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Abstract—As technologies envisioned for next-generation wire-
less networks significantly extend the near-field region, it is of in-
terest to reevaluate integrated sensing and communications (ISAC)
with an appropriate channel model to account for the effects intro-
duced by the near field. In this article, a near-field ISAC framework
is proposed for both downlink and uplink scenarios based on such
a channel model. We consider a base station equipped with a
uniform planar array, and the impacts of the effective aperture
and polarization of antennas are considered. For the downlink
case, three distinct designs are studied: a communications-centric
(C-C) design, a sensing-centric (S-C) design, and a Pareto optimal
design. Regarding the uplink case, the C-C design, the S-C design
and a time-sharing strategy are considered. Within each design,
sensing rates (SRs) and communication rates (CRs) are derived.
To gain further insights, high signal-to-noise ratio slopes and rate
scaling laws concerning the number of antennas are examined.
The attainable near-field SR-CR regions of ISAC and the baseline
frequency-division S&C are also characterized. Numerical results
reveal that, as the number of antennas in the array grows, the SRs
and CRs under our model converge to finite values, while those
under conventional far- and near-field models exhibit unbounded
growth, highlighting the importance of precise channel modeling
for near-field ISAC.

Index Terms—Channel model, effective aperture, integrated
sensing and communications (ISAC), near field, performance
analysis, polarization mismatch.

I. INTRODUCTION

T
HE Integrated Sensing and Communications (ISAC) con-

cept has generated substantial interest owing to its promise

for sixth-generation (6G) and other emerging wireless net-

works [2]. ISAC stands out due to its unique capability to
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efficiently share time, frequency, power, and hardware resources

for both communication and sensing tasks simultaneously.

This distinguishes it from the conventional approach known

as Frequency-Division Sensing and Communications (FDSAC),

where distinct frequency bands and infrastructure are needed for

each function. ISAC is anticipated to deliver superior efficiency

compared to FDSAC in terms of spectrum utilization, energy

efficiency, and hardware demands [3], [4]. Furthermore, ISAC

can also be combined with other emerging techniques, such

as reconfigurable surfaces [5], [6], providing additional im-

provements in the performance of sensing and communications

(S&C) [7].

In evaluating the effectiveness of ISAC, two essential per-

formance metrics are commonly used: sensing rate (SR) and

communication rate (CR) [4], [8]. SR measures the system’s

ability to estimate environmental information through sensing

processes, while CR quantifies the system’s capacity for effi-

cient data transmission during communication. Analyzing these

two metrics provides valuable insights into the overall perfor-

mance and effectiveness of ISAC in seamlessly integrating S&C

functions.

In light of recent developments in wireless S&C, there is a

growing need to accommodate the demanding requirements of

next-generation wireless networks. This entails the application

of extremely large-scale antenna arrays and very high frequen-

cies [9], [10]. With these technical trends, according to the metric

for distinguishing between the near-field and far-field regions,

i.e., the Rayleigh distance 2D2

λ
withD denoting the antenna aper-

ture and λ denoting the wavelength [11], the near-field region

will significantly expand, encompassing distances of several

hundred meters. For example, consider a large-scale array with

an aperture size of D = 0.5 meters operating at a frequency of

60 GHz, which results in a near-field region of 100 meters. It is

crucial to emphasize that electromagnetic (EM) waves exhibit

distinct propagation characteristics in the near-field region as

compared to the far field. In the far-field region, EM waves can be

adequately approximated as planar waves. However, in the near

field, a more precise modeling approach is required, involving

spherical waves. Consequently, the conventional uniform planar

wave (UPW) model employed in existing works analyzing the

performance of ISAC within the far-field region, e.g., [12], [13],

[14], [15], is no longer valid in the near-field region. Therefore,

it is important to reevaluate the performance of ISAC systems

from a near-field perspective.

So far, there have been only limited studies addressing near-

field ISAC [16], [17], [18], [19], [20]. In [16], the authors

provided an overview of the effects of the near field on ISAC
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and explored the potential of near-field ISAC. The works of [17],

[18], [19], [20] primarily focused on waveform or beamforming

design aspects for the downlink near-field ISAC, where [17],

[18] considered the uniform spherical wave (USW) and [19],

[20] considered the non-uniform spherical wave (NUSW). How-

ever, the performance of near-field ISAC regarding both down-

link and uplink cases remains unexplored.

Furthermore, despite the adoption of spherical wave models in

the existing studies of near-field ISAC, both the USW model and

the more precise NUSW model are still considered unreason-

able. In the USW model, the signal phases for different antennas

are accurately modeled [21], while the channel gains are still

uniform as in the UPW model. More accurate than the USW

model, the NUSW model appropriately captures the variations of

both the phases and channel gains for different links across array

elements [22]. However, it worth noting that all three conven-

tional models (TCMs) mentioned above, i.e., UPW, USW and

NUSW, ignore the loss in channel gain caused by the effective

antenna aperture [23] and the polarization mismatch [24], [25].

The effective aperture denotes the projected antenna aperture

that is orthogonal to the local wave propagation direction corre-

sponding to the current element, and the polarization mismatch

represents the angular difference in polarization between the

local wave and the antenna [9]. Consequently, the effective

aperture and polarization loss vary across array elements. If such

losses are neglected, the receive power can unlimitedly increase

with the number of antennas and even exceed the transmit power,

leading to violation of the energy-conservation law [9].

Therefore, motivated by the aforementioned research gaps,

we conduct a performance analysis for a near-field ISAC system

based on an accurate channel model in this work. The main

contributions of the paper are summarized as follows:
� We propose a near-field ISAC framework for both down-

link and uplink scenarios, where the base station (BS) is

equipped with a uniform planar array (UPA). We employ

a channel model that is more accurate than the TCMs.

