connected type over an algebraically closed field of positive characteristic and
F : G — G a Frobenius endomorphism with respect to an Fg-rational struc-
ture. Let G* be a group in duality with G with corresponding Frobenius
endomorphism again denoted F'. We let p > 3 be a prime not dividing ¢ and
denote by e the order of ¢ modulo p.

Recall that any p-block b of G := G! has the property that Irr(b) C
&y(G, s) for some semisimple p’-element s € G*:=G*!" (see, e.g., [12, Th. 9.12]).
Furthermore, by [27, Th. A] there is a bijection between p-blocks b of G" and
GT'-classes of e-Jordan-cuspidal pairs (L, \) of G of quasi-central p-defect, with
A lying in a p/-Lusztig series of Irr(L) such that all constituents of RE()\) are
contained in Irr(b). We write

(Lv )‘) = bG(La /\)
for this map.

LEMMA 4.7. Let d > 1 and L be a mazimal proper d-split Levi subgroup
of G. Then |Ng(L)¥/L¥| is not divisible by a prime bigger than max{2,d}.

Proof. The maximal proper d-split Levi subgroups L of G above the cen-
traliser of a fixed Sylow d-torus S of G are in one-to-one correspondence with
the maximal parabolic subgroups of the relative Weyl group

W = Nga(8)"/Cq(S)"
of S [19, Prop. 3.5.12]. Moreover, if L corresponds to Wi < W, then
Ng(L)"/L" = Ny (Wh) /Wi

(see [38, Prop. 26.4]). The claim is thus reduced to a question in reflection
groups. For these, there is an immediate reduction to the irreducible case.
The latter can be checked case by case using the explicit description of the
various relative Weyl groups given in [19, 3.5.11-3.5.15]. For example, when G
is of classical type, then W = G(m, 1,n) or G(m,2,n) for suitable m € {d, 2d}
and n > 1, for which the assertion is easily verified. O

The following somewhat surprising result may be of independent interest.

Here, by a field automorphism of G we mean any conjugate of an automorphism
induced by a Frobenius endomorphism Fj of G commuting with F'.
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PROPOSITION 4.8. Let o be a field automorphism of G = G of order p,
and let v = o1, where T is an inner-diagonal automorphism of G. Then any
p-block of G of non-quasi-central defect contains characters in a Lusztig series
that is not ~y-stable.

Proof. Let b be a p-block of G of non-quasi-central defect. As above,
b = bg(L, \) for some e-split Levi subgroup L of G, proper since b has non-
quasi-central defect. By assumption, up to conjugation, ¢ is induced by a
Frobenius endomorphism Fy of G commuting with F', with respect to an IF-
rational structure on G where ¢ = qg . Then gg also has order e modulo p. In
particular, any e-torus of (G, Fp) is also an e-torus of (G, F'), and conversely,
any Fj-stable e-torus of (G, F') is also an e-torus of (G, Fp). The same relations
hold for e-split Levi subgroups since these are the centralisers of e-tori.

By [56, 5.6], o induces a field automorphism o* of G* = G*I" of the same
order. Let L* < G* be in duality with L, an e-split Levi subgroup of (G*, F')
that is Fy-stable, hence e-split in (G*, Fp). Let L} > L* be a maximal (proper)
e-split Levi subgroup of (G*, Fy). Thus, Ty := Z(L})s, is an e-torus of (G*, F)
and (G*, Fp) of rank 1, and so T{ and Tf ° have cyclic Sylow p-subgroups [38,
Prop. 25.7], with |TY|, > [T1|, since |®.(q)], > |®(q0)|,- Thus a generator
t of (T, is not fixed by o*; that is, t” = t? # t for some integer a.

We claim that Cg+((TY),) = Cg+((T1)a,). Indeed, if p is a good prime
for G, then this is [10, Prop. 2.1(ii)+(iii)]. Otherwise, G has a factor of
exceptional type and p =3 (so e =1,2) or G =Eg, p=5and e =1,2,4. In
the latter cases, the explicit description of maximal e-split Levi subgroups in
[19, §3.5] together with the fact [26, Table 1] that there are no quasi-isolated
elements of order p*, k > 2, in G* shows the claim.

Now assume there exists g € G* with t* = t9, so conjugation by g makes
an orbit of length p on (t) = (T1),. Then g normalises (T1"), and hence also

Ca-((T])p)" = Ca-((T1)s,)" = Li".

But by Lemma 4.7, Ng«(L%)¥ /Lif" has order prime to p (since p > ¢), which
contradicts the assumption that g makes an orbit of length p on (¢). Hence
t,t% are not G*-conjugate.

Now let s € G* be a semisimple p’-element such that Irr(b) C &,(G, s).
Since Irr(b) contains the constituents of R (\), we may assume s € L*F". So

t € Z(Li") < Z(L*) < Ce-(9).

Note that st and (st)® are not G*-conjugate, since neither are their p-parts.
Thus, by [56, Prop. 7.2] the Lusztig series £(G, st) C Irr(G) is not o-invariant.
Since £(G, st) NIrr(b) # @ by Lemma 3.13, the statement follows in the case
v=o0.
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It remains to consider the case v = o7 where 7 is not an inner automor-
phism of G. Note that every semisimple conjugacy class of G* is stable under
inner-diagonal automorphisms of G*. (Indeed, Inndiag(G*) is induced by the
action of (G*)F on G* for some regular embedding G* — G* = Z(G*)G*.) Tt
follows that 7 fixes the rational series £(G, st) in the preceding paragraph, and
hence 7 again does not stabilise £(G, st), which contains characters from b. [

By Propositions 4.4, 4.5 and 4.6, to complete the proof of Theorem 4.1 we
may assume S is a central quotient of a group G = G as above for G simple.
We now distinguish two situations:

(4.8.1) p does not divide |Z(G)|, and G¥ D4(q) with p =3
and
(4.8.2) p divides |Z(G)|, or G = D4(q) with p = 3.

