


In this paper, we explore a novel fault injection technique

that is tailored for reproducing a specific fault-induced failure

in production distributed systems. We aim for both faithfully

reproducing the buggy workflow and doing so quickly. The

key challenge is to identify the root-cause fault in a large space

of possible faults and their timing. This is hard even when

the given failure log contains relevant exceptions. Production

logs contain abundant noisy error messages. Many exceptions

are also transient or do not cause immediate failure [24, 34].

Simply injecting exceptions in the failure log is insufficient or

inefficient to reproduce complex fault-induced failures.

Our key insight is that many faults have correlated effects

to the system behavior, so we can use the runtime information

from one injected fault to estimate how likely it is for its related

faults to reproduce the target failure, without actually injecting

them. In utilizing this insight, our main contributions are to

define what runtime information can capture this correlation,

how to use it to rank unexplored faults by their likelihood of

reproducing the failure, and how to update the ranking after

each fault injection. This is challenging because we need to

reason about the dynamic effect of a fault and determine the

likelihood that this fault will reproduce the failure, without

actually executing the workload and injecting that fault.

We devise a novel feedback algorithm to overcome this

challenge. The algorithm starts with assuming that each of the

selected log messages is important and computes priorities

for the fault sites based on their causal connections to the

messages. It then iteratively injects a high-priority fault, and if

it does not reproduce the failure, uses the runtime information

from that unsuccessful injection to re-rank the remaining

faults before continuing with the next iteration.

To further improve the reproduction inefficiency, we use

static analysis to prune fault sites that are irrelevant to a

given failure. Nevertheless, since static analysis techniques

are known to incur inaccuracies when applying to distributed

systems, we only perform basic, conservative analysis. The

static analysis step is designed as an optimization, while our

dynamic exploration with feedback is the core.

We implement our solution in a tool called Anduril and

evaluate it on 22 real-world fault-induced failures that we

randomly sample from five large-scale distributed systems.

Some evaluated failures took expert developers days to re-

produce. Anduril successfully reproduced all the failures

by identifying and injecting the root cause faults at the right

timings, in a median time of 8 minutes. In comparison, the

state-of-the-art solutions reproduced only 4 of the 22 failures

respectively, and took 6× - 280× longer time. Interestingly,

for five evaluated failures, Anduril’s reproduction results

identify new root causes that are overlooked in developers’

manual analyses, and reveal flaws in the original patches.

In three of them, the issues exist in the latest versions, and

developers confirmed our findings to be new bugs.

The main contributions of this work are as follows:

• We explore a new fault injection technique for reproducing

a specific fault-induced failure in distributed systems.

• We design and implement Anduril, a targeted fault injec-

tion tool that uses a combination of novel dynamic feedback

algorithms and static analysis to quickly search the large

fault space for the root-cause fault and timing.

• We evaluate Anduril on complex fault-induced failures,

and show that it efficiently reproduce these failures.

Anduril is available at https://github.com/OrderLab/Anduril.

2 Background and Motivation

Problem Statement. We consider the problem of reproducing

a production failure of a system S caused by unhandled or

poorly-handled faults. We call such failures as fault-induced

failures. Our problem takes the following as inputs:

(1) S’s code that we can analyze, instrument, and run offline.

(2) a failure log file from production, where the deployed S

is not instrumented by us. It may contain many irrelevant

log messages and we do not expect the user to filter them.

(3) a driving workload, which can be any that triggers the fault

location, not necessarily the exact production workload

trace. There are several sources to obtain the workload:

(a) reuse existing tests. Mature systems usually have tests

with good coverage that are likely to exercise the affected

feature; (b) leverage tools that sample online workload [4]

or generate inputs [59] automatically; (c) construct a work-

load based on the symptoms. For example, if the symptom

is the replication thread getting stuck, a developer can con-

struct a write workload that exercises replication. This is

often the first step for a developer trying to reproduce a fail-

ure. Anduril fits in this workflow and gets invoked when

the developer has succeeded in workload construction but

still cannot reproduce the symptom.

(4) a user-defined failure oracle, which encapsulates the

key failure symptoms, such as a specific log message,

a stacktrace that may or may not be in the log file, or an

external state such as a corrupted data file. Our definition

of failure reproduction is with respect to the oracle: the

failure is reproduced if the oracle is satisfied.

Given the above inputs, our goal is to efficiently identify

a root-cause fault that, when injected at a specific system

execution point under the workload, can satisfy the oracle.

Since the failure is fault-induced, injecting the root-cause fault

is critical for the reproduction—the oracle is not satisfied by

executing the workload without faults or with a wrong fault.

Scope. We target systems written in languages such as Java or

.NET that capture faults as exceptions; hence faults are injected

by throwing the relevant exception. We focus on failures with a

single root-cause exception, which are common in practice. It

is reflected in our evaluation datasets, which are user-reported

failures that require extensive developer efforts to troubleshoot.

To further confirm the significance, we conducted an empirical

study. Specifically, we randomly sampled 50 failure cases from

2

47



Figure 1. Simplified code for a real HBase incident [21].

Zookeeper, HDFS, HBase, Kafka, Cassandra and analyzed

them to check if the failures were induced by external faults,

and if so, how many external faults were involved. We found

that external faults triggered 41 of the 50 failures, and 39 of

these 41 failures were induced by only one fault. Only two

failures involved more than one root-cause fault.

2.1 A Motivating Example

We illustrate the challenges of reproducing fault-induced

failures with a real-world incident in HBase [21]. A user

reported that the HBase region servers (RS) in their cluster

got stuck for several hours. The user examined the log file and

found a TimeOutException warning when the RS tried to

write a flush marker in the Write Ahead Log (WAL). The user

also checked the stack trace and found that the WAL consumer

thread was still alive. This is puzzling, because the consumer

thread, if alive, should sync the WAL append request to HDFS

and the TimeoutException should not occur. To debug this

failure, developers had to reproduce it. But after constructing

a workload, developers still could not reproduce the symptom.

This failure is likely fault-induced, so we try to reproduce it

with Anduril. Since WAL rolling (switching to a new WAL

file) is common in HBase, we use an existing test in HBase

(TestReplicationSmallTests) as the workload. We use

an oracle that indicates successful reproduction when the

log file contains the timeout exception warning and the stack

trace shows that the log roller is stuck at waitForSafePoint,

as observed by the user. Anduril successfully reproduces

the failure and identifies the root-cause fault. Its finding is

consistent with what developers found out after 19 days of

digging and discussions with the user.

HBase uses HDFS to store and access WAL files. To tolerate

intermittent HDFS failures, developers designed a recoverable

stream that would break upon faults and notify the upper layer

to roll the writer and create a new stream. However, there exists

a rare and fatal fault situation: (1) HBase creates the WAL

file successfully; (2) The stream to HDFS breaks temporarily;

(3) All subsequent asynchronous WAL entry appends by the

consumer fail and move to unackedAppends (a queue) for

retry. Moreover, the entries in unackedAppends exceed the

batch size; unackedAppends queue keeps track of the append

to WAL requests that are being processed by the underlying

HDFS. (4) HBase creates a new writer and a new stream;

(5) With the new stream, HBase retries the failed append

entries and removes the acked ones from unackedAppends

in sync(). Since only batchsize entries can be appended in

one sync, it needs multiple rounds; (6) However, just at this

time, a log roller or RS shutdown calls waitForSafePoint.

Then, as Figure 1 shows, unackedAppends needs more than

one consume() to empty, so the consumer gets stuck in a

stale state with waitForSafePoint. It neither signals the

condition nor does the sync in any later invocation and cannot

recover. Even RS shutdown gets stuck at waitForSafePoint.

Anduril reproduces the failure by injecting the root-cause

IOException at the right call site of channelRead0 (line

34 in Figure 1) at the right timing described above.

This example shows several challenges in reproducing fault-

induced failures. First, fault injection is necessary to reproduce

the failure. Simply executing a workload that creates the WAL

file and then writes to it does not trigger the failure. This

explains why the existing tests did not expose the failure.