In addition to precisely modeling the variations of signal

phase and amplitude, this model takes into account the

effects introduced by the effective antenna aperture and

polarization mismatch for each element.
� We study the downlink near-field ISAC performance, con-

sidering three distinct scenarios: a sensing-centric (S-C)

design, a communications-centric (C-C) design, and a

Pareto optimal design. For each scenario, we derive the SR,

CR, and their high signal-to-noise ratio (SNR) slopes. To

further validate the rationality of the model in comparison

to the TCMs, we derive the asymptotic CRs and SRs for

arrays with infinitely many elements. Furthermore, we

consider upper bounds on the CRs and SRs under the

scenario where the polarization mismatch is mitigated.

Finally, we characterize the attainable SR-CR regions of

downlink ISAC and FDSAC.
� We analyze the uplink near-field ISAC performance by

considering the S-C design and the C-C design, with each

employing different interference cancellation orders for

S&C signals at the BS. We derive the same metrics as in the

downlink case and also obtain the achievable rate region

of uplink ISAC by using a time-sharing strategy.
� Numerical results are presented, demonstrating that ISAC

achieves a more extensive rate region than FDSAC in

both downlink and uplink cases. Additionally, when the

number of array elements increases, the SRs and CRs of

our model tend to finite limits, while those of the TCMs

grow unboundedly. For a given number of array elements,

this performance gap narrows as the distances from the

communication user (CU) and target to the BS increase.

The rest of this paper is organized as follows. In Section II,

we introduce the conceptual framework of the ISAC model

in the near-field region, addressing both downlink and uplink

scenarios. Section III is dedicated to examining the near-field

ISAC performance in the downlink case, presenting results for

the three designs and the achievable SR-CR regions. Moving on

to Section IV, we explore near-field ISAC performance in the

uplink case, offering results for the two distinct designs and

characterizing the rate region with the time-sharing strategy.

Numerical results are present in Section V, and a conclusion

is provided in Section VI.

Notation: Throughout this paper, scalars, vectors, and matri-

ces are denoted by non-bold, bold lower-case, and bold upper-

case letters, respectively. For the vector a, [a]i, a
T, a∗, and

aH denote the ith entry, transpose, conjugate, and conjugate

transpose of a, respectively. The notations |a| and ‖a‖ denote

the magnitude and norm of a scalar a and vector a, respectively.

The N ×N identity matrix is denoted by IN . The set C stand

for the set of complex numbers. The mutual information (MI)

between random variables X and Y conditioned on Z is de-

noted by I(X;Y |Z). Finally, CN (µ,X) is used to denote the

circularly-symmetric complex Gaussian distribution with mean

µ and covariance matrix X.

II. SYSTEM MODEL

Consider a downlink/uplink near-field ISAC system, as illus-

trated in Fig. 1(a), where a dual-functional S&C (DFSAC) BS

equipped with an N -antenna UPA is communicating with a CU

equipped with a single antenna, while concurrently performing

sensing on a target. We consider a monostatic sensing setup at

the BS. As shown in Fig. 1(b), we assume that the UPA centered

at the origin is deployed along the y − z plane and N = NyNz

with Ny and Nz denoting the number of antennas along the

y-axis and z-axis, respectively. The antenna size is denoted as√
A×

√
A, and the inter-element distance is represented as d

(d >
√
A). In particular, ζ � A

d2 ∈ (0, 1] denotes the array oc-

cupation ratio (AOR) which measures the proportion of the entire

UPA area occupied by antennas. Without loss of generality, we

consider Ny and Nz as odd numbers. The central location of the

(ny, nz)-th element is denoted as pny,nz
= [0, nyd, nzd]

T for

ny ∈ {0,±1, . . . ,±Ny−1
2 } and nz ∈ {0,±1, . . . ,±Nz−1

2 }.

A. Near-Field Channel Model

As illustrated in Fig. 1(b), we consider a CU/target located

at a distance ri from the center of the UPA, with an elevation
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Fig. 1. Illustration of downlink/uplink near-field ISAC.

angle θi ∈ [0, π] and an azimuth angle φi ∈ [−π
2 ,

π
2 ], where i ∈

{c, s} with the subscripts “c” and “s” representing the CU and

the target, respectively. Therefore, the location of the CU/target

is given by ri = [riΨi, riΦi, riΩi]
T, where Ψi � sin θi cosφi,

Φi � sin θi sinφi, and Ωi � cos θi. Accordingly, the distance

between the CU/target and the (ny, nz)-th antenna is given as

follows:

rny,nz
=
∥
∥ri − pny,nz

∥
∥

= ri

√

(nyεi − Φi)
2 + (nzεi − Ωi)

2 +Ψ2
i , (1)

where εi =
d
ri

. Particularly, since the inter-element distance d is

typically on the order of wavelength, we have ri � d and thus

εi � 1.

