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Groups are mathematical objects used to describe the structure of symmetries, with
one of the most canonical examples being the set of invertible matrices of a given
size over a fixed base field. For a given group, a matrix representation leverages this
by providing a way to represent each of its elements as an invertible matrix. The
information about the (complex) representations of a finite group can be condensed
by instead considering the trace of the matrices, yielding a function known as a
character. One of the overarching themes in character theory is to determine what
properties about a finite group or its subgroups can be obtained by studying its
characters. We study a conjecture that proposes a correlation between the makeup
of a group’s irreducible characters and the properties of certain subgroups known
as defect groups. In particular, we prove the conjecture for the finite symplectic
groups Spe(24).

1. Introduction

Given a finite group G and an integer n > 1, a complex representation of degree n of
G is ahomomorphism p : G — GL, (C). In other words, p is a function such that, for
each g € G, the image p(g) is an n x n invertible matrix with entries in the complex
numbers, and p(gh) = p(g)p(h) for each g, h € G. Here on the left-hand side, multi-
plication is taken in G, and on the right-hand side, the operation is usual matrix multi-
plication. We obtain the corresponding character for p by taking the trace Tr(p(g))
of each p(g) (that is, by summing the diagonal entries). This gives a function
x : G — Cdefined by x(g) =Tr(p(g)) for each g € G. Note here thatif 1 € G is the
identity element, then x (1) =Tr([/,,) = n is the degree of the original representation.
A character x is irreducible if it cannot be written as x = x| + x2, where x; and
X2 are characters corresponding to representations of G. We refer to the set of irre-
ducible characters of G as Irr(G). The information about the character theory of G
is summarized in the character table of G, which is the square table whose columns
are indexed by conjugacy class representatives {gy, ..., gk} of G, whose rows are
indexed by Irr(G) = {x1, ..., x«}, and whose (i, j)-th entry is given by x;(g;).
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One of the main general problems in the representation theory of finite groups is
the pursuit of answering the question “what information about G or its subgroups
can be obtained from the character table of G?” This general question fits into the
framework of so-called “local-global” conjectures in character theory, which seek
to find relationships between the character theory of G and properties of certain
proper subgroups.

The following standard definitions will be useful. Note that, for a finite set X, we
use | X| to denote the cardinality of X. Hence, the order of a group G will be given
by |G|. In analogy to this notation, the order of an element g € G will be written |g]|.

We recall that given a subgroup H < G of G, the normalizer of H in G, denoted
by Ng(H), is the subgroup

Ng(H) ={xeG:Hx=xH}.

Throughout, if £ is a prime and # is an integer, we write n, for the largest power
of £ dividing n and ny for n/n,. If £ is a prime dividing |G|, then any subgroup P
of G such that | P| = |G|, is called a Sylow £-subgroup of G. We write P € Syl,(G).

With this notation established, we may now state one of the earliest and most
prominent of these “local-global” conjectures, the McKay conjecture [1972]. The
McKay conjecture proposes that if G is a finite group, £ is a prime that divides |G|,
and P € Syl,(G), then |Irry (G)| = |Irry (NG (P))|, where Ity (G) denotes the set
of irreducible characters of G with degree prime to €.

Although we only deal with complex representations here, representations over
fields of positive characteristic £ can also be defined, and these are related to Irr(G)
by so-called £-blocks. For our purposes, we consider £-blocks as a partitioning
of the set Irr(G). Each set in the partition is written Irr(B), corresponding to an
£-block B. (More precisely, the sets Irr(B) can be obtained as the equivalence
classes under the transitive closure of the relation on Irr(G) such that x, ¥ € Irr(G)
are related if ) _, Fel X (9)¥ (g1 #0. Here the sum is taken over all elements of G
whose order is not divisible by £.)

Each ¢-block is then associated with a special class of subgroups of G whose
sizes are a power of ¢, known as defect groups of the block. Although the precise
definition of defect groups is technical and not necessary for the results here, we
remark that if D is a defect group for B, then every x € Irr(B) satisfies x (1) is
divisible by |G|, /| D|. The character x € Irr(B) is called a height-zero character if
x ()¢ =1Gl¢/| D], and hence if x (1), is as small as possible. We write Irro(B) for
the set of height-zero characters of B.

The McKay conjecture, while still unproven, opened the door to a number
of stronger conjectures, of which the Alperin—-McKay conjecture [Alperin 1976]
(often thought of as the blockwise version of McKay, relating the set Irro(B) to the
height-zero characters in a block of Ng (D)), McKay—Navarro conjecture [Navarro
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2004] (the Galois version of McKay), and the Alperin-McKay—Navarro conjecture
(a combination of the other two) are most relevant to our work. Although these
conjectures are beyond the scope of this article, we deal here with a consequence of
the Alperin—-McKay-Navarro conjecture. Namely, Rizo, Schaeffer Fry, and Vallejo
[Rizo et al. 2020] proved that if the Alperin-McKay—Navarro conjecture holds for
¢ € {2, 3}, then we can determine from the character table of G whether a defect
group is cyclic in the following way:

Conjecture 1.1 [Rizo et al. 2020]. Let £ € {2, 3}. Let G be a finite group and let B
be an £-block of G with nontrivial defect group D. Then |Irrg(B)°'| = £ if and only
if D is cyclic.

Here o is a specific Galois automorphism, which we define in Section 2B, and
Irrg(B)?! is the set of members of Irrg(B) that are fixed under the action of o;. In
this paper, we prove the following:

Theorem 1.2. Conjecture 1.1 holds for the group G = Spe(q) and the prime £ =3,
where q is a power of 2.

Our proof of Theorem 1.2 relies on the known character table for Sps(g) with
g even determined by Frank Liibeck [1993], as well as the known distribution of
characters into blocks and their defect groups by Donald White [2000] and the third
author [Schaeffer Fry 2013; 2014].

The paper is structured as follows. In Section 2, we introduce some additional
notation and definitions and make some preliminary observations. (We remark here
that more information on groups and characters can be found in [Isaacs 2006; James
and Liebeck 2001].) In Section 3, we provide a series of computational lemmas
regarding the irrational values that occur in the character table for Sps(¢g) and their
behavior under that Galois automorphism o;. Finally, in Section 4, we complete the
proof of Theorem 1.2. We also provide an Appendix with examples of character
values found in each relevant block.