PROPOSITION 4.9. Theorem 4.1 holds in Case (4.8.1).

Proof. Let (G, F) be such that S is a central quotient of G = G, Let b
be a p-block of S of non-trivial defect. Since in Case (4.8.1) the order of Z(G)
is prime to p, we may consider b as a block of G. For the groups in (4.8.1), the
only outer automorphisms of p-power order are field automorphisms modulo
J = Inndiag(S). So by Lemma 4.3, it suffices to prove parts (a) and (b) of
Theorem 4.1, with ) # 1 in the case of 4.1(a), or p divides |HJ/J| in the
case of 4.1(b). Then H contains an element 7 as in Proposition 4.8. But then

Proposition 4.8 shows that the assumptions of 4.1(a), (b) are not satisfied. [
4.3. The groups in Case (4.8.2).

PROPOSITION 4.10. Theorem 4.1 holds for S = Og (¢q) and p = 3.

Proof. Let b be a 3-block of S. Since Z(G) has order prime to 3, we
may consider b as a block of G and thus assume S = GG. To prove any part of
Theorem 4.1, it suffices to show that |H /S|, respectively |K /S|, is coprime to 3.

Assume the contrary that H, respectively K, contains an element o that
induces an outer automorphism of order 3 of S. By Proposition 4.8 we may
assume o induces a triality graph automorphism modulo inner-diagonal and
field automorphisms. We have 3|(¢?> — 1), so e € {1,2}. Write b = bg(L, \).
Let L* < G* be dual to L. Let L} > L* be a maximal (proper) e-split Levi
subgroup of G*. Then L] is either of type As or A$. If all maximal e-split
Levi subgroups above L* are of type Ai{’, then L* itself must be of type Aif.
A computation inside the Weyl group shows that the Levi subgroup of type
W(A$) of W(Dy) has index 2 in its normaliser. Thus, by [11, Lemma 4.16] a
defect group of b is Z(L)%', hence cyclic, which was excluded.

Thus we may choose L of type As. Let ¢ be a generator of the cyclic
group Z(L})%. Note that there are three G*-classes of Levi subgroups of
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type A3 in G*, each of which is fixed by inner-diagonal and field automor-
phisms, and permuted transitively by o*. It follows that the G™*-class of ¢ is
not o*-invariant. We can now conclude as in the proof of Proposition 4.8 that
b contains characters that are not o-stable. O

We now show an extension of Proposition 4.8 to groups of type A.

PROPOSITION 4.11. Let G = SL,, and assume that p divides |Z(GT)|.
Let b = bg(L,\) be a p-block of G = G with abelian defect, and assume
Z°(L)o, has rank at least 2. Suppose F = F} for a Frobenius endomorphism
Fy of G, and let o be the automorphism of G induced by Fy. Then for any
inner-diagonal automorphism 7 of G, Irr(b) contains a character that is not
oT-stable and is trivial on Z(Q),.

Proof. We have G = SL,(eq) and G* = PGL,(eq), with ¢ € {£1}. The
assumption on |Z(G*)| forces p|(q — €). First consider the case ¢ = 1. Then
e = 1. Let L* < G* be dual to L. Up to replacing L* by a G*/'-conjugate
we may assume that Fy acts on Z(L*)g, = Z(L*) by the gp-power map, where
q = gh- Now Z(L*)g, has rank at least two, so there exist at least two maximal
proper 1-split Levi subgroups Lj, L > L*, with Z(L}) a 1-torus of Z(L*) of
rank 1. Let ¢; be a generator of the cyclic Sylow p-subgroup of Z (L} ). Then
preimages t; of ¢; in GL,(¢) (under the natural quotient map) can be taken
as diagonal matrices where #; has m; eigenvalues ¢, a primitive kth root of
unity with k = |Z(L3)¥|, = |t;| (a p-power), and all other eigenvalues 1, with
1 <my < mg < n say. We have t7 = Fy(t;) = t{°, so t; is not o-stable.

Let a1, a9 be integers not both divisible by p such that

mia; + moaz =0 (mod k).
Then # := #{'#5? has determinant 1, so lies in SL,(q), whence
t =175 € [G*,G"].
By [46, Prop. 4.5] this means that any character in (G, st), for s € L* a
semisimple p’-element has Z(G), in its kernel. Furthermore, the class of ¢ is

not o-stable. Now t has eigenvalues (“172 (%2 and 1, and at least two of those
are distinct by the choice of a1, as. Thus, either

CGLn(q) (t) = GLy, (q) X GLy—n, ()

for a suitable 1 < ny < n, or

CGLn(q) (E) = GLy, (q) x GLmrml(Q) X GLnfmz(Q)-

All of these have automiser of order at most 2 unless m; = mg —m; = n/3
when it is &3. Assume we are in the latter case and p = 3. If L* itself is of this
form, then the defect groups of b are non-abelian, being a non-trivial extension
of Z(L*){ with a Sylow 3-subgroup of the automiser of L [11, Lemma 4.16].
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Otherwise, L* has strictly smaller rank, and then we may choose the L] such
that the centraliser of ¢ is not of this special form. We may then complete the
argument as in the proof of Proposition 4.8.

If e = —1 (so G is unitary), we may argue in an entirely similar fashion. O

The proof actually shows that the assumption on abelian defect groups
can be dropped when either p > 5, or p = 3 and in addition L is not of type

A

PROPOSITION 4.12. Theorem 4.1 holds for S = Ly,(eq), € € {£1} and
pllg—e.

