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Groups are mathematical objects used to describe the structure of symmetries, with
one of the most canonical examples being the set of invertible matrices of a given
size over a fixed base field. For a given group, a matrix representation leverages this
by providing a way to represent each of its elements as an invertible matrix. The
information about the (complex) representations of a finite group can be condensed
by instead considering the trace of the matrices, yielding a function known as a
character. One of the overarching themes in character theory is to determine what
properties about a finite group or its subgroups can be obtained by studying its
characters. We study a conjecture that proposes a correlation between the makeup
of a group’s irreducible characters and the properties of certain subgroups known
as defect groups. In particular, we prove the conjecture for the finite symplectic
groups Sp6(2

a).

1. Introduction

Given a finite group G and an integer n ≥ 1, a complex representation of degree n of
G is a homomorphism ρ :G →GLn(C). In other words, ρ is a function such that, for
each g ∈ G, the image ρ(g) is an n×n invertible matrix with entries in the complex
numbers, and ρ(gh)=ρ(g)ρ(h) for each g, h∈G. Here on the left-hand side, multi-
plication is taken in G, and on the right-hand side, the operation is usual matrix multi-
plication. We obtain the corresponding character for ρ by taking the trace Tr(ρ(g))
of each ρ(g) (that is, by summing the diagonal entries). This gives a function
χ : G →C defined by χ(g)=Tr(ρ(g)) for each g∈G. Note here that if 1∈G is the
identity element, then χ(1)= Tr(In)= n is the degree of the original representation.

A character χ is irreducible if it cannot be written as χ = χ1 +χ2, where χ1 and
χ2 are characters corresponding to representations of G. We refer to the set of irre-
ducible characters of G as Irr(G). The information about the character theory of G
is summarized in the character table of G, which is the square table whose columns
are indexed by conjugacy class representatives {g1, . . . , gk} of G, whose rows are
indexed by Irr(G)= {χ1, . . . , χk}, and whose (i, j)-th entry is given by χi (g j ).
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One of the main general problems in the representation theory of finite groups is
the pursuit of answering the question “what information about G or its subgroups
can be obtained from the character table of G?” This general question fits into the
framework of so-called “local-global” conjectures in character theory, which seek
to find relationships between the character theory of G and properties of certain
proper subgroups.

The following standard definitions will be useful. Note that, for a finite set X , we
use |X | to denote the cardinality of X . Hence, the order of a group G will be given
by |G|. In analogy to this notation, the order of an element g ∈ G will be written |g|.

We recall that given a subgroup H ≤ G of G, the normalizer of H in G, denoted
by NG(H), is the subgroup

NG(H) := {x ∈ G : H x = x H}.

Throughout, if ℓ is a prime and n is an integer, we write nℓ for the largest power
of ℓ dividing n and nℓ′ for n/nℓ. If ℓ is a prime dividing |G|, then any subgroup P
of G such that |P| = |G|ℓ is called a Sylow ℓ-subgroup of G. We write P ∈ Sylℓ(G).

With this notation established, we may now state one of the earliest and most
prominent of these “local-global” conjectures, the McKay conjecture [1972]. The
McKay conjecture proposes that if G is a finite group, ℓ is a prime that divides |G|,
and P ∈ Sylℓ(G), then |Irrℓ′(G)| = |Irrℓ′(NG(P))|, where Irrℓ′(G) denotes the set
of irreducible characters of G with degree prime to ℓ.

Although we only deal with complex representations here, representations over
fields of positive characteristic ℓ can also be defined, and these are related to Irr(G)
by so-called ℓ-blocks. For our purposes, we consider ℓ-blocks as a partitioning
of the set Irr(G). Each set in the partition is written Irr(B), corresponding to an
ℓ-block B. (More precisely, the sets Irr(B) can be obtained as the equivalence
classes under the transitive closure of the relation on Irr(G) such that χ,ψ ∈ Irr(G)
are related if

∑
ℓ ∤ |g| χ(g)ψ(g

−1) ̸= 0. Here the sum is taken over all elements of G
whose order is not divisible by ℓ.)

Each ℓ-block is then associated with a special class of subgroups of G whose
sizes are a power of ℓ, known as defect groups of the block. Although the precise
definition of defect groups is technical and not necessary for the results here, we
remark that if D is a defect group for B, then every χ ∈ Irr(B) satisfies χ(1) is
divisible by |G|ℓ/|D|. The character χ ∈ Irr(B) is called a height-zero character if
χ(1)ℓ = |G|ℓ/|D|, and hence if χ(1)ℓ is as small as possible. We write Irr0(B) for
the set of height-zero characters of B.

The McKay conjecture, while still unproven, opened the door to a number
of stronger conjectures, of which the Alperin–McKay conjecture [Alperin 1976]
(often thought of as the blockwise version of McKay, relating the set Irr0(B) to the
height-zero characters in a block of NG(D)), McKay–Navarro conjecture [Navarro
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2004] (the Galois version of McKay), and the Alperin–McKay–Navarro conjecture
(a combination of the other two) are most relevant to our work. Although these
conjectures are beyond the scope of this article, we deal here with a consequence of
the Alperin–McKay–Navarro conjecture. Namely, Rizo, Schaeffer Fry, and Vallejo
[Rizo et al. 2020] proved that if the Alperin–McKay–Navarro conjecture holds for
ℓ ∈ {2, 3}, then we can determine from the character table of G whether a defect
group is cyclic in the following way:

Conjecture 1.1 [Rizo et al. 2020]. Let ℓ ∈ {2, 3}. Let G be a finite group and let B
be an ℓ-block of G with nontrivial defect group D. Then |Irr0(B)σ1 | = ℓ if and only
if D is cyclic.

Here σ1 is a specific Galois automorphism, which we define in Section 2B, and
Irr0(B)σ1 is the set of members of Irr0(B) that are fixed under the action of σ1. In
this paper, we prove the following:

Theorem 1.2. Conjecture 1.1 holds for the group G = Sp6(q) and the prime ℓ= 3,
where q is a power of 2.

Our proof of Theorem 1.2 relies on the known character table for Sp6(q) with
q even determined by Frank Lübeck [1993], as well as the known distribution of
characters into blocks and their defect groups by Donald White [2000] and the third
author [Schaeffer Fry 2013; 2014].

The paper is structured as follows. In Section 2, we introduce some additional
notation and definitions and make some preliminary observations. (We remark here
that more information on groups and characters can be found in [Isaacs 2006; James
and Liebeck 2001].) In Section 3, we provide a series of computational lemmas
regarding the irrational values that occur in the character table for Sp6(q) and their
behavior under that Galois automorphism σ1. Finally, in Section 4, we complete the
proof of Theorem 1.2. We also provide an Appendix with examples of character
values found in each relevant block.

2. Preliminaries

2A. General linear and symplectic groups. Let q be a power of a prime p, and let
Fq denote the finite field of size q . The general linear group, GLn(q), is the group
of all n × n invertible matrices with entries in Fq .

With a proper choice of basis, the symplectic group Sp2n(q) can be defined as

Sp2n(q)= {g ∈ GL2n(q) : gT Jg = J },

where

J :=

[
0 In

−In 0

]
,
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In is the n × n identity matrix and gT is the transpose of g. For the purpose of this
paper, we are particularly interested in the case of Sp6(q) (i.e., n = 3) when q is a
power of p = 2. In this case, note that In =−In .

2B. The Galois automorphism σ1. We follow the definitions in [Gallian 2016,
Chapter 32, p. 531]. Let E be an extension field of Q. Then an automorphism
of E is a field isomorphism σ : E → E. That is, σ is a bijective map satisfying
σ(a+b)= σ(a)+σ(b) and σ(ab)= σ(a)σ (b) for all a, b ∈ E. Note that any such
σ necessarily fixes Q. We write Gal(E/Q) for the set of automorphisms of E. More
generally, we can consider the so-called Galois group Gal(E/L) of automorphisms
of E fixing all elements of L when the extensions Q ⊆ L ⊆ E satisfy that E is a
splitting field for a polynomial over L. The size of a Galois group Gal(E/L) is the
same as the degree [E : L] of E over L, when it is finite, which is the dimension of E

viewed as a vector space over L. For more information, we refer the reader to an
abstract algebra text, such as [Gallian 2016, Chapter 32, p. 531].