2. Preliminaries

2A. General linear and symplectic groups. Let g be a power of a prime p, and let
[, denote the finite field of size g. The general linear group, GL,(q), is the group
of all n x n invertible matrices with entries in .

With a proper choice of basis, the symplectic group Sp,, (¢) can be defined as

Spa,(q) = {g € GLoy(q) : gTJg =T},

0 I,
[0

where
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I,, is the n x n identity matrix and g7 is the transpose of g. For the purpose of this
paper, we are particularly interested in the case of Sps(q) (i.e., n =3) when g is a
power of p = 2. In this case, note that I, = —1,.

2B. The Galois automorphism o1. We follow the definitions in [Gallian 2016,
Chapter 32, p. 531]. Let E be an extension field of Q. Then an automorphism
of E is a field isomorphism o : E — E. That is, o is a bijective map satisfying
o(a+b)=0(a)+o0(b) and o (ab) = o (a)o (b) for all a, b € E. Note that any such
o necessarily fixes Q. We write Gal(E/Q) for the set of automorphisms of E. More
generally, we can consider the so-called Galois group Gal(E/L) of automorphisms
of E fixing all elements of L when the extensions Q C L C [ satisfy that E is a
splitting field for a polynomial over L. The size of a Galois group Gal(E/L) is the
same as the degree [E : L] of E over L, when it is finite, which is the dimension of E
viewed as a vector space over L. For more information, we refer the reader to an
abstract algebra text, such as [Gallian 2016, Chapter 32, p. 531].

Now, given a finite group G, the character values x (g) lie in Q(e?*!/IC1) for all
g € G and x € Irr(G). Further, given any o € Gal(Q(**/16)/Q) and x € Irr(G),
we obtain another irreducible character x° defined by x?(g) := o (x(g)) for all
g €G;see, e.g., [Isaacs 2006, Problem (2.2)]. Given a prime ¢ dividing |G|, there is a
unique o1 € Gal(Q(e*>"/161) /Q) satistying that, for a root of unity & € Q(e?>™ /161y,

g1 if |£] is a power of £,

1
& if £ does not divide |&]. M

o1(§) = {

Note that when || = ¢, i.e., § is a primitive £-th root of unity, we have gl —¢,
Therefore in this case, & is fixed by o. In fact, this is the only case in which a root
of unity with order a power of ¢ is fixed by o7. Further, note that oy has order a
power of £.

In service of Conjecture 1.1, we are concerned with studying when x°' = x, for
certain x € Irr(G), which means that the value x (g) € Q(e?"/I¢l) is fixed by o
for each g € G. In the character table for Sps(q), obtained in [Liibeck 1993] and
available in the computer algebra system CHEVIE [Geck et al. 1996], we often find
rational linear combinations of expressions of the form £ + £, where & is some
complex root of unity. For this reason, we establish the following observation.

Lemma 2.1. Let G be a finite group and let £ be an odd prime dividing |G|. Let &
be a complex n-th root of unity, where n > 2 is a divisor of |G|. Then o1 fixes & if
and only if oy fixes E + &7\,
Proof. First, assume that o1(§) = &. Then note that

o1+ =@ +oaE )=o)+ =5+

and hence o fixes £ + £~ ! as well.
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Now assume that o} fixes & + &1, Let Q@ C L € J C K be extension fields such
that K = Q(e2™/I1), J = Q(&), and L = Q(£ +£~'). Note that any automorphism
must permute the |£|-th roots of unity, and hence J is stabilized by o;. Then
o1 € Gal(I</L). Since &, £~! ¢ L, the polynomial

P EHE D I=( =& —E) ellx]

has no solutions in L. Therefore J is a splitting field over L, and the order of the
group Gal(J/L) is 2. We can then say that Gal(J/L) = {¢, ¢»}, where ¢(§) =&
and ¢o(§) =&

Now consider the restriction 0| of o1 to Gal(J/L). Thatis, o] is the automorphism
of J that is simply the restriction of o to the smaller domain J. Then o must either
be ¢ or ¢,. For the sake of contradiction assume the latter case. Since the order
of o1 is a power of £, say £, we have afb is the trivial automorphism of Gal(lK/L),
so its image in Gal(J/L) is also trivial. However, if 01’ = ¢, then we would have
¢§b () = £~!, which is a contradiction. Therefore we must have o{ = ¢1, and so
o01(§) =&. That is, o7 also fixes &. U

Recall that for an element of Q(e>*/I¢) and an integer a, we have o} (£§%) =
o1(£)4, so that £¢ is fixed by o whenever £ is. This gives us the following useful
observation:

Lemma 2.2. Let G be a finite group and let £ be an odd prime dividing |G|. Let & be
a complex n-th root of unity, where n > 2 is a divisor of |G|. Let Z C Z be some sub-
set of Z containing 1. Then & is fixed by o if and only if £ is fixed by o) forall a € T.

3. Breaking down character values for Sp¢(q)

3A. Notation. For the remainder of the paper, let ¢ be a power of 2 and let G =
Spe(q). Note that |G| = ¢°(¢*> — 1)(¢* — 1)(¢® — 1). The irrational values in the
character table for G, available in the computer algebra system CHEVIE [Geck et al.
1996] and originally determined in [Liibeck 1993], are rational combinations of roots
of unity of orders divisible by the polynomials in ¢ appearing in the factorization
of |G|. Namely, the following notation will be used throughout, letting € € {£1}.
Here, and for the remainder of the paper, we use +/—1 to denote a fixed complex
fourth root of unity, to allow the notation i to be used instead for indexing:

2/ —1 2w/ —1
{1 :=exp s 51 =exp s
qg—1 q+1
(271«/—1) (2%«/—1)
w1 = exp , W i=¢exp s
q—¢€ q+e

=), women(550)

§2:=exp< 21 241
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and

27‘[«/—1) ( 2w/ —1 )
—— | =exp 5 .
(g—e)g=+eq+1)

We note that the roots of unity ¢;, & for i = 1, 2 are exactly as defined in the
character table for G in CHEVIE [Geck et al. 1996]. The following notation is
used in [Schaeffer Fry 2013; 2014], and agrees with that of the CHEVIE character
table, to label the blocks and characters of G, where again € € {%1}.

w3 :=exp( 3
q° —€

Notation 3.1. Let Ig_e betheset{i€Z:1<i<q—e—1}, andlet I,_. be a set
of class representatives on / ;)_6 under the equivalence relation i ~ j if and only if
i=24j mod (q —e€). Let

Iq02+1::{ieZ:1§i§q2},
I =lie€Z:1<i<q’—1,(qg—Dti, (@+D1i},

and let I,>_, be a set of representatives for the equivalence relation on / 02_6 given
by i ~ j if and only if i = 4 or ¢j mod (¢*> — €). Similarly, let

1;’375 ={ieZ:1<i<q’—¢, (¢*+eq+1)ti}

and I,3_,

a set of representatives for the equivalence relation on 133_6 given by
i ~ jifand only if i = %, +¢j, or £¢%j mod (¢> — €).