Second, the space of possible faults and their timings can be

very large. Different versions of HBase we experimented with

contain 18 K–28 K static fault sites, i.e., code locations that can

throw exceptions. Many of these fault sites execute multiple

times. This makes the space of static and dynamic fault

injection sites very large. For example, the developer-provided

workload that triggers the above HBase failure executes 1 K+

static fault sites 208 K+ times. Moreover, the root cause fault

site is executed 1 K+ times and only 2 of these dynamic

instances would satisfy the oracle. Exhaustively trying each

of them is prohibitively expensive since each injection needs

to be accompanied by an execution of the workload.

Finally, the root-cause fault and timing may not be readily

identified by the logs. The logs from the above failure might

suggest killing the single consumer thread when it is appending

a WAL entry, so that the other side receives no response and

throws a TimeOutException. But this fault must be injected

only when a WAL file is being rolled over—the log rolling

would not get stuck by injecting the fault at another time. Even

after figuring out the proper timing, we have only reproduced

the superficial symptom but not the underlying root cause

fault: the stale state that prevents the consumer from resuming

the log rolling or retrying the failed WAL appends.

To faithfully reproduce what happened, we need to further

go back to other code regions responsible for manipulating

WALs. There are many such static and dynamic execution

points across different functions. The fault must happen in the

RPCs to HDFS when writing WAL appends, and should not

3

48





Efficiency. Efficiency is measured by two metrics: (1) absolute

time from step 1 to 4.a, which includes inherent costs of

running the workload; (2) number of rounds, one round being

from step 3 to 4, which reflects the speed of feedback.

Defining Feedback. An important question is how to construct

the feedback from an unsuccessful injection. Our intuition

is to extract the effect of a fault on the program’s execution,

which we call a fault’s traits. When a fault is injected and it

cannot reproduce the failure, we compare its traits with the

other faults’ traits. If they are similar, the other faults might

not reproduce the failure either, so we can deprioritize them.

While a full execution trace (sequence of instructions,

memory state, etc.) can serve as fault traits, acquiring it

requires intrusive recording, which slows down the experiment

and can distort the execution. Moreover, we would need to try

a real injection for each fault, which contradicts our goal.

Instead, we use lightweight observables of an execution to

determine the fault traits. We specifically choose log messages

as observables for several reasons. First, during the explo-

ration, we can easily collect them. Second, the execution of a

distributed system node can be abstracted as a state machine,

and it is a common practice for developers to log when a node

enters a new state. Third, we can statically estimate the log

messages that an unexplored fault can cause. The challenge for

Anduril is to maximize the feedback from those observables,

which contain limited information and can be noisy.

Assumptions. Anduril relies on the assumption that the

system logs enough information to distinguish faulty and non-

faulty executions. This is common in real-world production

systems, where developers use discriminative logs, which are

unique to failures, to help troubleshooting. Anduril is not

the only solution that depends on the quality of logging. Many

other debugging and reproduction solutions, such as Pen-

sieve [59], also require some useful log messages. Anduril

does not assume that the log messages reveal the exact fault

causing a failure; such failures are easy to reproduce.

Anduril currently performs a single injection in each

round, so it only target failures with a single root-cause fault.

A system may fail due to an unhandled fault, along with

other faults that are tolerated by the built-in error handling

mechanism. Since these handled faults do not contribute

to the failure, Anduril can still reproduce such a failure.

Furthermore, if a root-cause fault causes multiple exceptions,

Anduril will also reproduce these exceptions and the failure,

as long as it injects the root-cause fault correctly. The failures

that Anduril cannot reproduce are those that need multiple

root-cause faults that do not have causal dependencies.

To use Anduril, a developer does not need to know if the

failure is caused by a single root-cause fault. She can first apply

Anduril since single-fault-induced failures are common. If

Anduril fails to reproduce the symptoms, the failure may

be caused by multiple faults. In such cases, Anduril may

produce logs close to production failure logs. These logs can

guide developers to apply Anduril iteratively, fixing one fault

at a time in the workload and rerunning Anduril.

A target failure may be caused by a concurrency bug com-

pounded with a fault. For such cases, Anduril assumes that

the workload provided enforces the specific thread interleaving

in which the root cause fault sites are traversed and focuses

on deducing the correct fault under the schedule to reproduce

the failure. How to deduce the specific thread interleaving for

a concurrency bug is an orthogonal problem and still actively

researched [23, 41, 45]. A future work direction is to develop

solutions that explore the space of thread interleaving and the

space of faults together to reproduce such failures.

4 Instrumenter

In principle, Anduril can explore all possible faults in the

target system, and rely on its dynamic feedback loop to identify

the root-cause fault. However, this is wasteful, because not all

faults are related to the failure we try to reproduce. Therefore,

Anduril starts with a subset of faults.

4.1 Computing Causal Graph

To determine the subset of faults to explore, Anduril com-

putes a static causal graph for given observables, i.e., a list

of log messages. We will explain in § 5.1 how we derive

this list. For each observable, Anduril identifies what fault

sites—program points that can throw exceptions—are causally

related to it. A fault site is causally related to an observable if

an exception at that site can result in the observable to appear.

Just extracting exceptions in the failure log is insufficient

because the system may not log an exception that it think can

be handled but that turns out to be the root cause.

A standard static approach performs complete data-flow

analyses, e.g., computing the program dependence graph [15]

or program slices [52] from a logging statement. For large dis-

tributed systems, such analyses are expensive. Moreover, they

can miss complex causal relations common in large systems,

e.g., due to dependencies from callbacks, third-party libraries,

external modules, RPCs, etc. To address this issue, Anduril

uses the jumping strategy proposed in Pensieve [59]. For

example, given if (x==y), we directly search for program

points across functions that write to x or y, and treat them to

be possibly causal. Although this strategy can produce false

dependencies, it captures complex dependencies that would

otherwise be missed. Such a trade-off matches Anduril’s

design of relying on its dynamic feedback algorithm to identify

the root-cause fault from a large space of possible faults.

Causal Analysis. Using this strategy, we compute causality

for a node (program statement) B by recursively identifying the

causally prior nodes for B depending the node type. We extend

the algorithm in Pensieve in two important ways. First, we

add to it exception flow analysis that is crucial to reason about

root causes faults. Second, instead of generating one chain,

we derive many chains and combine them into a DAG where

source nodes represent fault sites and sink nodes represent

5

50



statements that produce a given list of log messages. The

following three node types are similar to the ones in Pensieve.

• A location node represents a program point being executed.

We compute its causally prior nodes by using control-flow

analysis to find its dominators, which may be a condition, an

invocation, or a handler node. We represent program points

that generate the initial list of log messages as location nodes.

• A condition node represents a program point executed that

requires the satisfaction of a boolean expression. Its causally

prior nodes are computed in two ways. First, we consider the

condition node as a location node, and compute its causally

prior node as described above. Second, we use a slicing

analysis to find the location nodes that can potentially satisfy

the boolean expression. The extracted nodes may include

location nodes, condition nodes, and invocation nodes.

• An invocation node represents the program execution reach-

ing a method invocation statement. Its causally prior nodes are

computed by a call-graph analysis that finds location nodes

representing the code locations that invoke this method.

Exception Analysis. Anduril introduces four new nodes.

• A handler node represents reaching the entry point of an

exception handler (i.e., catch block). Its causally prior nodes

are computed by finding the locations that throw certain excep-

tions caught by this handler. We develop an interprocedural

exception analysis that computes 1) for each method, what

exceptions could be thrown from the method and from what

locations; 2) for each local variable carrying the value of an

exception, the potential types of this exception, the data flow

of this variable, and the location where the variable is thrown.

In addition, our exception analysis handles cross-thread

exception propagation due to asynchronous programming

common in distributed systems. For example, in Java, a thread

may wrap a task in a Callable, submit it to a new thread, and

later wait for the returnedFuture to finish. If something wrong

happens in the task execution, the waiting thread would get an

ExecutionException, but the underlying fault is inside the

scheduled task. Anduril analyzes the inner scheduled code,

according to the future semantics, to augment the control and

data flow of the exceptions for the causal graph.

The computed causally prior nodes may be location nodes

and three kinds of exception nodes described below.