Now, given a finite group G, the character values χ(g) lie in Q(e2π i/|G|) for all
g ∈ G and χ ∈ Irr(G). Further, given any σ ∈ Gal(Q(e2π i/|G|)/Q) and χ ∈ Irr(G),
we obtain another irreducible character χσ defined by χσ (g) := σ(χ(g)) for all
g∈G; see, e.g., [Isaacs 2006, Problem (2.2)]. Given a prime ℓ dividing |G|, there is a
unique σ1 ∈Gal(Q(e2π i/|G|)/Q) satisfying that, for a root of unity ξ ∈Q(e2π i/|G|)×,

σ1(ξ)=

{
ξ ℓ+1 if |ξ | is a power of ℓ,
ξ if ℓ does not divide |ξ |.

(1)

Note that when |ξ | = ℓ, i.e., ξ is a primitive ℓ-th root of unity, we have ξ ℓ+1
= ξ .

Therefore in this case, ξ is fixed by σ1. In fact, this is the only case in which a root
of unity with order a power of ℓ is fixed by σ1. Further, note that σ1 has order a
power of ℓ.

In service of Conjecture 1.1, we are concerned with studying when χσ1 = χ , for
certain χ ∈ Irr(G), which means that the value χ(g) ∈ Q(e2π i/|G|) is fixed by σ1

for each g ∈ G. In the character table for Sp6(q), obtained in [Lübeck 1993] and
available in the computer algebra system CHEVIE [Geck et al. 1996], we often find
rational linear combinations of expressions of the form ξ + ξ−1, where ξ is some
complex root of unity. For this reason, we establish the following observation.

Lemma 2.1. Let G be a finite group and let ℓ be an odd prime dividing |G|. Let ξ
be a complex n-th root of unity, where n > 2 is a divisor of |G|. Then σ1 fixes ξ if
and only if σ1 fixes ξ + ξ−1.

Proof. First, assume that σ1(ξ)= ξ . Then note that

σ1(ξ + ξ
−1)= σ1(ξ)+ σ1(ξ

−1)= σ1(ξ)+ σ1(ξ)
−1

= ξ + ξ−1,

and hence σ1 fixes ξ + ξ−1 as well.
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Now assume that σ1 fixes ξ + ξ−1. Let Q ⊆ L ⊆ J ⊆ K be extension fields such
that K = Q(e2π i/|G|), J = Q(ξ), and L = Q(ξ +ξ−1). Note that any automorphism
must permute the |ξ |-th roots of unity, and hence J is stabilized by σ1. Then
σ1 ∈ Gal(K/L). Since ξ, ξ−1 /∈ L, the polynomial

x2
− (ξ + ξ−1)x + 1 = (x − ξ)(x − ξ−1) ∈ L[x]

has no solutions in L. Therefore J is a splitting field over L, and the order of the
group Gal(J/L) is 2. We can then say that Gal(J/L)= {φ1, φ2}, where φ1(ξ)= ξ

and φ2(ξ)= ξ
−1.

Now consider the restriction σ ′

1 of σ1 to Gal(J/L). That is, σ ′

1 is the automorphism
of J that is simply the restriction of σ1 to the smaller domain J. Then σ ′

1 must either
be φ1 or φ2. For the sake of contradiction assume the latter case. Since the order
of σ1 is a power of ℓ, say ℓb, we have σ ℓ

b

1 is the trivial automorphism of Gal(K/L),
so its image in Gal(J/L) is also trivial. However, if σ ′

1 = φ2, then we would have
φℓ

b

2 (ξ)= ξ−1, which is a contradiction. Therefore we must have σ ′

1 = φ1, and so
σ1(ξ)= ξ . That is, σ1 also fixes ξ . □

Recall that for an element of Q(e2π i/|G|) and an integer a, we have σ1(ξ
a) =

σ1(ξ)
a, so that ξa is fixed by σ1 whenever ξ is. This gives us the following useful

observation:

Lemma 2.2. Let G be a finite group and let ℓ be an odd prime dividing |G|. Let ξ be
a complex n-th root of unity, where n> 2 is a divisor of |G|. Let I ⊆Z be some sub-
set of Z containing 1. Then ξ is fixed by σ1 if and only if ξa is fixed by σ1 for all a∈I.

3. Breaking down character values for Sp6(q)

3A. Notation. For the remainder of the paper, let q be a power of 2 and let G =

Sp6(q). Note that |G| = q9(q2
− 1)(q4

− 1)(q6
− 1). The irrational values in the

character table for G, available in the computer algebra system CHEVIE [Geck et al.
1996] and originally determined in [Lübeck 1993], are rational combinations of roots
of unity of orders divisible by the polynomials in q appearing in the factorization
of |G|. Namely, the following notation will be used throughout, letting ϵ ∈ {±1}.
Here, and for the remainder of the paper, we use

√
−1 to denote a fixed complex

fourth root of unity, to allow the notation i to be used instead for indexing:

ζ1 := exp
(

2π
√
−1

q − 1

)
, ξ1 := exp

(
2π

√
−1

q + 1

)
,

ω1 := exp
(

2π
√
−1

q − ϵ

)
, ω2 := exp

(
2π

√
−1

q + ϵ

)
,

ζ2 := exp
(

2π
√
−1

q2 − 1

)
, ξ2 := exp

(
2π

√
−1

q2 + 1

)
,
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and

ω3 := exp
(

2π
√
−1

q3 − ϵ

)
= exp

(
2π

√
−1

(q − ϵ)(q2 + ϵq + 1)

)
.

We note that the roots of unity ζi , ξi for i = 1, 2 are exactly as defined in the
character table for G in CHEVIE [Geck et al. 1996]. The following notation is
used in [Schaeffer Fry 2013; 2014], and agrees with that of the CHEVIE character
table, to label the blocks and characters of G, where again ϵ ∈ {±1}.

Notation 3.1. Let I 0
q−ϵ be the set {i ∈ Z : 1 ≤ i ≤ q − ϵ− 1}, and let Iq−ϵ be a set

of class representatives on I 0
q−ϵ under the equivalence relation i ∼ j if and only if

i ≡± j mod (q − ϵ). Let

I 0
q2+1 := {i ∈ Z : 1 ≤ i ≤ q2

},

I 0
q2−1 := {i ∈ Z : 1 ≤ i ≤ q2

− 1, (q − 1) ∤ i, (q + 1) ∤ i},

and let Iq2−ϵ be a set of representatives for the equivalence relation on I 0
q2−ϵ

given
by i ∼ j if and only if i ≡± j or ±q j mod (q2

− ϵ). Similarly, let

I 0
q3−ϵ

:= {i ∈ Z : 1 ≤ i ≤ q3
− ϵ, (q2

+ ϵq + 1) ∤ i}

and Iq3−ϵ a set of representatives for the equivalence relation on I 0
q3−ϵ

given by
i ∼ j if and only if i ≡± j , ±q j , or ±q2 j mod (q3

− ϵ).

3B. Initial observations. We next make some observations about modular relation-
ships that will be useful in what follows. Note that since 3 ∤ q, we have 3 divides
exactly one of q − 1 or q + 1. Here and for the remainder of the paper, we let
ϵ ∈ {±1} be such that 3 | (q − ϵ) and will write (q − ϵ)=: m3d, with m, d ∈ N and
gcd(m, 3)= 1. Note then that 3 divides (q2

+ ϵq + 1) exactly once, and we write
(q2

+ϵq+1)=:3n, with gcd(n, 3)=1. (Indeed, we have q2
+ϵq+1= (q−ϵ)2+3ϵq ,

which must be divisible by 3 since both summands are, but cannot be divisible by 9
since then 3q is divisible by 9, contradicting that 3 ∤ q .)

Lemma 3.2. Let h, z1, z2 ∈ Z, where h is prime to 3. Then hz1m3d−1
≡ hz2m3d−1

mod h(q − ϵ) if and only if z1 ≡ z2 mod 3.

