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MODIFYING THE ASYNCHRONOUS JACOBI METHOD FOR DATA
CORRUPTION RESILIENCE⇤
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Abstract. Moving scientific computation from high-performance computing (HPC) and cloud
computing (CC) environments to devices on the edge, i.e., physically near instruments of interest,
has received tremendous interest in recent years. Such edge computing environments can operate
on data in situ, o↵ering enticing benefits over data aggregation to HPC and CC facilities that
include avoiding costs of transmission, increased data privacy, and real-time data analysis. Because
of the inherent unreliability of edge computing environments, new fault-tolerant approaches must be
developed before the benefits of edge computing can be realized. Motivated by algorithm-based fault
tolerance, a variant of the asynchronous Jacobi (ASJ) method is developed that achieves resilience
to data corruption by rejecting solution approximations from neighbor devices according to a bound
derived from convergence theory. Numerical results on a two-dimensional Poisson problem show that
the new rejection criterion, along with a novel approximation to the shortest path length on which
the criterion depends, restores convergence for the ASJ variant in the presence of certain types data
corruption. Numerical results are obtained for when the singular values in the analytic bound are
approximated. Additional linear systems are also explored, one with a more dense sparsity pattern
and one that includes advection. All results indicate that successful resilience to data corruption
depends on whether the bound tightens fast enough to reject corrupted data before the iteration
evolution deviates significantly from that predicted by the convergence theory defining the bound.
This observation generalizes to future work on algorithm-based fault tolerance for other asynchronous
algorithms, including upcoming approaches that leverage Krylov subspaces.
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1. Introduction. Recent years have seen a proliferation of edge devices, i.e.,
streamlined computing devices that provide an entry point to the individual instru-
ments in their vicinity. Modern infrastructure includes a wide range of such devices,
from smart residential thermostats to industrial smart grid meters. These devices,
along with wearable health care devices and content delivery systems, are motivating
a push of computation beyond the walls of high-performance computing (HPC) and
cloud computing (CC) facilities onto the edge devices themselves. Consider, as an
example, the benefits of enabling smart power grid devices to operate autonomously
when the central operator is disabled due to a natural disaster or cyberphysical at-
tack. The capability provided by edge computing environments to operate without a
single point of failure or on data in situ is appealing to real-time system operators.
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3259

Unfortunately, the benefits of edge computing cannot be realized before the inher-
ent unreliability of edge devices is addressed. Modern scientific computing algorithms
typically assume that data will not be corrupted as the algorithm is executed. HPC
and CC platforms provide such data integrity by utilizing fault management tech-
niques. Checkpointing and redundant computation are cornerstones of fault manage-
ment techniques in HPC and CC and are an integral part of n-modular redundancy
[4], n-version programming [17], majority voting [4], and redundant cloud servers [17]
techniques. The frequency of checkpointing is typically chosen to avoid restarting
from a checkpoint created long before the fault occurs while keeping the cost of syn-
chronization and storage reasonable. Similarly, the amount of redundancy is typically
chosen to avoid having all redundant entities experience a fault at the same time while
keeping the cost of storage and flops reasonable. Thus, checkpointing and redundancy
are not practical for edge computing environments where synchronization is typically
expensive and data storage and/or flops are limited.

One promising alternative fault management strategy is the class of algorithm-
based fault-tolerant (ABFT) methods. The general idea is to leverage the structure or
expected behavior of the algorithm to detect, mitigate, and/or recover from faults such
as data corruption. Examples of ABFT schemes include methods for the fast Fourier
transform [14], matrix multiplication [23], Krylov-based iterative methods [6], and the
synchronous Jacobi method [2]. Focusing on the iterative methods, the work presented
in [6] uses the orthogonality of projections onto Krylov spaces for detection of faults,
while [2] utilizes the contraction mapping property of stationary iterative methods.
Unfortunately, those ABFT approaches are for iterative methods that require frequent
synchronizations, making them impractical for edge computing environments due to
network latency, heterogeneous nodes, and nonpersistent nodes/links. Asynchronous
methods remove the need for global synchronization after each iteration, allowing
them to outperform their synchronous counterparts in high-latency environments (see,
e.g., [22]). This makes asynchronous methods very appealing for edge computing;
however, the authors are aware of only two existing asynchronous methods with ABFT
strategies: the robust alternating direction method of multipliers (ADMM) [13] and
the robust push-sum algorithm [18].

Solving the nonlinear systems that are being pushed to edge computing envi-
ronments, such as distribution system state estimation [21] and machine learning for
autonomous vehicles [15] and smart agriculture [12], typically requires the solution of
one or more linear systems (e.g., direction vectors in the Newton–Rhapson method).
To address the resulting need for an asynchronous linear solver with ABFT for such
tasks, we modify the asynchronous Jacobi (ASJ) method [8, 11, 22, 2, 5] with a re-
jection criterion based on the convergence properties of ASJ. In [13], such a rejection
criterion is developed where data from neighboring nodes are rejected if the di↵erence
between successive data obtained from a neighbor exceeds a bound derived from the
convergence theory for ADMM. Here, a similar criterion is used but with a novel
bound derived for the ASJ method based on the ASJ convergence theory developed
in [11]. Because the bound for ASJ depends on time-dependent global information,
specifically, the shortest path length, a novel local approximation to that global in-
formation is also developed. It is worth noting that the choice of the ASJ method for
modification is motivated by the facts that (i) the authors are not aware of another
asynchronous linear solver with established convergence theory; (ii) while the Jacobi
method is known to scale poorly to large and ill-conditioned systems, ASJ can be
su�cient for small problems that appear in edge environments (e.g., state estimation
in a neighborhood); and (iii) the observations and understanding of the resilience
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A3260 VOGL, ATKINS, FOX, MIȨDLAR, AND PONCE

modification for ASJ can be generalized to upcoming asynchronous Krylov-based
solvers, such as the one recently developed in [7].

This paper is organized as follows. Section 2 formulates the problem, introduces
the notation and important definitions, and discusses the nature of data corruption
to be investigated. Section 3 develops our resilience enabling technique. Section 4
presents numerical results verifying the implementation of the method and demon-
strating the e↵ectiveness of the proposed rejection technique in the presence of various
forms of data corruption. An empirical sensitivity study of the rejection criterion pa-
rameters is also presented, with a discussion on potential improvements to the local
approximation of global information used in the criterion. The evaluation of the
method is extended to two additional test problems, with one involving a more dense
sparsity pattern and another involving advection. Section 5 summarizes the outcomes
of the paper and discusses how the results might generalize to ongoing and future work.

2. Problem statement. Solutions of linear systems are ubiquitous in modern
scientific computing algorithms, defining search directions in both iterative and non-
linear solvers. Thus, consider solving the linear system

Ax= b(2.1)

for x 2 Rm, where A 2 Rm⇥m and b 2 Rm. Assume that A is nonsingular so that a
unique solution to (2.1) exists. The ASJ method is an iterative solver for (2.1) in that
successive approximations to the solution x are formed across N computational nodes.
Denote by {xi}i=N

i=1 the partition of the elements of x such that xi 2Rmi is the subset
of x that node i is approximating. Let I 2 Rm⇥m and D 2 Rm⇥m be the identity
matrix and the diagonal matrix containing the diagonal elements of A, respectively.
The update equation that defines the successive approximations computed by node i,
denoted x0

i , x
1
i , etc., can now be expressed as

xi =
NX

j=1

Mijx
 (i,j,)
j + ci, = 1,2, . . . ,(2.2)

where {Mij} is the partition of the elements of the Jacobi iteration matrix M :=
I �D�1A such that the rows and columns of Mij 2 Rmi⇥mj correspond to xi and
xj , respectively, and {ci} is the partition of the elements of c :=D�1b such that the
elements of ci 2Rmi correspond to xi. The index function  is defined by  (i, j,) = �
if node i uses node j’s �th approximation in the computation of its th approximation.
All matrix, vector, and matrix-vector operations, including the communication of xi
and x (i,j,)j , are to be considered block operations.