Since the signals transmitted by different antennas are ob-

served by the receiver from distinct angles, the resulting effec-

tive antenna aperture and polarization mismatch varies across

the array. The effective antenna aperture is determined by the

projection of the array normal to the direction of the signal,

and the polarization mismatch is characterized by the squared

norm of the inner product between the polarization vectors of

the receiving mode and the transmitting mode, with the resulting

loss in channel gain referred to as effective aperture loss and po-

larization loss, respectively [9]. Consequently, under free-space

line-of-sight propagation, the channel power gain between the

(ny, nz)-th element and the CU/target is given by

∣
∣hny,nz

(ri)
∣
∣2=

∫

Pny ,nz

L1 (ri,p)L2 (ri,p)L3 (ri,p) dp, (2)

where

L1 (ri,p) =
1

4π ‖ri − p‖2
, (3)

L2 (ri,p) =
(ri − p)T ûx

‖ri − p‖ , (4)

L3 (ri,p) =

∣
∣ρ

T (ri) e (p, ri)
∣
∣2

‖e (p, ri)‖2
(5)

denotes the free-space path loss, the effective aperture loss

and the polarization loss, respectively. Furthermore, Pny,nz
=

[nyd−
√
A
2 , nyd+

√
A
2 ]× [nzd−

√
A
2 , nzd+

√
A
2 ] denotes the

surface region of the (ny, nz)-th array element, p ∈ Pny,nz

denotes the point located in this element, ûx = [1, 0, 0] rep-

resents the normal vector to the UPA, ρ(ri) denotes the nor-

malized polarization vector at the CU/target, and e(p, ri) =

(I3 − (ri−p)(ri−p)T

‖ri−p‖2 )Ĵ(p) with Ĵ(p) being the normalized elec-

tric current vector at point p [9]. Given that the size of each

individual element is in the order of wavelength in practice,

significantly smaller than ri, we can assert that ri �
√
A. There-

fore, the variation of the channel coefficient among different

points p ∈ Pny,nz
can be considered negligible. As a result, (2)

can be rewritten as

∣
∣hny,nz

(ri)
∣
∣2 = A

3∏

k=1

Lk

(
ri,pny,nz

)
. (6)

For mathematical tractability and to gain insights into the

fundamental performance, in this paper, we consider a simplified

case when the polarization vector at the CU/target and the elec-

tric current induced in the UPA both align in the y direction, i.e.,

ρ(r− i) = Ĵ(p) = [0, 1, 0]T. As a result, the near-field channel

response between the (ny, nz)-th element and the CU/target can

be obtained as in (7), shown at the bottom of this page.

To provide an intuitive comparison, we also briefly discuss

the TCMs as follows.

hny,nz
(ri, θi, φi) =

√
√
√
√
√
√

A
1

4πr2ny,nz
︸ ︷︷ ︸

Free-space loss

× riΨi

rny,nz
︸ ︷︷ ︸

Effective aperture loss

× r2iΨ
2
i + riΨi (riΩi − nzd)

2

r2ny,nz
︸ ︷︷ ︸

Polarization loss

e−j 2π
λ
rny,nz

=

√

A
r3iΨ

3
i + riΨi (riΩi − nzd)

2

4πr5ny,nz

e−j 2π
λ
rny,nz . (7)
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1) UPW:

hUPW
ny,nz

(ri, θi, φi) =

√

A

4πr2i
e−j 2π

λ
(ri−nydΦi−nzdΩi). (8)

The UPW model is the commonly used model in far-field

scenario, where both free-space path loss and the angles of the

links between any element and the CU/target are assumed to be

identical.

2) USW:

hUSW
ny,nz

(ri, θi, φi) =

√

A

4πr2i
e−j 2π

λ
rny,nz . (9)

In the USW model, instead of using the planar wave, the USW

is applied, accurately modelling the phase, while the path loss

remains uniform.

3) NUSW:

hNUSW
ny,nz

(ri, θi, φi) =

√

A

4πr2ny,nz

e−j 2π
λ
rny,nz . (10)

Unlike the USW model, the NUSW model calculates the path

loss for each link separately.

It is important to note that none of the TCMs take into account

the effective aperture loss and polarization loss. As we will

see later, this ignorance can cause unreasonable consequence.

Therefore, throughout this study, we investigate the performance

of near-field ISAC based on the more accurate model given in

(7).

B. Downlink Signal Model

Consider a signal matrix for the DFSAC denoted as X =
[x1 . . .xL] ∈ C

N×L transmitted from the BS, where L denotes

the duration of the sensing pulse/communication frame. For

sensing purpose, each xl ∈ C
N×1 for l = 1, . . . , L corresponds

to the snapshot used for sensing during the lth time slot. In the

context of communication, xl represents the lth data symbol

vector. Under the framework of multiple-input single-output

(MISO) ISAC, we can write the ISAC signal X as follows:

X =
√
pwsH, (12)

where w ∈ CN×1 denotes the normalized beamforming vec-

tor with ‖w‖2 = 1, p denotes the transmit power, and s =
[s1 . . . sL]

H ∈ C
L×1 denotes the unit-power data streams in-

tended for the CU with L−1‖s‖2 = 1.

1) Communication Model: The signal received at the CU is

given by

yT

c = hT

cX+ nH

c =
√
phT

cwsH + nH

c , (13)

where hc ∈ CN×1 obtained by consolidating {hny,nz
(rc, θc,

φc)}∀ny,nz
into a vector represents the communication chan-

nel, and nc ∈ CL×1 denotes the additive white Gaussian noise

(AWGN) vector with each entry having zero mean and unit

variance. Accordingly, the downlink CR is given by

Rd,c = log2

(

1 + p
∣
∣hT

cw
∣
∣
2
)

. (14)

2) Sensing Model: The received echo signal at the BS for

target sensing is given by

Ys = GX+Ns, (15)

where G ∈ C
N×N represents the target response matrix, and

Ns ∈ C
N×L denotes the AWGN matrix with each entry having

zero mean and unit variance. Specifically, the target response

matrix can be modeled with the round-trip channel:

G = βhsh
T

s , (16)

where β ∼ CN (0, αs) denotes the complex amplitude of

the target with the average strength of αs, and hs =
[hny,nz

(rs, θs, φs)]∀ny,nz
∈ CN×1 represents the sensing link

between the UPA and the target. Therefore, we can rewrite the

reflected echo signal as

Ys =
√
pβhsh

T

s wsH +Ns. (17)

In this study, we assume that the target’s position is accurately

tracked and known in advance by the BS. Therefore, our focus

lies in estimating the reflection coefficient β. The sensing task

involves extracting environmental information contained in β

from the reflected echo signal Ys, with the knowledge of X.