Proof. Since q − ϵ = m3d , we have hz1m3d−1
≡ hz2m3d−1 mod h(q − ϵ) if and

only if hm3d
| h(z1 − z2)m3d−1, which happens if and only if 3 | (z1 − z2), and

therefore if and only if z1 ≡ z2 mod 3. □

Lemma 3.3. Let k = x3d for some integer x such that |x |< m, let h ∈ Z, where h
is prime to 3, and let µ ∈ {±1}. Then

k +µhm3d−1
̸≡ −k +µhm3d−1 mod h(q − ϵ),

k +µhm3d−1
̸≡ −k mod h(q − ϵ).
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Proof. First, it is helpful to notice that m is odd, since m | (q − ϵ) and q is a
power of 2. Suppose then, for the sake of contradiction, that k + µhm3d−1

≡

−k+µhm3d−1 mod h(q−ϵ) for some µ∈ {±1}. Then hm3d
| 2x3d, which implies

that hm | 2x and ultimately m | 2x . This is a contradiction, since m is odd and
|x |< m. Now suppose that k +µhm3d−1

≡−k mod h(q − ϵ) for some µ ∈ {±1}.
Then hm3d

| (2x3d
± hm3d−1). It follows that m | 2x and 3 | 1, which is again a

contradiction, and the proof is complete. □

3C. Roots of unity fixed by σ1. Here we present several lemmas describing when
the various roots of unity appearing in the character table for G are fixed by the
Galois automorphism σ1.

Lemma 3.4. For any k ∈ Z, we have 3 does not divide the order of ωk
2, ζ k(q−ϵ)

2 ,
nor ξ k

2 . In particular, these are fixed by σ1.

Proof. Since 3 divides (q − ϵ), we know 3 cannot divide (q + ϵ)= |ω2|. Further,

|ζ
k(q−ϵ)
2 | = |ωk

2| =
q + ϵ

gcd(k, q + ϵ)
,

which is therefore also prime to 3. Finally, since q2
≡ 1 mod 3, it follows that 3

cannot divide q2
+ 1, so 3 cannot divide |ξ k

2 | = (q
2
+ 1)/ gcd(k, q2

+ 1). □

The next two lemmas will be used when the character values contain powers
of ω1, which is the same as ζ q+ϵ

2 . Note that the conditions on r ∈ Iq−ϵ in these
cases are the conditions that appear in the descriptions of the relevant blocks and
characters (see Tables 1-8 and the notation preceding them).

Lemma 3.5. There is a unique element r ∈ Iq−ϵ satisfying m | r such that ωr
1 is

fixed by σ1. Namely, this element is r = m3d−1.

Proof. First we will show that the stated value of r ∈ Iq−ϵ is the only possibility
satisfying m | r for which ωr

1 is fixed by σ1. Assume that r ∈ Iq−ϵ such that
σ1(ω

r
1)=ω

r
1, and write r =m f 3x, with f, x ∈Z and f relatively prime to 3. Notice

that x < d, as otherwise r /∈ Iq−ϵ . Suppose, for the sake of contradiction, that
x = d − y for some y with 1< y ≤ d . Then

|ωr
1| =

m3d

gcd(m3d ,m f 3d−y)
= 3y,

so ωr
1 is not fixed by σ1. Therefore we must have r = m f 3d−1.

Now, note that f ≡ 1 or 2 mod 3. Further, under the equivalence relation
defining Iq−ϵ , we have i is equivalent to −i , but also we see 1≡−2 mod 3 and 2≡
−1 mod 3, so by Lemma 3.2 we have that every r defined as such will be equivalent
in the set Iq−ϵ . Finally, we see that ωm3d−1

1 has order m3d/gcd(m3d ,m3d−1)= 3,
and so is fixed by σ1. □
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Lemma 3.6. Let k ∈ Iq−ϵ , such that 3d
| k. Then, there are exactly three elements

r ∈ Iq−ϵ satisfying r ≡±k mod m such that ωr
1 is fixed by σ1.

Proof. First, we show that there are six choices for r ∈ I 0
q−ϵ , under equivalence

modulo q − ϵ, satisfying r ≡±k mod m and such that ωr
1 is fixed by σ1. Let r be

such an element. Since r ≡±k mod m, we can write r =±k +m f for some f ∈ Z.
Then, ωr

1 = (ω±k
1 )(ω

m f
1 ). Further, since k ∈ Iq−ϵ and 3d

| k, we have k = x3d for
some 0 ̸= x ∈ Z. Then

|ω±k
1 | = |ω±x3d

1 | =
m3d

gcd(x3d ,m3d)
=

m
gcd(x,m)

.

Since m is prime to 3, the order of ω±k
1 cannot be divisible by 3, so these are

fixed by σ1. Hence, ωr
1 is fixed by σ1 if and only if ωm f

1 is. For f = 0 or when f is
any multiple of 3d, we have ωm f

1 = 1, so ωr
1 = ω

±k
1 . Otherwise, we have

|ω
m f
1 | =

m3d

gcd(m f,m3d)
=

3d

gcd( f, 3d)

is some positive power of 3, so ωm f
1 is fixed by σ1 if and only if f is such that

|ω
m f
1 | = 3 exactly.
Note that 3d/gcd( f, 3d)= 3 implies that gcd( f, 3d)= 3d−1, which implies that

f = z3d−1, where z ∈ Z is prime to 3. So in order for ωr
1 to be fixed by σ1, r must

be of the form ±k + zm3d−1 for some z ∈ Z with z = 0 or 3 ∤ z.
Now, by Lemma 3.2, we have that z1m3d−1

≡ z2m3d−1 mod (q − ϵ) if and only
if z1 ≡ z2 mod 3, so we may assume without loss of generality that z ∈ {0, 1, 2}.
Note that z = 0 corresponds to the previous case where f = 0 or f is any multiple
of 3d. Therefore, for r ∈ I 0

q−ϵ with r ≡ ±k mod m, we have ωr
1 is fixed by σ1 if

and only if r is equivalent modulo q − ϵ to one of

r =±k, r =±k +m3d−1 or r =±k + 2m3d−1.

Now we will show that these six choices of r correspond to at most three
elements of Iq−ϵ . Recall that if i, j ∈ Iq−ϵ , we have i ∼ j if and only if i ≡ ± j
mod (q − ϵ). In particular, we have k ∼ (−k). Next, we can see by Lemma 3.2 that
k+2m3d−1

∼ k−m3d−1 and −k+2m3d−1
∼−k−m3d−1

∼ k+m3d−1. Similarly,
k + 2m3d−1

∼ k −m3d−1
∼ −k +m3d−1. For simplicity’s sake, we will use the

following as our three equivalence class representatives for r :

r = k, r = k +m3d−1 or r = k −m3d−1.

Finally, we show that these three choices for r give us distinct class represen-
tatives in Iq−ϵ . Suppose for a contradiction that k + m3d−1

∼ k in Iq−ϵ . Then
either k + m3d−1

≡ k mod (q − ϵ) or k + m3d−1
≡ −k mod (q − ϵ). Then this

is a contradiction by Lemmas 3.2 and 3.3, respectively. We see similarly, that
k−m3d−1

̸∼ k in Iq−ϵ and k+m3d−1
̸∼ k−m3d−1 in Iq−ϵ , completing the proof. □



GALOIS ACTION AND CYCLIC DEFECT GROUPS FOR Sp6(2
a) 281

Due to the nature of the values found in the character table for Sp6(q), many of
the preceding lemmas will often be used in conjunction with Lemma 2.1. Similarly,
Lemmas 3.8 and 3.9 below, which deal with powers of ζ2, will be used in conjunction
with the following:

Lemma 3.7. Let r ∈ Iq2−1. Then ζ r
2 is fixed by σ1 if and only if both ωr

1 and
ζ r

2 + ζ
rq
2 + ζ−r

2 + ζ
−rq
2 are fixed by σ1.

Proof. First, if ζ r
2 is fixed by σ1, then so is any sum of powers of ζ r

2 , so both
ωr

1 = ζ
r(q+ϵ)
2 and ζ r

2 + ζ
rq
2 + ζ−r

2 + ζ
−rq
2 are fixed by σ1.