3B. Initial observations. We next make some observations about modular relation-
ships that will be useful in what follows. Note that since 31¢g, we have 3 divides
exactly one of ¢ — 1 or g 4+ 1. Here and for the remainder of the paper, we let
€ € {£1} be such that 3| (g — €) and will write (¢ — €) =: m3% with m, d € N and
gcd(m, 3) = 1. Note then that 3 divides (g*>+eq+1) exactly once, and we write
(q>+eq+1)=:3n, with gcd(n, 3) = 1. (Indeed, we have g>+eq+1=(g—€)>+3eq,
which must be divisible by 3 since both summands are, but cannot be divisible by 9
since then 3gq is divisible by 9, contradicting that 31q.)

Lemma 3.2. Let h, z, 70 € Z, where h is prime to 3. Then hzim34=1 = hzym39-]
mod h(g — €) if and only if 71 = 7o mod 3.

Proof. Since ¢ — e = m3?, we have hz;m39~! = hzom3?~! mod h(q — €) if and
only if hm39 | h(z; — z5)m3¢~!, which happens if and only if 3| (z; — z2), and
therefore if and only if z; = z, mod 3. U

Lemma 3.3. Let k = x3¢ for some integer x such that |x| < m, let h € Z, where h
is prime to 3, and let u € {£1}. Then

k+ puhm3? 1 £ —k + uhm39~! mod h(qg — €),
k + uhm3?~" £ —k mod h(g — €).
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Proof. First, it is helpful to notice that m is odd, since m | (g — €) and ¢ is a
power of 2. Suppose then, for the sake of contradiction, that k + uhm3¢~! =
—k~+phm34~" mod h(q —e€) for some u € {£1}. Then hAm3? | 2x3%, which implies
that Am | 2x and ultimately m | 2x. This is a contradiction, since m is odd and
|x| < m. Now suppose that k + whm34=" = —k mod h(g — €) for some u € {£1}.
Then hm3¢ | (2x3% & hm39=1). It follows that m | 2x and 3 | 1, which is again a
contradiction, and the proof is complete. U

3C. Roots of unity fixed by o1. Here we present several lemmas describing when
the various roots of unity appearing in the character table for G are fixed by the
Galois automorphism o7.

Lemma 3.4. For any k € Z, we have 3 does not divide the order of a)’g, §2k(q_€),

nor éé‘ . In particular, these are fixed by o.
Proof. Since 3 divides (¢ — €), we know 3 cannot divide (g + €) = |wy|. Further,

q+e

ka=€) _ | k| —
15,7 = |y TS

which is therefore also prime to 3. Finally, since g2 = 1 mod 3, it follows that 3
cannot divide q2 + 1, so 3 cannot divide |§§| = (q2 + 1)/ ged(k, q2 +1). O

The next two lemmas will be used when the character values contain powers
of wi, which is the same as g“zq *€ Note that the conditions on r € I, in these
cases are the conditions that appear in the descriptions of the relevant blocks and

characters (see Tables 1-8 and the notation preceding them).

Lemma 3.5. There is a unique element r € I, . satisfying m |r such that ) is
fixed by o1. Namely, this element is r = m3¢~,

Proof. First we will show that the stated value of r € I, . is the only possibility
satisfying m | r for which w] is fixed by 0. Assume that r € I, . such that
o1(w]) = o}, and write r =mf3*, with f, x € Z and f relatively prime to 3. Notice
that x < d, as otherwise r ¢ I, .. Suppose, for the sake of contradiction, that
x =d — y for some y with 1 <y <d. Then

P m34
|C()1| = — = 3y
gcd(m39, mf34-y)

’

so ) is not fixed by oy. Therefore we must have r = mf 34=1

Now, note that f = 1 or 2 mod 3. Further, under the equivalence relation
defining I, ., we have i is equivalent to —i, but also we see 1 = —2 mod 3 and 2 =
—1 mod 3, so by Lemma 3.2 we have that every r defined as such will be equivalent
in the set I, .. Finally, we see that a)§”3d71 has order m3d/gcd(m3d, m3d_1) =3,
and so is fixed by o7. O



280 ANDREW PENA, FRANK PRYOR AND A. A. SCHAEFFER FRY

Lemma 3.6. Let k € 1,_., such that 34 | k. Then, there are exactly three elements
r € Iy satisfying r = £k mod m such that o\ is fixed by o.

Proof. First, we show that there are six choices for r € [ qo_ » under equivalence

modulo g — €, satisfying r = £k mod m and such that )] is fixed by oy. Let r be
such an element. Since r = 4k mod m, we can write r = +k +mf for some f € Z.
Then, 0| = (a)f[k)(a)'lnf ). Further, since k € I, . and 34| k, we have k = x3¢ for
some 0 £ x € Z. Then

:I:x3d| m3d m

 ged(x39,m39)  ged(x,m)’

Since m is prime to 3, the order of a)f—Lk cannot be divisible by 3, so these are
fixed by o1. Hence, o) is fixed by o if and only if a)'lnf is. For f =0 or when f is
any multiple of 3%, we have o/

=1,s0 0] = a)fk. Otherwise, we have
m34 34

ged(mf, m3%) ~ ged(f, 3%)

is some positive power of 3, so a)'lnf is fixed by o) if and only if f is such that
|wa | = 3 exactly.

Note that 3¢ /ged( f, 37) = 3 implies that ged( f, 39) = 39~!, which implies that
f =231, where z € Z is prime to 3. So in order for w] to be fixed by oy, r must
be of the form £k + zm3?~! for some z € Z with z =0 or 3{z.