Information-theoretic bounds for this sensing task are quantified

by the sensing MI, which denotes the MI between Ys and β,

conditioned on the ISAC signal X [4]. In evaluating the sensing

performance, we utilize the SR as the performance metric,

defined as the sensing MI per unit time [2], [8], [14]. Assuming

that each DFSAC symbol lasts 1 unit time, the SR is expressed

as

Rd,s = L−1I (Ys;β|X) , (18)

In particular, Rd,s can be calculated as follows.

Lemma 1: For a given w, the downlink SR is given by

Rd,s =
1

L
log2

(

1 + pLαs ‖hs‖2
∣
∣hT

s w
∣
∣
2
)

. (19)

Proof: Please refer to Appendix A. �
With the proposed downlink near-field ISAC framework, our

objective is to assess its S&C performance by examining the

CR and SR, both of which are influenced by the beamforming

vectorw. However, finding an optimalw that that can effectively

enhance both Rd,c and Rd,s concurrently presents a formidable

challenge. In order to tackle this issue, we present three distinc-

tive scenarios within the downlink near-field ISAC framework in

Section III. The first scenario is referred as the C-C design, with

the primary aim of optimizing the CR. In the second scenario,

we delve into the S-C design, which seeks to maximize the SR.

Finally, we focus on the Pareto optimal design, aiming to identify

the Pareto boundary of the achievable SR-CR region.

C. Uplink Signal Model

In the uplink case, the signal observed by the BS reads

Y =
√
pchcs

H

c +
√
psGwsHs +Nu, (20)

where pc denotes the communication power, sc =
[sc,1 . . . sc,L]

H ∈ C
L×1 denotes the communication messages

sent by the CU subject to E{scsHc } = IL, ps denotes the sensing
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power, ss = [ss,1 . . . ss,L]
H ∈ C

L×1 denotes the sensing pulse

subject to L−1‖ss‖2 = 1, and Nu = [nu,1 . . .nu,L]
H ∈ C

N×L

is the standard AWGN matrix.

Upon reception of the signal described above, the BS faces the

challenge of decoding both the communication signal and the en-

vironmental information contained in the target response matrix

G. To effectively manage this inter-functionality interference

(IFI), we can employ successive interference cancellation (SIC)

with two different decoding orders [26]. In the first SIC order,

the BS firstly identifies the target response signal, regarding

the communication signal as interference. Then, the identified

sensing signal will be removed from the superposed signal,

leaving the remaining part for communication signal detection.

In contrast, the second SIC order begins by detecting the com-

munication signal, treating the echo signal as interference. Fol-

lowing this, the communication signal undergoes subtraction,

thereby preserving the residual signal for the purpose of sensing.

The primary observation is that the first SIC order excels in

optimizing communication performance, whereas the second

SIC order enhances sensing performance. As a result, we denote

these two SIC orders as the C-C design and the S-C design,

respectively, which will be investigated in Section IV.

III. DOWNLINK NEAR-FIELD ISAC

This section introduces three scenarios for downlink near-

field ISAC: C-C design, S-C design, and Pareto optimal design.

In each scenario, the SR, CR, and their asymptotic performance

are investigated. Furthermore, performance upper bound in the

absence of polarization loss is explored. Finally, the downlink

SR-CR region achieved by near-field ISAC is characterized.

A. Communications-Centric Design

Under the C-C design, the beamforming vector w is set to

maximize the downlink CR, which is given by

wc = argmaxw Rd,c = argmaxw |hT

cw| = h∗
c

‖hc‖
. (21)

With the beamforming vector wc, we investigate the downlink

communication performance and sensing performance under the

C-C design, respectively, in the following subsections.

1) Performance of Communications: Givenw = wc, the CR

can be written as follows:

Rc
d,c = log2

(

1 + p ‖hc‖2
)

. (22)

The following theorem provides an exact closed-form expres-

sion of Rc
d,c and its high-SNR approximation.

Theorem 1: Under the C-C design, the downlink CR is given

by

Rc
d,c = log2

⎛

⎝1 +
pζ

4π

∑

y∈Yc

∑

z∈Zc

δc(y, z)

⎞

⎠ , (23)

where Yc = {Nyεc
2 ± Φc}, Zc = {Nzεc

2 ± Ωc}, and δc(y, z) is

defined in (24), shown at the bottom of this page. For large p

(i.e., high-SNR), we have

Rc
d,c ≈ log2 p+ log2

⎛

⎝
ζ

4π

∑

y∈Yc

∑

z∈Zc

δc(y, z)

⎞

⎠. (25)

Proof: Please refer to Appendix B. �
Remark 1: (25) indicates that the high-SNR slope and the

high-SNR power offset ofRc
d,c are, respectively, given bySc

d,c =

1 and Oc
d,c = log2(

ζ
4π

∑

y∈Yc

∑

z∈Zc
δc(y, z)).

To gain further insights for the CR under the near-field channel

model, we next investigate its asymptotic behaviour when the

UPA has an infinite number of elements, i.e., Ny, Nz → ∞.