• An internal-exception node represents an exception be-

ing thrown by an invocation to an internal method that is

implemented by the system, but that method is not the ori-

gin of the thrown exception. The exception being thrown is

propagated from invocations within the internal method. For

example, an invocation to an internal method process throws

a SocketException, because process invokes another in-

ternal method send, which in turns makes a library call that

throws this exception. We distinguish an internal-exception

node, because although it has an exception thrown, it is only

propagating the exception. Treating it as a fault site to inject

would be superficial. We need to continue the causal analysis.

Algorithm 1 Build static causal graph

Input: System code (; a list of log messages !

Output: Causal graph � = (+ , �)

1 ?A>6_BC<CB ←Map(S, L)

2 @ ← NewNodes(prog_stmts, LOCATION)

3 while @ ≠ ∅ do

4 =>34 ← @.?>? ()

5 if node.type ∈ {NEW-EXCPT, EXT-EXCPT} then

6 continue

7 2?B ← CausallyPrior(S, node)

8 for 2 ∈ 2?B do

9 �.033 ({2, =>34})

10 if 2 ∉ + then

11 + .033 (2)

12 @.033 (2)

1 private void flush0(...) {

2 try {

3 if (buffer.size() > 0) {

4 // instrumented by FIR to trace the fault site.

5 FIR.traceSite(fid, ...);

6 // instrumented by FIR for fault injection.

7 FIR.throwIfEnabled(fid, occurrence, ...);

8 out.write(buffer, 0, buffer.size());

9 }...

10 } catch (IOException e) {

11 future.completeExceptionally(e);

12 }

13 } Figure 3. Anduril instruments two kinds of code.

• A new-exception node represents an exception being thrown

from an internal system method and that method is the creator

of the thrown exception, i.e., the internal method uses a

throw new statement to create an exception that is uncaught.

However, if this new exception is thrown because of an external

exception (defined below), we downgrade it to an internal

exception, because we aim to find the deeper root cause.

• A external-exception node represents an exception thrown

by a method from standard or third-party libraries. Both new-

exception and external-exception nodes are the fault sites we

are looking for. Our recursive analysis of finding causally

prior nodes stops when encountering the two types of nodes.

Causal Graph. Algorithm 1 shows how Anduril constructs

the static causal graph. The function CausallyPrior() at

line 7 computes all the causally prior nodes for a given node

as explained before. Given the complexities of distributed

systems we target and that our static analysis is conservative,

the computed causal graph can be large. For the real motivating

example in HBase (§ 2.1), the computed causal graph contains

357,816 vertices and 868,373 edges.

4.2 Adding Injection and Logging Code

In addition to computing the static causal graph, Anduril’s

Instrumenter additionally instruments the target system for

Explorer to intercept the fault sites. The instrumentation is

6

51



applied on the program points corresponding to each source

node in the computed causal graph, i.e., a fault site.

Anduril instruments two kinds of code snippets: injection

and tracing code. When the instrumented injection code is

reached, it calls the Explorer runtime, which determines if

an exception should be thrown. The tracing code collects

runtime information including the time and occurrences of

the fault site, which will be used by the feedback algorithm

(§5.2.3). Figure 3 shows an example. Right before the fault

site out.write is executed, the instrumented traceSite()

(line 5) call will record information about this site, after which

the instrumented site throwExceptionIfEnabled (line 7)

will check if Explorer wants to try any fault candidates here

and throws an exception correspondingly.

5 Explorer

In this section, we describe Anduril’s core designs for

feedback-driven fault injection.

5.1 Identifying Relevant Observables

For efficient exploration, we first identify relevant observables.

Many error or warning messages in the failure log may not

be related to the target failure. Worse, some error or warning

messages may appear even when the system runs successfully—

such messages indicate errors that are handled by the system.

We do not expect the user to specify which log messages are

relevant (the oracle only tells the failure symptoms). Anduril

automatically derives relevant observables.

5.1.1 Method Anduril runs the workload to obtain a nor-

mal log file, and then compares it with the failure log file. It

assumes that any log message that only appears in the failure

log is a relevant observable. This assumption significantly

increases the size of the fault space, since Anduril will then

consider all fault sites causally related to those observables;

but this is essential to maximize the chance that the fault

space includes the root-cause fault. Anduril will identify and

de-prioritize irrelevant fault sites through its feedback loop.

Simply using a standard diff for the log comparison does not

work. Log messages usually contain timestamps, making them

appear unique. It is also common for distributed system log

messages to interleave across runs. Thus, Anduril groups the

messages in each log file by thread name. It then sanitizes the

log entries to remove the timestamps. Next, Anduril applies

the Myers difference algorithm [42] between the sanitized logs

with the same thread name. If the failure log includes threads

not present in the normal log, we include all log messages

from those threads as relevant observables. This per-thread

diff works well because developers usually explicitly name

threads uniquely to ease log-driven debugging.

5.1.2 Usage Relevant observables are used in two steps of

the Anduril workflow. First, they are used by Instrumenter in

computing the static causal graph. Recall that the graph con-

struction requires a list of log messages as input (§ 4.1). Using

relevant observables, instead of all messages, is essentially an

Algorithm 2 Update priorities of observables

Input: Failure log 5 _;>6; Initial normal log =_;>6; a list of

log files from each injection round AD=_;>6B

1 A4;4E0=C_>1B4AE01;4B ← Compare(n_log, f_log)

2 for ;>6 ∈ AD=_;>6B do

3 <8BB8=6← Compare(log, f_log)

4 ?A4B4=C ← A4;4E0=C_>1B4AE01;4B −<8BB8=6

5 for >1B4AE01;4 ∈ ?A4B4=C do

6 >1B4AE01;4.?A8>A8C~ = >1B4AE01;4.?A8>A8C~ + 1

optimization to reduce the causal graph. To get the normal log

file needed in the log comparison algorithm, Anduril runs

the given workload once before the fault injection starts.

Second, relevant observables are updated in each fault

injection round. When a fault injection is unsuccessful, that

round naturally produces a normal log file. Anduril then

redo the log comparison algorithm on the new log file to get

the updated list of relevant observables. It will be used in the

feedback algorithm which will be covered in the next section.

An important property is that the relevant observables

computed in the first step will be a superset for the relevant

observables in the second step, because the provided failure

log file is fixed. While the normal log file may change in each

round and produce unseen messages compared to the failure

log, only messages in the failure log are our target. Anduril

leverages this property to avoid computing a causal graph in

each round, and is able to use the causal graph computed in

the first step throughout the experiment.

5.2 Feedback Algorithm

Explorer considers prospective faults represented by the source

nodes in the static causal graph. It computes feedback for each

prospective fault to prioritize the exploration. This section

describes our feedback algorithm and its considerations.

5.2.1 Updating Feedback As § 3 explains, Anduril con-

structs feedback based on fault traits—a fault’s connections

to the relevant observables. We thus start by considering the

observables of an unsuccessful injection (recall that relevant

observables are updated after each trial). When an injection

fails to reproduce the target failure, we look at the observables

that we expected to see but did not. These missing observables

may be related to the failure, so we want to find faults that

could cause them. This is how Anduril updates its feedback.

To do this, Anduril assigns a priority �: for each relevant

observable >: . We use smaller values to present higher priori-

ties. Initially, all �: are zero. When an injection is unsuccessful,

Anduril compares (§ 5.1) the run log with the failure log to

determine which observables in the causal graph appear in the

current log and which ones are missing. It then prioritizes the

missing messages in the following rounds, so it increments

the �: for each present message by one (Algorithm 2).

5.2.2 Updating Fault Site Priority With the updated feed-

back, we next determine the priority �8 of each fault site 58 (a

7

52





most promising fault site, and then decide the most promising

time of that fault site. We follow the same approach.

Anduril first focuses on selecting the high-priority fault

site. At this stage, we do not consider the time information.

Distributed systems have high concurrencies, so even a few

milliseconds can exercise many fault sites. Time priorities

would not well differentiate them. For fault site 58 , we consider

all observables that 58 reaches in the causal graph. Let ?8,:
denote the partial priority of 58 when considering its causal

observable >: . Then the full priority �8 will be some aggregate

of?8,: . We pickmin: (?8,: ) 1, so that we maximize the chance to

reproduce one observable in one injection run. An alternative

is
∑

: (?8,: ), which means we try to trigger all >: with the best

possible fault. Each ?8,: may have different magnitudes, so

the summation can be less sensitive to the effect of feedback

compared with using min. Since ?8,: is positively related to

both �: (priority of >: ) and !8,: (distance from 58 to >: ), either

adding or multiplying them would be reasonable. Because

some observables are noisy, we do want small perturbations

to alleviate their effect. Thus, the final �8 = min: (!8,: + �: ).

