

involve

a journal of mathematics

Galois action and cyclic defect groups for $\mathrm{Sp}_6(2^a)$

Andrew Peña, Frank Pryor and A. A. Schaeffer Fry

Galois action and cyclic defect groups for $\mathrm{Sp}_6(2^a)$

Andrew Peña, Frank Pryor and A. A. Schaeffer Fry

(Communicated by Scott T. Chapman)

Groups are mathematical objects used to describe the structure of symmetries, with one of the most canonical examples being the set of invertible matrices of a given size over a fixed base field. For a given group, a matrix representation leverages this by providing a way to represent each of its elements as an invertible matrix. The information about the (complex) representations of a finite group can be condensed by instead considering the trace of the matrices, yielding a function known as a character. One of the overarching themes in character theory is to determine what properties about a finite group or its subgroups can be obtained by studying its characters. We study a conjecture that proposes a correlation between the makeup of a group's irreducible characters and the properties of certain subgroups known as defect groups. In particular, we prove the conjecture for the finite symplectic groups $\mathrm{Sp}_6(2^a)$.

1. Introduction

Given a finite group G and an integer $n \geq 1$, a *complex representation of degree n* of G is a homomorphism $\rho : G \rightarrow \mathrm{GL}_n(\mathbb{C})$. In other words, ρ is a function such that, for each $g \in G$, the image $\rho(g)$ is an $n \times n$ invertible matrix with entries in the complex numbers, and $\rho(gh) = \rho(g)\rho(h)$ for each $g, h \in G$. Here on the left-hand side, multiplication is taken in G , and on the right-hand side, the operation is usual matrix multiplication. We obtain the corresponding *character* for ρ by taking the trace $\mathrm{Tr}(\rho(g))$ of each $\rho(g)$ (that is, by summing the diagonal entries). This gives a function $\chi : G \rightarrow \mathbb{C}$ defined by $\chi(g) = \mathrm{Tr}(\rho(g))$ for each $g \in G$. Note here that if $1 \in G$ is the identity element, then $\chi(1) = \mathrm{Tr}(I_n) = n$ is the degree of the original representation.

A character χ is *irreducible* if it cannot be written as $\chi = \chi_1 + \chi_2$, where χ_1 and χ_2 are characters corresponding to representations of G . We refer to the set of irreducible characters of G as $\mathrm{Irr}(G)$. The information about the character theory of G is summarized in the *character table* of G , which is the square table whose columns are indexed by conjugacy class representatives $\{g_1, \dots, g_k\}$ of G , whose rows are indexed by $\mathrm{Irr}(G) = \{\chi_1, \dots, \chi_k\}$, and whose (i, j) -th entry is given by $\chi_i(g_j)$.

MSC2020: primary 20C15, 20C33; secondary 20C20.

Keywords: character table, irreducible characters, Galois automorphisms, McKay–Navarro conjecture, Galois–McKay conjecture, local-global conjectures, symplectic group.

One of the main general problems in the representation theory of finite groups is the pursuit of answering the question “what information about G or its subgroups can be obtained from the character table of G ?” This general question fits into the framework of so-called “local-global” conjectures in character theory, which seek to find relationships between the character theory of G and properties of certain proper subgroups.

The following standard definitions will be useful. Note that, for a finite set X , we use $|X|$ to denote the cardinality of X . Hence, the order of a group G will be given by $|G|$. In analogy to this notation, the order of an element $g \in G$ will be written $|g|$.

We recall that given a subgroup $H \leq G$ of G , the *normalizer of H in G* , denoted by $N_G(H)$, is the subgroup

$$N_G(H) := \{x \in G : Hx = xH\}.$$

Throughout, if ℓ is a prime and n is an integer, we write n_ℓ for the largest power of ℓ dividing n and $n_{\ell'}$ for n/n_ℓ . If ℓ is a prime dividing $|G|$, then any subgroup P of G such that $|P| = |G|_\ell$ is called a *Sylow ℓ -subgroup of G* . We write $P \in \text{Syl}_\ell(G)$.

With this notation established, we may now state one of the earliest and most prominent of these “local-global” conjectures, the McKay conjecture [1972]. The McKay conjecture proposes that if G is a finite group, ℓ is a prime that divides $|G|$, and $P \in \text{Syl}_\ell(G)$, then $|\text{Irr}_{\ell'}(G)| = |\text{Irr}_{\ell'}(N_G(P))|$, where $\text{Irr}_{\ell'}(G)$ denotes the set of irreducible characters of G with degree prime to ℓ .

Although we only deal with complex representations here, representations over fields of positive characteristic ℓ can also be defined, and these are related to $\text{Irr}(G)$ by so-called ℓ -blocks. For our purposes, we consider ℓ -blocks as a partitioning of the set $\text{Irr}(G)$. Each set in the partition is written $\text{Irr}(B)$, corresponding to an ℓ -block B . (More precisely, the sets $\text{Irr}(B)$ can be obtained as the equivalence classes under the transitive closure of the relation on $\text{Irr}(G)$ such that $\chi, \psi \in \text{Irr}(G)$ are related if $\sum_{\ell \nmid |g|} \chi(g)\psi(g^{-1}) \neq 0$. Here the sum is taken over all elements of G whose order is not divisible by ℓ .)

Each ℓ -block is then associated with a special class of subgroups of G whose sizes are a power of ℓ , known as *defect groups* of the block. Although the precise definition of defect groups is technical and not necessary for the results here, we remark that if D is a defect group for B , then every $\chi \in \text{Irr}(B)$ satisfies $\chi(1)$ is divisible by $|G|_\ell/|D|$. The character $\chi \in \text{Irr}(B)$ is called a *height-zero character* if $\chi(1)_\ell = |G|_\ell/|D|$, and hence if $\chi(1)_\ell$ is as small as possible. We write $\text{Irr}_0(B)$ for the set of height-zero characters of B .

The McKay conjecture, while still unproven, opened the door to a number of stronger conjectures, of which the Alperin–McKay conjecture [Alperin 1976] (often thought of as the blockwise version of McKay, relating the set $\text{Irr}_0(B)$ to the height-zero characters in a block of $N_G(D)$), McKay–Navarro conjecture [Navarro

2004] (the Galois version of McKay), and the Alperin–McKay–Navarro conjecture (a combination of the other two) are most relevant to our work. Although these conjectures are beyond the scope of this article, we deal here with a consequence of the Alperin–McKay–Navarro conjecture. Namely, Rizo, Schaeffer Fry, and Vallejo [Rizo et al. 2020] proved that if the Alperin–McKay–Navarro conjecture holds for $\ell \in \{2, 3\}$, then we can determine from the character table of G whether a defect group is cyclic in the following way:

Conjecture 1.1 [Rizo et al. 2020]. *Let $\ell \in \{2, 3\}$. Let G be a finite group and let B be an ℓ -block of G with nontrivial defect group D . Then $|\mathrm{Irr}_0(B)^{\sigma_1}| = \ell$ if and only if D is cyclic.*

Here σ_1 is a specific Galois automorphism, which we define in Section 2B, and $\mathrm{Irr}_0(B)^{\sigma_1}$ is the set of members of $\mathrm{Irr}_0(B)$ that are fixed under the action of σ_1 . In this paper, we prove the following:

Theorem 1.2. *Conjecture 1.1 holds for the group $G = \mathrm{Sp}_6(q)$ and the prime $\ell = 3$, where q is a power of 2.*

Our proof of Theorem 1.2 relies on the known character table for $\mathrm{Sp}_6(q)$ with q even determined by Frank Lübeck [1993], as well as the known distribution of characters into blocks and their defect groups by Donald White [2000] and the third author [Schaeffer Fry 2013; 2014].

The paper is structured as follows. In Section 2, we introduce some additional notation and definitions and make some preliminary observations. (We remark here that more information on groups and characters can be found in [Isaacs 2006; James and Liebeck 2001].) In Section 3, we provide a series of computational lemmas regarding the irrational values that occur in the character table for $\mathrm{Sp}_6(q)$ and their behavior under that Galois automorphism σ_1 . Finally, in Section 4, we complete the proof of Theorem 1.2. We also provide an Appendix with examples of character values found in each relevant block.

2. Preliminaries

2A. General linear and symplectic groups. Let q be a power of a prime p , and let \mathbb{F}_q denote the finite field of size q . The *general linear group*, $\mathrm{GL}_n(q)$, is the group of all $n \times n$ invertible matrices with entries in \mathbb{F}_q .

With a proper choice of basis, the *symplectic group* $\mathrm{Sp}_{2n}(q)$ can be defined as

$$\mathrm{Sp}_{2n}(q) = \{g \in \mathrm{GL}_{2n}(q) : g^T J g = J\},$$

where

$$J := \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix},$$

I_n is the $n \times n$ identity matrix and g^T is the transpose of g . For the purpose of this paper, we are particularly interested in the case of $\mathrm{Sp}_6(q)$ (i.e., $n = 3$) when q is a power of $p = 2$. In this case, note that $I_n = -I_n$.

2B. The Galois automorphism σ_1 . We follow the definitions in [Gallian 2016, Chapter 32, p. 531]. Let \mathbb{E} be an extension field of \mathbb{Q} . Then an *automorphism* of \mathbb{E} is a field isomorphism $\sigma : \mathbb{E} \rightarrow \mathbb{E}$. That is, σ is a bijective map satisfying $\sigma(a+b) = \sigma(a) + \sigma(b)$ and $\sigma(ab) = \sigma(a)\sigma(b)$ for all $a, b \in \mathbb{E}$. Note that any such σ necessarily fixes \mathbb{Q} . We write $\mathrm{Gal}(\mathbb{E}/\mathbb{Q})$ for the set of automorphisms of \mathbb{E} . More generally, we can consider the so-called *Galois group* $\mathrm{Gal}(\mathbb{E}/\mathbb{L})$ of automorphisms of \mathbb{E} fixing all elements of \mathbb{L} when the extensions $\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{E}$ satisfy that \mathbb{E} is a splitting field for a polynomial over \mathbb{L} . The size of a Galois group $\mathrm{Gal}(\mathbb{E}/\mathbb{L})$ is the same as the degree $[\mathbb{E} : \mathbb{L}]$ of \mathbb{E} over \mathbb{L} , when it is finite, which is the dimension of \mathbb{E} viewed as a vector space over \mathbb{L} . For more information, we refer the reader to an abstract algebra text, such as [Gallian 2016, Chapter 32, p. 531].