Proof. By our previous reductions and Proposition 4.9 we may assume S
is a central quotient of G = SL,(eq). Let b be a p-block of S with abelian
non-cyclic defect and b the p-block of G’ dominating it. Then by the proof of
[2, Th. 5], one of the following holds for any block B of GLy,(eq) lying above b:

(4.12.1) B has abelian defect groups; or

p =3, n=3m, and Irr(B) C &(GL,(€q), s), with
(4.12.2) C = CqL,(eq)(8) = GL3((eq)™)
for some semisimple 3'-element s € GL,,(eq), and ((eq)™—1)3=3.

Now first assume that H or K induce an automorphism v = o7, where o
is a field automorphism of S of order p, and 7 € J = Inndiag(S). That is, o
is induced by a field automorphism Fy of G, where after conjugation we may
assume F = F}. As p|(q — €) and ¢ is a pth power, in fact we have p?|(g — €),
and so we are in case (4.12.1). Also note that if b = bg(L, \), then Z°(L)g,
has rank at least 2 since b has non-cyclic defect. But then by Proposition 4.11
the block b contains an irreducible character of G not fixed by « and trivial on
Z(@)p, hence a character of b. Thus the assumptions of any of the parts (a),
(b), and (c¢) in Theorem 4.1 are not satisfied.

So we may now assume that the p-elements in H and K only induce
diagonal automorphisms. In particular, this establishes 4.1(b) and shows that
K/S is cyclic. Hence by Lemma 4.3 it suffices to prove 4.1(a); moreover, using
Lemma 4.2 we may assume H/S is a p-group contained in .J/S.

Suppose we are in the situation of (4.12.1). Since GL,(eq) induces all
diagonal automorphisms on G and thus on S and since H/S is a cyclic p-group,
we can find a p-element g € GL,,(eq) such that Gy := (G, g) induces H while
acting on S. Furthermore, G < G; < GL,(eq) and G1/G is a p-group. Since
every character in b is H-invariant, bis G1-invariant, and since the defect
groups of any Gi-block lying above b are abelian, the statement follows from
Proposition 2.4.
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Finally we consider the situation of (4.12.2). Recall our hypothesis that
the defect group D of b is abelian but non-cyclic. As shown in the proof of
[2, Th. 5], |D| < 32, whence |D| = 32. On the other hand, B has defect
groups of order 3%, and (¢ — €)3 = 3, so the defect groups of b have order (at
least) 33. It follows that S is a quotient of G by a central subgroup Z of order
z divisible by 3. By Lemma 4.2 we may assume |H/S| = (¢ —€)3 = 3, and that
H is induced by the conjugation action of G; := (G, g) < GL,(eq) for some
3-element g. As G1/G is a 3-group, b lies under a unique 3-block B; of G; and
so By lies under B. Since BHZ holds for b by [2], every character 6 € Irr(b)
has height zero, so the 3-part of its degree is

d := |Ly(eq)[3/3* = |GLn(eq)|/3".
By assumption, 6 is g-invariant, so, viewed as G-character, it extends to a
character of G1, which is still trivial at Z. Thus the degrees of all characters
in Irr(B;) that are trivial at Z have 3-part d.

By [2, Th. 1], Irr(B) consists of all characters in £(GLy(eq), st) for ¢t a
3-element in C' = GL3((eq)™). As 0 is trivial at Z and lies under some such
character, using [46, Prop. 4.5] we see that the order of det(st) divides (¢—e¢)/z.
But s is 3’ and t is a 3-element, so the order of det(s) divides (¢ — €)/z. Let
w € IF';Q be of order 3, and consider

t := diag(1,w,w?) € SL3((eq)™) < C.
Then t centralises s and, as det(t) = 1, det(st) = det(s) has order dividing
(q—€)/z. Again by [46, Prop. 4.5], the semisimple character x5 € £(GL,,(eq), st)
is trivial at Z. Any irreducible constituent v of the restriction of xg to Gy

is also trivial at Z. By uniqueness of Bj, we have ¢ € Irr(Bj). Since Gy has
3’-index in GLy,(eq),

Y(1)3 = xst(1)3 = |GLn(eq)[3/|Cc(t)]3
= |GLn(eq)|3/((eq)™ — 1)5 = |GLn(eq)|3/3% = 3d,
and this is a contradiction. O

PROPOSITION 4.13. Let S = Eg(eq), € € {£1} with 3|(g—¢). Assume that
BHZ for p = 3 holds for all groups of order smaller than |S|. Then Theorem 4.1
holds for S at p = 3.

Proof. Let b be a 3-block of S with non-cyclic abelian defect groups, and
let b = ba(L, \) be the block of G = GF dominating it. So b = b if and only
if S = G. Again we first show that field automorphisms of order 3 modulo
J := Inndiag(S) do not point-wise fix all irreducible characters in b. First let
e =158 G = Eg(q) and e = 1. Set Z := (Z°(L*))3, a 3-group of rank
at least 2. Assume F' = Fg’, and accordingly write ¢ = qg. Now Fj acts by
= x? on Z. Let LY, i = 1,2, be two distinct maximal 1-split Levi subgroups
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of G* containing the dual Levi L* < G* of L and t; € Z(L}){" < Z generators
of the Sylow 3-subgroups. Let a; € Z not both divisible by 3 be such that
t = t]'t5* € [G*,G*]. Then we have Fy(t) = t% # t. Note that ¢ has order
divisible by 9.