Next, we focus on selecting the high-priority instance of a

fault site. At this stage, it is intuitive that we utilize )8, 9,: to

rank over all # instances of the same fault injection site. Thus,

�8, 9 , the priority of 58, 9 , is represented as min0≤ 9≤#,>: )8, 9,: .

Note that >: is determined in the first stage when selecting �8 .

Also, it is fine for >: to change during the feedback. At that

time, we would utilize different : for calculating �8, 9 .

Then at each trial, Anduril chooses the fault instance 58, 9 ,

such that both min8 (�8 ) and min9 (�8, 9 ) are satisfied.

5.2.5 Flexible Priority Window In theory, with the priori-

ties computed, Anduril should inject the fault with the highest

priority. However, distributed systems are non-deterministic,

so the highest-priority fault might not occur in a round, causing

that round to be wasted (no fault is injected).

To address this issue, Anduril uses a flexible-window

selection scheme. Instead of only picking the highest priority,

Anduril considers the top : highest priority fault candidates.

In each round, if any of the candidates in the window occurs,

Anduril will inject that fault candidate, even if it does not

have the highest priority, and remove that candidate from the

window. If no fault is injected in a round, Anduril doubles the

window size : for the next round to consider more candidates.

With = fault candidates, there are at most $ (log=) rounds

without any injections, effectively reducing wasted rounds.

6 Limitations

Anduril is not effective in the following scenarios: (1) the

target failure is caused by delays or silent error codes that

do not throw exceptions; (2) the target failure is caused by

multiple, causally independent root-cause faults; (3) the given

workload does not exercise the code path that contains the

1min priority value represents highest priority

fault site; (4) the logs produced by the system are insufficient

to differentiate between a faulty and non-faulty execution;2

Distributed systems have internal concurrency, which leads

to the challenge that a fault injected too soon or too late may not

reproduce the failure. The feedback algorithm in Anduril,

specifically the fault instance priority update (§ 5.2.3), is

precisely designed to address this challenge. The internal

concurrency may reorder the log messages across different

reproduction runs. Anduril can handle this with its per-thread

log diff method (§ 5.1.1). However, if the concurrency causes

crucial log messages to disappear, the reproduction success

becomes probabilistic. To improve the chances, we can run

Anduril multiple times per round and use the combined logs.

When a target failure is caused by concurrency bugs com-

pounded with a fault, Anduril assumes that thread interleav-

ing has been deduced and enforced in the workload. If this

assumption does not hold, Anduril would not be able to

deterministically reproduce the failure.

Anduril only finds true bugs that cause the given symptom,

i.e., satisfy the failure oracle. In theory, a given symptom can

result from multiple bugs. In these rare cases, Anduril’s

“reproduction” may report a bug that differs from the one that

occurred in production. This is also a useful bug discovery.3

Our static causal analysis is neither sound nor complete. For

example, it would miss the data flow across disk and reflection.

However, the analysis is designed to be conservative so it

prioritizes soundness while compromising on completeness,

relying on dynamic feedback to handle false dependencies.

7 Implementation

We implemented Anduril mainly in Java. Anduril currently

works with distributed systems in JVM bytecode, which

supports many distributed systems written in Java, Scala, and

Clojure. However, the key ideas of Anduril are applicable to

other high-level languages that capture a fault as a program

exception. We built Anduril’s Instrumenter on the Soot static

analysis framework [50] with around 3,700 SLOC. Anduril

Explorer is written with around 5,600 SLOC.

Anduril uses log messages as the observables. We need to

properly parse the messages for mapping them to code in the

causal graph construction, and for comparing and analyzing

them to compute feedback. We implement a log parser in

Scala for this purpose. The parser supports common logging

conventions (e.g., using Log4j). If a system uses non-standard

logging formats, users need to provide the format configuration

(regular expressions) for our parser to identify the key fields.

Such a configuration is a one-time and easy effort. For the

five systems we evaluated, we only used two configurations:

one for Kafka and a second for the other four systems.

2The five systems we evaluate in § 8 generate sufficiently discriminating logs;

Anduril could use the logs as clues to reproduce all the failures we tried.

3We found 5 new bugs like this, as shown in § 8.2.

9

54





Failure

FIR SOTA Solutions

Full Exhaustive Fault-Site Fault-Site Dis. Fault-Site Multiply
FATE CrashTuner

Feedback Fault Instance Distance w/ instance limit Feedback Feedback

Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time

ZK-2247 (f1) 5 2min 535 95min 203 21min 74 11min 8 2min 23 6min - - 271 41min

ZK-3157 (f2) 3 2min 2548 872min 428 107min 136 39min 29 10min 1 1min 55 13min 34 23min

ZK-4203 (f3) 10 3min 454 74min 135 28min 65 12min 65 4min 8 2min - - 4114 840min

ZK-3006 (f4) 13 2min 2696 430min 151 7min 13 2min 4 1min 1 1min - - 135 17min

HD-4233 (f5) 30 25min - - - - 68 60min 89 92min 34 16min - - - -

HD-12248 (f6) 16 8min - - - - 175 60min 374 73min - - 2781 304min - -

HD-12070 (f7) 9 5min - - 3207 592min - - - - 10 5min 1925 357min - -

HD-13039 (f8) 6 17min - - - - 160 346min 19 37min 17 31min - - - -

HD-16332 (f9) 8 5min - - - - - - - - - - - - - -

HD-14333 (f10) 11 7min - - - - - - 64 20min 1 1min - - - -

HD-15032 (f11) 74 236min - - - - - - - - - - - - - -

HB-18137 (f12) 4 11min - - - - - - - - 10 45min - - - -

HB-19608 (f13) 19 44min - - - - - - 645 189min 176 124min - - - -

HB-19876 (f14) 258 191min - - - - - - - - 226 206min - - - -

HB-20583 (f15) 15 44min - - - - - - 11 7min 77 223min - - - -

HB-16144 (f16) 281 445min - - - - - - - - 476 643min - - - -

HB-25905 (f17) 18 93min - - - - - - - - - - - - - -

KA-12508 (f18) 8 8min 1565 640min - - 153 87min 108 50min - - - - - -

KA-9374 (f19) 7 7min 1585 514min - - 283 301min 57 32min - - - - - -

KA-10048 (f20) 3 8min - - - - - - - - - - - - - -

C*-17663 (f21) 2 4min - - - - - - - - 1 2min - - - -

C*-6415 (f22) 17 99min - - - - - - - - 1 10min - - - -

Table 2. Efficacy on reproducing 22 real-world failures with Anduril, its variants, and two state-of-the-art solutions. Rnd.: number of fault

injection rounds to reproduce the failure. “-” means a failure cannot be reproduced after running for 24 hours. The columns under Anduril

other than Full Feedback use alternative designs within Anduril (§ 8.3 explains their meanings). We also evaluated a stacktrace injector (§ 8.4).

showing the underlying HDFS stream is broken during con-

sumer’s sync. There are also noisy logs showing transient

failures in receiving blocks in DFSClient.

In dynamic experiment, at first the rank of the root-cause

site is over 130. During this process, the fault that trig-

ger failure in transferring blocks is injected and also, the

IllegalStateException is injected to directly kill the

consumer and we got the TimeOutException in flushing.

Gradually, Anduril would think that the log that is related to

broken HDFS stream should take higher priority, as shown in

Figure 6. (location+feedback works here) Finally, at trial 18,

we inject in getRPCResults with the corresponding occur-

rence that triggers the failed stream of WAL writers and we

got the expected symptom. What is more, only 2 out of over

1000 instances of the root-cause site can satisfy the oracle.

ZooKeeper-4203. When the servers start the leader election,

an IOException occurs while the leader is accepting the

socket from a follower. Due to defective design, this fault fails

the whole leader election service and no more followers can

join the quorum. Anduril identified three relevant observ-

ables, including a symptom message about the socket service

failure. The causal graph analysis finds around 1,000 fault

site candidates. The root-cause fault site gets assigned a high

priority that ranks 8th initially. Then the feedback algorithm

improves the ranking from 8 to 6 within four rounds. Finally,

Anduril reproduces the failure in 10 rounds.