The general form of (2.2) defines a class of chaotic or asynchronous iterative meth-
ods, first introduced by Chazan and Miranker [5], that generalize classic relaxation
methods to allow each compute node to perform a new iteration immediately after
the previous iteration has completed. Chazan and Miranker provide the su�cient
condition to guarantee convergence of any relaxation scheme of the form (2.2): that
the spectral radius of the absolute value of the global iteration matrix, M , is bounded
below one, i.e., ⇢(|M |)< 1, where |M | is defined by taking the absolute value of each
element in the matrix. However, the authors in [5] assume that the values of x (i,j,)j
sent by node j are the same as those received by node i. Such an assumption can
become invalid in emerging computing environments that do not provide the guaran-
tees of current high-performance computing systems. Thus, the goal of this work is
to modify (2.2) to ensure (or at least encourage) convergence even if data corruption
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3261

Table 1
Notation table.

Symbol Description Location

N number of computational nodes section 2
A square system matrix (Rm⇥m) with real components section 2
x, b vectors of real components (Rm) section 2
xi subset (Rmi ) of the elements of x that is assigned to the

ith computational node
section 2

D diagonal matrix (Rm⇥m) whose elements are the diagonal
entries of A

section 2

M Jacobi iteration matrix I �D�1A (Rm⇥m) section 2
Mi,j subset (Rmi⇥mj ) of the elements of M with rows

corresponding to xi and columns corresponding to xj

section 2

i,j,k indexing of partition subsets section 2
�, indexing of iterations section 2
x

i the th iteration of the approximation to vector x on

node i (Rmi )
section 2

p the probability of a bit flip in a communicated element section 2.1
!f , !r the time to failure and recovery time section 2.2
� an o↵set that is sampled from a Gaussian distribution

with a positive mean
section 2.2

⌫i(t) iteration index such that x
⌫i(t)
i is the most recent

approximation of xi at time t
section 3

ex(t) global approximate solution (Rm) at time t such that

exi(t) = x
⌫i(t)
i , i= 1, . . . ,N

section 3

x
⇤ global exact solution (Rm) to Ax= b section 3

e(t) global error (Rm) at time t such that ei(t) = exi(t)� x
⇤
i section 3

⌦(t) :=⌦( ,M, t) error operator (Rm⇥m) such that e(t) =⌦(t)e(0) section 3
G(V,E) directed acyclic graph with nodes V and edges E section 3
s(t), l(t) shortest and longest paths in G, respectively section 3
 ij() := (i, j,) iteration index of the update from node j, which node i

uses to compute its th update
section 3

⇣ij(t) argmax  ij()< ij(⌫i(t)) section 3
⌧ij [] time at which the solution approximation existed on node

j that will later be used to form x

i

section 3

�min(A),�max(A) smallest and largest singular value of A, respectively section 3
s̃i(t) approximate shortest path section 3

dx
⌫i(t)
i := x

⌫i(t)
i � x

⌫i(t)�1
i di↵erence (Rmi ) between two successive solution

approximations on node i
section 3

✏ a user-defined tolerance for the stopping criteria section 3

results in either (i) the values of x (i,j,)j received by node i being di↵erent than those
sent by node j or (ii) the values of xj stored on node j being altered. As a convenience
to the reader, Table 1 summarizes the notation used herein as well as the location
where the notation is first mentioned.

2.1. Natural data corruption. The first data corruption model is motivated
by bit flips occurring in network hardware memory that alter data as they are in
transit. This natural data corruption is modeled as a random process where each
component of transmitted data is a↵ected by a bit flip with a fixed probability p 2
(0,1). The bit flips themselves are performed either on ieee 754 double-precision
(64-bit) floating point [1] or on 32-bit signed integer numbers. The a↵ected bit index
is sampled from various uniform integer distributions, then the bit flip is performed
directly. In extremely rare cases, this method of performing bit flips on double-
precision numbers can result in the special floating point values NaN or inf. It is

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

74
.1

79
.9

2.
44

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



A3262 VOGL, ATKINS, FOX, MIȨDLAR, AND PONCE

worth noting that this data corruption approach mirrors the model of Anzt, Dongarra,
and Quintana-Ort́ı [2], where a fixed number of bit flips are introduced per iteration
to the entries of the iteration matrix M during the matrix-vector product in each
iteration, which may corrupt up to 1% of updates to the elements of the solution
vector. Instead, we choose to corrupt the elements of the transmitted solution vector
directly at a fixed probability p 2 (0,1); i.e., corruption is applied with probability p
to each transmitted data element.

2.2. Malevolent data corruption. The second data corruption model is mo-
tivated by intentional corruption caused by a malicious actor who has gained inter-
mittent access to a device to manipulate the result of a calculation. This malevolent
data corruption is modeled as a periodic process where each agent is considered to
be in either a “normal” or a “degraded” state. When in a “normal” state, the new
approximate solution is unaltered. After !f s have passed, the agent is compromised
and enters a “degraded” state. While in the “degraded” state, the impacted data
on an agent are corrupted by adding an o↵set to all solution elements. Note that
such nontransient corruption, i.e., overwriting of the local solution data, presents a
more challenging recovery scenario than transient corruption. This o↵set is sampled
from a Gaussian distribution with a positive mean of � and a standard deviation of
0.5�. The repeated application of these o↵sets will gradually increase the magnitude
of the corrupted elements of the solution vector, absent any mitigation strategy. We
choose the standard deviation of 0.5� to ensure that 95% of the sampled o↵sets will
be greater than zero regardless of the choice of �. After !r s have passed, the agent
is secured and returns to a “normal” state.

3. Corruption resilience modification. To improve data corruption resilience
in the ASJ method (2.2), we take the approach of inspecting incoming data before
they are used to form the next approximation xi in (2.2). If the data are identified as
corrupted, they are rejected by being excluded from contributing to the next solution
approximation. We will use the convergence theory established by Hook and Dingle
[11] to derive our rejection criterion. The authors in [11] derive an error bound using
metrics of the evolution of the solution approximations computed by each node and
the communication pattern between nodes. They accomplish this task by casting the
algorithm evolution as a directed acyclic graph whose vertices are the solution approx-
imations computed by each node and edges indicate when a solution approximation
is used to compute a latter solution approximation. Using a similar notation, we will
summarize the components used to form the rejection criterion below.

Define ⌫i(t) so that x⌫i(t)i is the solution approximation on node i at time t.
A global solution approximation at time t, denoted by ex(t), is defined blockwise as
exi(t) = x⌫i(t)i , i= 1, . . . ,N . With x⇤ being the exact solution of (2.1), the global error
at time t is defined as e(t) = ex(t) � x⇤. Denote the error operator ⌦( ,M, t) such
that e(t) = ⌦( ,M, t)e(0). The properties of ⌦( ,M, t), denoted herein as ⌦(t), are
presented in [11] using a directed acyclic graph G(V,E) with graph nodes V and edges
E . This is not the graph of computational node-to-node connections but is instead a
directed acyclic graph representation of the evolution of the collective computation:
Each solution approximation at each computational node (i.e., each xj ) is an element
of V, and there is an edge in E from x�j to xi i↵  (i, j,) = �. Figure 1 presents a
simple example of a directed acyclic graph for the algorithm evolution between two
nodes. The initial states on nodes 1 and 2 are denoted by x0

1 and x0
2, respectively. The

initial solution approximation on node 2 is received by node 1 and used to compute
the next solution approximation on node 1:
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3263

x0
1

x0
2

x1
1 x2

1 x3
1

x1
2 x2

2 x3
2

t = t1

Fig. 1. Directed acyclic graph G(V,E) illustrating an example of two-node evolution of the so-

lution approximations x
⌫1(t)
1 and x

⌫2(t)
2 .

x1
1 =M11x

0
1 +M12x

0
2.