Now, by Lemma 3.2, we have that zim34 1 = zom34~! mod (g —¢€) if and only
if z; = zp mod 3, so we may assume without loss of generality that z € {0, 1, 2}.
Note that z = 0 corresponds to the previous case where f =0 or f is any multiple
of 3%. Therefore, for r € I (?_6 with r = 4k mod m, we have wj is fixed by oy if
and only if r is equivalent modulo ¢ — € to one of

| =

r = +k, r=4k+m3?" or r==4k+2m3?",

Now we will show that these six choices of r correspond to at most three
elements of /, .. Recall thatif i, j € I,_., we have i ~ j if and only if i = £
mod (g — €). In particular, we have k ~ (—k). Next, we can see by Lemma 3.2 that
k+2m397" ~k—m397" and —k +2m397" ~ —k —m3?~! ~ k+m39~!. Similarly,
k4 2m3971 ~ k —m3971 ~ —k +m3%~1. For simplicity’s sake, we will use the
following as our three equivalence class representatives for 7:

r=k, r=k+m3" or r=k-—m3?"

Finally, we show that these three choices for r give us distinct class represen-
tatives in I, .. Suppose for a contradiction that k + m39=1 ~ k in I;—¢. Then
either k +m39~! = k mod (¢ —€) or k +m39~! = —k mod (¢ —€). Then this
is a contradiction by Lemmas 3.2 and 3.3, respectively. We see similarly, that
k—m3?~1 £ kin I, ¢ and k4+m3?=1 £ k—m39"in I, completing the proof. []



GALOIS ACTION AND CYCLIC DEFECT GROUPS FOR Spg(29) 281

Due to the nature of the values found in the character table for Sps(g), many of
the preceding lemmas will often be used in conjunction with Lemma 2.1. Similarly,
Lemmas 3.8 and 3.9 below, which deal with powers of ¢;, will be used in conjunction
with the following:

Lemma 3.7. Let r € 1,2_y. Then &; is fixed by o1 if and only if both w| and
G461+ +¢, " are fixed by oy.

Proof. First, if ¢; is fixed by oy, then so is any sum of powers of ¢;, so both
W) = g“;(“e) and & + 4,7+ ¢, + ¢, "7 are fixed by o7.

Conversely, assume that /| and ¢J + ¢, 4+ ¢, + ¢, '? are fixed by oy. Let F
denote the fixed field of Q(e**!/19!) under the group (o) generated by o7y, so that
o}, o, and &) + é‘zrq +4 "+, "l are all elements of F by assumption and by
Lemma 3.4. Assume by way of contradiction that ¢; is not fixed by o1, so that
¢y +¢, " is also not fixed by o7, using Lemma 2.1. Now, since Q(¢) +¢, ") is the
(unique) maximal totally real subfield of Q(¢}), we see that, if we let oy :=¢5 +¢, "
and ap :=¢)" +¢, 7', then F(ay) = F(a2). Then since oo = of + 0]+ b+ w5,
we see (o) is the splitting field over F for the polynomial (x — a1)(x —ap) =
x2 4+ (o + 2)x + oy and [F(ay) : F] = 2. From here, we may argue similarly to
Lemma 2.1 to obtain a contradiction, unless o (and hence ;) is fixed by o7. [

Lemma 3.8. Let k € I,2_ such that 34| k. Then there are exactly three elements
r € I2_y satisfying r = +k or =gk mod m(q + €) such that | and ¢, are both
fixed by o.

Proof. First, let r be as in the statement and let f € Z such that r = +k+mf (g +¢)
or r = gk +mf(q +¢). Then we can further write k or gk as x3¢ for some x € Z
with 31x. Therefore, we can write r = £x3 +mf (g +¢€).

Next, we have

a)ll’ — (C()itX3d)(Cl)’lnf(q+€)) and ;é‘ — (szl:x3d)(§2mf(q+€)).

Since m (g + €) is prime to 3, we see as in the proof of Lemma 3.6 that o is fixed
by o if and only if a)’lnf @€) is and ¢, is fixed by o if and only if ;‘2m Flate _ a)'lnj
is. Further, since m(q +¢€) = (¢ — 1), arguing exactly as in the beginning of the

proof of Lemma 3.6 in this case, we see r is equivalent modulo ¢? — 1 to one of
r=4k, r==qk, r=+k+m39"(g+e),
r=:|:k+2m3d_1(q+e), r::l:qk+m3d_1(q+e) or r::l:qk+2m3d_l(q+e).

(Conversely, we see that these choices of r satisfy the statement.)
Now, recall that 1,>_ is defined by the relation i ~ j if and only if i = £ or
+¢j mod (g2 — 1). Then we have k ~ —k ~ gk ~ —gk under this relation. For the
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remaining choices for r, it will be helpful to first notice that
2m347 (g +€) = 2om3%7 (g +€) mod (¢> — 1)

if and only if z; = zp mod 3, by Lemma 3.2. We can use this to again substitute
2m for —m, and then show that these remaining eight choices for r lie in only two
equivalence classes in [,2_;.

Namely, we have k + em397!(q + €) ~ gk + m3971(q + €) because (¢*> — 1)
divides

(> —1)(=k)—(g—€)(g+€)m3? = (k+em3?~ (g+€)) —q(gk+m3?~ (g +e€)),

and similarly —k +em39!(q +¢€) ~ —qk +m39~1 (g + €). Also note that
k+m3 g +e)~—k—m3" (g +e),
—k4+m3 g +€e) ~k—m39" (g +e),
gk +m3? (g4 €) ~ —qgk —m397 (g +¢),
gk —m39" V(g +€) ~ —gk +m39 7 (g +¢€).

So any r € I 2_; such that | and ¢; are both fixed by oy is equivalent to one of
r=k, r=k+m3 Y g+e) or r=k—m3""(g+e).