Conversely, assume that ωr
1 and ζ r

2 + ζ
rq
2 + ζ−r

2 + ζ
−rq
2 are fixed by σ1. Let F

denote the fixed field of Q(e2π i/|G|) under the group ⟨σ1⟩ generated by σ1, so that
ωr

1, ωr
2, and ζ r

2 + ζ
rq
2 + ζ−r

2 + ζ
−rq
2 are all elements of F by assumption and by

Lemma 3.4. Assume by way of contradiction that ζ r
2 is not fixed by σ1, so that

ζ r
2 + ζ−r

2 is also not fixed by σ1, using Lemma 2.1. Now, since Q(ζ r
2 + ζ−r

2 ) is the
(unique) maximal totally real subfield of Q(ζ r

2 ), we see that, if we let α1 := ζ
r
2 +ζ

−r
2

and α2 := ζ
qr
2 +ζ

−qr
2 , then F(α1)= F(α2). Then since α1α2 =ω

r
1+ω

−r
1 +ωr

2+ω
−r
2 ,

we see F(α1) is the splitting field over F for the polynomial (x − α1)(x − α2) =

x2
+ (α1 +α2)x +α1α2 and [F(α1) : F] = 2. From here, we may argue similarly to

Lemma 2.1 to obtain a contradiction, unless α1 (and hence ζ r
2 ) is fixed by σ1. □

Lemma 3.8. Let k ∈ Iq2−1 such that 3d
| k. Then there are exactly three elements

r ∈ Iq2−1 satisfying r ≡ ±k or ±qk mod m(q + ϵ) such that ωr
1 and ζ r

2 are both
fixed by σ1.

Proof. First, let r be as in the statement and let f ∈Z such that r =±k+m f (q+ϵ)
or r =±qk +m f (q + ϵ). Then we can further write k or qk as x3d for some x ∈ Z

with 3 ∤ x . Therefore, we can write r =±x3d
+m f (q + ϵ).

Next, we have

ωr
1 = (ω

±x3d

1 )(ω
m f (q+ϵ)
1 ) and ζ r

2 = (ζ±x3d

2 )(ζ
m f (q+ϵ)
2 ).

Since m(q + ϵ) is prime to 3, we see as in the proof of Lemma 3.6 that ωr
1 is fixed

by σ1 if and only if ωm f (q+ϵ)
1 is and ζ r

2 is fixed by σ1 if and only if ζm f (q+ϵ)
2 = ω

m f
1

is. Further, since m(q + ϵ)= (q2
− 1)3′ , arguing exactly as in the beginning of the

proof of Lemma 3.6 in this case, we see r is equivalent modulo q2
− 1 to one of

r =±k, r =±qk, r =±k+m3d−1(q+ϵ),

r=±k+2m3d−1(q+ϵ), r=±qk+m3d−1(q+ϵ) or r=±qk+2m3d−1(q+ϵ).

(Conversely, we see that these choices of r satisfy the statement.)
Now, recall that Iq2−ϵ is defined by the relation i ∼ j if and only if i ≡± j or

±q j mod (q2
− 1). Then we have k ∼−k ∼ qk ∼−qk under this relation. For the
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remaining choices for r , it will be helpful to first notice that

z1m3d−1(q + ϵ)≡ z2m3d−1(q + ϵ) mod (q2
− 1)

if and only if z1 ≡ z2 mod 3, by Lemma 3.2. We can use this to again substitute
2m for −m, and then show that these remaining eight choices for r lie in only two
equivalence classes in Iq2−1.

Namely, we have k + ϵm3d−1(q + ϵ) ∼ qk + m3d−1(q + ϵ) because (q2
− 1)

divides

(q2
−1)(−k)−(q−ϵ)(q+ϵ)m3d−1

= (k+ϵm3d−1(q+ϵ))−q(qk+m3d−1(q+ϵ)),

and similarly −k + ϵm3d−1(q + ϵ)∼−qk +m3d−1(q + ϵ). Also note that

k +m3d−1(q + ϵ)∼−k −m3d−1(q + ϵ),

−k +m3d−1(q + ϵ)∼ k −m3d−1(q + ϵ),

qk +m3d−1(q + ϵ)∼−qk −m3d−1(q + ϵ),

qk −m3d−1(q + ϵ)∼−qk +m3d−1(q + ϵ).

So any r ∈ Iq2−1 such that ωr
1 and ζ r

2 are both fixed by σ1 is equivalent to one of

r = k, r = k +m3d−1(q + ϵ) or r = k −m3d−1(q + ϵ).

It now suffices to show that these elements represent three distinct classes
in Iq2−1. First, k ∼ k + m3d−1(q + ϵ) if and only if k ≡ ±(k + m3d−1(q + ϵ))

or ±q(k +m3d−1(q + ϵ)) mod (q2
− 1). Applying Lemma 3.2 with h = (q + ϵ),

we see that k ̸≡ k + m3d−1(q + ϵ) mod (q2
− 1), and we can use Lemma 3.3

with h = (q + ϵ) to show that k ̸≡ −(k + m3d−1(q + ϵ)) mod (q2
− 1). Then,

k ≡ qk + qm3d−1(q + ϵ) would imply that (q2
− 1) | (k − qk − qm3d−1(q + ϵ)),

which gives us (q2
− 1) | (−k(q − 1)− qm3d−1(q + ϵ)). Similarly, k ≡ −qk −

qm3d−1(q + ϵ) will give us (q2
− 1) | (k(q + 1) + qm3d−1(q + ϵ)). So, since

3d
| (q2

− 1) and 3d
| k, either of these would imply 3 | qm(q + ϵ), a contradiction,

and therefore, k ̸∼ k +m3d−1(q + ϵ). Using similar calculations, we can also see
k ̸∼ k−m3d−1(q +ϵ) and k+m3d−1(q +ϵ) ̸∼ k−m3d−1(q +ϵ). Therefore, these
three elements give distinct r ∈ Iq2−1, and the proof is complete. □

Lemma 3.9. Let t ∈ Iq+ϵ . Then there is a unique r ∈ Iq2−1 satisfying r ≡±(q−ϵ)t
mod m(q + ϵ) such that ωr

1 and ζ r
2 are both fixed by σ1.

Proof. Following the strategy from before, we will first show that there are six
possible choices for r as in the statement such that ωr

1 and ζ r
2 are fixed by σ1. Then

we will show that these actually only give one element of Iq2−1.
We will sometimes write M :=m(q+ϵ)= (q2

−1)3′ . Since r ≡±(q−ϵ)t mod M,
we can write r =±tm3d

+ M f for some f ∈ Z. Then ωr
1 = (ω±tm3d

1 )(ω
M f
1 ). We
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also see that

|ω±tm3d

1 | =
m3d

gcd(tm3d ,m3d)
= 1,

|ω
M f
1 | =

m3d

gcd(m f (q + ϵ),m3d)
=

3d

gcd( f (q + ϵ), 3d)
.

As in the proof of Lemma 3.6, if f is 0 or any multiple of 3d , then ωM f
1 = 1 and

ωr
1 = ω

±tm3d

1 = 1. Otherwise, we must choose f such that |ωM f
1 | = 3 exactly.

Similarly, ζ r
2 = (ζ

±tm3d

2 )(ζ
M f
2 )= (ω±t

2 )(ζ
m f (q+ϵ)
2 )= (ω±t

2 )(ω
m f
1 ). By Lemma 3.4,

we have that ω±t
2 is fixed by σ1, so ζ r

2 is fixed by σ1 if and only if ωm f
1 is. Using an

argument similar to Lemma 3.6, we see that if ωr
1 and ζ r

2 are both fixed by σ1, then
r is one of

r =±(q−ϵ)t, r =±(q−ϵ)t+m3d−1(q+ϵ) or r =±(q−ϵ)t−m3d−1(q+ϵ).

Now, recall that (q − ϵ)t /∈ Iq2−1 and r ∼ −r in Iq2−1, so in fact we have r
represented by one of

r1 = (q − ϵ)t +m3d−1(q + ϵ) or r2 = (q − ϵ)t −m3d−1(q + ϵ).

But notice that r1 ≡−ϵqr2 mod (q2
− 1), so these define just one class in Iq2−1. □

Lemma 3.10. Let k ∈ Iq3−ϵ such that 3d+1
| k. Then, the following hold:

(1) There are exactly three elements r ∈ Iq3−ϵ satisfying r ≡ ±k, ±qk, or ±q2k
mod mn such that ωr

3 is fixed by σ1.

(2) Let r ∈ Iq3−ϵ satisfy r ≡ ±k, ±qk, or ±q2k mod mn and denote by χ(r) the
character χ63(r) of G if ϵ= 1 and χ66(r) if ϵ=−1, in the notation of the character
table for G available in CHEVIE [Geck et al. 1996]. Then χ(r) is fixed by σ1 if and
only if ωr

3 is fixed by σ1.