Node 2, on the other hand, uses x1
1 instead of x0

1 to compute the next approximation,

x1
2 =M22x

0
2 +M12x

1
1,

as depicted in Figure 1. Hook and Dingle [11, Theorem 1] prove that the error operator
⌦( ,M, t) consists of sums over all the paths within G(V,E) of the corresponding
iteration matrix blocks. For example, the error operator at time t1 in Figure 1 is

⌦( ,M, t1) =


M11M11M11 +M12M21M11 M12M22 +M11M12

M22M21M11 +M21M11 M22M22 +M21M12 +M22M21M12

�
.

The authors further show that the convergence rate is bounded by the slowest propa-
gation of information, defined as the shortest path in G(V,E) from an initial solution
approximation to a current approximation, leading to the error bound that forms
the basis of our rejection criteria. Given a nonnegative iteration matrix M , i.e., all
elements of M are nonnegative, Hook and Dingle [11, Theorem 3] show that ⌦(t) is
bounded as follows:

k⌦(t)k2 

������

l(t)X

k=s(t)

Mk

������
2

,(3.1)

where s(t) and l(t) are the lengths of the shortest and longest paths in G(V,E) at
time t, respectively. The goal now is to use (3.1) to develop a criterion for whether
computational node i should accept or reject a new solution approximation x (i,j,⌫i(t))j
obtained from node j. For notational brevity, we introduce  ij() :=  (i, j,).

To compare the new solution approximation x
 ij(⌫i(t))
j to the previous solution

approximation received by computational node i from computational node j, we define
⇣ij(t) to be the index of the solution approximation on node i that was last directly
influenced by a solution approximation from node j. In other words, we seek to denote
the two most recent solution approximations received by node i from node j at time
t as x

 ij(⌫i(t))
j and x

 ij(⇣ij(t))
j , respectively. Formally, ⇣ij(t) = argmax{ ij() <

 ij(⌫i(t))}. Now, a bound on kx ij(⌫i(t))
j � x

 ij(⇣ij(t))
j k2 can be derived using (3.1).

Let ⌧ij [] be the time at which the solution approximation existed on computational
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A3264 VOGL, ATKINS, FOX, MIȨDLAR, AND PONCE

node j that would later be used to form xi so that ⌫j
�
⌧ij [⇣ij(t)]

�
=  ij(⇣ij(t)) and

⌫j
�
⌧ij [⌫i(t)]

�
= ij(⌫i(t)). Note that x

 ij(⌫i(t))
j can now be expressed as x

⌫j(⌧ij [⌫i(t)])
j =

exj

�
⌧ij [⌫i(t)]

�
and x

 ij(⇣ij(t))
j as x

⌫j(⌧ij [⇣ij(t)])
j = exj

�
⌧ij [⇣ij(t)]

�
. Thus, the following

bound holds:

x
 ij(⌫i(t))
j � x

 ij(⇣ij(t))
j = exj

�
⌧ij [⌫i(t)]

�
� x⇤

j| {z }h
⌦
�
⌧ij [⌫i(t)]

�
e(0)

i

j

+x⇤
j � exj

�
⌧ij [⇣ij(t)]

�
| {z }h
�⌦
�
⌧ij [⇣ij(t)]

�
e(0)

i

j

)kx ij(⌫i(t))
j � x

 ij(⇣ij(t))
j k2 

��⌦
�
⌧ij [⇣ij(t)]

���
2
+
��⌦
�
⌧ij [⌫i(t)]

���
2

�
ke(0)k2.

Assuming that the initial solution approximation is the zero vector, one has ke(0)k2 
kA�1k2kbk2. Assuming also that the iteration matrix M is nonnegative so that the
Hook and Dingle bound (3.1) can be applied, the following bound is obtained:

kx ij(⌫i(t))
j �x

 ij(⇣ij(t))
j k2 

2

4

������

l(⌧ij [⇣ij(t)])X

k=s(⌧ij [⇣ij(t)])

Mk

������
2

+

������

l(⌧ij [⌫i(t)])X

k=s(⌧ij [⌫i(t)])

Mk

������
2

3

5kA�1k2kbk2.

(3.2)

Evaluating the bound (3.2) directly is very di�cult in practice, primarily because
none of A�1, the ⌧ij map, or the s(t) and l(t) functions are known a priori. Thus, to
obtain a practical version of (3.2), the two individual finite series are bounded by a
single infinite series:

kx ij(⌫i(t))
j � x

 ij(⇣ij(t))
j k2  2kA�1k2kbk2

1X

k=s(⌧ij [⇣ij(t)])

kMkk2 .

Recall that kMk2 is equal to the largest singular value of M , denoted as �max(M),
and that kA�1k2 is equal to the reciprocal of the smallest singular value of A, denoted
as 1/�min(A). Finally, introduce s̃i(t) as a lower bound on minr 6=i s

�
⌧ir[⇣ir(t)]

�
so that

if the geometric series above converges (i.e., if kMk2 < 1), then

kx ij(⌫i(t))
j � x

 ij(⇣ij(t))
j k2  2

kbk2
�min(A)

�max(M)s̃i(t)

1� �max(M)
.(3.3)

The lower bound s̃i(t) is obtained in the following manner: Each computational
node r sends its current value of s̃r(t) along with the current solution approximation to
its neighbors. When computational node i receives a value of s̃r(t) from node r, that
value is stored by node i as s̃r. Additionally, every time that node i computes a new
solution approximation, a separate counter s̃0i is incremented. Once computational
node i has received a value from each neighbor r with Mir 6= 0, the values for both
s̃i(t) and s̃0i are set to min

�
s̃0i , 1 +minr:Mir 6=0 s̃r

�
. Then the process repeats, with

computational node i again collecting updated values for all relevant s̃r(t) before
updating s̃i(t). Note that since the value received from computational node j for
s̃j(t) + 1 should never be less than s̃i(t), the solution approximation x

 ij(⌫i(t))
j will

only be accepted by computational node i if (3.3) is satisfied and the new value of
s̃j(t) is such that s̃j(t)+1� s̃i(t). This additional constraint provides some resilience
for when the value of s̃j(t) is itself corrupted. These two constraints form the rejection
criterion for the rejection variant of the ASJ method presented in Algorithm 1.
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3265

Algorithm 1. Asynchronous Jacobi rejection variant (ASJ-R).
1 foreach node i=1,2,. . . ,N do
2 Initialize the algorithm with x0

i = 0, s̃i = 0, and s̃0i = 0. Set  = 0 and
S = {}.