It now suffices to show that these elements represent three distinct classes
in I,>_y. First, k ~ k + m397!(g + €) if and only if k = £(k + m3?~!(g + €))
or ¢ (k +m3971(g 4+ €)) mod (¢> — 1). Applying Lemma 3.2 with & = (g +€),
we see that k = k + m3d_1(q + ¢€) mod (q2 — 1), and we can use Lemma 3.3
with 1 = (g + €) to show that k # —(k +m39"!(q + €)) mod (¢> — 1). Then,
k = gk + qm3?=1(q 4 €) would imply that (¢g> — 1) | (k — gk — qgm3?~'(q + €)),
which gives us (g2 — 1) | (=k(g — 1) — gm39='(q + €)). Similarly, k = —qk —
gm3¢1(q + €) will give us (g2 — 1) | (k(g + 1) + gm3?~'(qg + €)). So, since
39| (q2 — 1) and 3¢ | k, either of these would imply 3| gm(q + €), a contradiction,
and therefore, k # k +m3?~!(g + €). Using similar calculations, we can also see
k #k—m3?"1(g+¢€) and k +m397 (g +€) #* k —m3?1(q +¢). Therefore, these
three elements give distinct r € I,2_y, and the proof is complete. ([

Lemma 3.9. Lett € I, .. Then there is a unique r € I 2_ satisfying r = £(q —€)t
mod m(q + €) such that w| and {; are both fixed by o.

Proof. Following the strategy from before, we will first show that there are six
possible choices for r as in the statement such that @) and ¢ are fixed by oy. Then
we will show that these actually only give one element of /,>_;.

We will sometimes write M :=m(q+€) = (qz— 1)3. Since r =4(g —€)t mod M,
we can write r = +rm3? + M f for some f € Z. Then w] = (a)f”’”yl)(w{”f). We
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also see that

|w:|:tm3d| — m3d — 1
! gcd(tm34, m39) ’
|Q)iwf| _ m3d 3d

ged(mf (g +€),m3?) — ged(f(g +¢€),3%)
As in the proof of Lemma 3.6, if f is 0 or any multiple of 3%, then a)f/[f =1 and
] = a)li’"ﬁd = 1. Otherwise, we must choose f such that |a)iwf | = 3 exactly.
Similarly, £7 = (£ (e2") = (02 (@27 T7) = (02 ("). By Lemma 3.4,
we have that a);d is fixed by o1, so ¢, is fixed by o7 if and only if w;" is. Using an
argument similar to Lemma 3.6, we see that if w} and ¢; are both fixed by o1, then

r is one of
r=x(g—e)t, r=x(q@-—et+m3?"(g+e) or r=+(g—e)t—m34(g+e).

Now, recall that (g —€)t ¢ I,»_; and r ~ —r in I 2_;, so in fact we have r
represented by one of

ri=(q—ex +m3d_1(q +€) or r=(q—ert— m3d_1(q +€).
But notice that 7| = —egr> mod (¢? — 1), so these define just one class in Iy O
Lemma 3.10. Let k € I,5_, such that 3! | k. Then, the following hold:

(1) There are exactly three elements r € I5_ satisfying r = £k, £qk, or +q°k
mod mn such that  is fixed by o7.

(2) Letr € I5_ satisfy r = +k, £qk, or +¢%k mod mn and denote by x (r) the
character xe3(r) of G if € =1 and xe6(r) if € =—1, in the notation of the character
table for G available in CHEVIE [Geck et al. 1996]. Then x (r) is fixed by oy if and

only if o is fixed by 0.

Proof. First, we notice that ¢°> — € = (g — €)(¢*> + €q + 1), so we will write g°> — €
as mn39t! when it is useful. Since 3¢*! |k, we write k = x39*1. Note that gk
and g’k are both of the form x3¢*! for some (different) x € Z, so we will write
r = £x3" £ mnf for some f € Z.

(1) We have o} = (a);” 3 )(a);mf ), and since m and n are both prime to 3, replacing
the roles of (3¢, ¢ + €) in Lemma 3.8 with (3¢*!, n) here and noting z1m39n =
zom3%n mod mn3?*! if and only if z; = z, mod 3 arguing as in Lemma 3.2, the
situation is analogous.

In this case, for wj to be fixed by o1, we therefore have r must be of the form
r=4k, r==4qk, r==q¢*, r==4k+mn3?, r=4qgk+mn3?,
r=+q¢*k+mn3¢, r=+k+2mn3?, r=4qk+2mn3? or r==4q¢*+2mn3°.

(Conversely, note that w5 is fixed by oy if r is of any of these forms.)
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Recall that k ~ (—=k) ~ (Fgk) ~ (£¢%k). Arguing similarly to Lemma 3.8 with
the role of g +¢€ now replaced with n, we obtain that under the relation ~, each value
in the list above is equivalent to one of the following three elements of r € I3_:

r=k, r=k+mn3? and r=k—mn3?.

Further, arguing as in the previous lemmas, we again see that these indeed give
distinct elements of /,5_,, completing the proof of (1).

(2) The character x (r) is what is known as a semisimple character and is indexed
by a conjugacy class of G cons1st1ng of all elements in G w1th eigenvalues @5, a)3 ,
co3q , a)3 , a)3 7 and & a)3 , where here @3 is a primitive q — € root of unity in I]: 6.
(This is the class g31(r) when € = 1, respectively g34(r) when € = —1, defined in
[Liibeck 1993, Tabelle 19].) Now, since G comes from an algebraic group over Eq
whose center is connected, [Schaeffer Fry and Taylor 2018, Lemma 3.4] describes
how such characters are permuted by members of Gal(Q(e>*/I¢1) /Q). In particular,
[Schaeffer Fry and Taylor 2018 Lemma 3.4] tells us that x (r) is fixed by o if and
only if the set {w}, a)3 , a)3 a)3 , 5 rq, e } is permuted by ol.

Now, note that n{r, as otherwise n | x and hence 3n = q +eq + 1 divides k,
contradicting that k € I,3_.. Suppose that some o € (o7) maps @] to a)gq, where
g € {—1, +q, £¢*}. Recall that n is relatively prime to 2, 3%*'m, (£q% — 1),
and (g — 1). Writing w3 = y;y, for y; a primitive 3¢*!m- root of un1ty and y,
a primitive n-th root of unity, we then see that (o (y]))y; = y1 y2 , since y; is
fixed by o;. This forces y; " to be a (39+m)-th root of unity. Then y is also
a (39 1m)-th root of unity, since |y,| is prime to g — 1. Then since |y,| is prime
to 39t 1m, we see that this forces y; =1, so that n | r, a contradiction. Hence we
see that x (r) is fixed by oy if and only if o fixes wj. ([

4. Proof of Theorem 1.2

Let G :=Spg(q) with g a power of 2. To prove Theorem 1.2, we must show that if B
is a 3-block of G with cyclic defect groups, then there are exactly three height-zero
characters in Irr(B) that are fixed by o, and that if B has noncyclic defect groups,
then the number of such characters is strictly larger than 3.