Proof. First, we notice that q3
− ϵ = (q − ϵ)(q2

+ ϵq + 1), so we will write q3
− ϵ

as mn3d+1 when it is useful. Since 3d+1
| k, we write k = x3d+1. Note that qk

and q2k are both of the form x3d+1 for some (different) x ∈ Z, so we will write
r =±x3d+1

+mn f for some f ∈ Z.

(1) We have ωr
3 = (ω

±x3d+1

3 )(ω
mn f
3 ), and since m and n are both prime to 3, replacing

the roles of (3d , q + ϵ) in Lemma 3.8 with (3d+1, n) here and noting z1m3dn ≡

z2m3dn mod mn3d+1 if and only if z1 ≡ z2 mod 3 arguing as in Lemma 3.2, the
situation is analogous.

In this case, for ωr
3 to be fixed by σ1, we therefore have r must be of the form

r =±k, r =±qk, r =±q2k, r =±k+mn3d , r =±qk+mn3d ,

r=±q2k+mn3d , r=±k+2mn3d , r=±qk+2mn3d or r=±q2k+2mn3d .

(Conversely, note that ωr
3 is fixed by σ1 if r is of any of these forms.)
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Recall that k ∼ (−k)∼ (±qk)∼ (±q2k). Arguing similarly to Lemma 3.8 with
the role of q+ϵ now replaced with n, we obtain that under the relation ∼, each value
in the list above is equivalent to one of the following three elements of r ∈ Iq3−ϵ :

r = k, r = k +mn3d and r = k −mn3d .

Further, arguing as in the previous lemmas, we again see that these indeed give
distinct elements of Iq3−ϵ , completing the proof of (1).

(2) The character χ(r) is what is known as a semisimple character and is indexed
by a conjugacy class of G consisting of all elements in G with eigenvalues ω̃r

3, ω̃rq
3 ,

ω̃
rq2

3 , ω̃−r
3 , ω̃−rq

3 , and ω̃−rq2

3 , where here ω̃3 is a primitive q3
−ϵ root of unity in Fq6 .

(This is the class g31(r) when ϵ = 1, respectively g34(r) when ϵ =−1, defined in
[Lübeck 1993, Tabelle 19].) Now, since G comes from an algebraic group over Fq

whose center is connected, [Schaeffer Fry and Taylor 2018, Lemma 3.4] describes
how such characters are permuted by members of Gal(Q(e2π i/|G|)/Q). In particular,
[Schaeffer Fry and Taylor 2018, Lemma 3.4] tells us that χ(r) is fixed by σ1 if and
only if the set {ωr

3, ω
rq
3 , ω

rq2

3 , ω−r
3 , ω

−rq
3 , ω

−rq2

3 } is permuted by σ1.
Now, note that n ∤ r , as otherwise n | x and hence 3n = q2

+ ϵq + 1 divides k,
contradicting that k ∈ Iq3−ϵ . Suppose that some σ ∈ ⟨σ1⟩ maps ωr

3 to ωr q̄
3 , where

q̄ ∈ {−1,±q,±q2
}. Recall that n is relatively prime to 2, 3d+1m, (±q2

− 1),
and (±q − 1). Writing ω3 = y1 y2 for y1 a primitive 3d+1m-root of unity and y2

a primitive n-th root of unity, we then see that (σ (yr
1))y

r
2 = yr q̄

1 yr q̄
2 , since y2 is

fixed by σ1. This forces yr(q̄−1)
2 to be a (3d+1m)-th root of unity. Then yr

2 is also
a (3d+1m)-th root of unity, since |y2| is prime to q̄ − 1. Then since |y2| is prime
to 3d+1m, we see that this forces yr

2 = 1, so that n | r , a contradiction. Hence we
see that χ(r) is fixed by σ1 if and only if σ1 fixes ωr

3. □

4. Proof of Theorem 1.2

Let G :=Sp6(q) with q a power of 2. To prove Theorem 1.2, we must show that if B
is a 3-block of G with cyclic defect groups, then there are exactly three height-zero
characters in Irr(B) that are fixed by σ1, and that if B has noncyclic defect groups,
then the number of such characters is strictly larger than 3.

The defect groups for G are described in [Schaeffer Fry 2014, Proposition 3.1].
Namely, for the prime 3, the cyclic defect groups are (in the notation of [Schaef-
fer Fry 2014]) denoted by Q1, Q2, and Q(3), and the remaining defect groups are
denoted by Q1,1, Q2,1, Q1,1,1, and P. Here P is a Sylow 3-subgroup of G.

The sets Irr(B) for each block B of G are described in [White 2000] for so-
called “unipotent” blocks, and in [Schaeffer Fry 2013, Section 4.4] otherwise. The
sets Irr0(B) are described in [Schaeffer Fry 2014, Sections 4.2–4.10] and also in
[Schaeffer Fry 2013, Section 7.4.1]. In Tables 1-8, we list the names of these
blocks (with the notation of [White 2000; Schaeffer Fry 2013]) and a subset of
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characters found in Irr0(B) (with the notation of the CHEVIE character table and
[Schaeffer Fry 2013]).

With this information in place, and given our work in Section 3, the proof involves
considering the character table for Sp6(q) due to [Lübeck 1993] and available on
CHEVIE, and analyzing when the character values of the characters in Irr0(B) for
each block B corresponding to a given defect group are fixed by σ1. The families
of characters and of conjugacy classes for Sp6(q) are indexed by the various sets
introduced in Notation 3.1. The character values are either rational or sums of
complex numbers of the form x(ξ ir

+ ξ−ir ), where i, r ∈ Z come from one of the
indexing sets defined in Notation 3.1 (depending on the index defining the character
and the class within their families), ξ is some root of unity, and x ∈ C is either
rational or otherwise fixed by σ1. In the Appendix, we include examples of specific
values for the relevant characters. We have used our lemmas from Section 3 to find
the appropriate choices of r so that a given ξ r will be fixed by σ1, where again ξ
denotes a relevant root of unity.

We apply Lemma 2.2 to say that ξ r is fixed by σ1 if and only if ξ ir is fixed
by σ1, for every relevant i . Note that we also apply Lemma 2.1 in conjunction with
Lemmas 3.5 and 3.6; Lemma 3.7 in conjunction with Lemmas 3.8 and 3.9; and
the two parts of Lemma 3.10 together, to show that in fact the full character values
being considered are also fixed by σ1. Tables 1-8 list the characters being considered
for each block and the lemmas from Section 3 that are used for those characters.

For a concrete example, consider the block B = B29(s, t1) when ϵ = 1 (see
Table 3). Here t1 ∈ Iq+1 and s ∈ Iq2−1 is divisible by 3d. Then the members of
Irr0(B) are the characters χ61(r, t1), where r ∈ Iq2−1 is equivalent to ±s or ±qs
modulo m(q + 1). By Lemma 3.8, there are exactly three choices of such r such
that ζ r

2 and ωr
1 are fixed by σ1, and hence exactly three such choices of r such that

ζ r
1 +ζ

−r
1 and ζ r

2 +ζ
−r
2 +ζ

qr
2 +ζ

−qr
2 are fixed by σ1, using Lemmas 2.1 and 3.7. Now,

the irrational character values for χ61(r, t1) take the following forms, where i, i ′

range through appropriate indexing sets from Notation 3.1 for the conjugacy classes:

(ξ
i t1
1 +ξ

−i t1
1 ), (1−q4)(ξ

i t1
1 +ξ

−i t1
1 ), (1±q2)(ξ

i t1
1 +ξ

−i t1
1 ), (ξ ir

1 +ξ
−ir
1 ),

(1−q2)(ξ ir
1 +ξ

−ir
1 ), (1±q)(ξ ir

1 +ξ
−ir
1 ), (q3

+1)(ξ ir
1 +ξ

−ir
1 )(ξ

i t1
1 +ξ

−i t1
1 ),

(ξ ir
1 +ξ

−ir
1 )(ξ

i t1
1 +ξ

−i t1
1 ), (1+q)(ξ ir

1 +ξ
−ir
1 )(ξ

i ′t1
1 +ξ

−i ′t1
1 ), (ξ ir

1 +ξ
−ir
1 )(ξ

i ′t1
1 +ξ

−i ′t1
1 ),

which are always fixed by σ1 by Lemma 3.4, and

(ζ ir
1 +ζ−ir

1 ), (q2
−2q+1)(ζ ir

1 +ζ−ir
1 ), (1−q)(ζ ir

1 +ζ−ir
1 ),

(ζ ir
2 +ζ−ir

2 +ζ
iqr
2 +ζ

−iqr
2 ), (1±q)(ζ ir

2 +ζ−ir
2 +ζ

iqr
2 +ζ

−iqr
2 ),

(ζ
ir(q+1)
2 +ζ

−ir(q+1)
2 )(ζ

i t1(q−1)
2 +ζ

−i t1(q−1)
2 )= (ζ ir

1 +ζ−ir
1 )(ξ

i t1
1 +ξ

−i t1
1 ),
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(1−q)(ζ ir
1 +ζ−ir

1 )(ξ
i t1
1 +ξ

−i t1
1 ),

(ζ ir
2 +ζ−ir

2 +ζ
iqr
2 +ζ

−iqr
2 )(ζ

i ′t (q−1)
2 +ζ

−i ′t (q−1)
2 )

= (ζ ir
2 +ζ−ir

2 +ζ
iqr
2 +ζ

−iqr
2 )(ξ i ′t

1 +ξ−i ′t
1 ).