3 foreach xj and s̃j received from node j do

4 if kxj � x
j k2  2 kbk2

�min(A)
�max(M)s̃i

1��max(M) and s̃j + 1 � s̃i then

5 set x
j = xj

6 store s̃j in S
7 if S contains s̃r for all r such that Mir 6= 0 then
8 set s̃i = min{s̃0i , 1 + minS}
9 set s̃0i = s̃i
10 set S = {}

11 set x+1
i =

PN
r=1 Mirx

r + ci
12 set s̃0i = s̃0i + 1

13 communicate x+1
i and s̃i

14 set  = + 1

The development of stopping criteria for asynchronous methods remains an active
area of research (see, e.g., the review by Magoulés and Gbikpi-Benissan [16] or the
survey by Spiteri [20, section 3]). Hook and Dingle [11] have each node report to a
root node when a local stopping criterion is met. Each node then continues iterating
until the root node indicates that it has received reports from all nodes. Instead
of designating a root node, our approach has each node collect such reports in a
decentralized fashion. Each node i checks the following criterion after a new solution
approximation x⌫i(t)i is computed:

kDiidx
⌫i(t)
i k1 < ✏

kbk2p
m

,(3.4)

where dx⌫i(t)i = x⌫i(t)i � x⌫i(t)�1
i and ✏ > 0 is a prescribed tolerance. If the bound

in (3.4) is satisfied, node i reports to all other nodes that it has locally converged
while continuing to iterate. If a successive solution approximation on node i fails to
satisfy (3.4), node i reports to all other nodes that it has no longer locally converged.
If a node j has locally converged and has received reports that all other nodes have
locally converged, it starts a “convergence duration” timer while continuing to iterate.
If node j either determines that it has no longer locally converged or receives a report
that another node has no longer locally converged, the timer is set back to zero.
Each node continues to iterate until either (i) the specifying convergence duration is
achieved or (ii) a specified maximum number of iterations is reached. Ideally, the
convergence duration is chosen so that the information that a given node has no
longer locally converged has time to arrive at all other nodes before those other nodes
stop iterating. As such, the proper choice of convergence duration likely depends
on parameters that determine the speed at which information propagates across the
nodes, e.g., network hardware, sparsity pattern of A, etc.

4. Numerical results. Having derived the modified ASJ in section 3, shown
in Algorithm 1, we now numerically evaluate the proposed method. We choose the
benchmark problem to have an analytic solution so that we can verify the implemen-
tation of Algorithm 1. We then compare the method convergence against that of the
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A3266 VOGL, ATKINS, FOX, MIȨDLAR, AND PONCE

traditional ASJ method when the natural and malevolent data corruptions described
in sections 2.1 and 2.2, respectively, are present. The comparison includes results
for both when the singular values in the path-length rejection criterion (3.3) are “ex-
act” (computed by each node before the iteration using an eigensolver) and when the
singular values are approximated with varying levels of relative accuracy.

Each run is to a convergence tolerance of ✏ = 10�5 and performed on a single
36-core node of the Quartz supercomputer at the Livermore Computing Complex.
The “exact” singular values in the rejection criterion (3.3) are computed using the
bidiagonal divide-and-conquer singular value decomposition algorithm in the Eigen
software library [9]. The Skywing software platform [19], which is designed to support
asynchronous algorithms, is used for execution and communication for all methods.
Each run leverages 16 Skywing agents to serve as the N = 16 computational nodes.
More on the motivation and implementation of Skywing can be found in [7] and on
GitHub at https://github.com/LLNL/Skywing, respectively.

To account for the stochastic nature of both asynchronous algorithms and the
corruption model, ensembles of 30 runs are performed for each study. Quantities such
as the ensemble wall-clock time and relative solution error are reported as a geometric
mean defined as

ā= exp

 
1

s

sX

k=1

log
�
ak
�
!
,

where a is the quantity of interest and s = 30 corresponds to the ensemble of 30
runs. When a is time-dependent, such as when a represents the relative solution error
ke(t)k2/kx⇤k2, the values of ā(t) are obtained using linear interpolants of ak(t). If
ak(t) contains an ieee 754 NaN or ±1 value, as can happen in the relative solution
error with data corruption, the corresponding value of ā(t) is omitted.

The linear system (2.1) solved throughout most of this section is obtained from
a finite di↵erence discretization of the following Poisson problem on the unit square:

�
✓
@2u

@x2
+
@2u

@y2

◆
= f, x2 (0,1), y 2 (0,1),

u(0, y) = u(1, y) = u(x,0) = u(x,1) = 0,

(4.1)

where the choice of f(x, y) = �2⇡2 sin(⇡x) sin(⇡y) results in an analytic solution
u(x, y) =� sin(⇡x) sin(⇡y). The unit square is uniformly discretized into `+1⇥ `+1
squares of length h= 1/(`+1). Such a discretization along with the Dirichlet boundary
condition in (4.1) leaves the values of u(xi, yj) to be determined at the square vertices,
where xi = (i+ 1)h and yj = (j + 1)h for i= 0, . . . , `� 1 and j = 0, . . . , `� 1. Let the
kth element of x 2 R`2 and b 2 R`2 in (2.1) be u(xi, yj) and f(xi, yj), respectively,
with i = (k mod `) and j = k`. With the Laplace operator discretized across the
points (xi, yj) using centered finite di↵erence, the matrix A in (2.1) is defined as the
following `2 ⇥ `2 block tridiagonal matrix:

A=

2

666664

L �I
�I L �I

. . .
. . .

. . .
�I L �I

�I L

3

777775
, where L=

2

666664

4 �1
�1 4 �1

. . .
. . .

. . .
�1 4 �1

�1 4

3

777775

and I 2 R`⇥` is the identity matrix. The linear system is evenly distributed across
the agents, i.e., m1 = . . .=m16.
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3267

Fig. 2. Ensemble convergence of ASJ for various convergence durations on Poisson benchmark

problem with m= 144 (left), m= 400 (center), and m= 784 (right). All ensemble runs converge for

all durations with the smallest system size; however, the larger system sizes indicate that the agents

are unable to reach consensus on convergence for the smallest duration.

4.1. Convergence duration. Recall that the stopping criteria discussed at the
end of section 3 involves a user-specified convergence duration for both the tradi-
tional ASJ and the modified asynchronous Jacobi (ASJ-R) methods. As such, we first
evaluate the impact of the convergence duration on the asynchronous solving of the
benchmark problem (4.1) in the absence of data corruption. The number of squares
chosen to discretize the unit square domain is selected so that the linear system results
in m = 144, m = 400, and m = 784 unknowns, respectively. Figure 2 shows the de-
pendence of the convergence behavior on the convergence duration. For the smallest
system, m= 144, all runs converge for all three duration values both in the sense that
the agents reach consensus on convergence and in the sense that the resulting relative
solution error is below the target tolerance. As the system size increases to m= 400,
however, the shortest duration 0.01 s results in around 30% of the ensemble runs end-
ing with the agents unable to reach consensus on convergence, even though the rela-
tive solution error is near or below the target tolerance. With the largest system size
m= 784, the shortest duration results in slightly more than 30% of the ensemble runs
failing to reach consensus. Increasing the duration to 0.1 s remedies the lack of consen-
sus for all three system sizes evaluated. While these results could motivate a duration
of 0.1 s for evaluating the methods with corruption present, we choose the 1 s duration
that is an order of magnitude longer to increase confidence that convergent results are
due to the algorithm being able to continue decreasing the error despite corruption
and not the iteration stopping at the right moment between corruption occurrences.

4.2. Path length rejection variant with data corruption. With the con-
vergence duration established, we now evaluate the resilience of the ASJ and ASJ-R
methods to both natural and malevolent corruption, as defined in sections 2.1 and 2.2,
respectively. To choose a system size, we consider the sizes of the power flow bench-
mark systems mentioned in [21], which range from ⇡ 14 to ⇡ 300 unknowns. As
such, all corruption studies discretize the unit square such that the linear system has
m = 400 unknowns (` = 20) and results in each agent communicating with one or
two neighbors in a line configuration. We present time for the corruption studies as
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A3268 VOGL, ATKINS, FOX, MIȨDLAR, AND PONCE

relative to the average time to convergence (⇡ 3.5 s) obtained in section 4.1 for
m= 400; i.e., a time to convergence of 1.0 indicates that the method converged in the
same amount of time as it would without corruption present.