HBase-16144. One regionserver that holds the replication

queue’s lock aborted due to an unknown transient failure.

Afterward, no other regionserver could claim the queue to do

synchronization. Anduril automatically infers 78 potentially

relevant logs. The causal graph Anduril contains 3075 fault

sites, one of which is the root-cause fault. From the evaluation

result, it turns out to be the most challenging case for Anduril.

The reason is that the single message close to the root cause

only shows that a regionserver aborts but not why. It is a

common practice in HBase to abort the regionserver when

encountering a failure. From our static analysis, Anduril

infers that more than 2500 fault sites are causally related to

the ABORT message. At the first round, the root-cause fault

site’s rank is 342. Through feedback, Anduril quickly learns

the importance of the ABORT log and prioritizes faults that

are causally related. Although most of them could indeed

trigger the abort, only a tiny subset can satisfy the oracle.

Those unsuccessful injections cause Anduril to doubt the

importance of the ABORT log. Overall, the feedback still

works and promotes the rank of the site to 187 at best. At this

time, our two-level combination design (§5.2.4) enacts: for

each fault site, it just tries the one that is close on timeline to

the ABORT message and traverses the fault sites efficiently

without wasting too much time on the same fault site. Finally,

Anduril reproduces the failure in round 281.

11

56



Param.

Failure Id

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

=1 10 1 14 1 28 24 1 6 14 5 99 1 12 715 6 468 22 13 10 1 1 24

=3 8 2 13 2 34 19 1 3 11 3 148 2 13 257 8 316 20 9 9 1 1 17

in
it

ia
l
:

=10 5 3 10 13 30 16 9 6 8 11 74 4 19 258 15 281 18 8 7 3 2 17

a
d
j.
B +1 5 3 10 13 30 16 9 6 8 11 74 4 19 258 15 281 18 8 7 3 2 17

+2 5 3 11 13 43 72 8 5 13 11 63 3 19 257 14 283 19 9 7 3 2 79

+10 5 3 5 13 44 649 8 4 13 13 67 2 18 257 - 384 - 8 7 2 2 116

Table 3. Sensitivity of two key parameters in Anduril. The initial window size : for the flexible priority selection scheme (§ 5.2.5). adj. B: The

priority value adjustment for observables (§ 5.2.1). The highlighted rows are results for the default settings.

8.2 Enhancing Expert’s Diagnosis and Patch

A given failure symptom can result from multiple bugs. In-

terestingly, for 5 of the reproduced cases, Anduril’s results

allow us to discover other root causes. For example, in one

case, the original root cause developer diagnosed was mes-

sage loss caused by network I/O faults, which then caused

the snapshot repair to be blocked forever, but Anduril iden-

tifies a deeper root cause where an early-stage disk I/O fault

causes the target keyspace to not be created at all. Note that

Anduril’s new root cause also leads to failure symptoms that

satisfy the oracle, but it is deeper in the root cause chain.

A tangible impact of Anduril’s findings is that they expose

flaws in the patches developers wrote. In four cases, the original

patches do not work. For the above example, the original patch

only uses some retry logic to deal with message loss, which

could not fix the situation that the target keyspace does not

exist. In one case, although the original patch works, we

develop a new patch that is more efficient. We submitted our

findings. In 3 cases, the issues exist in the latest versions, and

developers confirmed them to be new bugs. We also received

confirmation for the more efficient patch we developed in a

fourth case. We omit the bug ids here for double-blind review.

8.3 Importance of Techniques

To measure the importance of different techniques in Anduril,

we conduct an ablation study that removes or replaces certain

components in Anduril. In particular, we implement and

evaluate five different strategies shown in Table 2.

The exhaustive strategy only leverages the Anduril static

causal graph and tries all the instances from the fault sites in

the causal graph. The fault-site distance strategy sets a fault

site’s priority only as the graph distance term !8,: without any

feedback. It also applies the flexible priority window (§ 5.2.5).

The fault-site distance with instance limit similarly only uses

!8,: for priority and additionally considers only the first 3

instances of each fault site. The fault-site feedback strategy

additionally includes the feedback of observables, �: , but it

it does not distinguish priorities for fault candidate instances

(i.e., no )8,: ). It also applies the 3-instance limit. The multiply

feedback strategy uses both the fault site priority �8 and fault

instance priority �8,: , but it simply uses �8 × �8,: to combine

them instead of using our two-level approach (§ 5.2.4).

As Table 2 shows, the complete Anduril significantly out-

performs all five variant strategies. The best variant, multiply

feedback, only reproduces 15 failures in 88 minutes and 71

rounds on average. By comparing the variants, we can also

see the importance of each technique. For example, while

the exhaustive variant leverages the Anduril causal graph to

prune many fault sites (Table 1), allowing it to outperform

non-Anduril solutions, its result is much worse compared

to the other variants. This suggests that dynamic feedback

is crucial. Comparing among the dynamic variants suggests

that each feedback consideration plays an important role. The

multiply feedback result suggests that the two-level approach

is superior to simple combination of different priorities.

8.4 Comparison with Other Solutions

CrashTuner [35] and FATE [19]. We compare Anduril

with CrashTuner and FATE, two state-of-the-art fault injection

solutions that target distributed systems. CrashTuner proposes

to use meta-info variables to identify critical timings for

injecting faults. FATE employs the notion of failure IDs to

avoid redundant fault injections and uses prioritization to

explore new failure scenarios first.

As Table 2 shows, CrashTuner and FATE only reproduce

four and three failures, respectively. They are designed for

bug finding instead of failure reproduction, thus they focus on

improving coverage, which cause them to waste significant

time exploring faults that are irrelevant to a specific failure.

StackTrace-injector. Additionally, we implement a stacktrace-

injector for comparison. It extracts all warning and error

messages in the failure log, and parses the fault sites in those

messages as well as the stack traces if logged. During experi-

ment, it only injects if the executed site is one of the logged

sites and the stack trace matches the failure log.

The stacktrace-injector only reproduces 9 failures in 78

minutes and 230 rounds on average. It can perform well if the

failure log is clean and the root-cause fault appears in the log.

For example, it can reproduce Kafka-12508 in the first round,

because only two fault sites are extracted from the log, one of

them being the root-cause site. However, when the root-cause

fault does not appear in the failure log, it cannot reproduce

the failure. Also, if the log contains irrelevant error messages

or when the root-cause fault site is executed frequently, it

12

57



System
Inject. Req.

Round Init. Workload

Cnt. Latency

ZooKeeper 2,955 2 `s 6.7 s 6.4 s

HDFS 36,091 0.30 `s 22 s 12 s

HBase 31,162 0.40 `s 25 s 27 s

Kafa 423,298 0.20 `s 41 s 10 s

Cassandra 2,022,819 29.10 `s 124 s 25 s

Table 4. Median injection requests received by Anduril Explorer,

the latency for each decision, the median initialization time for each

injection round, and the workload time.

performs poorly. For example, it extracts 9 static fault sites

from the log for HDFS-15032, but takes 1839 rounds and 634

minutes to reproduce the failure. Note that the input failure

log we use is created from a test workload and thus small.

But in real deployment, the failure log directly comes from

production and will be much larger and more noisy.

Pensieve [59]. Pensieve can efficiently reproduce failures for

distributed systems. However, it is not publicly available for us

to conduct comparisons. More importantly, Pensieve focuses

on deducing the inputs for a failure, which is an orthogonal

problem. Combining Pensieve with other fault injection tools

would suffer from the same limitations and yield similar

results shown above. From Table 2, we can approximate the

performance of extending Pensive to support exception events.

The exhaustive strategy relies on static causal reasoning of

exceptions, which performs poorly in our evaluated failures

compared to using full dynamic feedback in Anduril.

8.5 Sensitivity of Key Parameters

Anduril’s feedback algorithm has two key parameters: the

initial priority window size : (§ 5.2.5), and the priority value

adjustment B for observables’ feedback. We use their default

settings (: = 10, B increment by one) in the experiments. We

evaluate Anduril’s sensitivity to different settings. Table 3

shows the results. The feedback algorithm is overall robust to

different settings, under which Anduril still reproduces most

of the 22 failures. However, they do result in relatively small

differences for most cases.