Now, given a finite group G , the character values $\chi(g)$ lie in $\mathbb{Q}(e^{2\pi i/|G|})$ for all $g \in G$ and $\chi \in \mathrm{Irr}(G)$. Further, given any $\sigma \in \mathrm{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$ and $\chi \in \mathrm{Irr}(G)$, we obtain another irreducible character χ^σ defined by $\chi^\sigma(g) := \sigma(\chi(g))$ for all $g \in G$; see, e.g., [Isaacs 2006, Problem (2.2)]. Given a prime ℓ dividing $|G|$, there is a unique $\sigma_1 \in \mathrm{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$ satisfying that, for a root of unity $\xi \in \mathbb{Q}(e^{2\pi i/|G|})^\times$,

$$\sigma_1(\xi) = \begin{cases} \xi^{\ell+1} & \text{if } |\xi| \text{ is a power of } \ell, \\ \xi & \text{if } \ell \text{ does not divide } |\xi|. \end{cases} \quad (1)$$

Note that when $|\xi| = \ell$, i.e., ξ is a primitive ℓ -th root of unity, we have $\xi^{\ell+1} = \xi$. Therefore in this case, ξ is fixed by σ_1 . In fact, this is the only case in which a root of unity with order a power of ℓ is fixed by σ_1 . Further, note that σ_1 has order a power of ℓ .

In service of Conjecture 1.1, we are concerned with studying when $\chi^{\sigma_1} = \chi$, for certain $\chi \in \mathrm{Irr}(G)$, which means that the value $\chi(g) \in \mathbb{Q}(e^{2\pi i/|G|})$ is fixed by σ_1 for each $g \in G$. In the character table for $\mathrm{Sp}_6(q)$, obtained in [Lübeck 1993] and available in the computer algebra system CHEVIE [Geck et al. 1996], we often find rational linear combinations of expressions of the form $\xi + \xi^{-1}$, where ξ is some complex root of unity. For this reason, we establish the following observation.

Lemma 2.1. *Let G be a finite group and let ℓ be an odd prime dividing $|G|$. Let ξ be a complex n -th root of unity, where $n > 2$ is a divisor of $|G|$. Then σ_1 fixes ξ if and only if σ_1 fixes $\xi + \xi^{-1}$.*

Proof. First, assume that $\sigma_1(\xi) = \xi$. Then note that

$$\sigma_1(\xi + \xi^{-1}) = \sigma_1(\xi) + \sigma_1(\xi^{-1}) = \sigma_1(\xi) + \sigma_1(\xi)^{-1} = \xi + \xi^{-1},$$

and hence σ_1 fixes $\xi + \xi^{-1}$ as well.

Now assume that σ_1 fixes $\xi + \xi^{-1}$. Let $\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{J} \subseteq \mathbb{K}$ be extension fields such that $\mathbb{K} = \mathbb{Q}(e^{2\pi i/|G|})$, $\mathbb{J} = \mathbb{Q}(\xi)$, and $\mathbb{L} = \mathbb{Q}(\xi + \xi^{-1})$. Note that any automorphism must permute the $|\xi|$ -th roots of unity, and hence \mathbb{J} is stabilized by σ_1 . Then $\sigma_1 \in \mathrm{Gal}(\mathbb{K}/\mathbb{L})$. Since $\xi, \xi^{-1} \notin \mathbb{L}$, the polynomial

$$x^2 - (\xi + \xi^{-1})x + 1 = (x - \xi)(x - \xi^{-1}) \in \mathbb{L}[x]$$

has no solutions in \mathbb{L} . Therefore \mathbb{J} is a splitting field over \mathbb{L} , and the order of the group $\mathrm{Gal}(\mathbb{J}/\mathbb{L})$ is 2. We can then say that $\mathrm{Gal}(\mathbb{J}/\mathbb{L}) = \{\phi_1, \phi_2\}$, where $\phi_1(\xi) = \xi$ and $\phi_2(\xi) = \xi^{-1}$.

Now consider the restriction σ'_1 of σ_1 to $\mathrm{Gal}(\mathbb{J}/\mathbb{L})$. That is, σ'_1 is the automorphism of \mathbb{J} that is simply the restriction of σ_1 to the smaller domain \mathbb{J} . Then σ'_1 must either be ϕ_1 or ϕ_2 . For the sake of contradiction assume the latter case. Since the order of σ_1 is a power of ℓ , say ℓ^b , we have $\sigma_1^{\ell^b}$ is the trivial automorphism of $\mathrm{Gal}(\mathbb{K}/\mathbb{L})$, so its image in $\mathrm{Gal}(\mathbb{J}/\mathbb{L})$ is also trivial. However, if $\sigma'_1 = \phi_2$, then we would have $\phi_2^{\ell^b}(\xi) = \xi^{-1}$, which is a contradiction. Therefore we must have $\sigma'_1 = \phi_1$, and so $\sigma_1(\xi) = \xi$. That is, σ_1 also fixes ξ . \square

Recall that for an element of $\mathbb{Q}(e^{2\pi i/|G|})$ and an integer a , we have $\sigma_1(\xi^a) = \sigma_1(\xi)^a$, so that ξ^a is fixed by σ_1 whenever ξ is. This gives us the following useful observation:

Lemma 2.2. *Let G be a finite group and let ℓ be an odd prime dividing $|G|$. Let ξ be a complex n -th root of unity, where $n > 2$ is a divisor of $|G|$. Let $\mathcal{I} \subseteq \mathbb{Z}$ be some subset of \mathbb{Z} containing 1. Then ξ is fixed by σ_1 if and only if ξ^a is fixed by σ_1 for all $a \in \mathcal{I}$.*

3. Breaking down character values for $\mathrm{Sp}_6(q)$

3A. Notation. For the remainder of the paper, let q be a power of 2 and let $G = \mathrm{Sp}_6(q)$. Note that $|G| = q^9(q^2 - 1)(q^4 - 1)(q^6 - 1)$. The irrational values in the character table for G , available in the computer algebra system CHEVIE [Geck et al. 1996] and originally determined in [Lübeck 1993], are rational combinations of roots of unity of orders divisible by the polynomials in q appearing in the factorization of $|G|$. Namely, the following notation will be used throughout, letting $\epsilon \in \{\pm 1\}$. Here, and for the remainder of the paper, we use $\sqrt{-1}$ to denote a fixed complex fourth root of unity, to allow the notation i to be used instead for indexing:

$$\begin{aligned} \zeta_1 &:= \exp\left(\frac{2\pi\sqrt{-1}}{q-1}\right), & \xi_1 &:= \exp\left(\frac{2\pi\sqrt{-1}}{q+1}\right), \\ \omega_1 &:= \exp\left(\frac{2\pi\sqrt{-1}}{q-\epsilon}\right), & \omega_2 &:= \exp\left(\frac{2\pi\sqrt{-1}}{q+\epsilon}\right), \\ \zeta_2 &:= \exp\left(\frac{2\pi\sqrt{-1}}{q^2-1}\right), & \xi_2 &:= \exp\left(\frac{2\pi\sqrt{-1}}{q^2+1}\right), \end{aligned}$$

and

$$\omega_3 := \exp\left(\frac{2\pi\sqrt{-1}}{q^3 - \epsilon}\right) = \exp\left(\frac{2\pi\sqrt{-1}}{(q - \epsilon)(q^2 + \epsilon q + 1)}\right).$$

We note that the roots of unity ζ_i, ξ_i for $i = 1, 2$ are exactly as defined in the character table for G in CHEVIE [Geck et al. 1996]. The following notation is used in [Schaeffer Fry 2013; 2014], and agrees with that of the CHEVIE character table, to label the blocks and characters of G , where again $\epsilon \in \{\pm 1\}$.

Notation 3.1. Let $I_{q-\epsilon}^0$ be the set $\{i \in \mathbb{Z} : 1 \leq i \leq q - \epsilon - 1\}$, and let $I_{q-\epsilon}$ be a set of class representatives on $I_{q-\epsilon}^0$ under the equivalence relation $i \sim j$ if and only if $i \equiv \pm j \pmod{q - \epsilon}$. Let

$$\begin{aligned} I_{q^2+1}^0 &:= \{i \in \mathbb{Z} : 1 \leq i \leq q^2\}, \\ I_{q^2-1}^0 &:= \{i \in \mathbb{Z} : 1 \leq i \leq q^2 - 1, (q - 1) \nmid i, (q + 1) \nmid i\}, \end{aligned}$$

and let $I_{q^2-\epsilon}$ be a set of representatives for the equivalence relation on $I_{q^2-\epsilon}^0$ given by $i \sim j$ if and only if $i \equiv \pm j$ or $\pm qj \pmod{q^2 - \epsilon}$. Similarly, let

$$I_{q^3-\epsilon}^0 := \{i \in \mathbb{Z} : 1 \leq i \leq q^3 - \epsilon, (q^2 + \epsilon q + 1) \nmid i\}$$

and $I_{q^3-\epsilon}$ a set of representatives for the equivalence relation on $I_{q^3-\epsilon}^0$ given by $i \sim j$ if and only if $i \equiv \pm j, \pm qj$, or $\pm q^2j \pmod{q^3 - \epsilon}$.

3B. Initial observations. We next make some observations about modular relationships that will be useful in what follows. Note that since $3 \nmid q$, we have 3 divides exactly one of $q - 1$ or $q + 1$. Here and for the remainder of the paper, we let $\epsilon \in \{\pm 1\}$ be such that $3 \mid (q - \epsilon)$ and will write $(q - \epsilon) =: m3^d$, with $m, d \in \mathbb{N}$ and $\gcd(m, 3) = 1$. Note then that 3 divides $(q^2 + \epsilon q + 1)$ exactly once, and we write $(q^2 + \epsilon q + 1) =: 3n$, with $\gcd(n, 3) = 1$. (Indeed, we have $q^2 + \epsilon q + 1 = (q - \epsilon)^2 + 3\epsilon q$, which must be divisible by 3 since both summands are, but cannot be divisible by 9 since then $3q$ is divisible by 9, contradicting that $3 \nmid q$.)

Lemma 3.2. *Let $h, z_1, z_2 \in \mathbb{Z}$, where h is prime to 3. Then $h z_1 m 3^{d-1} \equiv h z_2 m 3^{d-1} \pmod{h(q - \epsilon)}$ if and only if $z_1 \equiv z_2 \pmod{3}$.*

Proof. Since $q - \epsilon = m3^d$, we have $h z_1 m 3^{d-1} \equiv h z_2 m 3^{d-1} \pmod{h(q - \epsilon)}$ if and only if $h m 3^d \mid h(z_1 - z_2) m 3^{d-1}$, which happens if and only if $3 \mid (z_1 - z_2)$, and therefore if and only if $z_1 \equiv z_2 \pmod{3}$. \square

Lemma 3.3. *Let $k = x3^d$ for some integer x such that $|x| < m$, let $h \in \mathbb{Z}$, where h is prime to 3, and let $\mu \in \{\pm 1\}$. Then*

$$\begin{aligned} k + \mu h m 3^{d-1} &\not\equiv -k + \mu h m 3^{d-1} \pmod{h(q - \epsilon)}, \\ k + \mu h m 3^{d-1} &\not\equiv -k \pmod{h(q - \epsilon)}. \end{aligned}$$

Proof. First, it is helpful to notice that m is odd, since $m \mid (q - \epsilon)$ and q is a power of 2. Suppose then, for the sake of contradiction, that $k + \mu hm3^{d-1} \equiv -k + \mu hm3^{d-1} \pmod{h(q - \epsilon)}$ for some $\mu \in \{\pm 1\}$. Then $hm3^d \mid 2x3^d$, which implies that $hm \mid 2x$ and ultimately $m \mid 2x$. This is a contradiction, since m is odd and $|x| < m$. Now suppose that $k + \mu hm3^{d-1} \equiv -k \pmod{h(q - \epsilon)}$ for some $\mu \in \{\pm 1\}$. Then $hm3^d \mid (2x3^d \pm hm3^{d-1})$. It follows that $m \mid 2x$ and $3 \mid 1$, which is again a contradiction, and the proof is complete. \square

3C. Roots of unity fixed by σ_1 . Here we present several lemmas describing when the various roots of unity appearing in the character table for G are fixed by the Galois automorphism σ_1 .