Now L’ := Cg=(t) is either a maximal proper 1-split Levi subgroup of
G* or equal to the intersection L} NL3, a Levi subgroup of semisimple rank 4.
Assume for a moment that L’ does not have type Dy. Now Ng+((t)) normalises
Cg+(t) = L'. But the automiser of the latter does not contain elements of
order 3 by Lemma 4.7, respectively by inspection. Thus, ¢ is not G*'-conjugate
to Fy(t), and we may complete the argument as in Proposition 4.11 to see that
Irr(b) contains characters trivial on Z(G)¥ in Lusztig series not fixed by Fy.
If L' has type Dy, its automiser is the symmetric group of degree 3. By a
computation in the reflection representation of the Weyl group using [57], there
are generators z,y of the Sylow 3-subgroup of Z(L’)¥ such that an element
w of order 3 in the automiser acts by = +— y ~ (zy)~!. (Note that Z(L/)¥
lies in a maximally split torus on which the Weyl group naturally acts.) Then

' = 271y is a 3-element in [G*,G*]. Now w acts by t¥ = 2~ 1y=2

t:=z"z"
while Fj sends every element in Z(L') to its qth power. So again, ¢ is not
G*-conjugate to Fy(t), and we conclude as before.

The above result already establishes 4.1(b) and shows that K/S is cyclic
in 4.1(c). By Lemma 4.3, it remains to prove 4.1(a), and we may now assume
H only induces diagonal automorphisms of S, and in fact H = G* using
Lemma 4.2. First assume S = G. Let G — G be a regular embedding, and
let G := G¥. Then any defect group of b is contained in a maximally split
torus of G, and thus defect groups of any block b of G above b are contained
in a maximally split torus of G (see [26, Th. 1.2(b)] for quasi-isolated blocks
and [11, Lemma 4.16] for the others) and so are abelian. Since G induces all
diagonal automorphisms of G, we are done by applying Proposition 2.4 (and
arguing as in case (4.12.1) of the proof of Proposition 4.12).

Finally, assume S = G/Z(G) is the simple group (which is isomorphic to
[G*,G*] < G* = H as duality keeps the root system of type Eg). Consider the
block b of G* covering b. If b has abelian defect groups, then the statement
again follows from Proposition 2.4. Assume b has a non-abelian defect group D,
and is not quasi-isolated. Then its Morita-equivalent Jordan correspondent
block by, of a group of order less than |G*|/3 = |S|, also has non-abelian
defect by [5, Th. 1.1]. By assumption, b, satisfies BHZ, so contains a character
of positive height. But then so does b since the Bonnafé-Rouquier Morita
equivalence [6] preserves heights. Also by assumption, b has abelian defect,
and hence all characters in Irr(b) possess height zero by the main result of [26].
Now the existence of characters of positive height in b implies that G* does
not fix all characters in Irr(b). On the other hand, if b is quasi-isolated then
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defect groups of b are non-abelian or cyclic by [26, Prop. 4.3 and Th. 1.2(b)]
and [17, pp. 3563-354].

For the twisted type groups, that is € = —1, entirely similar considerations
apply. O

COROLLARY 4.14. Let p be an odd prime, and let S be a quasi-simple
group. Let § := S/Z(S), S < H < Aut(S), and assume OP (H/S) = H/S.
If b is a p-block of S with abelian, non-cyclic defect groups such that every
character in b is H-invariant, then H/S is a cyclic p-group.

Proof. The statement follows from Proposition 2.2(b) unless S is of type
Ay, 2A,,, or p =3 and S is of type Dy or Eg(eq) with 3|(¢—¢) and € € {&1}. In
the latter cases, for J := Inndiag(S), we have p { |HJ/J| by Propositions 4.9,
4.10, 4.12, and 4.13. By assumption, H/S, and hence H.J/J, has no non-trivial
p/-quotient. Thus H < J, and the claim follows from Proposition 2.2(c). O

5. Proofs of Theorems A and C

5.1. Proof of Theorem A. Now we proceed to prove the “only if” impli-
cation of Brauer’s Height Zero Conjecture for primes p > 2. Suppose B is a
p-block of G with defect group D, and assume all y € Irr(B) have height zero.
We want to show that D is abelian. We will assume that G is a counterexample
to BHZ, first with |G /Z(G)| smallest possible, and then with |G| smallest possi-
ble. By the Gluck—Wolf theorem [21], G is not p-solvable. Recall that if H < G
and N <G, then |H : Z(H)| < |G : Z(G)| and |G/N : Z(G/N)| < |G : Z(G)|.

Step 1. B is a quasi-primitive block; that is, if N < G and e is a block of
N covered by B, then e is G-invariant.

This follows by Fong-Reynolds ([43, Th. 9.14]) and induction.

Step 2. If N is a proper normal subgroup of GG, then D N N is abelian.
In particular, O (G) = G, D is not contained in any proper normal subgroup
of G, and @ := O,(G) is abelian.

Suppose N is a proper normal subgroup of G and e is a p-block of N
covered by B. By [43, Th. 9.26], we have D N N is a defect group of e, using
that e is G-invariant (by Step 1). Let ¢ € Irr(e). By [43, Th. 9.4], there is
some x € Irr(B) (of height zero) lying over £. By [41, Lemma 2.2, we have
that € has height zero. Hence D N N is abelian by minimality of G.

Now, if OY (G) < G, then D = D N O (G) is abelian by the previous
claim applied to N = O” (G), a contradiction. Finally, since Q@ = 0,(G) < G
and @Q < D, the claim applied to N = ) shows that ) = Q N D is abelian.

Now let

C:=Cq(Q),
so that @ < C.
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Step 3. We have that Z(G) has p’-order. In particular, we may assume
that C' < G or that @ = 1. Also, if L <G is a non-trivial p-group, then D/L
is abelian.

Suppose that 1 < L is a normal p-subgroup of G. Then there is a block
B of G/L contained in B with defect group D/L by [43, Th. 9.9(b)]. By the
definition of heights, all irreducible characters in B have height zero. Thus
D/L is abelian, by BHZ applied to G/L.