Corollary 1: As Ny, Nz→∞, the asymptotic CR is given by

lim
Ny,Nz→∞

Rc
d,c = log2

(

1 +
pζ

3

)

. (26)

Proof: Since limy,z→∞ arctan( yz

Ψc

√
Ψ2

c+y2+z2
) = π

2 and

limy,z→∞
Ψcyz

3(Ψ2
c+y2)

√
Ψ2

c+y2+z2
= 0, we have limNy,Nz→∞ δc(y, z) =

π
3

for y ∈ Yc and z ∈ Zc. �
Remark 2: The results in Corollary 1 indicate that as

Ny, Nz → ∞, rather than growing unboundedly, the downlink

CR in the C-C design converges to a finite quantity that is

increasing in the AOR.

Notably, in traditional antenna design, there are methods to

mitigate or avoid polarization mismatch, such as polarization

matching between the transmitter and receiver [27], multi-

polarized antennas [28], and adaptive polarization [29]. Accord-

ingly, we examine a scenario where the polarization mismatch

is considered to be avoided, i.e., L3(ri,p) = 1, establishing an

ideal upper bound for system performance. Under this consid-

eration, the near-field channel model in (7) can be rewritten as

h̄ny,nz
(ri, θi, φi) =

√

AriΨi

4πr3ny,nz

e−j 2π
λ
rny,nz . (27)

δi(y, z) =
2

3
arctan

(

yz

Ψi

√

Ψ2
i + y2 + z2

)

+
Ψiyz

3 (Ψ2
i + y2)

√

Ψ2
i + y2 + z2

, i ∈ {c, s} . (24)
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Consolidating {h̄ny,nz
(ri, θi, φi)}∀ny,nz

into a vector gives h̄i.

Corollary 2: When the polarization loss is eliminated, the

downlink CR of the C-C design is given by

R̄c
d,c=log2

(

1+
pζ

4π

∑

y∈Yc

∑

z∈Zc

arctan

(
yz

Ψc

√

Ψ2
c+y2+z2

))

.

(28)

When Ny, Nz → ∞, we have

lim
Ny,Nz→∞

R̄c
d,c = log2

(

1 +
pζ

2

)

, (29)

which is a finite value larger than limNy,Nz→∞ Rc
d,c.

Proof: Please refer to Appendix C. �
2) Performance of Sensing: When the beamforming vector

wc is applied, the downlink SR under the C-C design reads

Rc
d,s =

1

L
log2

(

1 + pLαs ‖hs‖2
∣
∣hT

s h
∗
c

∣
∣2

‖hc‖2

)

. (30)

For clarity, we define the inner product of the normalized chan-

nels, namely

ρ �

∣
∣hH

c hs

∣
∣2

‖hc‖2 ‖hs‖2
∈ [0, 1] , (31)

as the channel correlation factor (CCF), which measures the

correlation between the communication and sensing channels.

Accordingly, (30) can be rewritten as

Rc
d,s =

1

L
log2

(

1 + pLαsρ ‖hs‖4
)

, (32)

leading to the derivation of the following theorem.

Theorem 2: The SR under the C-C design can be expressed

as

Rc
d,s=

1

L
log2

⎡

£1+
pLαsζ

2ρ

16π2

⎛

⎝
∑

y∈Ys

∑

z∈Zs

δs(y, z)

⎞

⎠

2¤

⎦, (33)

where Ys = {Nyεs
2 ± Φs}, Zs = {Nzεs

2 ± Ωs}, and δs(y, z) is

defined in (24). For large p, its high-SNR approximation is given

by

Rc
d,s ≈

1

L

⎡

£log2 p+2 log2

⎛

⎝
ζ
√
Lαsρ

4π

∑

y∈Ys

∑

z∈Zs

δs(y, z)

⎞

⎠

¤

⎦ .

(34)

Proof: The proof of this result is similar to that of

Theorem 1. �
Remark 3: The results in (34) indicate that the

high-SNR slope and the high-SNR power offset of

Rc
d,s are, respectively, given by Sc

d,s =
1
L

and Oc
d,s =

2 log2(
ζ
√
Lαsρ
4π

∑

y∈Ys

∑

z∈Zs
δs(y, z)).

While directly computing limNy,Nz→∞ ρ is intractable, we

can infer that limNy,Nz→∞ Rc
d,s �

1
L
log2(1 +

pLαsζ
2

9 ), as ρ �
1. This suggests that limNy,Nz→∞ Rc

d,s is a finite value. To

reinforce this observation, we plot ρ in terms of the number

of antennas in Fig. 2, which is generated by averaging the CCFs

Fig. 2. CCF versus N .

across 104 channel realizations. As can be observed from this

graph, the CCF converges to some constant (denoted as Cρ) as

Ny, Nz → ∞. Based on this analysis, we derive the following

corollary.

Corollary 3: When Ny, Nz → ∞, the asymptotic SR under

the C-C design is given by

lim
Ny,Nz→∞

Rc
d,s =

1

L
log2

(

1 +
CρpLαsζ

2

9

)

. (35)

Proof: The proof of this result is similar to that of

Corollary 1. �
Remark 4: The results in Corollary 3 indicates that as

Ny, Nz → ∞, rather than growing unboundedly, the SR of

the downlink C-C design converges to a finite quantity that is

increasing in the AOR.

The downlink SR of the C-C design in the absence of polar-

ization loss is derived in the following corollary.

Corollary 4: Without polarization loss, the downlink SR of

the C-C design is given by

R̄c
d,s = log2

[

1 +
pLαsζ

2ρ̄

16π2

×
(
∑

y∈Ys

∑

z∈Zs

arctan

(
yz

Ψs

√

Ψ2
s+y2+z2

))2]

, (36)

where ρ̄ � |h̄H
c h̄s|2

‖h̄c‖2‖h̄s‖2 . When Ny, Nz → ∞, we have

lim
Ny,Nz→∞

R̄c
d,s =

1

L
log2

(

1 +
C̄ρpLαsζ

2

4

)

, (37)

which is a finite value with C̄ρ = limNy,Nz→∞ ρ̄, as depicted in

Fig. 2.