Lemma 3.4. *For any $k \in \mathbb{Z}$, we have 3 does not divide the order of ω_2^k , $\zeta_2^{k(q-\epsilon)}$, nor ξ_2^k . In particular, these are fixed by σ_1 .*

Proof. Since 3 divides $(q - \epsilon)$, we know 3 cannot divide $(q + \epsilon) = |\omega_2|$. Further,

$$|\zeta_2^{k(q-\epsilon)}| = |\omega_2^k| = \frac{q + \epsilon}{\gcd(k, q + \epsilon)},$$

which is therefore also prime to 3. Finally, since $q^2 \equiv 1 \pmod{3}$, it follows that 3 cannot divide $q^2 + 1$, so 3 cannot divide $|\xi_2^k| = (q^2 + 1)/\gcd(k, q^2 + 1)$. \square

The next two lemmas will be used when the character values contain powers of ω_1 , which is the same as $\zeta_2^{q+\epsilon}$. Note that the conditions on $r \in I_{q-\epsilon}$ in these cases are the conditions that appear in the descriptions of the relevant blocks and characters (see Tables 1-8 and the notation preceding them).

Lemma 3.5. *There is a unique element $r \in I_{q-\epsilon}$ satisfying $m \mid r$ such that ω_1^r is fixed by σ_1 . Namely, this element is $r = m3^{d-1}$.*

Proof. First we will show that the stated value of $r \in I_{q-\epsilon}$ is the only possibility satisfying $m \mid r$ for which ω_1^r is fixed by σ_1 . Assume that $r \in I_{q-\epsilon}$ such that $\sigma_1(\omega_1^r) = \omega_1^r$, and write $r = mf3^x$, with $f, x \in \mathbb{Z}$ and f relatively prime to 3. Notice that $x < d$, as otherwise $r \notin I_{q-\epsilon}$. Suppose, for the sake of contradiction, that $x = d - y$ for some y with $1 < y \leq d$. Then

$$|\omega_1^r| = \frac{m3^d}{\gcd(m3^d, mf3^{d-y})} = 3^y,$$

so ω_1^r is not fixed by σ_1 . Therefore we must have $r = mf3^{d-1}$.

Now, note that $f \equiv 1$ or $2 \pmod{3}$. Further, under the equivalence relation defining $I_{q-\epsilon}$, we have i is equivalent to $-i$, but also we see $1 \equiv -2 \pmod{3}$ and $2 \equiv -1 \pmod{3}$, so by Lemma 3.2 we have that every r defined as such will be equivalent in the set $I_{q-\epsilon}$. Finally, we see that $\omega_1^{m3^{d-1}}$ has order $m3^d/\gcd(m3^d, m3^{d-1}) = 3$, and so is fixed by σ_1 . \square

Lemma 3.6. *Let $k \in I_{q-\epsilon}$, such that $3^d \mid k$. Then, there are exactly three elements $r \in I_{q-\epsilon}$ satisfying $r \equiv \pm k \pmod{m}$ such that ω_1^r is fixed by σ_1 .*

Proof. First, we show that there are six choices for $r \in I_{q-\epsilon}^0$, under equivalence modulo $q - \epsilon$, satisfying $r \equiv \pm k \pmod{m}$ and such that ω_1^r is fixed by σ_1 . Let r be such an element. Since $r \equiv \pm k \pmod{m}$, we can write $r = \pm k + mf$ for some $f \in \mathbb{Z}$. Then, $\omega_1^r = (\omega_1^{\pm k})(\omega_1^{mf})$. Further, since $k \in I_{q-\epsilon}$ and $3^d \mid k$, we have $k = x3^d$ for some $0 \neq x \in \mathbb{Z}$. Then

$$|\omega_1^{\pm k}| = |\omega_1^{\pm x3^d}| = \frac{m3^d}{\gcd(x3^d, m3^d)} = \frac{m}{\gcd(x, m)}.$$

Since m is prime to 3, the order of $\omega_1^{\pm k}$ cannot be divisible by 3, so these are fixed by σ_1 . Hence, ω_1^r is fixed by σ_1 if and only if ω_1^{mf} is. For $f = 0$ or when f is any multiple of 3^d , we have $\omega_1^{mf} = 1$, so $\omega_1^r = \omega_1^{\pm k}$. Otherwise, we have

$$|\omega_1^{mf}| = \frac{m3^d}{\gcd(mf, m3^d)} = \frac{3^d}{\gcd(f, 3^d)}$$

is some positive power of 3, so ω_1^{mf} is fixed by σ_1 if and only if f is such that $|\omega_1^{mf}| = 3$ exactly.

Note that $3^d/\gcd(f, 3^d) = 3$ implies that $\gcd(f, 3^d) = 3^{d-1}$, which implies that $f = z3^{d-1}$, where $z \in \mathbb{Z}$ is prime to 3. So in order for ω_1^r to be fixed by σ_1 , r must be of the form $\pm k + zm3^{d-1}$ for some $z \in \mathbb{Z}$ with $z = 0$ or $3 \nmid z$.

Now, by Lemma 3.2, we have that $z_1m3^{d-1} \equiv z_2m3^{d-1} \pmod{q-\epsilon}$ if and only if $z_1 \equiv z_2 \pmod{3}$, so we may assume without loss of generality that $z \in \{0, 1, 2\}$. Note that $z = 0$ corresponds to the previous case where $f = 0$ or f is any multiple of 3^d . Therefore, for $r \in I_{q-\epsilon}^0$ with $r \equiv \pm k \pmod{m}$, we have ω_1^r is fixed by σ_1 if and only if r is equivalent modulo $q - \epsilon$ to one of

$$r = \pm k, \quad r = \pm k + m3^{d-1} \quad \text{or} \quad r = \pm k + 2m3^{d-1}.$$

Now we will show that these six choices of r correspond to at most three elements of $I_{q-\epsilon}$. Recall that if $i, j \in I_{q-\epsilon}$, we have $i \sim j$ if and only if $i \equiv \pm j \pmod{q-\epsilon}$. In particular, we have $k \sim (-k)$. Next, we can see by Lemma 3.2 that $k + 2m3^{d-1} \sim k - m3^{d-1}$ and $-k + 2m3^{d-1} \sim -k - m3^{d-1} \sim k + m3^{d-1}$. Similarly, $k + 2m3^{d-1} \sim k - m3^{d-1} \sim -k + m3^{d-1}$. For simplicity's sake, we will use the following as our three equivalence class representatives for r :

$$r = k, \quad r = k + m3^{d-1} \quad \text{or} \quad r = k - m3^{d-1}.$$

Finally, we show that these three choices for r give us distinct class representatives in $I_{q-\epsilon}$. Suppose for a contradiction that $k + m3^{d-1} \sim k$ in $I_{q-\epsilon}$. Then either $k + m3^{d-1} \equiv k \pmod{q-\epsilon}$ or $k + m3^{d-1} \equiv -k \pmod{q-\epsilon}$. Then this is a contradiction by Lemmas 3.2 and 3.3, respectively. We see similarly, that $k - m3^{d-1} \not\sim k$ in $I_{q-\epsilon}$ and $k + m3^{d-1} \not\sim k - m3^{d-1}$ in $I_{q-\epsilon}$, completing the proof. \square

Due to the nature of the values found in the character table for $\mathrm{Sp}_6(q)$, many of the preceding lemmas will often be used in conjunction with Lemma 2.1. Similarly, Lemmas 3.8 and 3.9 below, which deal with powers of ζ_2 , will be used in conjunction with the following:

Lemma 3.7. *Let $r \in I_{q^2-1}$. Then ζ_2^r is fixed by σ_1 if and only if both ω_1^r and $\zeta_2^r + \zeta_2^{rq} + \zeta_2^{-r} + \zeta_2^{-rq}$ are fixed by σ_1 .*

Proof. First, if ζ_2^r is fixed by σ_1 , then so is any sum of powers of ζ_2^r , so both $\omega_1^r = \zeta_2^{r(q+\epsilon)}$ and $\zeta_2^r + \zeta_2^{rq} + \zeta_2^{-r} + \zeta_2^{-rq}$ are fixed by σ_1 .

Conversely, assume that ω_1^r and $\zeta_2^r + \zeta_2^{rq} + \zeta_2^{-r} + \zeta_2^{-rq}$ are fixed by σ_1 . Let \mathbb{F} denote the fixed field of $\mathbb{Q}(e^{2\pi i/|G|})$ under the group $\langle \sigma_1 \rangle$ generated by σ_1 , so that ω_1^r , ω_2^r , and $\zeta_2^r + \zeta_2^{rq} + \zeta_2^{-r} + \zeta_2^{-rq}$ are all elements of \mathbb{F} by assumption and by Lemma 3.4. Assume by way of contradiction that ζ_2^r is not fixed by σ_1 , so that $\zeta_2^r + \zeta_2^{-r}$ is also not fixed by σ_1 , using Lemma 2.1. Now, since $\mathbb{Q}(\zeta_2^r + \zeta_2^{-r})$ is the (unique) maximal totally real subfield of $\mathbb{Q}(\zeta_2^r)$, we see that, if we let $\alpha_1 := \zeta_2^r + \zeta_2^{-r}$ and $\alpha_2 := \zeta_2^{qr} + \zeta_2^{-qr}$, then $\mathbb{F}(\alpha_1) = \mathbb{F}(\alpha_2)$. Then since $\alpha_1 \alpha_2 = \omega_1^r + \omega_1^{-r} + \omega_2^r + \omega_2^{-r}$, we see $\mathbb{F}(\alpha_1)$ is the splitting field over \mathbb{F} for the polynomial $(x - \alpha_1)(x - \alpha_2) = x^2 + (\alpha_1 + \alpha_2)x + \alpha_1 \alpha_2$ and $[\mathbb{F}(\alpha_1) : \mathbb{F}] = 2$. From here, we may argue similarly to Lemma 2.1 to obtain a contradiction, unless α_1 (and hence ζ_2^r) is fixed by σ_1 . \square

Lemma 3.8. *Let $k \in I_{q^2-1}$ such that $3^d \mid k$. Then there are exactly three elements $r \in I_{q^2-1}$ satisfying $r \equiv \pm k$ or $\pm qk \pmod{m(q+\epsilon)}$ such that ω_1^r and ζ_2^r are both fixed by σ_1 .*

Proof. First, let r be as in the statement and let $f \in \mathbb{Z}$ such that $r = \pm k + mf(q+\epsilon)$ or $r = \pm qk + mf(q+\epsilon)$. Then we can further write k or qk as $x3^d$ for some $x \in \mathbb{Z}$ with $3 \nmid x$. Therefore, we can write $r = \pm x3^d + mf(q+\epsilon)$.