Natural data corruption. Our first investigation introduces bit flips to commu-
nicated data, similar to the studies performed by Anzt, Dongarra, and Quintana-Ort́ı
[2]. We aim to assess the impact of the probability p of a bit flip on the convergence of
both ASJ and ASJ-R. As discussed in section 2.1, corruption is applied at each iter-
ation and on every agent with probability p to all communicated data. The elements
of xi in both ASJ and ASJ-R are stored as ieee 754 double floating point numbers,
whereas the values of the approximate shortest path length s̃i(t) in ASJ-R are stored
as signed integers. If a given double floating point value is chosen to be corrupted, a
bit index out of a given subset of its 64-bit representation is randomly chosen to be
flipped. If a given signed integer value is chosen to be corrupted, a bit index out of
any of its 32-bit representation is randomly chosen to be flipped.

For our first study, we fix the probability of a bit flip in a given communicated
value to be p= 0.01. Following Anzt, Dongarra, and Quintana-Ort́ı [2], we investigate
the following double floating point subsets: the lower mantissa IE3([0�25]), the upper
mantissa IE3([26�51]), the exponent IE3([52�62]), and the sign bit IE3(63). We start with
the lower mantissa subset IE3([0�25]), which leads to floating point value corruption
ranging from 1/252 ⇡ 10�16 to 1/227 ⇡ 10�8 relative to the original values. Figure 3
shows the convergence behavior for ASJ and ASJ-R. For both ASJ and ASJ-R, all
runs in the respective bit flip ensemble converge with times to solution that are ap-
proximately the same as those of the respective baseline (no corruption) ensemble.
The indi↵erence of the ASJ convergence behavior to lower-mantissa flips is consistent
with Anzt, Dongarra, and Quintana-Ort́ı [2], where it was found that ASJ convergence
behavior is not a↵ected by such bit flips until the relative residual norm is reduced to a
very small value. The indi↵erence is due to the corruption caused by lower-mantissa
flips being too small to significantly a↵ect the iteration evolution to the tolerance
✏= 10�5, as relaxation methods are inherently robust to small amounts of corruption.

To introduce larger corruption, we now investigate the sign bit IE3(63) subset,
which leads to floating point value corruption of 2 relative to the original values.
Figure 4 shows the convergence behavior for ASJ and ASJ-R. For ASJ, the e↵ect of
the more significant corruption from sign bit flips is evident, as the solution error of
all ASJ runs decreases at first but then stagnates at a level well above the convergence
tolerance, consistent with the findings of [2]. The introduction of the rejection criterion

Fig. 3. Ensemble convergence of ASJ and ASJ-R with bit flip probability p= 0.01, with double

floating point flips limited to the lower mantissa IE3([0�25]). Convergence is achieved in all ASJ

and ASJ-R runs, with times to solution comparable to the respective baseline (no corruption) values.
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3269

Fig. 4. Ensemble convergence of ASJ and ASJ-R with bit flip probability p= 0.01, with double

floating point flips limited to the sign bit IE3(63). Convergence is lost for all of the ASJ runs and

achieved for all ASJ-R runs, albeit with longer times to solution.

Fig. 5. Approximate shortest path length s̃i(t) used by the ASJ-R algorithm with bit flip proba-

bility p= 0.01, with double floating point flips limited to the sign bit IE3(63) (left: i= 7; right: i= 9).
The approximate shortest path length reaches 700 at around the time the stagnation period ends in

Figure 4 (denoted by dashed black line).

in ASJ-R, based on (3.3), restores convergence in all of the runs, albeit with longer
times to solution: 1.75 times longer for about 80% of the runs and 6 times longer
for the slowest run. This increased time to solution is explained starting with the
presence of a stagnation period for all ASJ-R runs with bit flips. Given that the
ASJ-R error during this stagnation period coincides with the stagnated ASJ error,
it can be inferred that the value of the approximate shortest path length s̃i(t) in
(3.3) during the stagnation period is not yet large enough for ASJ-R to reject the
corruption. Figure 5 shows the value of the approximate shortest path length for
two agents. The values of s̃7(t) and s̃9(t) grow roughly linearly with time until the
end of the stagnation period around t = 0.6. Around t = 0.65, the value of s̃i(t) is
large enough (⇡ 700) to start rejecting data containing bit flips so that all 30 runs
can resume converging. The values of s̃7(t) and s̃9(t) continue to grow after t= 0.65,
albeit at a slower rate due to the rejections.

To introduce corruption with a relative magnitude between the sign bit and lower
mantissa subsets, we now investigate the upper mantissa IE3([26�51]) subset, which
leads to floating point value corruption ranging from 1/226 ⇡ 10�7 to 1/2 relative to
the original values. In Figure 6, the corruption from upper-mantissa flips is still large
enough to prevent convergence in all ASJ runs, with the solution error stagnating at
a level above tolerance but lower than with sign bit flips, consistent with the smaller-
magnitude value changes and with the findings of [2]. For ASJ-R, convergence is

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

74
.1

79
.9

2.
44

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



A3270 VOGL, ATKINS, FOX, MIȨDLAR, AND PONCE

achieved in all runs with a time to solution around 3 times longer for all but one
run that took around 4.25 times longer. There is a stagnation period followed by a
return to convergence behavior, as seen with sign bit flips, only the period lasts longer
until about t= 0.7. There is also a significant reduction in convergence rate starting
around t = 1.5 that is not addressed until around t = 2.75. Both of these di↵erences
are explained by the observation that as s̃i(t) grows, there is always corruption of a
certain magnitude that will not be rejected. Thus, to reject the larger of the magnitude
corruption range that upper-mantissa bit flips can cause, s̃i(t) must reach a larger
value than with sign bit flips before convergence is restored from the stagnation period.
This is confirmed in Figure 7, where the value for s̃i(t) at t = 0.7 is about 750. The
degraded convergence from t= 1.5 until t= 2.75 is explained by the requirement that
s̃i(t) reach an even larger value before the smaller of the corruption range is rejected.
It is worth noting that Anzt, Dongarra, and Quintana-Ort́ı [2] also see a slower rate
of convergence for synchronous Jacobi with bit flips for likely the same reason.

The last subset to investigate is the exponent subset IE3([52-62]), which leads to
floating point value changes ranging from 1 to 21023�1⇡ 10308 relative to the original
values. In Figure 8, the corruption from exponent flips is large enough that all ASJ
runs result in solution iterates containing nonfinite (i.e., ieee 754 NaN) values after just
a few iterations, which is consistent with the findings of [2]. For ASJ-R, convergence

Fig. 6. Ensemble convergence of ASJ and ASJ-R with bit flip probability p= 0.01, with double

floating point flips limited to the upper mantissa IE3([26�51]). Convergence is lost for all of the ASJ

runs and achieved for all ASJ-R runs. The times to solution of the convergent runs are longer than

those of sign bit flips (Figure 4); however, the times to tolerance ✏ = 10�5
are about the same as

sign bit flips.