Assume now that 1 < L is a central p-subgroup. Let § € Irr(D), and
let v € Irr(L) be under §. Let x € Irr(B) over v. Since x has height zero,
it follows that v extends to some linear v € Irr(D), by [40, Th. 4.4], using
that v is G-invariant. By Gallagher’s Corollary 6.17 of [25], we have § = 3
for some 8 € Irr(D/L). Since D/L is abelian by the previous paragraph, we
conclude that 6(1) = 1. Hence D is abelian, contrary to the choice of G. Hence
Pt 1Z(G).

Step 4. If Z := Oy (G), then Z = Z(G) and Z is cyclic.

Let 6 € Irr(Z) such that the p-block {0} of Z is covered by B. We know
that 6 is G-invariant. We prove this step using the language of -blocks and
character triples (see [51].) We have that (G, Z,0) is a character triple. By
Problems 8.12 and 8.13 of [43], there exists an ordinary-modular character
triple (G*, Z*,0*) isomorphic to (G, Z, ), which we can construct as in [51,
Th. 3.4]. Hence Z* has order not divisible by p and is central in G*. Since
G//Z is isomorphic to G*/Z*, we have that Z* = O, (G*). If

o :Irr(G|0) — Irr(G*|0%)
denotes the associated standard bijection, we have o(Irr(B)) = Irr(B*) for
a unique p-block B* of G*. In particular, Irr(B) = Irr(B|f) is a 6-block.
Since o(x)(1) = x(1)/6(1), then o(x)(1), = x(1), for x € Irr(B), and so all
characters in Irr(B*) have the same height (zero).

Let D* be a defect group for B*. We show next that D and D* are
isomorphic, hence if D* is abelian, then so is D. Since

|G : D, =x(1), =0(x)1), =|G*: D*|,

and |G|, = |G*|p, we have that |D| = |D*|. If Dy/Z is a 6-defect group of B,
then, by [51, Def. 4.1], we have Dy/Z = D*Z*/Z* = D*. By [51, Th. 5.1],
we have that Dy/Z < DZ/Z, replacing D by a G-conjugate, if necessary. By
comparing orders, we have that Dy/Z = DZ/Z is isomorphic to D. Therefore
D and D* are isomorphic.

Notice that |G* : Z(G*)| < |G* : Z*| = |G : Z| < |G : Z(G)|, using that
Z(G) < Z (by Step 3). Therefore, if |G* : Z(G*)| < |G : Z(G)|, then we are
done by applying BHZ to G*. In the case of equality, we have Z = Z(G).
Finally, we show that Z is cyclic. Let {\} be the block of Z covered by B,
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where A € Irr(Z). Let K = ker(\). Hence, K is contained in ker(x) for all
x € Irr(B). If K > 1, then we apply [43, Th. 9.9(c)] and BHZ to G/K. The
choice of G shows that K = 1 and therefore, that Z is cyclic.

From now on, let E(X) denote the layer of a finite group X.

Step 5. We have that C' is not p-solvable and E(G) # 1.

Assume that C' is p-solvable. As O, (C') = Z is central, we have O,(C/Z)
= QZ/Z. Since C is p-solvable, we have C¢/7(QZ/Z) = QZ/Z. This implies
C = QZ. By [45, Lemma 3.4], then Irr(B) = Irr(G|\) for some \ € Irr(Z).
Let P € Syl,(G), and let A=1p® A\ € Irr(P x Z). Then A% has p/-degree,
and therefore it contains some p’-degree irreducible constituent y. Now, y
lies over A, and therefore x € Irr(B). We conclude that P is a defect group
of B. By hypothesis, p does not divide 7(1) for every 7 € Irr(B), whence P
(and hence D) is abelian by the main result of [46]. Since G is a minimal

counterexample, C' is not p-solvable.
Next, assume that E(G) = 1. Then E(C) =1 and

F*(C) = F(C) = 0,,(F(C)) x 0,(C).

, O, < 0,(C) < 0,(G), whence O,(C) = @ is central in C, and
F(C)) £ 0,(G) = Z is central in G. It follows that

C = Cco(F*(C)) <F*(C),
and so C' is p-solvable, a contradiction to the previous conclusion.

Step 6. Let S be a component of G, and let N be the normal subgroup of
G generated by the G-conjugates of S. Let e be the block of N covered by B,
and let b be the only block of S that is covered by e. Then e is not nilpotent.
In particular, there are o, 8 € Irr(b) with different degrees.

First notice that b is the only block covered by e, because N is a central
product of the different G-conjugates of S. In particular, every irreducible
character of S is N-invariant. Suppose that e is nilpotent. Let Ny = NZ(G),
and let e; be the unique block of N7 covered by B and covering b. It is clear that
e1 is nilpotent, using the definition of nilpotent blocks. (See [53, Lemma 7.5].)
We have that D; := D N Nj is a defect group of e; (see [43, Th. 9.26]). By
Theorem 2.6, there is a finite group L’ with |L' : Z(L')| < |G : Z(G)|, where L'
has a block B’ with defect group D and such that all the irreducible characters
of B’ have height zero. Therefore D is abelian by BHZ applied to L’. Thus e
is not nilpotent.

If all the irreducible characters in b have the same degree, then all the
irreducible characters in e, a central product of the G-conjugates of b, also
have the same degree. Then by [48, Prop. 1 and Th. 3|, we have that D N N
is abelian with inertial index one. By Broué-Puig [9, 1.ex.3], the block e is
nilpotent, and we are again done.
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Step 7. Let S be any component of G. Suppose B’ is the E(G)-block
covered by B and b is the S-block covered by B’. Then b has non-cyclic defect
groups. In particular, no component of G has cyclic Sylow p-subgroups.