Next, we have

$$\omega_1^r = (\omega_1^{\pm x3^d})(\omega_1^{mf(q+\epsilon)}) \quad \text{and} \quad \zeta_2^r = (\zeta_2^{\pm x3^d})(\zeta_2^{mf(q+\epsilon)}).$$

Since $m(q+\epsilon)$ is prime to 3, we see as in the proof of Lemma 3.6 that ω_1^r is fixed by σ_1 if and only if $\omega_1^{mf(q+\epsilon)}$ is and ζ_2^r is fixed by σ_1 if and only if $\zeta_2^{mf(q+\epsilon)} = \omega_1^{mf}$ is. Further, since $m(q+\epsilon) = (q^2-1)_{3'}$, arguing exactly as in the beginning of the proof of Lemma 3.6 in this case, we see r is equivalent modulo q^2-1 to one of

$$\begin{aligned} r &= \pm k, \quad r = \pm qk, \quad r = \pm k + m3^{d-1}(q+\epsilon), \\ r &= \pm k + 2m3^{d-1}(q+\epsilon), \quad r = \pm qk + m3^{d-1}(q+\epsilon) \quad \text{or} \quad r = \pm qk + 2m3^{d-1}(q+\epsilon). \end{aligned}$$

(Conversely, we see that these choices of r satisfy the statement.)

Now, recall that $I_{q^2-\epsilon}$ is defined by the relation $i \sim j$ if and only if $i \equiv \pm j$ or $\pm qj \pmod{q^2-1}$. Then we have $k \sim -k \sim qk \sim -qk$ under this relation. For the

remaining choices for r , it will be helpful to first notice that

$$z_1 m 3^{d-1} (q + \epsilon) \equiv z_2 m 3^{d-1} (q + \epsilon) \pmod{q^2 - 1}$$

if and only if $z_1 \equiv z_2 \pmod{3}$, by Lemma 3.2. We can use this to again substitute $2m$ for $-m$, and then show that these remaining eight choices for r lie in only two equivalence classes in I_{q^2-1} .

Namely, we have $k + \epsilon m 3^{d-1} (q + \epsilon) \sim qk + m 3^{d-1} (q + \epsilon)$ because $(q^2 - 1)$ divides

$$(q^2 - 1)(-k) - (q - \epsilon)(q + \epsilon)m 3^{d-1} = (k + \epsilon m 3^{d-1} (q + \epsilon)) - q(qk + m 3^{d-1} (q + \epsilon)),$$

and similarly $-k + \epsilon m 3^{d-1} (q + \epsilon) \sim -qk + m 3^{d-1} (q + \epsilon)$. Also note that

$$\begin{aligned} k + m 3^{d-1} (q + \epsilon) &\sim -k - m 3^{d-1} (q + \epsilon), \\ -k + m 3^{d-1} (q + \epsilon) &\sim k - m 3^{d-1} (q + \epsilon), \\ qk + m 3^{d-1} (q + \epsilon) &\sim -qk - m 3^{d-1} (q + \epsilon), \\ qk - m 3^{d-1} (q + \epsilon) &\sim -qk + m 3^{d-1} (q + \epsilon). \end{aligned}$$

So any $r \in I_{q^2-1}$ such that ω_1^r and ζ_2^r are both fixed by σ_1 is equivalent to one of

$$r = k, \quad r = k + m 3^{d-1} (q + \epsilon) \quad \text{or} \quad r = k - m 3^{d-1} (q + \epsilon).$$

It now suffices to show that these elements represent three distinct classes in I_{q^2-1} . First, $k \sim k + m 3^{d-1} (q + \epsilon)$ if and only if $k \equiv \pm(k + m 3^{d-1} (q + \epsilon))$ or $\pm q(k + m 3^{d-1} (q + \epsilon)) \pmod{q^2 - 1}$. Applying Lemma 3.2 with $h = (q + \epsilon)$, we see that $k \not\equiv k + m 3^{d-1} (q + \epsilon) \pmod{q^2 - 1}$, and we can use Lemma 3.3 with $h = (q + \epsilon)$ to show that $k \not\equiv -(k + m 3^{d-1} (q + \epsilon)) \pmod{q^2 - 1}$. Then, $k \equiv qk + qm 3^{d-1} (q + \epsilon)$ would imply that $(q^2 - 1) \mid (k - qk - qm 3^{d-1} (q + \epsilon))$, which gives us $(q^2 - 1) \mid (-k(q - 1) - qm 3^{d-1} (q + \epsilon))$. Similarly, $k \equiv -qk - qm 3^{d-1} (q + \epsilon)$ will give us $(q^2 - 1) \mid (k(q + 1) + qm 3^{d-1} (q + \epsilon))$. So, since $3^d \mid (q^2 - 1)$ and $3^d \mid k$, either of these would imply $3 \mid qm(q + \epsilon)$, a contradiction, and therefore, $k \not\sim k + m 3^{d-1} (q + \epsilon)$. Using similar calculations, we can also see $k \not\sim k - m 3^{d-1} (q + \epsilon)$ and $k + m 3^{d-1} (q + \epsilon) \not\sim k - m 3^{d-1} (q + \epsilon)$. Therefore, these three elements give distinct $r \in I_{q^2-1}$, and the proof is complete. \square

Lemma 3.9. *Let $t \in I_{q+\epsilon}$. Then there is a unique $r \in I_{q^2-1}$ satisfying $r \equiv \pm(q - \epsilon)t \pmod{m(q + \epsilon)}$ such that ω_1^r and ζ_2^r are both fixed by σ_1 .*

Proof. Following the strategy from before, we will first show that there are six possible choices for r as in the statement such that ω_1^r and ζ_2^r are fixed by σ_1 . Then we will show that these actually only give one element of I_{q^2-1} .

We will sometimes write $M := m(q + \epsilon) = (q^2 - 1)_{3^d}$. Since $r \equiv \pm(q - \epsilon)t \pmod{M}$, we can write $r = \pm tm 3^d + Mf$ for some $f \in \mathbb{Z}$. Then $\omega_1^r = (\omega_1^{\pm tm 3^d})(\omega_1^{Mf})$. We

also see that

$$|\omega_1^{\pm tm3^d}| = \frac{m3^d}{\gcd(tm3^d, m3^d)} = 1,$$

$$|\omega_1^{Mf}| = \frac{m3^d}{\gcd(mf(q+\epsilon), m3^d)} = \frac{3^d}{\gcd(f(q+\epsilon), 3^d)}.$$

As in the proof of Lemma 3.6, if f is 0 or any multiple of 3^d , then $\omega_1^{Mf} = 1$ and $\omega_1^r = \omega_1^{\pm tm3^d} = 1$. Otherwise, we must choose f such that $|\omega_1^{Mf}| = 3$ exactly.

Similarly, $\zeta_2^r = (\zeta_2^{\pm tm3^d})(\zeta_2^{Mf}) = (\omega_2^{\pm t})(\zeta_2^{mf(q+\epsilon)}) = (\omega_2^{\pm t})(\omega_1^{mf})$. By Lemma 3.4, we have that $\omega_2^{\pm t}$ is fixed by σ_1 , so ζ_2^r is fixed by σ_1 if and only if ω_1^{mf} is. Using an argument similar to Lemma 3.6, we see that if ω_1^r and ζ_2^r are both fixed by σ_1 , then r is one of

$$r = \pm(q-\epsilon)t, \quad r = \pm(q-\epsilon)t + m3^{d-1}(q+\epsilon) \quad \text{or} \quad r = \pm(q-\epsilon)t - m3^{d-1}(q+\epsilon).$$

Now, recall that $(q-\epsilon)t \notin I_{q^2-1}$ and $r \sim -r$ in I_{q^2-1} , so in fact we have r represented by one of

$$r_1 = (q-\epsilon)t + m3^{d-1}(q+\epsilon) \quad \text{or} \quad r_2 = (q-\epsilon)t - m3^{d-1}(q+\epsilon).$$

But notice that $r_1 \equiv -qr_2 \pmod{q^2-1}$, so these define just one class in I_{q^2-1} . \square

Lemma 3.10. *Let $k \in I_{q^3-\epsilon}$ such that $3^{d+1} \mid k$. Then, the following hold:*

- (1) *There are exactly three elements $r \in I_{q^3-\epsilon}$ satisfying $r \equiv \pm k, \pm qk$, or $\pm q^2k$ mod mn such that ω_3^r is fixed by σ_1 .*
- (2) *Let $r \in I_{q^3-\epsilon}$ satisfy $r \equiv \pm k, \pm qk$, or $\pm q^2k$ mod mn and denote by $\chi(r)$ the character $\chi_{63}(r)$ of G if $\epsilon = 1$ and $\chi_{66}(r)$ if $\epsilon = -1$, in the notation of the character table for G available in CHEVIE [Geck et al. 1996]. Then $\chi(r)$ is fixed by σ_1 if and only if ω_3^r is fixed by σ_1 .*

Proof. First, we notice that $q^3 - \epsilon = (q-\epsilon)(q^2 + \epsilon q + 1)$, so we will write $q^3 - \epsilon$ as $mn3^{d+1}$ when it is useful. Since $3^{d+1} \mid k$, we write $k = x3^{d+1}$. Note that qk and q^2k are both of the form $x3^{d+1}$ for some (different) $x \in \mathbb{Z}$, so we will write $r = \pm x3^{d+1} + mnf$ for some $f \in \mathbb{Z}$.

- (1) We have $\omega_3^r = (\omega_3^{\pm x3^{d+1}})(\omega_3^{mnf})$, and since m and n are both prime to 3, replacing the roles of $(3^d, q+\epsilon)$ in Lemma 3.8 with $(3^{d+1}, n)$ here and noting $z_1m3^d n \equiv z_2m3^d n \pmod{mn3^{d+1}}$ if and only if $z_1 \equiv z_2 \pmod{3}$ arguing as in Lemma 3.2, the situation is analogous.