Fig. 7. Approximate shortest path length s̃i(t) used by the ASJ-R algorithm with bit flip prob-

ability p = 0.01, with double float point flips limited to the sign bit IE3([26�51]) (left: i = 7; right:

i = 9). The approximate shortest path length reaches 750 at around the time the stagnation period

ends in Figure 6 (denoted by dashed black line).
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3271

Fig. 8. Ensemble convergence of ASJ and ASJ-R with bit flip probability p= 0.01, with double

floating point flips limited to the exponent IE3([52�62]). Convergence is lost for all of the ASJ runs

and achieved for most of the ASJ-R runs, with the times to solution being mostly comparable to that

of sign bit flips (Figure 4).

is achieved in most runs with times to solution similar to that of sign bit flips: around
1.75 times for almost all the runs with one run taking almost 3 times. The slowdown
to 1.75 times is explained as with the sign and upper-mantissa bit flips: s̃i(t) must
reach a certain value before larger-magnitude corruption data are rejected enough
to restore convergence. The slowdown to 3 times is explained as with the upper-
mantissa bit flips: After the initial stagnation period, s̃i(t) must continue to grow
before smaller-magnitude corruption is also rejected. The runs that do not converge
are, however, not explained by prior observations for sign or upper-mantissa bit flips.
In those runs, the corruption that is not rejected during the stagnation period is large
enough to cause the evolution of the solution approximations to substantially deviate
from that predicted by the convergence theory on which the rejection criterion (3.3) is
derived. The deviation is large enough that the updates required to drive the solution
approximation back toward the exact solution are now significantly larger than those
predicted by the convergence theory, causing the rejection criterion to reject the valid
updates that would otherwise restore convergence.

With an understanding of how ASJ and ASJ-R perform on bit flips with prob-
ability p = 0.01 in subsets of the floating point double, we now investigate flipping
any of 64 bits with probability p values of 0.0025, 0.005, 0.01, 0.015, 0.02, and 0.04.
All of the runs in any ASJ ensemble corresponding to p > 0 quickly saw NaN values
in the solution approximations. Noting similar occurrence of NaN values in Figure 8,
one can infer that, even with bit flip probability as low as p = 0.0025, the ASJ runs
quickly experience the occurrence of one or more exponent bit flips. For ASJ-R, the
convergence behavior is shown in Figure 9. All but one of the runs for p  0.015
converged, with a large majority of runs still converging for p = 0.02 and p = 0.04.
As one might expect, increasing p results in the times to solution increasing from
around 2.25 times to around 4 times, with increasing variability as p increases. Such
behavior is explained by the prior observations: that increasing p results in increased
likelihood of bit flips causing corruption that is small enough to avoid rejection by the
increasing s̃i(t) yet large enough to (i) delay convergence until s̃i(t) increases enough
or (ii) cause the solution approximation to deviate substantially enough that the re-
jection criterion actually prevents convergence. All in all, the ASJ-R algorithm has a
very high probability of converging even when a large number of bit flips occur; e.g.,
p= 0.04 of communicated data are corrupted at each iteration.
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Fig. 9. Ensemble convergence of ASJ-R with bit flip corruption probabilities ranging from p= 0
to p = 0.04, with double floating point flips in any of the 64 bits. Convergence is lost for all of the

ASJ runs and achieved for a large majority of ASJ-R runs, with increasing p resulting in larger

times to solution and a larger proportion of ensemble runs that fail to converge.

Fig. 10. Ensemble convergence of ASJ with malevolent corruption with time to failure !f = 2
s (t ⇡ 0.6 in normalized time), various recovery times !r, and various o↵set magnitudes � (left:

various !r values and �= 0.2; right: !r = 0.02 s and various � values). Convergence is not obtained

for any of the runs.

Malevolent data corruption. Our second investigation introduces malevolent
manipulation of stored data, as defined in section 2.2. As opposed to the investigation
with natural bit flips, here we limit the corruption to double floating point values (i.e.,
no corruption of signed integer values for ASJ-R). We aim to assess the impact of the
recovery time !r and mean manipulation o↵set � on the convergence of both ASJ and
ASJ-R. As described in section 2.2, while agent i is in a degraded state, every element
of xi is manipulated by an additive o↵set sampled from a normal distribution with a
mean of � and a standard deviation of 1

2�. We introduce corruption to agent i= 9 with
a time to failure !f = 2 s, so the first degraded state occurs before the agents would
otherwise start the convergence duration timers without corruption (⇡ 2.5 s). We
study recovery times !r selected from 0.01, 0.02, 0.03, 0.04, and 0.05 s that represent
relative uptimes of 99.5%, 99%, 98.5%, 98%, and 97.5%. The o↵set magnitudes � are
selected from 0.1, 0.2, 0.3, 0.4, and 0.5.

Figure 10 shows the convergence behavior of ASJ for time to failure !f = 2 s with
various !r and fixed � = 0.2 and with fixed !r = 0.02 s (99% uptime) and various
�. All of the ASJ runs fail to converge for the recovery times and o↵set magnitudes
explored. The e↵ect of the corruption is seen around t= 0.6, as the solution error is
small enough to begin the convergence duration but then rapidly increases due to the
corruption on agent 9 that quickly propagates to other agents. The error increases
to a peak that coincides with agent 9 returning to a normal state, after which the
error does decrease until the next rapid increase, when agent 9 is again degraded.
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MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3273

Increasing either the recovery time !r or the o↵set magnitude � e↵ectively shifts the
overall error evolution upward. While one might technically obtain convergence to
the tolerance ✏= 10�5 by decreasing the convergence duration for the smallest !r and
�, the results in Figure 10 show that the ASJ method cannot reliably converge to a
given tolerance with malevolent corruption.

In contrast, all of the ASJ-R runs in Figure 11 converge for recovery time !r = 0.02
s and various o↵set magnitudes �. As with the ASJ results in Figure 10, the solution
error does increase with the arrival of the first degraded state in agent 9; however,
the values of s̃i(t) on neighboring nodes have reached large enough values to reject at
least some of the corruption and limit the jump in error. By the time agent 9 enters
the second degraded state, the values of s̃i(t) on neighboring nodes are such that
more corruption is rejected than during the first degraded state, resulting in an even
smaller jump in error than the first degraded state. Figure 12 shows similar progressive
limiting of solution error increases during degraded states for various recovery times
!r with o↵set magnitude � = 0.2. Note that some of the runs with longer recovery
times !r � 0.03 s do either take longer to converge or fail to converge. Both behaviors
are explained by the longer recovery times leading to more corruption occurring during
the first degraded state that can be small enough in magnitude to avoid rejection yet
large enough to drive up the error on all agents. As we saw in section 2.1, corruption

Fig. 11. Ensemble convergence of ASJ-R with malevolent corruption with time to failure

!f = 2 s (t ⇡ 0.6 in normalized time), recovery time !r = 0.02 s, and various o↵set magnitudes

�. Convergence is achieved for all runs, resulting in times to solution around 1.5 times longer than

without corruption.