8.6 Performance

We evaluate the performance of the Explorer. In each injection

round, Anduril needs to compute and update different priority

factors, thus there is an initialization cost for each round.

Initially this cost was high, which caused some experiments

to proceed slowly. We made several optimizations (§ 7) that

greatly reduce the cost. Table 4 shows the median optimized

initialization time for different systems. We also measure the

median number of injection requests Anduril receives for the

evaluated failures as well as the median latency for Anduril

to make a decision. As Table 4 shows, after Explorer finishes

initialization, subsequent decisions in each round are fast.

We also measure the static analysis performance. The time

ranges from 11 s to 344 s, depending on the code size and

complexity. The most time-consuming step is analyzing the

exceptions and handlers takes. But the longest time is only

162 s (HBase). The slicing analysis is fast, finishing within a

few seconds. Our appendix shows the detailed results.

9 Related Work

Fault Injection Since distributed systems frequently en-

counter faults, fault injection testing is popular and has been

extensively studied. Due to the large fault space, existing solu-

tions often perform random injection [6] or rely on users to

write the policies [1]. Recent solutions [3, 12, 17, 19, 27, 31,

35, 37, 39, 48, 49, 53] propose more advanced techniques to

improve fault injection testing, such as using failure IDs [19],

meta-info variables [35], and abstract states [53].

These solutions are designed for finding bugs. They focus

on coverage and thus can be inefficient in triggering a specific

failure. To the best of our knowledge, Anduril is the first

fault-injection tool designed for reproducing a given failure.

Anduril directly searches for faults relevant to a given failure,

and takes a feedback-driven approach to efficiently pinpoint

the root-cause fault and their timing.

Failure Reproduction Reproducing production failures is

notoriously difficult, motivating many solutions. An exten-

sively explored technique is record and replay. By logging

all sources of non-determinism at runtime, including input,

thread scheduling, and environment interaction such as file

and network I/O, it can replay a past execution. This technique

is particularly useful for reproducing concurrency bugs. How-

ever, it is known to incur prohibitive runtime overhead. Despite

significant efforts [2, 13, 20, 28, 32, 33, 38, 40, 45, 46, 51],

the overhead is still too high to apply on production systems.

Anduril is non-intrusive. It does not instrument the produc-

tion system or perform runtime recording. It only uses the

existing failure log from the production run.

Symbolic execution is also used to reproduce failures by

searching for an execution trace containing the desired symp-

toms. Given a coredump, ESD [55] extracts a subprogram

using static slicing, and then uses symbolic execution to search

for paths that exercise the entirety of this subprogram and

reach the symptom. However, symbolic execution does not

scale to large systems because of the path explosion problem.

Pensieve [59] proposes an event-chaining approach using

static analyses to reproduce the input (sequence of external

APIs) for a given failure. Its static analysis uses a jumping strat-

egy that aggressively skips code paths. Anduril is inspired

by Pensieve. However, it is a complementary effort. Anduril

is a fault injection tool to reproduce fault-induced failures,

while Pensieve focuses on input-induced failures. For example,

Pensieve discards exception causal conditions because of its

focus on input. In addition, Pensieve relies on static analyses,

while the core of Anduril is dynamic feedback.

Fuzzing Fuzzing testing [7–9, 9, 16, 43, 57, 58] widely uses

feedback to guide input generation. Its main goal is to generate

13

58



inputs to increase code coverage and uncover as many bugs as

possible. Anduril is designed to reproduce a specific failure.

Its feedback is therefore targeted to quickly identify the root-

cause fault that can reproduce the specific failure. Thus, it

requires a fundamentally different feedback design.

There are some work [11, 25, 56] employing stacktrace to

reproduce the bug. However, large-scale distributed systems

are designed to be fault-tolerance and it is common that they

will not log the stacktrace of the faults they suppose they

can handle (although it can be the root cases of the failure

sometimes). So Anduril does not employ stacktrace but

instead construct causal graph to deduce the possible fault

sites. What’s more, we also construct the stacktrace baseline

that purely utilize the stacktrace of the faults printed out in

the logs. However, as the information in appendix shows, it

does not perform well for most of the cases.

10 Conclusion

We presented Anduril, a fault injection tool designed to effi-

ciently reproduce fault-induced failures in deployed distributed

systems. Anduril uses a novel dynamic feedback-driven in-

jection algorithm enhanced by a static causal reasoning step to

pinpoint the root-cause fault and timing in a large fault space.

We evaluated Anduril on real-world complex fault-induced

failures in large distributed systems. Anduril quickly repro-

duced all the failures and outperformed existing solutions.

Acknowledgments

We thank the anonymous reviewers and our shepherd Aurojit

Panda for their valuable and detailed feedback that improved

our work. We thank CloudLab [14] for providing us with the

experiment platform. This work was supported by NSF grants

CNS-2317698, CNS-2317751, and CCF-2318937.

References

[1] Jepsen: a framework for distributed systems verification, with fault

injection. https://github.com/jepsen-io/jepsen.

[2] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay

for multicore debugging. In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles, SOSP ’09, page 193–206,

New York, NY, USA, 2009. Association for Computing Machinery.

[3] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. Lineage-driven

fault injection. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages 331–346,

New York, NY, USA, 2015. ACM.

[4] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.

Using magpie for request extraction and workload modelling. In Pro-

ceedings of the 6th Symposium on Operating Systems Design and Im-

plementation, OSDI ’04, San Francisco, CA, December 2004. USENIX

Association.

[5] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. Chronicler: Lightweight

recording to reproduce field failures. In 2013 35th International

Conference on Software Engineering (ICSE), pages 362–371. IEEE,

2013.

[6] Cory Bennett and Ariel Tseitlin. Chaos monkey released into the

wild. http://techblog.netflix.com/2012/07/chaos-monkey-released-

into-wild.html, 2009.

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-

based greybox fuzzing as markov chain. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, page 1032–1043, New York, NY, USA, 2016. Association for

Computing Machinery.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-

based greybox fuzzing as markov chain. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

pages 1032–1043, 2016.

[9] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and

Wenqian Liu. A systematic review of fuzzing techniques. Computers &

Security, 75:118–137, 2018.

[10] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin. Cofi:

consistency-guided fault injection for cloud systems. In Proceedings of

the 35th IEEE/ACM International Conference on Automated Software

Engineering, pages 536–547, 2020.

[11] Ning Chen and Sunghun Kim. Star: Stack trace based automatic crash

reproduction via symbolic execution. pages 198–220, 2015.

[12] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, and Tianyin Xu.

{Push-Button} reliability testing for {Cloud-Backed} applications with

rainmaker. In 20th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 23), pages 1701–1716, 2023.

[13] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,

and Peter M. Chen. ReVirt: Enabling intrusion analysis through virtual-

machine logging and replay. In Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation, OSDI ’02, Boston,

MA, December 2002.

[14] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The design and operation of

CloudLab. In 2019 USENIX Annual Technical Conference, USENIX

ATC ’19, pages 1–14, Renton, WA, jul 2019. USENIX Association.

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization. ACM Trans. Program.

Lang. Syst., 9(3):319–349, jul 1987.

[16] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu

Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE

Symposium on Security and Privacy (SP), pages 679–696. IEEE, 2018.

[17] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. Redundancy does not imply

fault tolerance: Analysis of distributed storage reactions to single errors

and corruptions. In Proceedings of the 15th Usenix Conference on

File and Storage Technologies, FAST ’17, page 149–165, USA, 2017.

USENIX Association.

[18] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. How

to fight production incidents? an empirical study on a large-scale cloud

service. In Proceedings of the 13th Symposium on Cloud Computing,

pages 126–141, 2022.

[19] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.

Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

Koushik Sen, and Dhruba Borthakur. FATE and DESTINI: A framework

for cloud recovery testing. In Proceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation, NSDI’11, pages

238–252, Berkeley, CA, USA, 2011. USENIX Association.