Then we see that χ61(r, t1) is fixed by σ1 exactly when r is one of these three choices,
showing that B contains exactly three height-zero characters fixed by σ1. Since this
block has defect group Q2, which is cyclic, this block satisfies the statement.

For each defect group, we include two tables; one for when ϵ = 1 and one for
when ϵ =−1. Each table lists all blocks B with the given defect group, additional
conditions on indexing, the characters in Irr0(B) being considered for that block
(in the notation of the CHEVIE character table), and the number of characters in
the listed family that are fixed by σ1, with reference to the lemmas used for those
specific characters.

The first four tables are for the cyclic defect groups, Q1, Q2, and Q(3). For these
groups we list all characters in Irr0(B), in order to show that |Irr0(B)σ1 | = 3. The
remaining tables correspond to the noncyclic defect groups P, Q1,1, Q1,1,1, and Q2,1.
In these cases, we only list enough characters needed to see that |Irr0(B)σ1 | > 3.
Therefore in these cases, the column that shows the number of fixed characters refers
only to the characters listed, not necessarily the total number fixed in the given block.

4A. The tables. Throughout, we let k1, k2, k3 ∈ Iq−1 with none of k1, k2, k3 the
same and let t1, t2, t3 ∈ Iq+1 with none of t1, t2, t3 the same. When ϵ = 1, let
3d

| ki , and when ϵ =−1, let 3d
| ti . Let u ∈ Iq2+1, and s ∈ Iq2−1 with 3d

| s, where
3d

:= (q − ϵ)3. Let v ∈ Iq3−1 and w ∈ Iq3+1. When ϵ = 1, let (q3
− 1)3 | v, and

when ϵ = −1, let (q3
+ 1)3 |w. Moreover, let m := (q − ϵ)3′ as before, and let

n := (q2
+ ϵq + 1)3′ .

block B restriction characters in Irr0(B) # fixed by σ1

b1
none χ5, χ11 2: rational
m | r χ17(r) 1: Lem. 3.5

B6(k1)
(1) r ≡±k1 mod m χ17(r) 3: Lem. 3.6

B23(t1, t2)
none χ53(t1, t2), χ54(t1, t2) 2: Lem. 3.4
m | r χ60(r, t1, t2) 1: Lem. 3.4, 3.5

B24(u)
none χ55(u), χ56(u) 2: Lem. 3.4
m | r χ62(r, u) 1: Lem. 3.5, 3.4

B28(k1, t1, t2) r ≡±k1 mod m χ60(r, t1, t2) 3: Lem. 3.4, 3.6

B30(k1, u) r ≡±k1 mod m χ62(r, u) 3: Lem. 3.6, 3.4

Table 1. Blocks with defect group Q1 when ϵ = 1.
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block B restriction characters in Irr0(B) # fixed by σ1

b1
none χ4, χ9 2: rational
m | r χ20(r) 1: Lem. 3.5

B7(t1)(1) r ≡±t1 mod m χ20(r) 3: Lem. 3.6

B17(k1, k2)
none χ41(k1, k2), χ42(k1, k2) 2: Lem. 3.4
m | r χ58(k1, k2, r) 1: Lem. 3.4, 3.5

B24(u)
none χ55(u), χ56(u) 2: Lem. 3.4
m | r χ65(u, r) 1: Lem. 3.5, 3.4

B26(k1, k2, t1) r ≡±t1 mod m χ58(k1, k2, r) 3: Lem. 3.4, 3.6

B33(u, t1) r ≡±t1 mod m χ65(u, r) 3: Lem. 3.6, 3.4

Table 2. Blocks with defect group Q1 when ϵ =−1.

block B restriction characters in Irr0(B) # fixed by σ1

B9(t1)
none χ28(t1),χ30(t1) 2: Lem. 3.4

r ≡±(q−1)t1 mod m(q+1) χ61(r, t1) 1: Lem. 3.9

B22(t1, t2)
none χ51(t1, t2),χ52(t1, t2) 2: Lem. 3.4

r ≡±(q−1)t1 mod m(q+1) χ61(r, t2) 1: Lem. 3.9

B29(s, t1) r ≡±s or ±qs mod m(q+1) χ61(r, t1) 3: Lem. 3.8

B8(k1)
none χ25(k1),χ27(k1) 2: Lem. 3.4

r ≡±(q+1)k1 mod m(q−1) χ59(r,k1) 1: Lem. 3.9

B16(k1,k2)
none χ39(k1,k2),χ40(k1,k2) 2: Lem. 3.4

r ≡±(q+1)k1 mod m(q−1) χ59(r,k2) 1: Lem. 3.9

B27(s,k1) r ≡±s or ±qs mod m(q−1) χ59(r,k1) 3: Lem. 3.8

Table 3. Blocks with defect group Q2 when ϵ= 1 (top) and ϵ=−1 (bottom).

block B restriction characters in Irr0(B) # fixed by σ1

B31(v) r ≡±v, ±qv or ±q2v mod mn χ63(r) 3: Lem. 3.10

B34(w) r ≡±w, ±qw or ±q2w mod mn χ66(r) 3: Lem. 3.10

Table 4. Blocks with defect group Q(3) when ϵ= 1 (top) and ϵ=−1 (bottom).
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block B restriction selection of chars. in Irr0(B) # fixed by σ1

b0 none χ1,χ3,χ4,χ9,χ10,χ12 6: rational

B8(k1) r ≡±k1 mod m χ25(r),χ26(r),χ27(r) 9: Lem. 3.6

b0 none χ1,χ2,χ5,χ8,χ11,χ12 6: rational

B9(t1) r ≡±t1 mod m χ28(r),χ29(r),χ30(r) 9: Lem. 3.6

Table 5. Blocks with defect group P when ϵ= 1 (top) and ϵ=−1 (bottom).

block B restriction selection of chars. in Irr0(B) # fixed by σ1

B7(t1) none χ19(t1),χ20(t1),χ21(t1),χ22(t1) 4: Lem. 3.4

B20(k1, t1) r ≡±k1 mod m χ47(r, t1),χ48(r, t1) 6: Lem. 3.4, 3.6

B18(k1, t1) r ≡±k1 mod m χ43(r, t1),χ44(r, t1) 6: Lem. 3.4, 3.6

B26(k1,k2, t1) ri ≡±ki mod m χ58(r1,r2, t1) 9: Lem. 3.4, 3.6

B6(k1) none χ13(k1),χ15(k1),χ16(k1),χ17(k1) 4: Lem. 3.4

B20(k1,t1) r ≡±t1 mod m χ47(k1,r),χ48(k1,r) 6: Lem. 3.4, 3.6

B21(t1,k1) r ≡±t1 mod m χ49(r,k1),χ50(r,k1) 6: Lem. 3.4, 3.6

B28(k1,t1,t2) ri ≡±ti mod m χ60(k1,r1,r2) 9: Lem. 3.4, 3.6

Table 6. Blocks with defect group Q1,1 when ϵ= 1 (top) and ϵ=−1 (bottom).