Fig. 12. Ensemble convergence of ASJ-R with malevolent corruption with time to failure !f = 2
s, various recovery times !r, and o↵set magnitude � = 0.2. Convergence is achieved for all runs

with !r = 0.01 s and !r = 0.02 and almost all runs with larger !r, resulting in times to solution

around 1.5 times longer than without corruption.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

74
.1

79
.9

2.
44

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 
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leads to either a stagnation period that is eventually corrected, leading to delayed
convergence, or enough deviation from theory that the rejection criterion rejects all
further updates, leading to nonconvergence. That said, the ASJ-R method restores
convergence in almost all runs with the time to failure !f = 2 s, at least for the
recovery times and o↵set magnitudes selected

4.3. Path-length rejection considerations. Recall that the ASJ-R rejection
criterion (3.3) is developed on theory that uses the exact shortest path length si(t),
which is typically not available to the agents and therefore replaced by an approxi-
mation s̃i(t). We saw in section 4.2 that whether s̃i(t) in (3.3) is su�ciently large to
reject significant corruption at a given time t has a profound impact on the conver-
gence of ASJ-R, ranging from a temporary stagnation period that results in a longer
time to solution to persistent stagnation that prevents convergence altogether. While
a more rigorous study is warranted for future work, the values of s̃i(t) as defined in
Algorithm 1 are found to consistently underestimate the values of si(t) for runs that
were anecdotally selected. As such, one might both significantly reduce the ASJ-R
time to solution and increase the likelihood of convergence in the presence of cor-
ruption with a more accurate approximate shortest path length s̃i(t) that reduces or
eliminates the stagnation issues in section 4.2.

Another consideration for the practical use of ASJ-R is the dependence of the
rejection criterion (3.3) on singular values. For the system sizes considered in sec-
tion 4.2, the values of �min(A) ⇡ 0.0447 and �max(M) ⇡ 0.989 are relatively cheap
to compute locally on each agent; however, one might want to apply ASJ-R to large
systems or to systems where agents do not have access to all rows of A. As such, the
malevolent corruption study with time to failure !f = 2 s, recovery time !r = 0.02
s, and o↵set magnitude � = 0.2 is repeated for ASJ-R but with either �min(A) or
�max(M) replaced in (3.3) by approximate values. Figure 13 shows the convergence
behavior of ASJ-R with �min(A) replaced by the numerically computed value scaled
by one of 10�4, 10�2, 1, 102, or 104. All the runs converge when the approximated
singular value is smaller than the true value, where the smaller singular value results
in a looser bound in the rejection criterion. The looser bound means that s̃i(t) needs
to attain larger values to reject the same data as when the true singular value is used,
explaining why the smaller approximated values result in longer times to solution.
Increasing the approximated singular values above the true value results in a tighter
bound, which likely o↵sets some of the underestimation in the shortest path length.

Fig. 13. Ensemble convergence for ASJ-R with malevolent data corruption using various scaled

values of �min(A) in the rejection criterion (3.3). Convergence is attained in almost all runs for all

scaling factors except 104 scaling, with times to solution values improving for larger scaling factors.
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Fig. 14. Ensemble convergence for ASJ-R with malevolent data corruption using various per-

turbed values of �max(M) in the rejection criterion (3.3). Convergence is only attained for runs with

scaling factors 1 and 0.99, with optimal times to solution for 0.99 scaling factor.

Overall, this results in a shorter time to solution, almost that of ASJ-R without
corruption, from the additional rejection for 102 and in nonconvergence too much re-
jection for 104. While ASJ-R appears relatively robust to approximation of �min(A),
Figure 14 shows that the method is much less robust to �max(M) being replaced by
the numerically computed value scaled by one of 0.98, 0.99, 1, 1.01, or 1.02. When
the scaling value 0.99 is used, the resulting smaller singular value results in a tighter
bound in the rejection criterion, leading to a time to solution equal to that of ASJ-R
without corruption. All the other scaling values, however, caused the rejection crite-
rion to be too restrictive or too passive to restore convergence. It is worth noting that
the results from Figures 13 and 14 both support the hypothesis that a better shortest
path length approximation s̃i(t) will significantly improve ASJ-R performance in the
presence of corruption.

4.4. Margulis–Gabber–Galil expander graph problem. The Poisson
benchmark (4.1) results in linear systems of a particular structure; i.e., the matrix
A in (2.1) has only two o↵-diagonal bands. To evaluate whether the resilience to
corruption seen in the prior sections extends beyond that particular sparsity pattern,
the Margulis–Gabber–Galil (MGG) expander graph is leveraged from the NetworkX
software library [10] (see https://networkx.org). Specifically, the new linear system is
defined by A= I�G/8, where I 2R400⇥400 is the identity matrix, G2R400⇥400 is the
MGG expander graph with degree 8, and b2R400 is a vector of ones. As before, the
linear system is evenly distributed across the agents, i.e., m1 = . . .=m16. Figure 15
shows that the sparsity pattern of such A results in substantially more connectivity
between agents compared to that of the Poisson benchmark.

A convergence duration study is first conducted for the new linear system, as
was done in section 4.1, to confirm that 1 s should still be used. The resulting
average time to convergence (⇡ 2.9 s) for m = 400 is used to normalize the time
in the new linear system. Next, bit flips in any of the 64 bits of the floating point
double are introduced to communicated data with the same probabilities as those used
for the Poisson benchmark. Figure 16 shows that the ASJ-R method retains similar
resilience to the bit flip corruption for the new linear system as shown for the Poisson
benchmark. That said, the increased connectivity in the new linear system does seem
to result in longer relative times to solution and a larger likelihood that a given ASJ-R
run does not converge, as the probability p of bit flips is increased. This behavior
is likely due to how a corrupted broadcasted solution approximation will be received
by more neighbors due to the increased connectivity. Malevolent manipulation of
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Fig. 15. Sparsity pattern of matrix A in the Poisson benchmark (left) and in the new linear

system that leverages the MGG expander graph (right). The new linear system results in commu-

nicated data from each agent being sent to significantly more neighboring agents than the Poisson

benchmark, where communicated data are sent to at most two neighboring agents.

Fig. 16. Ensemble convergence of ASJ-R for the Poisson benchmark (left) and the MGG system

(right) with bit flip corruption probabilities ranging from p= 0 to p= 0.04, with double floating point

flips in any of the 64 bits. The convergence behavior is comparable, with increasing p for the MGG

system resulting in longer relative times to solution and a larger likelihood that a given run does not

converge.

stored data on agent i= 9 is also explored using the same time to failure !f , recovery
times !r, and o↵set magnitudes � as used in the Poisson benchmark. Figure 17
shows that the ASJ-R method retains resilience to the malevolent corruption for the
new linear system, with the relative times to solution being slightly faster than those
for the Poisson benchmark. Whereas the increased connectivity is a disadvantage for
bit flip corruption, the connectivity here provides a faster mechanism to correct the
corruption both on agent i = 9 and on any other agents that failed to reject the
corrupted updates.

4.5. Steady-state advection-di↵usion problem. While having the same spar-
sity pattern as the Poisson benchmark problem (4.1), a finite di↵erence discretization
of the following steady-state advection-di↵usion problem on the unit square is lever-
aged to explore the impact of including advection:

Pe

✓
@u

@x
+
@u

@y

◆
�
✓
@2u

@x2
+
@2u

@y2

◆
= 1, x2 (0,1), y 2 (0,1),

u(0, y) = u(1, y) = u(x,0) = u(x,1) = 0.

(4.2)

Here, Pe denotes the Peclet number. The unit square domain is discretized as with the
Poission problem (4.1), and all di↵erential operators are discretized across the points

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

74
.1

79
.9

2.
44

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



MODIFYING ASYNCHRONOUS JACOBI FOR DATA CORRUPTION A3277

Fig. 17. Ensemble convergence of ASJ-R in the presence of malevolent corruption for the Pois-

son benchmark (left column) and the MGG system (right column) with recovery time !r = 0.02 s and

various o↵set magnitudes � (top row) and various recovery times !r and o↵set magnitude � = 0.2
(bottom row). The convergence behavior is comparable for the two linear systems.

(xi, yj) using centered finite di↵erence; thus, the matrix A in (2.1) is now defined as
the following `2 ⇥ `2 block tridiagonal matrix:

A=

2

666664

S a+I
a�I S a+I

. . .
. . .