Proof: The proof of this result is similar to that of

Corollary 2. �

B. Sensing-Centric Design

In this subsection, we investigate the downlink S-C design.

Under the S-C design, the beamforming vector is set to maximize

the SR, which is given by

ws = argmaxw Rd,s = argmaxw |hT

s w| = h∗
s

‖hs‖
. (38)
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1) Performance of Sensing: Given w = ws, the downlink

SR can be written as follows:

Rs
d,s =

1

L
log2

(

1 + pLαs ‖hs‖4
)

. (39)

The following theorem provides an exact closed-form expres-

sion of Rs
d,s and its high-SNR approximation.

Theorem 3: The SR achieved by the S-C design is given by

Rs
d,s=

1

L
log2

⎡

£1+
pLαsζ

2

16π2

⎛

⎝
∑

y∈Ys

∑

z∈Zs

δs(y, z)

⎞

⎠

2¤

⎦ . (40)

For large p, we have

Rs
d,s≈

1

L

⎡

£log2 p+2 log2

⎛

⎝

√
Lαsζ

4π

∑

y∈Ys

∑

z∈Zs

δs(y, z)

⎞

⎠

¤

⎦. (41)

Proof: The proof of this result is similar to that of Theo-

rem 1. �
Remark 5: (41) indicates that the high-SNR slope and the

high-SNR power offset ofRs
d,s are, respectively, given bySs

d,s =
1
L

and Os
d,s = 2 log2(

√
Lαsζ
4π

∑

y∈Ys

∑

z∈Zs
δs(y, z)).

We also investigate the asymptotic SR under the C-C design

when the UPA has an infinite number of elements.

Corollary 5: When Ny, Nz → ∞, the asymptotic SR under

the S-C design is given by

lim
Ny,Nz→∞

Rs
d,s=

1

L
log2

(

1+
pLαsζ

2

9

)

. (42)

Proof: The proof of this result is similar to that of

Corollary 1. �
Remark 6: The results in Corollary 5 indicate that as

Ny, Nz → ∞, rather than growing unboundedly, the SR of

the downlink S-C design converges to a finite quantity that is

increasing in the AOR.

When the polarization mismatch is avoided, the SR under the

S-C design can also be improved.

Corollary 6: Without polarization loss, the downlink SR of

the S-C design is given by

R̄s
d,s = log2

[

1 +
pLαsζ

2

16π2

×
(
∑

y∈Ys

∑

z∈Zs

arctan

(
yz

Ψs

√

Ψ2
s+y2+z2

))2]

. (43)

When Ny, Nz → ∞, we have

lim
Ny,Nz→∞

R̄s
d,s =

1

L
log2

(

1 +
pLαsζ

2

4

)

, (44)

which is a finite value larger than limNy,Nz→∞ Rs
d,s.

Proof: The proof of this result is similar to that of

Corollary 2. �
2) Performance of Communications: When the beamform-

ing vector ws is applied, the downlink CR under the S-C design

is given by

Rs
d,c = log2

(

1 + p

∣
∣hT

c h
∗
s

∣
∣2

‖hs‖2

)

= log2

(

1+ p‖hc‖2ρ
)

. (45)

The following theorem provides an expression of Rs
d,c and its

high-SNR approximation.

Theorem 4: The downlink CR of the S-C design is given by

Rs
d,c = log2

⎛

⎝1 +
pζρ

4π

∑

y∈Yc

∑

z∈Zc

δc(y, z)

⎞

⎠ . (46)

For large p, its high-SNR approximation is given by

Rs
d,c ≈ log2 p+ log2

⎛

⎝
ζρ

4π

∑

y∈Yc

∑

z∈Zc

δc(y, z)

⎞

⎠ . (47)

Proof: The proof of this result is similar to that of

Theorem 2. �
Remark 7: (47) indicates that the high-SNR slope and the

high-SNR power offset ofRs
d,c are, respectively, given bySs

d,c =

1 and Os
d,c = log2(

ζρ
4π

∑

y∈Yc

∑

z∈Zc
δc(y, z)).

Next we consider the case when Ny, Nz → ∞ and derive the

following corollary.

Corollary 7: When Ny, Nz → ∞, the asymptotic downlink

CR under the S-C design is given by

lim
Ny,Nz→∞

Rs
d,c = log2

(

1 +
Cρpζ
3

)

. (48)

Proof: The proof of this result is similar to that of

Corollary 1. �
Remark 8: The results in Corollary 7 indicates that as

Ny, Nz → ∞, rather than growing unboundedly, the downlink

CR under the S-C design converges to a finite quantity that is

increasing in the AOR.

The downlink CR of the S-C design in the absence of polar-

ization loss is studied in the following corollary.

Corollary 8: When the polarization mismatch is eliminated,

the downlink CR of the S-C design is given by

R̄s
d,c=log2

(

1+
pζρ̄

4π

∑

y∈Yc

∑

z∈Zc

arctan

(
yz

Ψc

√

Ψ2
c+y2+z2

))

.

(49)

When Ny, Nz → ∞, we have

lim
Ny,Nz→∞

R̄s
d,c = log2

(

1 +
C̄ρpζ
2

)

. (50)

Proof: The proof of this result is similar to that of

Corollary 2. �
Based on the analysis above for the downlink scenario, we

can conclude following remarks.