block B restriction selection of chars. in Irr0(B) # fixed by σ1

B6(k1)
(0) r ≡±k1 mod m χ13(r),χ14(r),χ15(r),χ16(r) 12: Lem. 3.6

B11(k1) r ≡±k1 mod m χ31(r),χ32(r),χ33(r),χ34(r) 12: Lem. 3.6
B17(k1,k2) ri ≡±ki mod m χ41(r1,r2),χ42(r1,r2) 18: Lem. 3.6
B16(k1,k2) ri ≡±ki mod m χ39(r1,r2),χ40(r1,r2) 18: Lem. 3.6

B25(k1,k2,k3) ri ≡±ki mod m χ57(r1,r2,r3) 27: Lem. 3.6

B7(t1)(0) r ≡±t1 mod m χ19(r),χ21(r),χ22(r),χ23(r) 12: Lem. 3.6
B13(t1) r ≡±t1 mod m χ35(r),χ36(r),χ37(r),χ38(r) 12: Lem. 3.6

B23(t1, t2) ri ≡±ti mod m χ53(r1,r2),χ54(r1,r2) 18: Lem. 3.6
B22(t1, t2) ri ≡±ti mod m χ51(r1,r2),χ52(r1,r2) 18: Lem. 3.6

B32(t1, t2, t3) ri ≡±ti mod m χ64(r1,r2,r3) 27: Lem. 3.6

Table 7. Blocks with defect group Q1,1,1 when ϵ= 1 (top) and ϵ=−1 (bottom).



GALOIS ACTION AND CYCLIC DEFECT GROUPS FOR Sp6(2
a) 289

bl
oc

k
B

re
st

ri
ct

io
n

se
le

ct
io

n
of

ch
ar

s.
in

Ir
r 0
(
B
)

#
fix

ed
by
σ

1

B
13
(t

1)
no

ne
χ

35
(t

1)
,χ

36
(t

1)
,χ

37
(t

1)
,χ

38
(t

1)
4:

L
em

.3
.4

B
21
(t

1,
k 1
)

r
≡
±

k 1
m

od
m

χ
49
(t

1,
r)
,χ

50
(t

1,
r)

6:
L

em
.3

.4
,3

.6

B
19
(s
)

r
≡
±

s
or

±
qs

m
od

m
(q
+

1)
χ

45
(r
),
χ

46
(r
)

6:
L

em
.3

.4
,3

.8

B
27
(s
,k

1)
r
≡
±

s
or

±
qs

m
od

m
(q
+

1)
χ

59
(r
,

j)
–

j≡
±

k 1
m

od
m

9:
L

em
.3

.4
,3

.6
,3

.8

B
11
(k

1)
no

ne
χ

31
(k

1)
,χ

32
(k

1)
,χ

33
(k

1)
,χ

34
(k

1)
4:

L
em

.3
.4

B
18
(k

1,
t 1
)

r
≡
±

t 1
m

od
m

χ
43
(k

1,
r)
,χ

44
(k

1,
r)

6:
L

em
.3

.4
,3

.6

B
19
(s
)

r
≡
±

s
or

±
qs

m
od

m
(q
−

1)
χ

45
(r
),
χ

46
(r
)

6:
L

em
.3

.4
,3

.8

B
29
(s
,t

1)
r
≡
±

s
or

±
qs

m
od

m
(q
−

1)
χ

61
(r
,

j)
9:

L
em

.3
.4

,3
.6

,3
.8

j≡
±

t 1
m

od
m

–

Table 8. Blocks with defect group Q2,1 when ϵ= 1 (left) and ϵ=−1 (right).

Appendix: Some character values

Although it would be unreasonable to include the entire character table, here we list a
character value on a single family of conjugacy classes for some relevant characters,
to help illustrate the use of the lemmas listed in Tables 1–8. We follow the order they
are listed in those tables. In many cases, only one character family from a line in
Tables 1–8 is listed, as the character values for the other characters on the line take
similar forms. All notation is taken from the CHEVIE character table for Sp6(q).
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character class value

χ5,χ11 – all rational values

χ17(k1) C17(i1)
1
2q(ζ i1k1

1 +ζ
−i1k1
1 )

χ60(k1,k2,k3) C44(i1, i2) (ζ
i1k1
1 +ζ

−i1k1
1 )[ξ

i2k2
1 +ξ

−i2k2
1 +ξ

i2k3
1 +ξ

−i2k3
1 ]

χ55(u) C53(i1) ξ
i1k1
2 +ξ

−i1k1
2 +ξ

qi1k1
2 +ξ

−qi1k1
2

χ62(k1,k2) C62(i1, i2) (ζ
i1k1
1 +ζ

−i1k1
1 )(ξ

i2k2
2 +ξ

−i2k2
2 +ξ

qi2k2
2 +ξ

−qi2k2
2 )

χ4,χ9 – all rational values

χ20(k1) C20(i1) −
1
2(q

2
+q)(ξ i1k1

1 +ξ
−i1k1
1 )

χ58(k1,k2,k3) C44(i1, i2) −(ξ
i2k3
1 +ξ

−i2k3
1 )[ζ

i1k1
1 +ζ

−i1k1
1 +ζ

i1k2
1 +ζ

−i1k2
1 ]

χ56(u) C53(i1) q(ξ i1k1
2 +ξ

−i1k1
2 +ξ

qi1k1
2 +ξ

−qi1k1
2 )

χ65(k1,k2) C65(i1, i2) −(ξ
i2k2
1 +ξ

−i2k2
1 )(ξ

i1k1
2 +ξ

−i1k1
2 +ξ

qi1k1
2 +ξ

−qi1k1
2 )

χ28(t1) C19(i1) (−q3
+q2

−q+1)(ξ i1k1
1 +ξ

−i1k1
1 )

χ61(r, t1) C45(i1) (−q+1)(ζ qi1k1
2 +ζ

−qi1k1
2 +ζ

i1k1
2 +ζ

−i1k1
2 )

χ52(t1, t2) C20(i1) (−q2
+2q−1)(ξ i1k1

1 +ξ
−i1k1
1 )+q(ξ i1k2

1 +ξ
−i1k2
1 )

χ25(t1) C17(i1) ζ
i1k1
1 +ζ

−i1k1
1

χ59(r, t1) C45(i1) (−q−1)(ζ qi1k1
2 +ζ

−qi1k1
2 +ζ

i1k1
2 +ζ

−i1k1
2 )

χ40(k1,k2) C16(i1) (2q+1)(ζ i1k1
1 +ζ

−i1k1
1 )+q(ζ i1k2

1 +ζ
−i1k2
1 )

χ63(k1) C63(i1) ζ
q2i1k1
3 +ζ

−q2i1k1
3 +ζ

q i
1k1

3 +ζ
−qi1k1
3 +ζ

i1k1
3 +ζ

−i1k1
3

χ66(k1) C66(i1) −ξ
q2i1k1
3 −ξ

−q2i1k1
3 −ξ

q i
1k1

3 −ξ
−qi1k1
3 +ξ

i1k1
3 −ξ

−i1k1
3

χ1,χ3,χ4,χ9,χ10,χ12 – all rational values

χ26(k1) C25(i1) (q3
+2q2

+2q+1)(ζ i1k1
1 +ζ

−i1k1
1 )+(q2

+q)(ζ 3i1k1
1 +ζ

−3i1k1
1 )

χ1,χ2,χ5,χ8,χ11,χ12 – all rational values

χ28(k1) C28(i1) (q2
−q+1)(ξ i1k1

1 +ξ
−i1k1
1 )+ξ

3i1k1
1 +ξ

−3i1k1
1

χ21(k1) C21(i1) −q− 1
2(q

2
+q)(ξ i1k1

1 +ξ
−i1k1
1 )

χ47(k1,k2) C47(i1, i2) (−q−1)(ζ i1k1
1 +ζ

−i1k1
1 )(ξ

i2k2
1 +ξ

−i2k2
1 )

χ44(k1,k2) C44(i1, i2) −(ζ
i1k1
1 +ζ

−i1k1
1 )(ξ

i2k2
1 +ξ

−i2k2
1 )

χ58(k1,k2,k3) C58(i1, i2, i3) (ξ
i3k3
1 +ξ

−i3k3
1 )

[
(ζ

i1k1
1 +ζ

−i1k1
1 )(ζ

i2k2
1 +ζ

−i2k2
1 )