The defect groups for G are described in [Schaeffer Fry 2014, Proposition 3.1].
Namely, for the prime 3, the cyclic defect groups are (in the notation of [Schaef-
fer Fry 2014]) denoted by Q, Q», and Q®, and the remaining defect groups are
denoted by Q1.1, O2.1, Q1.1,1, and P. Here P is a Sylow 3-subgroup of G.

The sets Irr(B) for each block B of G are described in [White 2000] for so-
called “unipotent” blocks, and in [Schaeffer Fry 2013, Section 4.4] otherwise. The
sets Irrg(B) are described in [Schaeffer Fry 2014, Sections 4.2—4.10] and also in
[Schaeffer Fry 2013, Section 7.4.1]. In Tables 1-8, we list the names of these
blocks (with the notation of [White 2000; Schaeffer Fry 2013]) and a subset of
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characters found in Irrg(B) (with the notation of the CHEVIE character table and
[Schaefter Fry 2013]).

With this information in place, and given our work in Section 3, the proof involves
considering the character table for Sps(q) due to [Liibeck 1993] and available on
CHEVIE, and analyzing when the character values of the characters in Irro(B) for
each block B corresponding to a given defect group are fixed by o;. The families
of characters and of conjugacy classes for Sps(¢q) are indexed by the various sets
introduced in Notation 3.1. The character values are either rational or sums of
complex numbers of the form x (£ +£~"), where i, r € Z come from one of the
indexing sets defined in Notation 3.1 (depending on the index defining the character
and the class within their families), £ is some root of unity, and x € C is either
rational or otherwise fixed by o). In the Appendix, we include examples of specific
values for the relevant characters. We have used our lemmas from Section 3 to find
the appropriate choices of r so that a given £” will be fixed by o, where again &
denotes a relevant root of unity.

We apply Lemma 2.2 to say that £” is fixed by o if and only if £ is fixed
by o1, for every relevant i. Note that we also apply Lemma 2.1 in conjunction with
Lemmas 3.5 and 3.6; Lemma 3.7 in conjunction with Lemmas 3.8 and 3.9; and
the two parts of Lemma 3.10 together, to show that in fact the full character values
being considered are also fixed by o;. Tables 1-8 list the characters being considered
for each block and the lemmas from Section 3 that are used for those characters.

For a concrete example, consider the block B = Byg(s, t;) when € = 1 (see
Table 3). Here 1y € 1,11 and s € I >_ is divisible by 3%, Then the members of
Irrg(B) are the characters x¢(r, t1), where r € T2y is equivalent to £s or £gs
modulo m(g + 1). By Lemma 3.8, there are exactly three choices of such r such
that ¢; and w) are fixed by o7, and hence exactly three such choices of r such that
e and 44 44 +¢, 7 are fixed by o1, using Lemmas 2.1 and 3.7. Now,
the irrational character values for xe; (7, t;) take the following forms, where i, i’
range through appropriate indexing sets from Notation 3.1 for the conjugacy classes:

e, A=gHE 5™, AEgDE +6™), ET+HE,
(I=g*)E+677), AEQE+6). @ +DE+E "+,
6 E ™. GG T EHEE T,

which are always fixed by o1 by Lemma 3.4, and
G+, @ =2q+DE+¢, A=)+,
@040, AR @ TG e,
(gér(q+1)+§2_ir(q+l))(é-zitl(q_l)_i_é-z_itl(q_l)) — (é.lir_i_é.]—il’)(slitl +€]_itl)9
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(=)@ +¢7 My EN e,

&+ oy () T g 1Y) | |
=&+ LT+ D E HETT.

Then we see that x¢; (7, t1) is fixed by o] exactly when r is one of these three choices,
showing that B contains exactly three height-zero characters fixed by oy. Since this
block has defect group Q», which is cyclic, this block satisfies the statement.

For each defect group, we include two tables; one for when € = 1 and one for
when € = —1. Each table lists all blocks B with the given defect group, additional
conditions on indexing, the characters in Irrg(B) being considered for that block
(in the notation of the CHEVIE character table), and the number of characters in
the listed family that are fixed by o}, with reference to the lemmas used for those
specific characters.

The first four tables are for the cyclic defect groups, Q1, Q», and Q®). For these
groups we list all characters in Irrg(B), in order to show that |Irrg(B)°'| = 3. The
remaining tables correspond to the noncyclic defect groups P, Q1.1, Q1.1.1,and Q2 ;.
In these cases, we only list enough characters needed to see that |Irro(B)°!| > 3.
Therefore in these cases, the column that shows the number of fixed characters refers
only to the characters listed, not necessarily the total number fixed in the given block.

4A. The tables. Throughout, we let k1, k2, k3 € I,_; with none of ki, k, k3 the
same and let #1, 1, 13 € I, 41 with none of t1, 1, 13 the same. When € = 1, let

34 | k;, and when € = —1, let 34 |t;. Letu € qu+1, and s € qu_l with 3¢ | s, where
39 :=(q—¢€);. Letv e Iy and w € [5,. When e =1, let (¢> — 13| v, and
when € = —1, let (¢° + 1)3 | w. Moreover, let m := (¢ — €)3 as before, and let

n:=(q*+eq+1y.

block B restriction characters in Irrg(B) # fixed by o}
b none X5, X11 2: rational
1 m|r x17(r) 1: Lem. 3.5
B (k)M r ==+k; modm x17(r) 3: Lem. 3.6
B (11, 12) none xs3(t1, 12), xsa(t1,12)  2: Lem. 3.4
! m|r Xxe0(r, t1, 12) I: Lem. 3.4,3.5
Boa(ut) none X55(1), xs56(1t) 2: Lem. 3.4
ml|r X2 (r, u) 1: Lem. 3.5,3.4
Borg(ky, t1,1p) r ==k modm x60(7, 1, 12) 3: Lem. 3.4, 3.6
B30(k1, M) r = :|:k1 mod m X(,z(r, u) 3: Lem. 3.6, 34