By Step 6, b has non-central defect groups (since any block with central
defect groups is nilpotent, by [9, l.ex.1]). Suppose that b has cyclic defect
groups. Consider the central product N of the different G-conjugates of S,
so that N < G. Let D; := DN N, so that G = Ng(D1)N. Let by be the
block of N covered by B. Let by be the Brauer first main correspondent of by,
which is the block of Ny (D;) that induces bg. Let B; be the unique block
of Ng(D;) that covers by and induces B (by the Harris-Knorr Theorem 9.28
of [43]), which is a block with defect group D. By Theorem 2.7, we conclude
that all the irreducible characters of By have height zero. If Ng(D;) < G, by
BHZ applied to Ng(D;) we will have that D is abelian, a contradiction. Hence
Dy <@G. In this case, D1 < Q. Since [@Q, N] = 1, we conclude that D; < Z(N),
and bg is nilpotent, in contradiction with Step 6.

Step 8. All components of G are normal in G.

Suppose that S7 is a non-normal component, and write the normal sub-
group NV in Step 6 as N = S1xSox---%x5,,, a central product of m > 1 compo-
nents, where G/N permutes S1,...,Sy, transitively. In particular, Sy,...,Sp,
are isomorphic to each other, and we fix an isomorphism between S; and any S;.

Again by Step 1, B covers a unique block e of N that is G-invariant, and
e is then the central product of blocks b; of S;, 1 < i < m. By Step 6, each
Irr(b;) contains characters of different degrees. Furthermore, as before, the
block e has defect group D N N, which is abelian by Step 2. It follows that b;
has abelian defect groups, which are non-cyclic by Step 7. By Theorem 3.1,
Irr(b;) contains at least three Aut(S;)-orbits, say of «;, f;, and ;. For each ¢
and given the fixed isomorphism between S; and S;, we can view «y, f1, and
~1 as Si-characters. Relabeling oy, 5;, and ~; if necessary, we may assume that

«; is not Aut(S;)-conjugate to 5 or 71,
(5.1.1) B; is not Aut(S;)-conjugate to ay or 71, and
i is not Aut(S;)-conjugate to o or fi.

Since m > 1, the (transitive) permutation action of G on the set {S1,...,Sn}
is non-trivial, and so the kernel K of this action is a proper normal subgroup
of G containing N, and from Step 2 we have O” (G/K) = G/K. Now applying
Theorem 2.1 to G/K we obtain a partition

{Sl,...,Sm} = AT UAUA;
such that NJ_; Stabg/n(A;) has index divisible by p in G/N. Setting
0:=01 0% @ O,
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where 0; = «; if S; € Ay, 0; = 5; if S; € Ao, and 0; = ; if S; € As, we then
see that B covers the N-block of 6.

Consider any g € G that fixes 6, and suppose that S{ = S;. Note that
f|s, is a multiple of 6;, and 69|, is a multiple of af. Again using the fixed
isomorphism S7 = S; and writing every 9 with € S1 as 27 for a suitable o €
Aut(S;), we can write of as of, and so §; = af and thus oy and 6; are Aut(S;)-
conjugate. Since neither 3; nor 7; are Aut(S;)-conjugate to oy by (5.1.1), 6;
must be «;, which means S; € Ay by the choice of the ¢;’s. This argument,

applied to any S;, shows that g stabilises the partition A; U As LI Ag. Thus
3

Go/N < () Stabgn (As),
i=1
and so p divides |G : Gy|. But this contradicts Proposition 2.5.

Step 9. If S is a (normal by Step 8) component of G, then Z(S) is of
p/-order. Also, if D is any defect group of B and R := DNS, then G = SC¢(R),
and [D, R] = 1. Furthermore, every a € Irr(b) (where b is the S-block covered
by B) is G-invariant, and extends to DS. Moreover, G/SC¢(S) is a p-group.

First we prove that there is a defect group D of B satisfying that
[D,DNS]=1

and G = SCg(S N D). Let b be the block of S covered by B. Notice that
Ca(S) < K := G[b] < G, the Dade group, by the definition of G[b]. (See [42],
for instance.) Also, notice that R = D N S is a defect group of b, and that
G = SNg(R), by the Frattini argument. Let bg be a block of Cg(R) with de-
fect group R inducing b, and let T'=Ng(R)p,,. By Lemma 2.3, there is a defect
group D* of B such that D* N.S=R and D* <T'. For the sake of notation, we
assume that D* = D. Let H:=G/Cg(S) and S=SCg(S)/Cq(S). By Propo-
sition 2.2, we have that G/SC¢(S) has a normal p-complement U/SCg(S).
Since |G : U] is a power of p, and B covers a unique block of U, we have
G = UD, by [43, Th. 9.17]. Now, every 7 € Irr(b) has the property that
|G : G.| is coprime to p, by Proposition 2.5. Let x € D. Let W = U(z). Since
|G : G;| is p/, then G = UG, so |W : W;| is also p’ for every 7 € Irr(b). So
the hypotheses of Theorem 4.1(a) are satisfied with the group W/Cg(S) and
every p-element z € D. Moreover, by the choice of G, BHZ holds for all finite
groups X with |X/Z(X)| < |G/Z(G)|, in particular for all groups of order less
than |S/Z(S)|. We conclude by Theorem 4.1(a) that [z, R] = 1 for = € D.
Hence D < SCg(R) JG. If SCq(R) < G, we are done by Step 2.

Now, let Dy := DNK. By [42, Th. 3.5(ii)], we have D; = RCp(R) = RD,
and we conclude that D = D;. Hence K = G by Step 2. (Recall that K is
normal in G.) Therefore every o € Irr(b) is G-invariant (by [29, Lemma
3.2(a)], for instance). By Corollary 4.14, we have that H/S is a p-group. Thus
G/SCg(S) is a p-group.
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Let 6 € Irr(b). Then 6 lies under some x € Irr(B), which by hypothesis
has height zero. By [40, Th. 4.4], we have that 6 extends to SDY for some
g € G. Therefore 0 = 09" extends to SD, as claimed.