. . .
a�I S a+I

a�I S

3

777775
, where S =

2

666664

4 a+
a� 4 a+

. . .
. . .

. . .
a� 4 a+

a� 4

3

777775

with a± =±Peh
2 �1.0. The Peclet number is chosen to be 10 to emphasize advection

relative to di↵usion. As before, the linear system is evenly distributed across the
agents, i.e., m1 = . . .=m16.

A convergence duration study is first conducted for the new linear system, as was
done in section 4.1, to confirm that 1 s should still be used. With the resulting average
time to convergence of ⇡ 2.0 s for m= 400, the convergence duration of 1 s is indeed
longer relative to the average time to convergence than with the Poisson benchmark or
MGG system. That said, the convergence duration of 1 s still ensures that convergent
results are due to the algorithm being able to continue in the presence of corruption
instead of the iteration stopping at the right moment between corruption occurrences.
As with the Poisson benchmark and MGG system, bit flips in any of the 64 bits of
the floating point double are introduced to communicated data. Figure 18 shows that
the ASJ-R method retains similar resilience to the bit flip corruption for the new
linear system as shown for the Poisson benchmark (note that time is normalized by
the average time to convergence of ⇡ 2.0 s). That the relative times to solution for
the steady-state advection-di↵usion problem are longer than those for the Poisson
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Fig. 18. Ensemble convergence of ASJ-R for the Poisson benchmark (left) and the steady-

state advection-di↵usion problem (right) with bit flip corruption probabilities ranging from p = 0
to p = 0.04, with double floating point flips in any of the 64 bits. The convergence behavior is

comparable, with increasing p for the steady-state advection-di↵usion problem system resulting in

longer relative times to solution and a larger likelihood that a given run does not converge.

benchmark is perhaps partially explained by the shorter time to solution without
corruption for the steady-state problem (which is used to obtain the relative values).
That said, any corruption missed by the rejection criterion while the approximate
shortest path length is not yet su�ciently large is likely to require more time to correct
for the steady-state advection-di↵usion problem than for the Poisson benchmark: The
missed corruption must e↵ectively be advected out of the domain instead of di↵used
with nearby uncorrupted values. Malevolent manipulation of stored data on agent
i = 9 is also explored using the same recovery times !r and o↵set magnitudes � as
used in the Poisson benchmark. The time to failure !f here is shortened to 1.25 s
to account for the shorter time to solution without corruption (⇡ 2.0 s). Figure 19
shows that the ASJ-R method retains resilience to the malevolent corruption for the
steady-state advection-di↵usion problem, with the relative times to solution being
longer than for the Poisson benchmark. As with the bit flip corruption, those longer
relative times to solution are explained by the nature of relying on advection across
the domain to correct missed corruption instead of leveraging di↵usion with nearby
uncorrupted values as well as the shorter time to solution without corruption for the
steady-state advection-di↵usion problem that is used to obtain the relative times.

5. Conclusions. We introduced a fault-tolerant ASJ variant that leverages ASJ
convergence theory by Hook and Dingle [11] to provide resilience to data corrup-
tion. The resulting variant ASJ method (ASJ-R) rejects solution approximations
from neighbor nodes if the distance between two successive approximations violates
an analytic bound. Because the analytic bound requires the shortest path length, the
ASJ-R method includes a shortest path length approximation. Following the work of
Anzt, Dongarra, and Quintana-Ort́ı [2], we studied the resilience of ASJ and ASJ-R
to corruption in communicated data due to bit flips in various parts of the ieee 754
floating point representation. While we observed that both ASJ and ASJ-R reliably
converge when the corruption is very small relative to the convergence tolerance, the
ASJ-R method generally retains the ability to converge when bit flips occur in loca-
tions that cause larger-magnitude corruption. The convergence of the ASJ-R exhibits
a stagnation period, a degraded convergence rate, or both depending on the prop-
erties of the corruption, resulting in times to solution around 1.5 to 6 times longer
than without corruption. By individually studying particular locations for bit flips,
we are able to explain both convergence behaviors as well as the lack of convergence
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Fig. 19. Ensemble convergence of ASJ-R in the presence of malevolent corruption for the Pois-

son benchmark (left column) and the steady-state advection-di↵usion problem (right column) with

recovery time !r = 0.02 s and various o↵set magnitudes � (top row) and various recovery times !r

and o↵set magnitude � = 0.2 (bottom row). The convergence behavior is comparable for the two

linear systems in that almost all of the runs converge except when the o↵set magnitude is larger or

recovery time is longer.

by whether the shortest path length increases at a su�cient rate to reject the errors
that would otherwise delay or prevent convergence. Stagnation periods occur while
the shortest path length increases to a value needing to start rejecting the corruption.
A degraded convergence rate occurs when the corruption magnitude is small enough
to avoid the rejection criterion (until the shortest path length is large enough) but
large enough to slow but not stall the convergence. Nonconvergence occurs when the
corruption that avoids the rejection criterion is enough for the solution approxima-
tions to deviate substantially from that predicted by convergence theory, resulting in
the ASJ-R method rejecting the large updates that would otherwise drive the solution
approximations back toward the exact solution.

We also studied the resilience of ASJ and ASJ-R to the corruption of stored data,
where the stored values are perturbed by a uniformly distributed amount for periodic
windows of time. Whereas ASJ failed to converge in all the scenarios tested, ASJ-R
reliably restored convergence in a large majority of those scenarios. As with the bit
flip corruption, we observed that the convergence of ASJ-R depends on whether the
shortest path length approximation increased at a rate su�cient to prevent the stored
data corruption from driving the solution approximations too far from that predicted
by the convergence theory on which the rejection criterion is derived. Given the
importance of the shortest path approximation and the ASJ-R rejection criterion
bound that it appears in, we studied the sensitivity of the method to approximations
in the values used for the two singular values in the bound. We found the results to be
more sensitive to the maximum singular value of the iteration matrix and less sensitive
to the minimum singular value of the linear system matrix, which is promising, as
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the latter is typically more di�cult to obtain. Skewing of either singular values in
the direction that tightened the rejection criterion bound was found to more likely
maintain or even improve convergence behavior than skewing that loosened the bound.
We also verified that the ASJ-R performance extends to additional linear systems: one
constructed using the MGG expander graph for a more dense sparsity pattern and
one from a steady-state advection-di↵usion problem.

While this work focused on solving a linear system with a Jacobi method in an
HPC environment with an empirically determined convergence duration, the key ob-
servations should have applicability to other environments and solvers. Edge comput-
ing environments will very likely have greater communication latency than the HPC
environment used here; however, the objective for the rejection criterion remains to
reject the corruption that would cause the solution approximation to deviate too far
for the rejection criterion to be useful. While the greater communication latency will
result in the shortest path length increasing at a slower rate, the latency will also
slow the rate at which the corruption causes the solution approximations to deviate.
Thus, one might expect the relative times to solution observed in this work to have
some relevance in edge environments. The particular convergence duration empirically
determined in this work, however, will likely not have relevance in edge computing
environments. Instead, one might empirically determine the appropriate convergence
duration for a given environment in the same manner as it was determined here.
Better yet, one of the stopping criteria mentioned in [16] or [20, section 3] could be
leveraged, e.g., the leader election approach by Bahi et al. [3]. Finally, the partic-
ular rejection criterion derived here is indeed unique to the convergence theory for
the Jacobi method. That sa,id, the approach of systematically evaluating a dynamic
rejection bound by introducing corruption of various magnitudes to broadcasted data
can be leveraged by new asynchronous solvers as they are developed.
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