[20] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu,

M. Frans Kaashoek, and Zheng Zhang. R2: An application-level kernel

for record and replay. In Proceedings of the 8th USENIX Conference

on Operating Systems Design and Implementation, OSDI ’08, page

193–208, USA, 2008. USENIX Association.

[21] Apache HBase. Shutdown of WAL stuck at waitforsafepoint. https:

//issues.apache.org/jira/browse/HBASE-25905, 2021.

14

59



[22] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault

injection techniques and tools. Computer, 30(4):75–82, April 1997.

[23] Jeff Huang, Charles Zhang, and Julian Dolby. Clap: recording local

executions to reproduce concurrency failures. In Proceedings of the

34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13, page 141–152, New York, NY, USA,

2013. Association for Computing Machinery.

[24] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong

Dang, Murali Chintalapati, and Randolph Yao. Gray failure: The

Achilles’ heel of cloud-scale systems. In Proceedings of the 16th

Workshop on Hot Topics in Operating Systems, HotOS XVI, British

Columbia, Canada, May 2017. ACM.

[25] Wei Jin and Alessandro Orso. Bugredux: reproducing field failures for

in-house debugging. In ICSE ’12: Proceedings of the 34th International

Conference on Software Engineering, pages 474–484, 2012.

[26] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. PREFAIL: A

programmable tool for multiple-failure injection. In Proceedings of the

2011 ACM International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’11, pages 171–188,

New York, NY, USA, 2011. ACM.

[27] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat.

Life, death, and the critical transition: Finding liveness bugs in systems

code. In Proceedings of the 4th USENIX Symposium on Networked

Systems Design & Implementation, NSDI ’07. USENIX Association,

April 2007.

[28] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish

Narayanasamy, Peter M. Chen, and Jason Flinn. Respec: Efficient

online multiprocessor replay via speculation and external determinism.

In Proceedings of the Fifteenth International Conference on Architec-

tural Support for Programming Languages and Operating Systems,

ASPLOS XV, page 77–90, New York, NY, USA, 2010. Association for

Computing Machinery.

[29] Tanakorn Leesatapornwongsa, Xiang Ren, and Suman Nath. Flakerepro:

automated and efficient reproduction of concurrency-related flaky tests.

In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,

pages 1509–1520, 2022.

[30] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. What bugs

cause production cloud incidents? In Proceedings of the Workshop on

Hot Topics in Operating Systems, pages 155–162, 2019.

[31] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen

Tian. FCatch: Automatically detecting time-of-fault bugs in cloud

systems. In Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’18, pages 419–431. ACM, 2018.

[32] Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu.

iReplayer: In-situ and identical record-and-replay for multithreaded

applications. In Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’18,

page 344–358, New York, NY, USA, 2018. Association for Computing

Machinery.

[33] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads:

Efficient deterministic multithreading. In Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles, SOSP ’11,

page 327–336, New York, NY, USA, 2011. Association for Computing

Machinery.

[34] Chang Lou, Peng Huang, and Scott Smith. Understanding, detect-

ing and localizing partial failures in large system software. In 17th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20), pages 559–574, Santa Clara, CA, February 2020. USENIX

Association.

[35] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and

Liang You. Crashtuner: Detecting crash-recovery bugs in cloud systems

via meta-info analysis. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, SOSP ’19, page 114–130, New York,

NY, USA, 2019. Association for Computing Machinery.

[36] Paul D Marinescu and George Candea. Lfi: A practical and general

library-level fault injector. In 2009 IEEE/IFIP International Conference

on Dependable Systems & Networks, pages 379–388. IEEE, 2009.

[37] Paul D. Marinescu and George Candea. LFI: A practical and general

library-level fault injector. In 2009 IEEE/IFIP International Conference

on Dependable Systems Networks, DSN ’09, pages 379–388, June 2009.

[38] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and

Mendel Rosenblum. Towards practical default-on multi-core record/re-

play. In Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’17, page 693–708, New York, NY, USA, 2017.

Association for Computing Machinery.

[39] Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather

Miller, and Rohan Padhye. Service-level fault injection testing. In

Proceedings of the ACM Symposium on Cloud Computing, SoCC ’21,

page 388–402, New York, NY, USA, 2021. Association for Computing

Machinery.

[40] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording

and deterministically replaying shared-memory multiprocessor exe-

cution efficiently. In Proceedings of the 35th Annual International

Symposium on Computer Architecture, ISCA ’08, page 289–300, USA,

2008. IEEE Computer Society.

[41] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pi-

ramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and

reproducing heisenbugs in concurrent programs. In Proceedings of the

8th USENIX Conference on Operating Systems Design and Implemen-

tation, OSDI ’08, page 267–280, USA, 2008. USENIX Association.

[42] Eugene W Myers. An o (nd) difference algorithm and its variations.

Algorithmica, 1(1-4):251–266, 1986.

[43] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing

overhead through coverage-guided tracing. In 2019 IEEE Symposium

on Security and Privacy (SP), pages 787–802. IEEE, 2019.

[44] PagerDuty. The discovery of apache zookeeper’s poison

packet. https://www.pagerduty.com/blog/the-discovery-of-apache-

zookeepers-poison-packet, 2015.

[45] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini

Kaushik, Kyu H. Lee, and Shan Lu. PRES: Probabilistic replay with

execution sketching on multiprocessors. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,

page 177–192, New York, NY, USA, 2009. Association for Computing

Machinery.

[46] Gilles Pokam, Cristiano Pereira, Shiliang Hu, Ali-Reza Adl-Tabatabai,

Justin Gottschlich, Jungwoo Ha, and Youfeng Wu. CoreRacer: A

practical memory race recorder for multicore x86 tso processors. In

Proceedings of the 44th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-44, page 216–225, New York, NY, USA,

2011. Association for Computing Machinery.

[47] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul,

Mehul A. Shah, and Amin Vahdat. Pip: Detecting the unexpected in

distributed systems. In Proceedings of the 3rd Conference on Networked

Systems Design & Implementation - Volume 3, NSDI ’06, pages 9–9,

Berkeley, CA, USA, 2006. USENIX Association.

[48] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,

Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, and Tianyin

Xu. Automatic reliability testing for cluster management controllers. In

16th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 22), pages 143–159, Carlsbad, CA, July 2022. USENIX

Association.

[49] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,

Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, and Tianyin Xu.

Automatic reliability testing for cluster management controllers. In 16th

USENIX Symposium on Operating Systems Design and Implementation

15

60



(OSDI 22), pages 143–159, 2022.

[50] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vĳay Sundaresan. Soot - a java bytecode optimization

framework. In Proceedings of the 1999 Conference of the Centre for

Advanced Studies on Collaborative Research, CASCON ’99, page 13.

IBM Press, 1999.

[51] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica

Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Dou-

bleplay: Parallelizing sequential logging and replay. In Proceedings

of the Sixteenth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XVI,

page 15–26, New York, NY, USA, 2011. Association for Computing

Machinery.

[52] Mark Weiser. Program slicing. In Proceedings of the 5th International

Conference on Software Engineering, ICSE ’81, page 439–449, 1981.

[53] Haoze Wu, Jia Pan, and Peng Huang. Efficient exposure of partial

failure bugs in distributed systems with inferred abstract states. In

Proceedings of the 21st USENIX Symposium on Networked Systems

Design and Implementation, NSDI ’24, pages 1267–1283, April 2024.

[54] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and

Shankar Pasupathy. Sherlog: Error diagnosis by connecting clues from

run-time logs. In Proceedings of the Fifteenth International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XV, page 143–154, New York, NY, USA, 2010.

Association for Computing Machinery.

[55] Cristian Zamfir and George Candea. Execution synthesis: A technique

for automated software debugging. In Proceedings of the 5th European

Conference on Computer Systems, EuroSys ’10, page 321–334, New

York, NY, USA, 2010. Association for Computing Machinery.

[56] Cristian Zamfir and George Candea. Execution synthesis: a technique

for automated software debugging. In EuroSys ’10: Proceedings of the

5th European conference on Computer systems, pages 321–334, 2010.

[57] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and

Christian Holler. The fuzzing book, 2019.

[58] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and Erxue Min. Ptfuzz:

Guided fuzzing with processor trace feedback. IEEE Access, 6:37302–

37313, 2018.