Remark 9: In downlink near-field ISAC, we haveSc
d,c = Ss

d,c

and Sc
d,s = Ss

d,s, which indicates that the beamforming design

does not impact the high-SNR slopes of both CR and SR. On the

other hand, we have Os
d,c −Oc

d,c = Oc
d,s −Os

d,s = log2 ρsc ∈
(−∞, 0], which indicates that the beamforming design influ-

ences the CR and SR by altering their high-SNR power offsets.
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The performance gaps between the C-C design and the S-C

design for both S&C are influenced by the channel correlation.

Remark 10: Under the near-field channel model we investi-

gated, all CRs and SRs tend to finite quantities when N → ∞.

By contrast, as will be shown by the numerical results, CRs and

SRs under the TCMs exhibit unbounded growth with N .

C. Pareto Optimal Design

In practical scenarios, the beamforming vector w can be

customized to fulfill diverse quality of service requirements,

creating a tradeoff between communication and sensing perfor-

mance. To evaluate this tradeoff, we analyze the Pareto boundary

of the SR-CR region achieved by the downlink near-field ISAC.

The Pareto boundary comprises SR-CR pairs where it becomes

impossible to augment one rate without simultaneously reducing

the other [30]. Particular, any rate pair located on the Pareto

boundary of the SR-CR region can be determined by solving

the following optimization problem:

max
w,R

R, s.t.Rd,s ≥ σR, Rd,c ≥ (1−σ)R, ‖w‖2=1, (51)

where σ ∈ [0, 1] is a particular rate-profile parameter. The entire

Pareto boundary is obtained by solving the above problem withσ

varying from 0 to 1. Despite of its non-convexity, we can achieve

an optimal closed-form solution for problem (51) as follows.

Theorem 5: For a givenσ, by defining the auxiliary parameter

ξ �
√

Lαsζ
4π

∑

y∈Ys

∑

z∈Zs
δs(y, z), the optimal beamforming

vector is given by (52), shown at the bottom of this page.

Specifically, R� represents the optimal solution for R, which

is obtained by solving (53), shown at the bottom of this page.

Moreover, μ1 and μ2 are Lagrange multipliers for problem (51),

which are given in (54a) and (54b), shown at the bottom of this

page, respectively, with χ =
√

2σLR�−1
2(1−σ)R�−1

.

Proof: Please refer to Appendix D. �

Fig. 3. Pareto optimal beamforming vector.

Based on the above results of the optimal beamforming vector,

we can further deduce the following corollary.

Corollary 9: The Pareto boundary of the rate region can be

attained through the beamforming vector as outlined below:

wτ =
τhc + (1− τ)hse

−j∠ψ

‖τhc + (1− τ)hse−j∠ψ‖ , (55)

where τ ∈ [0, 1] is the weighting factor.

Proof: Please refer to Appendix E. �
Noting thatwτ can represent any arbitrary linear combination

of hc and hse
−j∠ψ with non-negative real coefficients, we can

draw the following conclusion.

Remark 11: The results in Corollary 9 indicate that the Pareto

optimal beamforming vector lies in the plane spanned by hc and

hse
−j∠ψ , as illustrated in Fig. 3.

Therefore, for a given value of τ , let Rτ
d,s and Rτ

d,c represent

the SR and CR on the Pareto boundary achieved by the corre-

sponding optimal beamforming vector wτ , respectively, which

are given by

Rτ
d,s =

1

L
log2

(

1 + pLαs ‖hs‖2 (56)

× τ2ρ ‖hc‖2‖hs‖2+(1−τ)2‖hs‖4+2τ(1−τ) ‖hc‖ ‖hs‖3

τ2 ‖hc‖2 + (1− τ)2 ‖hs‖2 + 2τ (1− τ) ‖hc‖ ‖hs‖

)

,

w�
σ =

⎧

⎪⎪⎪⎪⎪⎪«

⎪⎪⎪⎪⎪⎪¬

wc, σ ∈
[

0,
Rc

d,s

Rc
d,c+Rc

d,s

]

μ1

√

(2(1−σ)R�−1)phc+μ2

√

(2σLR�−1)pξhse
−j∠(hH

chs)
[

(2(1−σ)R�−1)μ2
1p‖hc‖2+(2σLR�−1)μ2

2pξ
2‖hs‖2+2

√

(2(1−σ)R�−1)(2σLR�−1)μ1μ2pξ|hH
chs|

]
1
2
, σ ∈

( Rc
d,s

Rc
d,c+Rc

d,s
,

Rs
d,s

Rs
d,c+Rs

d,s

)

ws, σ ∈
[ Rs

d,s

Rs
d,c+Rs

d,s
, 1
]

.

(52)

(
2σLR− 1

)
‖hc‖2 +

(

2(1−σ)R− 1
)

ξ2 ‖hs‖2 − 2
√
(
2(1−σ)R− 1

)
(2σLR− 1)ξ

∣
∣hH

c hs

∣
∣ = pξ2

(

‖hc‖2 ‖hs‖2−
∣
∣hH

c hs

∣
∣
2
)

.

(53)

μ1 =
ξ2 ‖hs‖2 − χξ

∣
∣hH

c hs

∣
∣

(

‖hc‖2 − χ−1ξ |hH
c hs|

)

2σLR�
σL ln 2 +

(

ξ ‖hs‖2 − χ |hH
c hs|

)

ξ2(1−σ)R� (1− σ) ln 2
, (54a)

μ2 =
‖hc‖2 − χ−1ξ

∣
∣hH

c hs

∣
∣

(

‖hc‖2 − χ−1ξ |hH
c hs|

)

2σLR�
σL ln 2 +

(

ξ ‖hs‖2 − χ |hH
c hs|

)

ξ2(1−σ)R� (1− σ) ln 2
. (54b)
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TABLE I
DOWNLINK HIGH-SNR SLOPES

Rτ
d,c = log2

(

1 + p

× τ2‖hc‖4+(1−τ)2ρ ‖hc‖2‖hs‖2+2τ(1−τ) ‖hc‖3‖hs‖
τ2 ‖hc‖2 + (1− τ)2 ‖hs‖2 + 2τ (1− τ) ‖hc‖ ‖hs‖

)

.