Table 1. Blocks with defect group Q1 when € = 1.
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block B restriction characters in Irry(B) # fixed by o
by none X4s X9 2: rational
m|r x20(r) 1: Lem. 3.5
B (1) r =+t mod m x20(r) 3: Lem. 3.6
Bir(ki. ko) none xa1(ky, k2), xa2(k1, k) 2: Lem.3.4
’ m|r xss(ki, ko, 1) l: Lem. 3.4, 3.5
Boa(u) none X55(u), xs6(ut) 2: Lem. 3.4
mlr Xe65(u, 1) 1: Lem. 3.5,34
By(ki, ky, 1)) r ==t modm xs8(k1, ko, 1) 3: Lem.3.4,3.6
B33(u, t1) r =4t modm Xes(u, r) 3: Lem. 3.6, 3.4

Table 2. Blocks with defect group Q| when € = —1.

block B restriction characters in Irrg(B)  # fixed by o
Bo(11) none ng(l‘l), X3()(l‘1) 2: Lem. 3.4
r==+(qg—1)t; mod m(g+1) xe61(r, 1) 1: Lem. 3.9
322(“, ) none X51 (t1, 1), X52(l‘1 , 1) 2: Lem. 3.4
r==x(g—1)t; mod m(g+1) Xxe61(r, t2) 1: Lem. 3.9
Byg(s,t;) r=d=sor +tgs modm(g+1) Xxe61(r, 1) 3: Lem. 3.8
Bs(ky) none x25(k1), x27(k1) 2: Lem. 3.4
r==(g+1)k; mod m(g—1) Xxs59(r, k1) 1: Lem. 3.9
Bl6(kl, k2) none X39(k1 ’ kZ)’ X40(k1 ’ k2) 2: Lem. 3.4
r==x(g+1)k; mod m(g—1) X59(r, ko) 1: Lem. 3.9
Byy(s, k1) r=d=sor £gs mod m(g—1) xs59(r, k1) 3: Lem. 3.8

Table 3. Blocks with defect group O, when € =1 (top) and € = —1 (bottom).

block B restriction characters in Irrg(B) # fixed by o
B31(v) r=v, £qv or g*v mod mn X63(r) 3: Lem. 3.10
Bis(w) r=4w, £qw or +¢*w mod mn x66(r) 3: Lem. 3.10

Table 4. Blocks with defect group 0® when e =1 (top) and € = —1 (bottom).
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block B restriction selection of chars. in Irrg(B) # fixed by o

by none X1> X35 X4s X9, X105 X12 6: rational
Bg(ky) r==4k; modm x25(r), x26(r), x27(r) 9: Lem. 3.6

by none X1s X25 X5> X8> X115 X12 6: rational
Bg(l‘]) I"E:i:tl mod m X28(r),)(29(}”),)(3()(7’) 9: Lem. 3.6

Table 5. Blocks with defect group P when € =1 (top) and € = —1 (bottom).

block B restriction selection of chars. in Irrg(B) # fixed by o

B (1) none X19(11)s x20(21), x21(t1), x22(f1) 4: Lem. 3.4
Bzo(kl,tl) r==+k; modm X47(r, tl),x4g(r, 1) 6: Lem. 3.4, 3.6
B]g(kl,tl) r==+k; modm X43(r, [1),)(44(}’, 1) 6: Lem. 3.4, 3.6
Bzﬁ(kl,kz,h) riEﬂ:k,’ mod m ng(r'],rz,t]) 9: Lem. 3.4, 3.6

Be (k1) none x13(k1), x1s(k1), x16(k1), x17(k1) 4: Lem. 3.4
Bzo(kl,ll) FE:I:I] mod m X47(k1,r),)(4g(k1,r) 6: Lem.3.4,3.6
B>i(t1,k1)) r==t modm x49(r, k1), xs0(r, ky) 6: Lem.3.4,3.6
Bzg(kl,ll,lz) r; = +t; mod m X(,()(kl, ri, Vz) 9: Lem. 3.4,3.6

Table 6. Blocks with defect group Q1,1 when € =1 (top) and € = —1 (bottom).

block B restriction selection of chars. in Irrg(B) # fixed by o

Bs(k)®  r=ztky modm  x13(r), x14(r), x15(r), x16(r) 12: Lem. 3.6
By (k1) r=xky modm x31(r), x32(r), x33(r), x34(r) 12: Lem. 3.6
B]7(k1, kz) ri = :|:k,' mod m X41 (}’1 , r2), X42(r1, }’2) 18: Lem. 3.6
B]6(k] , kz) ri = :|:k,' mod m X39(7’1 y r2), X4()(I"] , 7'2) 18: Lem. 3.6
Bz5(k1,k2,k3) ri = :l:k,' mod m X57(r1,r2, r3) 27: Lem. 3.6

B7(t)© r=xtp modm  x19(r), x21(r), x22(r), x23(r) 12: Lem. 3.6
Bi3(t1) r=xtymodm  x35(r), x36(r), x37(r), x38(r) 12: Lem. 3.6

Bys(t1,12)  ri==t; modm x53(r1,r2), x54(r1,712) 13: Lem. 3.6
By (t1,1)  ri=4t; modm x51(r1,1r2), x52(r1,7r2) 18: Lem. 3.6
B3 (11,1, 13) ri ==+t; mod m Xea(r1,1r2,13) 27: Lem. 3.6

Table 7. Blocks with defect group Q; 1,1 when € =1 (top) and € = —1 (bottom).
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# fixed by o)

4: Lem. 3.4
9: Lem. 3.4, 3.6, 3.8

9: Lem. 3.4, 3.6, 3.8
6: Lem. 3.4, 3.6

6: Lem. 3.4, 3.6
6: Lem. 3.4, 3.8
6: Lem. 3.4, 3.8

Xxao(t1,1), xs0(t1, 1)
Xx45(r), xa6(r)
x59(r, j)
X45(r), xa6(r)
x61(r, )

x31(k1), x32(k1), x33(k1), x34(k;) 4: Lem. 3.4
xa3(ky, 1), xaa(ky,r)

selection of chars. in Irrg(B)
x35(t1), x36(t1), x37(11), x38(t1)

+k; mod m
+s or +¢gs mod m(g+1)
+k; mod m
none
+t; mod m
+¢; mod m

restriction
none

r
J

+s or +¢gs mod m(g+1)
J
r

+s or g5 mod m(g—1)
+s or +¢gs mod m(g—1)

r
r
r
r

block B
Bi3(t)
Byi(t1, k1)
Bio(s)
Ba7(s, kp)
Bi1(ky)
Big(ky,11)
Big(s)
Bao(s,t1)

Table 8. Blocks with defect group Q| when € =1 (left) and € = —1 (right).