[59] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding

Yuan. Pensieve: Non-intrusive failure reproduction for distributed

systems using the event chaining approach. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17, page 19–33,

New York, NY, USA, 2017. Association for Computing Machinery.

[60] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:

a survey for roadmap. ACM Computing Surveys (CSUR), 54(11s):1–36,

2022.

A Evaluation Details

We include additional details and results that are omitted in

the main paper due to space constraints. The content in this

appendix is not peer-reviewed.

Reproduced failures. Table 5 lists the failures Anduril

reproduced. It also shows the types of exceptions that Anduril

injected to reproduce the failures.

Stacktrace-injector. We also implemented a baseline so-

lution that injects faults based on stacktraces. Its results are

listed in the last two columns in Table 5.

New root causes discovered. Anduril found new root causes

for five failures that differed from the developers’ diagnoses, as

shown in Table 6. We also list the log messages that Anduril

used to infer the new root causes. In four cases, developers’

patches could not fix the scenarios that Anduril exposed.

Failure Id old root cause new root cause exploited

log

old

patch

works

ZK-4737 network issue in

loading dataset

disk issue in load-

ing dataset

root cause no

HD-17157 disk failure causes

meta data loss

network issue

causes no re-

sponse in second

stage of block

recovery

intermittent yes

HB-28014 disk failure causes

empty WAL

underlying HDFS

issue causes fail-

ure of adding

replication peers

root cause no

KA-15339 delay in making

connector

disk issue in ap-

pending records at

startup

root cause no

CA-18748 request/response

loss of repair

disk issue in mak-

ing column family

root cause no

Table 6. The new root cause and flaw in patch Anduril discovered

when reproducing the failures.

Static analysis. We applied Anduril’s static causal graph

algorithm to reduce the fault sites. Table 7 shows the time

taken by the static analysis for each case. It also shows the

break-downs of the static analysis time.

Runtime details. Table 8 shows the runtime details of the

Anduril Explorer, such as the number of injection requests

it received, the decision latency, the initialization time per

round, and the workload time for each case.

16

61



Failure Id Description Injected Fault
Stacktrace injector

Rnd. Time

ZK-2247 (f1) Server unavailable when leader fails to write transaction log IOException 6 1min

ZK-3157 (f2) Connection loss causes the client to fail IOException 112 23min

ZK-4203 (f3) The leader election is stuck forever due to connection error IOException 68 13min

ZK-3006 (f4) Invalid disk file content causes null pointer exception IOException 31 2min

HD-4233 (f5) Rolling backup fails but the server keep serving FileNotFoundException - -

HD-12248 (f6) Exception when transfering file system image to namenode causes the namenode

checkpointing to ignore the image backup

InterruptedException - -

HD-12070 (f7) Files will remain open indefinitely if block recovery fails which creates a high

risk of data loss

IOException 5 1min

HD-13039 (f8) Data block creation leaks socket on exception IOException - -

HD-16332 (f9) Missing handling of expired block token causes slow read IOException - -

HD-14333 (f10) Disk error during namenode registration causes datanodes fail to start IOException - -

HD-15032 (f11) Balancer crashes when it fails to contact an unavailable namenode SocketException 11 22min

HB-18137 (f12) Empty WAL file causes Replication to get stuck IOException 1 1min

HB-19608 (f13) Interrupted procedure mistakenly causes a failed state flag IOException - -

HB-19876 (f14) The exception happening in converting pb mutation messes up the CellScanner IOException - -

HB-20583 (f15) The failure during splitting log causes resubmit of another failed splitting task IOException - -

HB-16144 (f16) Replication queue’s lock will live forever if regionserver acquiring the lock has

died prematurely

IOException - -

HB-25905 (f17) Transient namenode failure in HDFS causes WAL services in HBase to stop

making any progress

IOException - -

KA-12508 (f18) Emit-on-change tables lose updates after error and restart IOException 1 1min

KA-9374 (f19) Blocked connectors disable the Workers IOException 1839 634min

KA-10048 (f20) Consumer’s failover under MM2 replication configuration causes data gap between

2 clusters

IOException - -

C*-17663 (f21) Interrupted FileStreamTask compromise shared channel proxy IOException - -

C*-6415 (f22) Snapshot repair blocks forever if get no response of makeSnapshot IOException - -

Table 5. The failures reproduced by Anduril, their brief descriptions, the types of the faults Anduril injects to reproduce the failures, and the

time and the number of rounds Anduril takes to reproduce the failures.

Failure Id LOC
Time

Exception Slicing Chaining Total

ZooKeeper-2247 120K 0.9s 0.1s 0.06s 11s

ZooKeeper-3157 136K 0.9s 0.1s 0.07s 13s

ZooKeeper-4203 178K 2.0s 0.1s 0.1s 18s

ZooKeeper-3006 176K 1.5s 0.1s 0.1s 15s

HDFS-4233 351K 3.6s 0.1s 0.3s 31s

HDFS-12248 1M 103s 0.4s 6s 237s

HDFS-12070 940K 120s 0.7s 6s 228s

HDFS-13039 880K 46s 0.5s 1s 113s

HDFS-16332 1187K 165s 0.9s 3s 280s

HDFS-14333 1054K 140s 1.2s 9s 261s

HDFS-14333 1130K 143s 3.5s 3s 294s

HBase-18137 303K 186s 0.8s 25s 344s

HBase-19608 211K 156s 1.5s 1.4s 286s

HBase-19876 211K 169s 1.3s 1.5s 302s

HBase-20583 1649K 162s 1.3s 1.5s 303s

HBase-16144 1204K 95s 0.7s 1.4s 130s

Kafka-12508 201K 74s 1.1s 1s 179s

Kafka-9374 166K 37s 0.9s 0.7s 112s

Cassandra-17663 307K 42s 0.9s 1.5s 94s

Cassandra-6415 152K 4s 0.2s 0.3s 31s

Table 7. LOC: lines of code analyzed; Exception: time used in

exception analysis; Slicing: time used in slicing analysis; Chaining:

average time used in creating a causal chain for one observable.

Failure
Inject. Req. Round

Workload

Cnt. Latency Init.

ZooKeeper-2247 1726 2 `s 6.6s 2.6s

ZooKeeper-3157 4444 2 `s 7.1s 10.2s

ZooKeeper-4203 1158 2 `s 6.1s 10.4s

ZooKeeper-3006 4184 2 `s 6.7s 0.9s

HDFS-4233 42753 11 `s 8.5s 64.1s

HDFS-12248 36091 0.2 `s 22s 12.0s

HDFS-12070 18588 0.3 `s 16s 9.4s

HDFS-13039 34587 4 `s 18s 95.1s

HDFS-16332 19182 0.4 `s 26s 10.4s

HDFS-14333 84583 0.2 `s 24s 3.0s

HDFS-15032 276518 0.2 `s 142s 12s

HBase-18137 344098 0.3 `s 93s 46.5s

HBase-19608 21028 0.4 `s 16s 17.3s

HBase-19876 31162 0.4 `s 18s 13.5s

HBase-20583 117406 0.1 `s 58s 27s

HBase-16144 16783 1 `s 25s 30s

Kafka-12508 49443 0.3 `s 41s 6.3s

Kafka-9374 797152 0.1 `s 40s 14.2s

Cassandra-17663 168825 0.2 `s 64s 33s

Cassandra-6415 3876813 58 `s 184s 17s

Table 8. Injection requests received by Anduril Explorer, the latency

for each decision, the median initialization time for each injection

round, and the workload time.

17

62


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Motivating Example
	2.2 Our Observation and Key Idea

	3 Overview of Anduril
	4 Instrumenter
	4.1 Computing Causal Graph
	4.2 Adding Injection and Logging Code

	5 Explorer
	5.1 Identifying Relevant Observables
	5.2 Feedback Algorithm

	6 Limitations
	7 Implementation
	8 Evaluation
	8.1 Efficacy of Failure Reproduction
	8.2 Enhancing Expert's Diagnosis and Patch
	8.3 Importance of Techniques
	8.4 Comparison with Other Solutions
	8.5 Sensitivity of Key Parameters
	8.6 Performance

	9 Related Work
	10 Conclusion
	References
	A Evaluation Details