Now, we prove that if g € G, then [D9, DINS] =1 and G = SCq(DINS).
Indeed, since S is normal in G, we have that [D9, DI N S| = [D,D N S)9 = 1.
The second part follows because DI N S is a defect group of b, and therefore
D9N S = R? for some s € S. Thus G = SCg(R) = SCq(R?).

Suppose 1 < Z,, is a Sylow p-subgroup of Z(S). By Step 3, D/Z, is abelian.
Since Z, < O,(S) < DN S, we have that SD/S is abelian. In this case, the
block b of SD that covers b has defect group D (by [43, Probl. 9.4], using that
b is G-invariant) and, as we saw, all irreducible characters of b extend to SD.
Using that and the fact that SD/S is abelian, it follows that all irreducible
characters in b restrict irreducibly to S. In this case, we easily check that all
the irreducible characters in b have height zero. If SD < G, then we are done
by minimality of G. So we may assume that SD = G. Since [D,R] = 1, we
have that Z,, < Z(G). By Step 3, this is not possible. We conclude that Z, =1
and thus p 1 |Z(9)|.

Final Step. From Step 9, we conclude that

(5.1.2) G/K is a p-group,
where
K = N SCq(S) = E(G)C(E(G)) = ECq(E), E :=E(G)Z.

S component of G

We also have F' = EQ for
F:=F(G)=F(GE(G) = (Q x Z)«E(G).

If F' = G, then G is a central product of an abelian group with quasi-simple
groups. However, in this case BHZ holds for G by the quasi-simple case [28],
using Corollary 2.9. Hence we may assume F' < G.

Next we show that

(5.1.3) K/F is a p/-group.

Indeed, let T' := Cg(FE), which contains Q). Let ¢; be the block of T' covered
by B, using Step 1. By minimality of G, ¢; has an abelian defect group D;.
Note that

(5.1.4) Cr(Q)=Ce(F) < FNT = QZ.

Hence, by [45, Lemma 3.4] we have that ¢; = Irr(7T'|\) for the character \ €
Irr(Z) that lies under B. By inducing 1p, x A € Irr(P1Z) to T', where P, €
Sylp(T) contains @), we see that there is some p’-degree irreducible character
v of T over A\. As v lies in ¢1, ¢; has maximal defect, and hence D; € Sylp(T).
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Hence the abelian p-group D; centralises @), and so D; € Cr(Q) = QZ, i.e.,
D, = @, proving (5.1.3).

By Step 1, there is a unique block e of E' and a unique block f of F' covered
by B; in particular, e is covered by f. Let D be any defect group of B. Then
D N F is abelian by Step 2 (since F' < G). Let

R:=DNE,
so that R is a defect group of the E-block e. Write
E=7Zx%5%---%8,,

where S;, 1 <4 < n, are the components of GG, which all are normal in G by
Step 8. Since D; := D N S; is a defect group of the unique S;-block b; covered
by e, by Corollary 2.9 we have R = D; x --- x D,, (being a direct product
since Z(FE) = Z is a p/-group). By Step 9, we have that [D, R] = 1. Also, since
[@Q, E] =1 and the Z(S;) are p’-groups by Step 9, we have

(5.1.5) QNE=1and F=Q x E.

Let c2 be the unique block of C' = Cg(Q) covered by B, using Step 1. By
[43, Cor. 9.21], we have that B is the unique block of G that covers cz. By
(5.14), CN K = Ck(Q) = F. Since K/F is a normal Hall p-complement of
G/F by (5.1.2) and (5.1.3), we have that C/F is a p-group. Therefore C/E is
a p-group by (5.1.5). By [43, Cor. 9.6], co is the only block of C' covering e.

Now, fix some p € Irr(e), and consider any x € Irr(G|p). We claim that y
lies in B. If v € Irr(C) lies under y and over p, then we see that v lies in cs.
In particular, x lies in a block that covers co, and therefore y lies in B, as
claimed. Recall that G/K is a p-group by (5.1.2), and by Step 1, any block
c3 of K covered by B is G-invariant. By [43, Cor. 9.6], B is the unique block
of G that covers c3. By [43, Cor. 9.18], and using the height zero hypothesis,
for every 7 € Irr(cs) that lies under x, we have p { x(1)/7(1). But K/F is a
p/-group by (5.1.3) and F = E x @ by (5.1.5) with @ abelian. It follows that
p1x(1)/p(1). Hence G/E has abelian Sylow p-subgroups by [46, Th. A], and
SO

(5.1.6) D/(D N E) is abelian.

Now, if @ > 1, then D/Q is abelian by Step 3, and since D/(D N E)
is abelian by (5.1.6), we obtain [D,D] < @ N E = 1 using (5.1.5), i.e.,, D is
abelian, and we arrive at a contradiction. Thus we have shown

(5.1.7) Q=1.