Appendix: Some character values

Although it would be unreasonable to include the entire character table, here we list a
character value on a single family of conjugacy classes for some relevant characters,
to help illustrate the use of the lemmas listed in Tables 1-8. We follow the order they
are listed in those tables. In many cases, only one character family from a line in
Tables 1-8 is listed, as the character values for the other characters on the line take
similar forms. All notation is taken from the CHEVIE character table for Sps(q).
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character class value
X5, X11 - all rational values
x17(k1) Ci7(i1) ta@™4e

xso(k1, k2, k3) Caslir.i2) O | e AT
X55(u) Cs3(i1) ”kl+§7“k1+5q”k1+§_q”kl

x62(k1,k2) Cerli, i) @R EPR gy PR g g 1)
X4» X9 - all rational values
x20(k1) Caoli) — 2@+ E

xss (k1. ko, k3) Cualit, iz) — (PP g P el R g g g iR
Xs6(u) Cs3(in) G I R )

Kos (ki k) Coslin i2) —E T e, )
x28(t1) Cio(ir) (—¢*+4* q+1)(§”k'+$7”k
Xo1(r,11) Cas(in) (—g+D (M gy 1R g g
X52(t1.12) Cao(i1) (g +2g—D(EM +E ) g E e
x25(1) Ci7(ir) gt
Xs59(r, 11) Cys(ip) (—q— 1)(§q”k +¢, ql'k'+§l'kl+§7ilk')

xao(k1, k2) Ci6(i1) Qq+D @M+ ) +q g1
K3 (k1) Cex(in) gk itk g ik i ik g ik
Xe6(k1) Ce6(i1) —&] ik -1 ilkl—égikl —& q”kl-i‘g”kl ﬂlkl

X1s X35 X45 X9+ X105 X12 - all rational values
x26(k1) Cosin) (@ +2¢>+2g+D @™ +27 " D)+ @ +) (6 471
X1> X25 X5 X85 X11> X12 - all rational values
xes (k) Cas (i) (=g + D& g+ g
x21 (k1) Car(i) 3@+ &N g
xa7 (ki ka) Cur(it, iz) (—q—l)(ff'k‘ﬂl T EP )
xaa (k1. k2) Caslir, iz) =@ e )
xss(ki, ka, k3) Csg(i1,02,13) G lzk})[(€l]k'+§1 Mg
HE Y P )]
x17(k1) Cia(i1) (3P —a*+3q) @M1+

xas (k1. k2) Cagi1, i) — (@MY )

xao k1, k2) Caolin i) (=14 ) =M+ ¢ 467)

xeolki ko, k) Ceolirin, i3) EM e O [ERRE ) EPE £

+(§lzk1+§1 lzks)(&.mkv_i_&_l zsz)]
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character class value
.. 2irky —2i1ky (i1+i2)ky
x37(k1) Cselir,in) & 7'+ +&, e (ll+i2)k1+§(il*iz)k1+g*(i1*i2)/<1+1
xaolki ka)  Csolir,in) —EM gy (PR
xas (k1) Cis(in) —q (&M gy R kg ik
xsoki ko) Csolir, in) (PR (R g1 ik ik
x33(k1) Cain,in) g™ gl ) (g R gk
+C(i17i2)kl+§'7(i17i2)k1)+1+q
xastki ka)  Caalin,ia) — (R g g g Ry
xas (ki) Cas(it) — (M g kg ik
xo1tki k) Celin, 12) (g gk (i g g ik ik
xiak))  Csi(irs iz, is) P S R e R )
X33(k1) Css(i1, in, i3) {(11+12)k1 ;.*(ilﬂz)kl_'_;.(il*iz)kl+é.1*(i1*i2)k|

xar(rr)  Calinia) (gD 4 @ 467
+(§lzk1+§] lzkl)(é-lllkz_i_{*llkZ)
+(C1|k|+§.1—t k|)(§.l|k2+§.l—ilk2)]
Xx39(r1,r2) Ca9(i1, 12) (61+1)[51(i1+i2)k1+C_(il+”)kl+§(” S
@Y (@)
+(§'l2k]+§1 Izkl)({{lkz‘f‘f_”kz)]
X57(r1,r2,r3) C57(l],12,l3) (g“l”kl-i-g“] llkl)[(cllez"'C] ”kz)(é'”k;‘i‘g_”k%)
+(§_12k3+é_1 hkx)({nkz_i_{l—lékz)]
+({1]k2+{—z|kz)[(§_zzk]+§.1 tzkl)(g.mkz_i_{l l3kx)
+(C12k3+§.1 rzkz)(g.lzkl_i_{l*izkl)]
SR TR (G T (T T TR
FE LN )]

x10(k1) Cealin, i2,i3) — TP T g
x36(k1) Coalin, i i3) & T pg Dby glnidh g mimih
+€__1(i1+i3)k1+§7(i1+i3)k1+§(i1*i3)k1+§*(i1*i3)k1
1 1 1
+§_.(iz+i3)k1+E—(i2+i3)k1+$(iz—i3)k1+§1—(iz—i3)k1
xs3(rir)  Css(inin)  —(g=D[EM e E e e g e 1)
+(§';]k2+§'l_”k2)($12kl é—l—lzkl)]
Xsi(rr)  Csilini)  —(q=D[E+& € +E)
+(€zzk1+&_l Izkl)(f“kz'i‘gl_ilkz)
+(S(ll+lz)k1 E (l|+12)k1)(%-(i1*i2)k2 S*(iI*iZ)kZ)]
1
Xx64(r1,r2,13)  Ces(i1, i2,13) (fflkl+~§1_”k1)[(5{2k2+5_12k7)(513k%+§1 B .
+(§l’)k's+§1 zzkg)(%_lxkz+gfl3kz)]
+(§-;1k2+€—l1k2)[(§l2k1 +$1 lzkl)(glakz_i_&-—hkx
‘ +(§zzk3+é__—zzka)(E;xkll_i_%-l—ukl)]
+(E;|k3+sl l]kz)[(slzkv_'_sl mkz)(glxk|+gl—l3k|)
& E @ )]
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