+(ζ
i1k2
1 +ζ

−i1k2
1 )(ζ

i2k1
1 +ζ

−i2k1
1 )

]
χ17(k1) C13(i1)

( 1
2q3

−q2
+

1
2q

)
(ζ

i1k1
1 +ζ

−i1k1
1 )

χ48(k1,k2) C48(i1, i2) −(ζ
i1k1
1 +ζ

−i1k1
1 )(ξ

i2k2
1 +ξ

−i2k2
1 )

χ49(k1,k2) C49(i1, i2) (q−1)(ζ i2k2
1 +ζ

−i2k2
1 )−(ξ

2i1k1
1 +ξ

−2i1k1
1 )(ζ

i2k2
1 +ζ

−i2k2
1 )

χ60(k1,k2,k3) C60(i1, i2, i3) (ζ
i1k1
1 +ζ

−i1k1
1 )

[
(ξ

i2k2
1 +ξ

−i2k2
1 )(ξ

i3k3
1 +ξ

−i3k3
1 )

+(ξ
i2k3
1 +ξ

−i2k3
1 )(ξ

i3k2
1 +ξ

−i3k2
1 )

]
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character class value

χ37(k1) C56(i1, i2) ξ
2i1k1
1 +ξ

−2i1k1
1 +ξ

(i1+i2)k1
1

+ξ
−(i1+i2)k1
1 +ξ

(i1−i2)k1
1 +ξ

−(i1−i2)k1
1 +1

χ49(k1,k2) C50(i1, i2) −(ξ
2i1k1
1 +ξ

−2i1k1
1 +1)(ζ i2k2

1 +ζ
−i2k2
1 )

χ46(k1) C45(i1) −q(ζ qi1k1
2 +ζ

−qi1k1
2 +ζ

i1k1
2 +ζ

−i1k1
2 )

χ59(k1,k2) C59(i1, i2) (ζ
i2k2
1 +ζ

−i2k2
1 )(ζ

qi1k1
2 +ζ

−qi1k1
2 +ζ

i1k1
2 +ζ

−i1k1
2 )

χ33(k1) C41(i1, i2) q(ζ 2i1k1
1 +ζ

2i1k1
1 )+(q+1)(ζ (i1+i2)k1

1 +ζ
−(i1+i2)k1
1

+ζ
(i1−i2)k1
1 +ζ

−(i1−i2)k1
1 )+1+q

χ43(k1,k2) C44(i1, i2) −(ζ
i1k1
1 +ζ

−i1k1
1 )(ξ

i2k2
1 +ξ

−i2k2
1 )

χ45(k1) C46(i1) −(ζ
qi1k1
2 +ζ

−qi1k1
2 +ζ

i1k1
2 +ζ

−i1k1
2 )

χ61(k1,k2) C61(i1,12) (ξ
i2k2
1 +ξ

−i2k2
1 )(ζ

qi1k1
2 +ζ

−qi1k1
2 +ζ

i1k1
2 +ζ

−i1k1
2 )

χ14(k1) C57(i1, i2, i3) 2(ζ i1k1
1 +ζ

−i1k1
1 +ζ

i2k1
1 +ζ

−i2k1
1 +ζ

i3k1
1 +ζ

−i3k1
1 )

χ33(k1) C58(i1, i2, i3) ζ
(i1+i2)k1
1 +ζ

−(i1+i2)k1
1 +ζ

(i1−i2)k1
1 +ζ

−(i1−i2)k1
1

χ41(r1,r2) C41(i1, i2) (q+1)
[
(ζ

i1k1
1 +ζ

−i1k1
1 )(ζ

i2k2
1 +ζ

−i2k2
1 )

+(ζ
i2k1
1 +ζ

−i2k1
1 )(ζ

i1k2
1 +ζ

−i1k2
1 )

+(ζ
i1k1
1 +ζ

−i1k1
1 )(ζ

i1k2
1 +ζ

−i1k2
1 )

]
χ39(r1,r2) C39(i1, i2) (q+1)

[
ζ
(i1+i2)k1
1 +ζ

−(i1+i2)k1
1 +ζ

(i1−i2)k2
1 +ζ

−(i1−i2)k2
1

+(ζ
i1k1
1 +ζ

−i1k1
1 )(ζ

i2k2
1 +ζ

−i2k2
1 )

+(ζ
i2k1
1 +ζ

−i2k1
1 )(ζ

i1k2
1 +ζ

−i1k2
1 )

]
χ57(r1,r2,r3) C57(i1, i2, i3) (ζ

i1k1
1 +ζ

−i1k1
1 )

[
(ζ

i2k2
1 +ζ

−i2k2
1 )(ζ

i3k3
1 +ζ

−i3k3
1 )

+(ζ
i2k3
1 +ζ

−i2k3
1 )(ζ

i3k2
1 +ζ

−i3k2
1 )

]
+(ζ

i1k2
1 +ζ

−i1k2
1 )

[
(ζ

i2k1
1 +ζ

−i2k1
1 )(ζ

i3k3
1 +ζ

−i3k3
1 )

+(ζ
i2k3
1 +ζ

−i2k3
1 )(ζ

i3k1
1 +ζ

−i3k1
1 )

]
+(ζ

i1k3
1 +ζ

−i1k3
1 )

[
(ζ

i2k2
1 +ζ

−i2k2
1 )(ζ

i3k1
1 +ζ

−i3k1
1 )

+(ζ
i2k1
1 +ζ

−i2k1
1 )(ζ

i3k2
1 +ζ

−i3k2
1 )

]
χ19(k1) C64(i1, i2, i3) −(ξ

i1k1
1 +ξ

−i1k1
1 +ξ

i2k1
1 +ξ

−i2k1
1 +ξ

i3k1
1 +ξ

−i3k1
1 )

χ36(k1) C64(i1, i2, i3) ξ
(i1+i2)k1
1 +ξ

−(i1+i2)k1
1 +ξ

(i1−i2)k1
1 +ξ

−(i1−i2)k1
1

+ξ
(i1+i3)k1
1 +ξ

−(i1+i3)k1
1 +ξ

(i1−i3)k1
1 +ξ

−(i1−i3)k1
1

+ξ
(i2+i3)k1
1 +ξ

−(i2+i3)k1
1 +ξ

(i2−i3)k1
1 +ξ

−(i2−i3)k1
1

χ53(r1,r2) C55(i1, i2) −(q−1)
[
(ξ

i1k1
1 +ξ

−i1k1
1 )(ξ

i2k2
1 +ξ

−i2k2
1 +ξ

i2k1
1 +ξ

i1k2
1 +ξ

−i1k2
1 )

+(ξ
i1k2
1 +ξ

−i1k2
1 )(ξ

i2k1
1 +ξ

−i2k1
1 )

]
χ51(r1,r2) C51(i1, i2) −(q−1)

[
(ξ

i1k1
1 +ξ

−i1k1
1 )(ξ

i2k2
1 +ξ

−i2k2
1 )

+(ξ
i2k1
1 +ξ

−i2k1
1 )(ξ

i1k2
1 +ξ

−i1k2
1 )

+(ξ
(i1+i2)k1
1 +ξ

−(i1+i2)k1
1 )(ξ

(i1−i2)k2
1 +ξ

−(i1−i2)k2
1 )

]
χ64(r1,r2,r3) C64(i1, i2, i3) (ξ

i1k1
1 +ξ

−i1k1
1 )

[
(ξ

i2k2
1 +ξ

−i2k2
1 )(ξ

i3k3
1 +ξ

−i3k3
1 )

+(ξ
i2k3
1 +ξ

−i2k3
1 )(ξ

i3k2
1 +ξ

−i3k2
1 )

]
+(ξ

i1k2
1 +ξ

−i1k2
1 )

[
(ξ

i2k1
1 +ξ

−i2k1
1 )(ξ

i3k3
1 +ξ

−i3k3
1 )

+(ξ
i2k3
1 +ξ

−i2k3
1 )(ξ

i3k1
1 +ξ

−i3k1
1 )

]
+(ξ

i1k3
1 +ξ

−i1k3
1 )

[
(ξ

i2k2
1 +ξ

−i2k2
1 )(ξ

i3k1
1 +ξ

−i3k1
1 )

+(ξ
i2k1
1 +ξ

−i2k1
1 )(ξ

i3k2
1 +ξ

−i3k2
1 )

]
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