In this case, for ω_3^r to be fixed by σ_1 , we therefore have r must be of the form

$$r = \pm k, \quad r = \pm qk, \quad r = \pm q^2k, \quad r = \pm k + mn3^d, \quad r = \pm qk + mn3^d,$$

$$r = \pm q^2k + mn3^d, \quad r = \pm k + 2mn3^d, \quad r = \pm qk + 2mn3^d \quad \text{or} \quad r = \pm q^2k + 2mn3^d.$$

(Conversely, note that ω_3^r is fixed by σ_1 if r is of any of these forms.)

Recall that $k \sim (-k) \sim (\pm qk) \sim (\pm q^2k)$. Arguing similarly to Lemma 3.8 with the role of $q + \epsilon$ now replaced with n , we obtain that under the relation \sim , each value in the list above is equivalent to one of the following three elements of $r \in I_{q^3-\epsilon}$:

$$r = k, \quad r = k + mn3^d \quad \text{and} \quad r = k - mn3^d.$$

Further, arguing as in the previous lemmas, we again see that these indeed give distinct elements of $I_{q^3-\epsilon}$, completing the proof of (1).

(2) The character $\chi(r)$ is what is known as a semisimple character and is indexed by a conjugacy class of G consisting of all elements in G with eigenvalues $\tilde{\omega}_3^r, \tilde{\omega}_3^{rq}, \tilde{\omega}_3^{rq^2}, \tilde{\omega}_3^{-r}, \tilde{\omega}_3^{-rq},$ and $\tilde{\omega}_3^{-rq^2}$, where here $\tilde{\omega}_3$ is a primitive $q^3 - \epsilon$ root of unity in \mathbb{F}_{q^6} . (This is the class $g_{31}(r)$ when $\epsilon = 1$, respectively $g_{34}(r)$ when $\epsilon = -1$, defined in [Lübeck 1993, Tabelle 19].) Now, since G comes from an algebraic group over $\bar{\mathbb{F}}_q$ whose center is connected, [Schaeffer Fry and Taylor 2018, Lemma 3.4] describes how such characters are permuted by members of $\text{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$. In particular, [Schaeffer Fry and Taylor 2018, Lemma 3.4] tells us that $\chi(r)$ is fixed by σ_1 if and only if the set $\{\omega_3^r, \omega_3^{rq}, \omega_3^{rq^2}, \omega_3^{-r}, \omega_3^{-rq}, \omega_3^{-rq^2}\}$ is permuted by σ_1 .

Now, note that $n \nmid r$, as otherwise $n \mid x$ and hence $3n = q^2 + \epsilon q + 1$ divides k , contradicting that $k \in I_{q^3-\epsilon}$. Suppose that some $\sigma \in \langle \sigma_1 \rangle$ maps ω_3^r to $\omega_3^{r\bar{q}}$, where $\bar{q} \in \{-1, \pm q, \pm q^2\}$. Recall that n is relatively prime to $2, 3^{d+1}m, (\pm q^2 - 1)$, and $(\pm q - 1)$. Writing $\omega_3 = y_1y_2$ for y_1 a primitive $3^{d+1}m$ -root of unity and y_2 a primitive n -th root of unity, we then see that $(\sigma(y_1^r))y_2^r = y_1^{r\bar{q}}y_2^{r\bar{q}}$, since y_2 is fixed by σ_1 . This forces $y_2^{r(\bar{q}-1)}$ to be a $(3^{d+1}m)$ -th root of unity. Then y_2^r is also a $(3^{d+1}m)$ -th root of unity, since $|y_2|$ is prime to $\bar{q} - 1$. Then since $|y_2|$ is prime to $3^{d+1}m$, we see that this forces $y_2^r = 1$, so that $n \mid r$, a contradiction. Hence we see that $\chi(r)$ is fixed by σ_1 if and only if σ_1 fixes ω_3^r . \square

4. Proof of Theorem 1.2

Let $G := \text{Sp}_6(q)$ with q a power of 2. To prove Theorem 1.2, we must show that if B is a 3-block of G with cyclic defect groups, then there are exactly three height-zero characters in $\text{Irr}(B)$ that are fixed by σ_1 , and that if B has noncyclic defect groups, then the number of such characters is strictly larger than 3.

The defect groups for G are described in [Schaeffer Fry 2014, Proposition 3.1]. Namely, for the prime 3, the cyclic defect groups are (in the notation of [Schaeffer Fry 2014]) denoted by Q_1, Q_2 , and $Q^{(3)}$, and the remaining defect groups are denoted by $Q_{1,1}, Q_{2,1}, Q_{1,1,1}$, and P . Here P is a Sylow 3-subgroup of G .

The sets $\text{Irr}(B)$ for each block B of G are described in [White 2000] for so-called “unipotent” blocks, and in [Schaeffer Fry 2013, Section 4.4] otherwise. The sets $\text{Irr}_0(B)$ are described in [Schaeffer Fry 2014, Sections 4.2–4.10] and also in [Schaeffer Fry 2013, Section 7.4.1]. In Tables 1–8, we list the names of these blocks (with the notation of [White 2000; Schaeffer Fry 2013]) and a subset of

characters found in $\text{Irr}_0(B)$ (with the notation of the CHEVIE character table and [Schaeffer Fry 2013]).

With this information in place, and given our work in Section 3, the proof involves considering the character table for $Sp_6(q)$ due to [Lübeck 1993] and available on CHEVIE, and analyzing when the character values of the characters in $\text{Irr}_0(B)$ for each block B corresponding to a given defect group are fixed by σ_1 . The families of characters and of conjugacy classes for $Sp_6(q)$ are indexed by the various sets introduced in Notation 3.1. The character values are either rational or sums of complex numbers of the form $x(\xi^{ir} + \xi^{-ir})$, where $i, r \in \mathbb{Z}$ come from one of the indexing sets defined in Notation 3.1 (depending on the index defining the character and the class within their families), ξ is some root of unity, and $x \in \mathbb{C}$ is either rational or otherwise fixed by σ_1 . In the Appendix, we include examples of specific values for the relevant characters. We have used our lemmas from Section 3 to find the appropriate choices of r so that a given ξ^r will be fixed by σ_1 , where again ξ denotes a relevant root of unity.

We apply Lemma 2.2 to say that ξ^r is fixed by σ_1 if and only if ξ^{ir} is fixed by σ_1 , for every relevant i . Note that we also apply Lemma 2.1 in conjunction with Lemmas 3.5 and 3.6; Lemma 3.7 in conjunction with Lemmas 3.8 and 3.9; and the two parts of Lemma 3.10 together, to show that in fact the full character values being considered are also fixed by σ_1 . Tables 1-8 list the characters being considered for each block and the lemmas from Section 3 that are used for those characters.

For a concrete example, consider the block $B = B_{29}(s, t_1)$ when $\epsilon = 1$ (see Table 3). Here $t_1 \in I_{q+1}$ and $s \in I_{q^2-1}$ is divisible by 3^d . Then the members of $\text{Irr}_0(B)$ are the characters $\chi_{61}(r, t_1)$, where $r \in I_{q^2-1}$ is equivalent to $\pm s$ or $\pm qs$ modulo $m(q+1)$. By Lemma 3.8, there are exactly three choices of such r such that ξ_2^r and ω_1^r are fixed by σ_1 , and hence exactly three such choices of r such that $\xi_1^r + \xi_1^{-r}$ and $\xi_2^r + \xi_2^{-r} + \xi_2^{qr} + \xi_2^{-qr}$ are fixed by σ_1 , using Lemmas 2.1 and 3.7. Now, the irrational character values for $\chi_{61}(r, t_1)$ take the following forms, where i, i' range through appropriate indexing sets from Notation 3.1 for the conjugacy classes:

$$\begin{aligned} & (\xi_1^{it_1} + \xi_1^{-it_1}), \quad (1-q^4)(\xi_1^{it_1} + \xi_1^{-it_1}), \quad (1 \pm q^2)(\xi_1^{it_1} + \xi_1^{-it_1}), \quad (\xi_1^{ir} + \xi_1^{-ir}), \\ & (1-q^2)(\xi_1^{ir} + \xi_1^{-ir}), \quad (1 \pm q)(\xi_1^{ir} + \xi_1^{-ir}), \quad (q^3 + 1)(\xi_1^{ir} + \xi_1^{-ir})(\xi_1^{it_1} + \xi_1^{-it_1}), \\ & (\xi_1^{ir} + \xi_1^{-ir})(\xi_1^{it_1} + \xi_1^{-it_1}), \quad (1+q)(\xi_1^{ir} + \xi_1^{-ir})(\xi_1^{i't_1} + \xi_1^{-i't_1}), \quad (\xi_1^{ir} + \xi_1^{-ir})(\xi_1^{i't_1} + \xi_1^{-i't_1}), \end{aligned}$$

which are always fixed by σ_1 by Lemma 3.4, and

$$\begin{aligned} & (\xi_1^{ir} + \xi_1^{-ir}), \quad (q^2 - 2q + 1)(\xi_1^{ir} + \xi_1^{-ir}), \quad (1-q)(\xi_1^{ir} + \xi_1^{-ir}), \\ & (\xi_2^{ir} + \xi_2^{-ir} + \xi_2^{iqr} + \xi_2^{-iqr}), \quad (1 \pm q)(\xi_2^{ir} + \xi_2^{-ir} + \xi_2^{iqr} + \xi_2^{-iqr}), \\ & (\xi_2^{ir(q+1)} + \xi_2^{-ir(q+1)})(\xi_2^{it_1(q-1)} + \xi_2^{-it_1(q-1)}) = (\xi_1^{ir} + \xi_1^{-ir})(\xi_1^{it_1} + \xi_1^{-it_1}), \end{aligned}$$

$$\begin{aligned}
& (1-q)(\zeta_1^{ir} + \zeta_1^{-ir})(\xi_1^{it_1} + \xi_1^{-it_1}), \\
& (\zeta_2^{ir} + \zeta_2^{-ir} + \zeta_2^{iqr} + \zeta_2^{-iqr})(\zeta_2^{i't(q-1)} + \zeta_2^{-i't(q-1)}) \\
& \quad = (\zeta_2^{ir} + \zeta_2^{-ir} + \zeta_2^{iqr} + \zeta_2^{-iqr})(\xi_1^{i't} + \xi_1^{-i't}).
\end{aligned}$$

Then we see that $\chi_{61}(r, t_1)$ is fixed by σ_1 exactly when r is one of these three choices, showing that B contains exactly three height-zero characters fixed by σ_1 . Since this block has defect group Q_2 , which is cyclic, this block satisfies the statement.

For each defect group, we include two tables; one for when $\epsilon = 1$ and one for when $\epsilon = -1$. Each table lists all blocks B with the given defect group, additional conditions on indexing, the characters in $\text{Irr}_0(B)$ being considered for that block (in the notation of the CHEVIE character table), and the number of characters in the listed family that are fixed by σ_1 , with reference to the lemmas used for those specific characters.