For each i, recall that b; is the unique S;-block covered by e. Then any
0; € Irr(b;) is G-invariant and extends to
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by Step 9. We also have that H;/S; is a p-group, and [D,D] < DN E by
(5.1.6). If d € DN E, we can write d = zs € E = S;Cg(5;) with s € §;
and € Cg(S;). Thus x = ds~! € H; centralises S;, i.e., * € Cp,(S;) and
d € S;Cp,(S;). It follows that [D,D] < DN E < S;Cpy,(S;), and so
(5.1.8) H;/S;Cm,(S;) is an abelian p-group.
We also note that Cg,(S;) has a normal p-complement — indeed,

CHZ(Sz) nsS; = Z(Sl)
is a p/-group (by Step 9), and Cg,(S;)/Z(S;) — H;/S; is a p-group. So
Cu,(Si) = Z(S;) x Q; for a Sylow p-subgroup Q; of Cp,(S;). But then
Qi < Cp,(S;) centralises Z(S;), so in fact

Cry,(Si) = Z(S;) x Q;
and Q; = Op(CHZ(Sz)) < H;. Note that Op(Hz) ns; < Op(Sz) = 1, implying
O,(H;) = Qi. Recall that the unique block b; of H; that covers b; has defect

group D, by [40, Lemma 2.2]; in particular, @Q; < D.
Now S; naturally embeds in

L; = H;/Q;

as a normal subgroup. Our goal now is to apply Theorem 4.1(c) to L; with
respect to the quasi-simple group

Si = 8,Q;/Q; = S
and the block b; of S; that is naturally isomorphic to b;. If yQ; € L; centralises
SzQz/Qz (modulo Ql), then [y, Sz} < Qz As Sz < Hi, we must have
ly,S;) € SiNQ; =1,
S0 Y € CHZ(Sz) = Z(Sz) X Qz Thus CL,(gz) = Z(S’i), and
(5.1.9) L;/S; = H;/S;Q; = H;/S;Cpy,(S;) is an abelian p-group
by (5.1.8).

Next we show that each #; € Irr(b;) extends to L;. By Step 9, 6;,
considered as a character of S;, has an extension 6; to H;. Restricting to
SZQZ = SZ X Qi, we have

9i|5i><Qi =0, @A
for a unique linear character A € Irr(Q;). In particular, A is H;-invariant. Re-
call that D; = DN .S;, and we have D; N Q; < 5;NQ; = 1, so we can view A
as a character of D;@Q; that is trivial at D;, and D-invariant. Since the charac-
ters in Irr(b;) are Hj-invariant, they are also H;-invariant when considered as

characters of b;. By Corollary 4.14 applied to L; with respect to the block b,
we have that

H;/SiCpy,(S;) = SiD/(Si x Q;) = D/(D; x Q;)
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is cyclic. Hence A extends to a (linear) character v of D/D; = H;/S;. Now,
viewing v as a linear character of H;/S;, we have that éiD restricts to 6; on S;
and trivial on @;, and thus 6; extends to L;, as wanted.

Since b; and b; are isomorphic, in particular, D;Q;/Q; is a defect group
of b;. Since D is a defect group of b;, by Lemma 2.10, we have that D/Q; is
a defect group of the block b; of L; = H;/Q;. As 6; extends to L; for every
0; € Trr(b;), and L;/S; is an abelian p-group by (5.1.9), we see that every
character in b; has height 0. Applying Theorem 4.1(c) to the block b; of S;
(which again holds in the case p = 3 and S; is of type Eg or 2Eg, by minimality
of G), we see that D/Q); is abelian, and thus

This is true for all components S;, so [D, D] centralises E = E(G)Z. Since
Q =1 by (5.1.7), we have E = F. It follows that

[D,D] < Cq(E) = Cg(F) < F,

and hence [D, D] < Z(F), and the latter group is a p’-group, again because
0,(G) = Q =1 by (5.1.7). Consequently, [D, D] = 1, contrary to the choice
of G as a minimal counterexample. O

5.2. Proof of Theorem C. Having proved Theorem A, and hence BHZ for
the prime p, we now see that the extra assumption for types Eg(eq) in Theo-
rem 4.1(a) is always satisfied. Hence Theorem C follows from Theorem 4.1(a) if
the defect group D is not cyclic. So suppose now that we have a quasi-simple
group S with Z(S) cyclic and p’-prime, that o is a p-power order automor-
phism of S fixing all the irreducible characters of a block b of S with cyclic
defect group D, and that o stabilises a block bp of Cg(D) that induces b.
We want to show that o fixes the elements of D. Let N = Ng(D). Then
by = (bp)" is the Brauer First Main correspondent of b. By [30], we know
that b satisfies the Alperin—-McKay inductive condition. In particular, there
is a bijection Irr(b) — Irr(by) that commutes with the action of o. Hence,
all irreducible characters in by are o-invariant too. By [43, Th. 9.12], there
is a unique irreducible character § € Irr(bp) with D C kerf. In particular,
0 is o-invariant. Also, the stabiliser T of bp in N is the stabiliser of 8 in V.
Also T/Cq(D) is a p/-group by [43, Th. 9.22]. If by is the Fong-Reynolds
block of T' covering bp corresponding to by, then all irreducible characters in
br are o-invariant, by the uniqueness in the Fong—Reynolds correspondence.
Notice that bp is the only block of T that covers bp, by [43, Cor. 9.21]. Fi-
nally, let A € Irr(D) be with o(\) = |D|, and consider the irreducible character
0 € Irr(bp), constructed in [43, Th. 9.12]. Let n € Irr(7'|6,), which necessarily
belongs to by and is therefore o-invariant. Since T'/Cg(D) is a p/-group and
o(o) is a power of p, we have that some T-conjugate of 6, is o-invariant, by a
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counting argument. Since  is T-invariant, then (6)* = 0y for t € T. Hence,
we deduce that p = ! is o-invariant for some ¢ € T'. Since o(u) = |D|, we have
that p is faithful. Therefore, u(d”) = p(d) for all d € D implies that d” = d
for all d € D. O

We conclude the paper with two remarks. First, the assumption p > 2 is
crucial for our approach: the conclusions of Proposition 2.2 and Corollary 4.14,
which play a key role at various steps of the proof of Theorem A, do not hold
when p = 2.

Secondly, we would like to point out that Brauer’s Height Zero Conjecture
implies its so-called projective version, as shown in [54], as well as the version
for #-blocks in [51].
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