The first four tables are for the cyclic defect groups, Q_1 , Q_2 , and $Q^{(3)}$. For these groups we list all characters in $\text{Irr}_0(B)$, in order to show that $|\text{Irr}_0(B)^{\sigma_1}| = 3$. The remaining tables correspond to the noncyclic defect groups P , $Q_{1,1}$, $Q_{1,1,1}$, and $Q_{2,1}$. In these cases, we only list enough characters needed to see that $|\text{Irr}_0(B)^{\sigma_1}| > 3$. Therefore in these cases, the column that shows the number of fixed characters refers only to the characters listed, not necessarily the total number fixed in the given block.

4A. The tables. Throughout, we let $k_1, k_2, k_3 \in I_{q-1}$ with none of k_1, k_2, k_3 the same and let $t_1, t_2, t_3 \in I_{q+1}$ with none of t_1, t_2, t_3 the same. When $\epsilon = 1$, let $3^d \mid k_i$, and when $\epsilon = -1$, let $3^d \mid t_i$. Let $u \in I_{q^2+1}$, and $s \in I_{q^2-1}$ with $3^d \mid s$, where $3^d := (q - \epsilon)_3$. Let $v \in I_{q^3-1}$ and $w \in I_{q^3+1}$. When $\epsilon = 1$, let $(q^3 - 1)_3 \mid v$, and when $\epsilon = -1$, let $(q^3 + 1)_3 \mid w$. Moreover, let $m := (q - \epsilon)_3$ as before, and let $n := (q^2 + \epsilon q + 1)_3$.

block B	restriction	characters in $\text{Irr}_0(B)$	# fixed by σ_1
b_1	none	χ_5, χ_{11}	2: rational
	$m \mid r$	$\chi_{17}(r)$	1: Lem. 3.5
$B_6(k_1)^{(1)}$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{17}(r)$	3: Lem. 3.6
$B_{23}(t_1, t_2)$	none	$\chi_{53}(t_1, t_2), \chi_{54}(t_1, t_2)$	2: Lem. 3.4
	$m \mid r$	$\chi_{60}(r, t_1, t_2)$	1: Lem. 3.4, 3.5
$B_{24}(u)$	none	$\chi_{55}(u), \chi_{56}(u)$	2: Lem. 3.4
	$m \mid r$	$\chi_{62}(r, u)$	1: Lem. 3.5, 3.4
$B_{28}(k_1, t_1, t_2)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{60}(r, t_1, t_2)$	3: Lem. 3.4, 3.6
$B_{30}(k_1, u)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{62}(r, u)$	3: Lem. 3.6, 3.4

Table 1. Blocks with defect group Q_1 when $\epsilon = 1$.

block B	restriction	characters in $\mathrm{Irr}_0(B)$	# fixed by σ_1
b_1	none	χ_4, χ_9	2: rational
	$m \mid r$	$\chi_{20}(r)$	1: Lem. 3.5
$B_7(t_1)^{(1)}$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{20}(r)$	3: Lem. 3.6
$B_{17}(k_1, k_2)$	none	$\chi_{41}(k_1, k_2), \chi_{42}(k_1, k_2)$	2: Lem. 3.4
	$m \mid r$	$\chi_{58}(k_1, k_2, r)$	1: Lem. 3.4, 3.5
$B_{24}(u)$	none	$\chi_{55}(u), \chi_{56}(u)$	2: Lem. 3.4
	$m \mid r$	$\chi_{65}(u, r)$	1: Lem. 3.5, 3.4
$B_{26}(k_1, k_2, t_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{58}(k_1, k_2, r)$	3: Lem. 3.4, 3.6
$B_{33}(u, t_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{65}(u, r)$	3: Lem. 3.6, 3.4

Table 2. Blocks with defect group Q_1 when $\epsilon = -1$.

block B	restriction	characters in $\mathrm{Irr}_0(B)$	# fixed by σ_1
$B_9(t_1)$	none	$\chi_{28}(t_1), \chi_{30}(t_1)$	2: Lem. 3.4
	$r \equiv \pm (q-1)t_1 \pmod{m(q+1)}$	$\chi_{61}(r, t_1)$	1: Lem. 3.9
$B_{22}(t_1, t_2)$	none	$\chi_{51}(t_1, t_2), \chi_{52}(t_1, t_2)$	2: Lem. 3.4
	$r \equiv \pm (q-1)t_1 \pmod{m(q+1)}$	$\chi_{61}(r, t_2)$	1: Lem. 3.9
$B_{29}(s, t_1)$	$r \equiv \pm s$ or $\pm qs \pmod{m(q+1)}$	$\chi_{61}(r, t_1)$	3: Lem. 3.8
$B_8(k_1)$	none	$\chi_{25}(k_1), \chi_{27}(k_1)$	2: Lem. 3.4
	$r \equiv \pm (q+1)k_1 \pmod{m(q-1)}$	$\chi_{59}(r, k_1)$	1: Lem. 3.9
$B_{16}(k_1, k_2)$	none	$\chi_{39}(k_1, k_2), \chi_{40}(k_1, k_2)$	2: Lem. 3.4
	$r \equiv \pm (q+1)k_1 \pmod{m(q-1)}$	$\chi_{59}(r, k_2)$	1: Lem. 3.9
$B_{27}(s, k_1)$	$r \equiv \pm s$ or $\pm qs \pmod{m(q-1)}$	$\chi_{59}(r, k_1)$	3: Lem. 3.8

Table 3. Blocks with defect group Q_2 when $\epsilon = 1$ (top) and $\epsilon = -1$ (bottom).

block B	restriction	characters in $\mathrm{Irr}_0(B)$	# fixed by σ_1
$B_{31}(v)$	$r \equiv \pm v, \pm qv$ or $\pm q^2v \pmod{mn}$	$\chi_{63}(r)$	3: Lem. 3.10
$B_{34}(w)$	$r \equiv \pm w, \pm qw$ or $\pm q^2w \pmod{mn}$	$\chi_{66}(r)$	3: Lem. 3.10

Table 4. Blocks with defect group $Q^{(3)}$ when $\epsilon = 1$ (top) and $\epsilon = -1$ (bottom).

block B	restriction	selection of chars. in $\text{Irr}_0(B)$	# fixed by σ_1
b_0	none	$\chi_1, \chi_3, \chi_4, \chi_9, \chi_{10}, \chi_{12}$	6: rational
$B_8(k_1)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{25}(r), \chi_{26}(r), \chi_{27}(r)$	9: Lem. 3.6
b_0	none	$\chi_1, \chi_2, \chi_5, \chi_8, \chi_{11}, \chi_{12}$	6: rational
$B_9(t_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{28}(r), \chi_{29}(r), \chi_{30}(r)$	9: Lem. 3.6

Table 5. Blocks with defect group P when $\epsilon = 1$ (top) and $\epsilon = -1$ (bottom).

block B	restriction	selection of chars. in $\text{Irr}_0(B)$	# fixed by σ_1
$B_7(t_1)$	none	$\chi_{19}(t_1), \chi_{20}(t_1), \chi_{21}(t_1), \chi_{22}(t_1)$	4: Lem. 3.4
$B_{20}(k_1, t_1)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{47}(r, t_1), \chi_{48}(r, t_1)$	6: Lem. 3.4, 3.6
$B_{18}(k_1, t_1)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{43}(r, t_1), \chi_{44}(r, t_1)$	6: Lem. 3.4, 3.6
$B_{26}(k_1, k_2, t_1)$	$r_i \equiv \pm k_i \pmod{m}$	$\chi_{58}(r_1, r_2, t_1)$	9: Lem. 3.4, 3.6
$B_6(k_1)$	none	$\chi_{13}(k_1), \chi_{15}(k_1), \chi_{16}(k_1), \chi_{17}(k_1)$	4: Lem. 3.4
$B_{20}(k_1, t_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{47}(k_1, r), \chi_{48}(k_1, r)$	6: Lem. 3.4, 3.6
$B_{21}(t_1, k_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{49}(r, k_1), \chi_{50}(r, k_1)$	6: Lem. 3.4, 3.6
$B_{28}(k_1, t_1, t_2)$	$r_i \equiv \pm t_i \pmod{m}$	$\chi_{60}(k_1, r_1, r_2)$	9: Lem. 3.4, 3.6

Table 6. Blocks with defect group $Q_{1,1}$ when $\epsilon = 1$ (top) and $\epsilon = -1$ (bottom).

block B	restriction	selection of chars. in $\text{Irr}_0(B)$	# fixed by σ_1
$B_6(k_1)^{(0)}$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{13}(r), \chi_{14}(r), \chi_{15}(r), \chi_{16}(r)$	12: Lem. 3.6
$B_{11}(k_1)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{31}(r), \chi_{32}(r), \chi_{33}(r), \chi_{34}(r)$	12: Lem. 3.6
$B_{17}(k_1, k_2)$	$r_i \equiv \pm k_i \pmod{m}$	$\chi_{41}(r_1, r_2), \chi_{42}(r_1, r_2)$	18: Lem. 3.6
$B_{16}(k_1, k_2)$	$r_i \equiv \pm k_i \pmod{m}$	$\chi_{39}(r_1, r_2), \chi_{40}(r_1, r_2)$	18: Lem. 3.6
$B_{25}(k_1, k_2, k_3)$	$r_i \equiv \pm k_i \pmod{m}$	$\chi_{57}(r_1, r_2, r_3)$	27: Lem. 3.6
$B_7(t_1)^{(0)}$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{19}(r), \chi_{21}(r), \chi_{22}(r), \chi_{23}(r)$	12: Lem. 3.6
$B_{13}(t_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{35}(r), \chi_{36}(r), \chi_{37}(r), \chi_{38}(r)$	12: Lem. 3.6
$B_{23}(t_1, t_2)$	$r_i \equiv \pm t_i \pmod{m}$	$\chi_{53}(r_1, r_2), \chi_{54}(r_1, r_2)$	18: Lem. 3.6
$B_{22}(t_1, t_2)$	$r_i \equiv \pm t_i \pmod{m}$	$\chi_{51}(r_1, r_2), \chi_{52}(r_1, r_2)$	18: Lem. 3.6
$B_{32}(t_1, t_2, t_3)$	$r_i \equiv \pm t_i \pmod{m}$	$\chi_{64}(r_1, r_2, r_3)$	27: Lem. 3.6

Table 7. Blocks with defect group $Q_{1,1,1}$ when $\epsilon = 1$ (top) and $\epsilon = -1$ (bottom).

block B	restriction	selection of chars. in $\mathrm{Irr}_0(B)$	# fixed by σ_1
$B_{13}(t_1)$	none	$\chi_{35}(t_1), \chi_{36}(t_1), \chi_{37}(t_1), \chi_{38}(t_1)$	4: Lem. 3.4
$B_{21}(t_1, k_1)$	$r \equiv \pm k_1 \pmod{m}$	$\chi_{49}(t_1, r), \chi_{50}(t_1, r)$	6: Lem. 3.4, 3.6
$B_{19}(s)$	$r \equiv \pm s$ or $\pm qs \pmod{m(q+1)}$	$\chi_{45}(r), \chi_{46}(r)$	6: Lem. 3.4, 3.8
$B_{27}(s, k_1)$	$r \equiv \pm s$ or $\pm qs \pmod{m(q+1)}$ $j \equiv \pm k_1 \pmod{m}$	$\chi_{59}(r, j)$	—
$B_{11}(k_1)$	none	$\chi_{31}(k_1), \chi_{32}(k_1), \chi_{33}(k_1), \chi_{34}(k_1)$	9: Lem. 3.4, 3.6, 3.8
$B_{18}(k_1, t_1)$	$r \equiv \pm t_1 \pmod{m}$	$\chi_{43}(k_1, r), \chi_{44}(k_1, r)$	6: Lem. 3.4, 3.6
$B_{19}(s)$	$r \equiv \pm s$ or $\pm qs \pmod{m(q-1)}$	$\chi_{45}(r), \chi_{46}(r)$	6: Lem. 3.4, 3.8
$B_{29}(s, t_1)$	$r \equiv \pm s$ or $\pm qs \pmod{m(q-1)}$ $j \equiv \pm t_1 \pmod{m}$	$\chi_{61}(r, j)$	9: Lem. 3.4, 3.6, 3.8 —

Table 8. Blocks with defect group $Q_{2,1}$ when $\epsilon = 1$ (left) and $\epsilon = -1$ (right).

Appendix: Some character values

Although it would be unreasonable to include the entire character table, here we list a character value on a single family of conjugacy classes for some relevant characters, to help illustrate the use of the lemmas listed in Tables 1–8. We follow the order they are listed in those tables. In many cases, only one character family from a line in Tables 1–8 is listed, as the character values for the other characters on the line take similar forms. All notation is taken from the CHEVIE character table for $\mathrm{Sp}_6(q)$.

character	class	value
χ_5, χ_{11}	—	all rational values
$\chi_{17}(k_1)$	$C_{17}(i_1)$	$\frac{1}{2}q(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})$
$\chi_{60}(k_1, k_2, k_3)$	$C_{44}(i_1, i_2)$	$(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})[\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2} + \xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3}]$
$\chi_{55}(u)$	$C_{53}(i_1)$	$\xi_2^{i_1 k_1} + \xi_2^{-i_1 k_1} + \xi_2^{q i_1 k_1} + \xi_2^{-q i_1 k_1}$
$\chi_{62}(k_1, k_2)$	$C_{62}(i_1, i_2)$	$(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_2^{i_2 k_2} + \xi_2^{-i_2 k_2} + \xi_2^{q i_2 k_2} + \xi_2^{-q i_2 k_2})$
χ_4, χ_9	—	all rational values
$\chi_{20}(k_1)$	$C_{20}(i_1)$	$-\frac{1}{2}(q^2 + q)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})$
$\chi_{58}(k_1, k_2, k_3)$	$C_{44}(i_1, i_2)$	$-(\xi_1^{i_2 k_3} + \xi_1^{-i_2 k_3})[\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1} + \xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2}]$
$\chi_{56}(u)$	$C_{53}(i_1)$	$q(\xi_2^{i_1 k_1} + \xi_2^{-i_1 k_1} + \xi_2^{q i_1 k_1} + \xi_2^{-q i_1 k_1})$
$\chi_{65}(k_1, k_2)$	$C_{65}(i_1, i_2)$	$-(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\xi_2^{i_1 k_1} + \xi_2^{-i_1 k_1} + \xi_2^{q i_1 k_1} + \xi_2^{-q i_1 k_1})$
$\chi_{28}(t_1)$	$C_{19}(i_1)$	$(-q^3 + q^2 - q + 1)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})$
$\chi_{61}(r, t_1)$	$C_{45}(i_1)$	$(-q + 1)(\xi_2^{q i_1 k_1} + \xi_2^{-q i_1 k_1} + \xi_2^{i_1 k_1} + \xi_2^{-i_1 k_1})$
$\chi_{52}(t_1, t_2)$	$C_{20}(i_1)$	$(-q^2 + 2q - 1)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1}) + q(\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})$
$\chi_{25}(t_1)$	$C_{17}(i_1)$	$\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1}$
$\chi_{59}(r, t_1)$	$C_{45}(i_1)$	$(-q - 1)(\xi_2^{q i_1 k_1} + \xi_2^{-q i_1 k_1} + \xi_2^{i_1 k_1} + \xi_2^{-i_1 k_1})$
$\chi_{40}(k_1, k_2)$	$C_{16}(i_1)$	$(2q + 1)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1}) + q(\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})$
$\chi_{63}(k_1)$	$C_{63}(i_1)$	$\xi_3^{q^2 i_1 k_1} + \xi_3^{-q^2 i_1 k_1} + \xi_3^{q i_1 k_1} + \xi_3^{-q i_1 k_1} + \xi_3^{i_1 k_1} + \xi_3^{-i_1 k_1}$
$\chi_{66}(k_1)$	$C_{66}(i_1)$	$-\xi_3^{q^2 i_1 k_1} - \xi_3^{-q^2 i_1 k_1} - \xi_3^{q i_1 k_1} - \xi_3^{-q i_1 k_1} + \xi_3^{i_1 k_1} - \xi_3^{-i_1 k_1}$
$\chi_1, \chi_3, \chi_4, \chi_9, \chi_{10}, \chi_{12}$	—	all rational values
$\chi_{26}(k_1)$	$C_{25}(i_1)$	$(q^3 + 2q^2 + 2q + 1)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1}) + (q^2 + q)(\xi_1^{3 i_1 k_1} + \xi_1^{-3 i_1 k_1})$
$\chi_1, \chi_2, \chi_5, \chi_8, \chi_{11}, \chi_{12}$	—	all rational values
$\chi_{28}(k_1)$	$C_{28}(i_1)$	$(q^2 - q + 1)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1}) + \xi_1^{3 i_1 k_1} + \xi_1^{-3 i_1 k_1}$
$\chi_{21}(k_1)$	$C_{21}(i_1)$	$-q - \frac{1}{2}(q^2 + q)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})$
$\chi_{47}(k_1, k_2)$	$C_{47}(i_1, i_2)$	$(-q - 1)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})$
$\chi_{44}(k_1, k_2)$	$C_{44}(i_1, i_2)$	$-(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})$
$\chi_{58}(k_1, k_2, k_3)$	$C_{58}(i_1, i_2, i_3)$	$(\xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3})[(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2}) + (\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})(\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})]$
$\chi_{17}(k_1)$	$C_{13}(i_1)$	$(\frac{1}{2}q^3 - q^2 + \frac{1}{2}q)(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})$
$\chi_{48}(k_1, k_2)$	$C_{48}(i_1, i_2)$	$-(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})$
$\chi_{49}(k_1, k_2)$	$C_{49}(i_1, i_2)$	$(q - 1)(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2}) - (\xi_1^{2 i_1 k_1} + \xi_1^{-2 i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})$
$\chi_{60}(k_1, k_2, k_3)$	$C_{60}(i_1, i_2, i_3)$	$(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})[(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3}) + (\xi_1^{i_2 k_3} + \xi_1^{-i_2 k_3})(\xi_1^{i_3 k_2} + \xi_1^{-i_3 k_2})]$

character	class	value
$\chi_{37}(k_1)$	$C_{56}(i_1, i_2)$	$\xi_1^{2i_1 k_1} + \xi_1^{-2i_1 k_1} + \xi_1^{(i_1+i_2)k_1} + \xi_1^{-(i_1+i_2)k_1} + \xi_1^{(i_1-i_2)k_1} + \xi_1^{-(i_1-i_2)k_1} + 1$
$\chi_{49}(k_1, k_2)$	$C_{50}(i_1, i_2)$	$-(\xi_1^{2i_1 k_1} + \xi_1^{-2i_1 k_1} + 1)(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})$
$\chi_{46}(k_1)$	$C_{45}(i_1)$	$-q(\zeta_2^{q i_1 k_1} + \zeta_2^{-q i_1 k_1} + \zeta_2^{i_1 k_1} + \zeta_2^{-i_1 k_1})$
$\chi_{59}(k_1, k_2)$	$C_{59}(i_1, i_2)$	$(\zeta_1^{i_2 k_2} + \zeta_1^{-i_2 k_2})(\zeta_2^{q i_1 k_1} + \zeta_2^{-q i_1 k_1} + \zeta_2^{i_1 k_1} + \zeta_2^{-i_1 k_1})$
$\chi_{33}(k_1)$	$C_{41}(i_1, i_2)$	$q(\xi_1^{2i_1 k_1} + \xi_1^{2i_1 k_1}) + (q+1)(\xi_1^{(i_1+i_2)k_1} + \xi_1^{-(i_1+i_2)k_1} + \xi_1^{(i_1-i_2)k_1} + \xi_1^{-(i_1-i_2)k_1}) + 1 + q$
$\chi_{43}(k_1, k_2)$	$C_{44}(i_1, i_2)$	$-(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})$
$\chi_{45}(k_1)$	$C_{46}(i_1)$	$-(\zeta_2^{q i_1 k_1} + \zeta_2^{-q i_1 k_1} + \zeta_2^{i_1 k_1} + \zeta_2^{-i_1 k_1})$
$\chi_{61}(k_1, k_2)$	$C_{61}(i_1, i_2)$	$(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\zeta_2^{q i_1 k_1} + \zeta_2^{-q i_1 k_1} + \zeta_2^{i_1 k_1} + \zeta_2^{-i_1 k_1})$
$\chi_{14}(k_1)$	$C_{57}(i_1, i_2, i_3)$	$2(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1} + \xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1} + \xi_1^{i_3 k_1} + \xi_1^{-i_3 k_1})$
$\chi_{33}(k_1)$	$C_{58}(i_1, i_2, i_3)$	$\xi_1^{(i_1+i_2)k_1} + \xi_1^{-(i_1+i_2)k_1} + \xi_1^{(i_1-i_2)k_1} + \xi_1^{-(i_1-i_2)k_1}$
$\chi_{41}(r_1, r_2)$	$C_{41}(i_1, i_2)$	$(q+1)[(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2}) + (\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2}) + (\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})]$
$\chi_{39}(r_1, r_2)$	$C_{39}(i_1, i_2)$	$(q+1)[\xi_1^{(i_1+i_2)k_1} + \xi_1^{-(i_1+i_2)k_1} + \xi_1^{(i_1-i_2)k_2} + \xi_1^{-(i_1-i_2)k_2} + (\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2}) + (\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})]$
$\chi_{57}(r_1, r_2, r_3)$	$C_{57}(i_1, i_2, i_3)$	$(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})[(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3}) + (\xi_1^{i_2 k_3} + \xi_1^{-i_2 k_3})(\xi_1^{i_3 k_2} + \xi_1^{-i_3 k_2})] + (\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})[(\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3}) + (\xi_1^{i_2 k_3} + \xi_1^{-i_2 k_3})(\xi_1^{i_3 k_1} + \xi_1^{-i_3 k_1})] + (\xi_1^{i_1 k_3} + \xi_1^{-i_1 k_3})[(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\xi_1^{i_3 k_1} + \xi_1^{-i_3 k_1}) + (\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_3 k_2} + \xi_1^{-i_3 k_2})]$
$\chi_{19}(k_1)$	$C_{64}(i_1, i_2, i_3)$	$-(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1} + \xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1} + \xi_1^{i_3 k_1} + \xi_1^{-i_3 k_1})$
$\chi_{36}(k_1)$	$C_{64}(i_1, i_2, i_3)$	$\xi_1^{(i_1+i_2)k_1} + \xi_1^{-(i_1+i_2)k_1} + \xi_1^{(i_1-i_2)k_1} + \xi_1^{-(i_1-i_2)k_1} + \xi_1^{(i_1+i_3)k_1} + \xi_1^{-(i_1+i_3)k_1} + \xi_1^{(i_1-i_3)k_1} + \xi_1^{-(i_1-i_3)k_1} + \xi_1^{(i_2+i_3)k_1} + \xi_1^{-(i_2+i_3)k_1} + \xi_1^{(i_2-i_3)k_1} + \xi_1^{-(i_2-i_3)k_1}$
$\chi_{53}(r_1, r_2)$	$C_{55}(i_1, i_2)$	$-(q-1)[(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2} + \xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1} + \xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2}) + (\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})(\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})]$
$\chi_{51}(r_1, r_2)$	$C_{51}(i_1, i_2)$	$-(q-1)[(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2}) + (\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2}) + (\xi_1^{(i_1+i_2)k_1} + \xi_1^{-(i_1+i_2)k_1})(\xi_1^{(i_1-i_2)k_2} + \xi_1^{-(i_1-i_2)k_2})]$
$\chi_{64}(r_1, r_2, r_3)$	$C_{64}(i_1, i_2, i_3)$	$(\xi_1^{i_1 k_1} + \xi_1^{-i_1 k_1})[(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3}) + (\xi_1^{i_2 k_3} + \xi_1^{-i_2 k_3})(\xi_1^{i_3 k_2} + \xi_1^{-i_3 k_2})] + (\xi_1^{i_1 k_2} + \xi_1^{-i_1 k_2})[(\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_3 k_3} + \xi_1^{-i_3 k_3}) + (\xi_1^{i_2 k_3} + \xi_1^{-i_2 k_3})(\xi_1^{i_3 k_1} + \xi_1^{-i_3 k_1})] + (\xi_1^{i_1 k_3} + \xi_1^{-i_1 k_3})[(\xi_1^{i_2 k_2} + \xi_1^{-i_2 k_2})(\xi_1^{i_3 k_1} + \xi_1^{-i_3 k_1}) + (\xi_1^{i_2 k_1} + \xi_1^{-i_2 k_1})(\xi_1^{i_3 k_2} + \xi_1^{-i_3 k_2})]$

Acknowledgements

This research was generously funded by the National Science Foundation under grants DMS-1801156 and DMS-2100912. It was completed while Peña and Pryor were undergraduates at MSU Denver.

The authors thank the anonymous referee for helpful feedback and suggestions.

References

- [Alperin 1976] J. L. Alperin, “The main problem of block theory”, pp. 341–356 in *Proceedings of the Conference on Finite Groups* (Park City, UT, 1975), edited by W. R. Scott and F. Gross, Academic Press, New York, 1976. MR Zbl
- [Gallian 2016] J. A. Gallian, *Contemporary abstract algebra*, 9th ed., Cengage Learning, Boston, 2016. Zbl
- [Geck et al. 1996] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, “CHEVIE: a system for computing and processing generic character tables”, *Appl. Algebra Engrg. Comm. Comput.* **7**:3 (1996), 175–210. MR Zbl
- [Isaacs 2006] I. M. Isaacs, *Character theory of finite groups*, AMS Chelsea, Providence, RI, 2006. MR Zbl
- [James and Liebeck 2001] G. James and M. Liebeck, *Representations and characters of groups*, 2nd ed., Cambridge University Press, 2001. MR Zbl
- [Lübeck 1993] F. Lübeck, *Charaktertafeln für die Gruppen $\mathrm{CSp}_6(q)$ mit ungeradem q und $\mathrm{Sp}_6(q)$ mit geradem q* , Ph.D. thesis, University of Heidelberg, 1993.
- [McKay 1972] J. McKay, “Irreducible representations of odd degree”, *J. Algebra* **20** (1972), 416–418. MR Zbl
- [Navarro 2004] G. Navarro, “The McKay conjecture and Galois automorphisms”, *Ann. of Math.* (2) **160**:3 (2004), 1129–1140. MR Zbl
- [Rizo et al. 2020] N. Rizo, A. A. Schaeffer Fry, and C. Vallejo, “Galois action on the principal block and cyclic Sylow subgroups”, *Algebra Number Theory* **14**:7 (2020), 1953–1979. MR Zbl
- [Schaeffer Fry 2013] A. A. Schaeffer Fry, *Irreducible representations of finite groups of Lie type: on the irreducible restriction problem and some local-global conjectures*, Ph.D. thesis, University of Arizona, 2013, available at <https://www.proquest.com/docview/1354456663>. MR
- [Schaeffer Fry 2014] A. A. Schaeffer Fry, “ $\mathrm{Sp}_6(2^a)$ is “good” for the McKay, Alperin weight, and related local-global conjectures”, *J. Algebra* **401** (2014), 13–47. MR Zbl
- [Schaeffer Fry and Taylor 2018] A. A. Schaeffer Fry and J. Taylor, “On self-normalising Sylow 2-subgroups in type A”, *J. Lie Theory* **28**:1 (2018), 139–168. MR Zbl
- [White 2000] D. L. White, “Decomposition numbers of unipotent blocks of $\mathrm{Sp}_6(2^a)$ in odd characteristics”, *J. Algebra* **227**:1 (2000), 172–194. MR Zbl

Received: 2022-08-17

Revised: 2023-01-18

Accepted: 2023-02-08

andrewdpena@gmail.com

Department of Mathematics and Statistics, Metropolitan State University of Denver, Denver, CO, United States

fpryor@gmu.edu

Department of Mathematical Sciences, George Mason University, Fairfax, VA, United States

mandi.schaefferfry@du.edu

Department of Mathematics, University of Denver, Denver, CO, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	Univ. of Tennessee, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Chi-Kwong Li	College of William and Mary, USA
Martin Bohner	Missouri Univ. of Science and Tech., USA	Robert B. Lund	Clemson Univ., USA
Amarjit S. Budhiraja	Univ. of North Carolina, Chapel Hill, USA	Gaven J. Martin	Massey Univ., New Zealand
Scott Chapman	Sam Houston State Univ., USA	Steven J. Miller	Williams College, USA
Joshua N. Cooper	Univ. of South Carolina, USA	Frank Morgan	Williams College, USA
Michael Dorff	Brigham Young Univ., USA	Mohammad Sal Moslehian	Ferdowsi Univ. of Mashhad, Iran
Joel Foisy	SUNY Potsdam, USA	Ken Ono	Univ. of Virginia, Charlottesville
Amanda Folsom	Amherst College, USA	Jonathon Peterson	Purdue Univ., USA
Stephan R. Garcia	Pomona College, USA	Vadim Ponomarenko	San Diego State Univ., USA
Anant Godbole	East Tennessee State Univ., USA	Bjorn Poonen	Massachusetts Institute of Tech., USA
Ron Gould	Emory Univ., USA	Józeph H. Przytycki	George Washington Univ., USA
Sat Gupta	Univ. of North Carolina, Greensboro, USA	Javier Rojo	Oregon State Univ., USA
Jim Haglund	Univ. of Pennsylvania, USA	Filip Saidak	Univ. of North Carolina, Greensboro, USA
Glenn H. Hurlbert	Virginia Commonwealth Univ., USA	Ann Trenk	Wellesley College, USA
Michael Jablonski	Univ. of Oklahoma, USA	Ravi Vakil	Stanford Univ., USA
Nathan Kaplan	Univ. of California, Irvine, USA	John C. Wierman	Johns Hopkins Univ., USA
David Larson	Texas A&M Univ., USA		

PRODUCTION

Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2024 is US \$255/year for the electronic version, and \$340/year (+\$45, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2024 Mathematical Sciences Publishers

Visualizing the support of Kostant's weight multiplicity formula for the rank-2 Lie algebras	183
PAMELA E. HARRIS, MARISSA LOVING, JUAN RAMIREZ, JOSEPH RENNIE, GORDON ROJAS KIRBY, EDUARDO TORRES DAVILA AND FABRICE O. ULYSSE	
Positive expansions of extended Schur functions in the Young quasisymmetric Schur basis	217
CHLOE' MARCUM AND ELIZABETH NIESE	
Decompositions of even hypercubes into cycles whose length is a power of 2	233
SAMUEL GIBSON AND DAVID OFFNER	
Uniformly sparse graphs and matrices	249
CHARLES R. JOHNSON, WENXUAN DING AND YUQIAO LI	
The nonvanishing of the trace of T_3	263
LIUBOMIR CHIRIAC, DAPHNE KURZENHAUSER AND ERIN WILLIAMS	
Galois action and cyclic defect groups for $Sp_6(2^a)$	273
ANDREW PEÑA, FRANK PRYOR AND A. A. SCHAEFFER FRY	
On strong shift equivalence for row-finite graphs and C^* -algebras	293
KEVIN AGUYAR BRIX AND PETE GAUTAM	
Surface areas of equifacetal polytopes inscribed in the unit sphere \mathbb{S}^2	311
NICOLAS FREEMAN, STEVEN HOEHNER, JEFF LEDFORD, DAVID PACK AND BRANDON WALTERS	
A graph labeling problem	327
TAO LUO AND LEAH YU	
Convex geometries representable by at most five circles on the plane	337
KIRA ADARICHEVA, MADINA BOLAT, EVAN DAISY, AYUSH GARG, GRACE MA, MICHELLE OLSON, ROHIT PAI, CATHERINE RAANES, SEAN RIEDEL, JOSEPH ROGGE, RAVIV S. SARCH, JAMES THOMPSON, FERNANDA YEPEZ-LOPEZ AND STEPHANIE ZHOU	
Orbits of finite-field hypergeometric functions and complete subgraphs of generalized Paley graphs	355
DERMOT MCCARTHY AND MASON SPRINGFIELD	