(57)

In particular, we have (R0
d,s,R0

d,c) = (Rs
d,s,Rs

d,c) and

(R1
d,s,R1

d,c) = (Rc
d,s,Rc

d,c). The closed-form expressions of

Rτ
d,s and Rτ

d,c can be obtained by substituting the previously

derived expressions for ‖hc‖ and ‖hs‖, which are omitted due

to space limitations. Consequently, it can be easily shown that

for any given τ , the high-SNR slopes of SR and CR are the same

as those achieved by the S-C and C-C design, i.e., any downlink

SR-CR pair on the Pareto boundary exhibits identical high-SNR

slopes. Additionally, all the SRs and CRs on the Pareto boundary

converge to finite quantities when Ny, Nz → ∞.

D. Downlink Near-Field FDSAC

We consider the near-field FDSAC as the baseline, where the

bandwidth is split into two distinct sub-bands: one dedicated

solely to sensing and the other designated for communication.

Furthermore, the total power is also distributed into two separate

portions, each allocated for the specific objectives of S&C,

respectively. In particular, we consider κ ∈ [0, 1] fraction of

the total bandwidth and ι ∈ [0, 1] fraction of the total power

is allocated to sensing. Accordingly, the downlink SR and CR

of FDSAC are, respectively, given by

Rf
d,s =

κ

L
log2

(

1 +
ι

κ
pLαs ‖hs‖4

)

, (58)

Rf
d,c = (1− κ) log2

(

1 +
1− ι

1− κ
p ‖hc‖2

)

. (59)

It is worth noting that (Rf
d,c,Rf

d,s) can be discussed in the way

we discuss (Rs
d,s,Rc

d,c). Upon concluding all the analyses of

near-field ISAC and FDSAC, we consolidate the results of high-

SNR slopes within Table I.

Remark 12: The results in Table I indicate that in the downlink

near-field scenario, ISAC exhibits higher high-SNR slopes than

FDSAC in terms of both CR and SR, which implies that ISAC

offers greater degrees of freedom than FDSAC concerning both

S&C.

E. Rate Region Characterization

The achievable downlink SR-CR region of ISAC and FDSAC

systems are, respectively, given by

Cd,i =
{
(Rs,Rc) |Rs∈

[
0,Rτ

d,s

]
,Rc∈

[
0,Rτ

d,c

]
, τ ∈ [0, 1]

}
,

(60)

Cd,f =
{

(Rs,Rc)

∣
∣
∣
∣
∣

Rs ∈
[

0,Rf
d,s

]

,Rc ∈
[

0,Rf
d,c

]

,

κ ∈ [0, 1] , ι ∈ [0, 1]

}

. (61)

Theorem 6: The regions described above satisfy Cd,f ⊆ Cd,i.
Proof: Please refer to Appendix F. �
As per Theorem 6, the rate region attained by the donwlink

near-field ISAC completely encompasses the region achieved by

FDSAC. This can be primarily attributed to ISAC’s integrated

utilization of both spectrum and power resources.

IV. UPLINK NEAR-FIELD ISAC

In this section, we investigate the performance of uplink

near-field ISAC under the C-C and S-C designs according to

the interference cancellation order of the SIC process. Also, the

uplink achievable rate region is characterized with time-sharing

strategy. The analysis for the scenario without polarization loss

in the uplink case is similar to that of the downlink, which

is omitted here for brevity, while the simulation results are

presented in Section V.

A. Communications-Centric Design

In the context of the C-C design, the initial step involves esti-

mating the target response signal by considering the communi-

cation signal as interference. Subsequently, the communication

signals transmitted from the CU are detected after eliminating

the influence of the sensing signal.

1) Performance of Sensing: From a worst-case de-

sign perspective, the aggregate interference-plus-noise

Zc =
√
pchcs

H

c +Nu is regarded as the Gaussian noise [31]. In

this case, the achievable SR is derived in the following theorem.

Theorem 7: The SR of the uplink C-C design is given by

Rc
c,s =

1

L
log2

[

1 + psLαs ‖hs‖2
(

‖hs‖2 −
pc
∣
∣hH

s hc

∣
∣2

1+pc‖hc‖2

)]

.

(62)

Proof: Please refer to Appendix G. �
It is worth to note that in most cases, the CU and target are

located at different locations, leading to ρ � 1 in the near-field

region [32]. Accordingly, we have
pc|hH

s hc|2
1+pc‖hc‖2 <

pc|hH
s hc|2

pc‖hc‖2 =

ρ‖hs‖2 � ‖hs‖2. As will be shown in Section IV-B2, the

SR achieved by the uplink S-C design is Rs
c,s =

1
L
log2(1 +

psLαs‖hs‖4). The above facts suggest that the gap of SR

between the uplink C-C and S-C design is negligible, i.e.

Rc
c,s ≈ Rs

c,s. This also implies that the near-field effect can be

harnessed to effectively mitigate IFI, improving uplink ISAC

performance. Furthermore, to unveil the system’s lower-bound

performance, we consider the worst case where ρ = 1, i.e.,
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|hH

s hc|2 = ‖hc‖2‖hs‖2. In this case, the SR is written as

R̃c
c,s =

1

L
log2

(

1 +
psLαs ‖hs‖4

1 + pc ‖hc‖2

)

. (63)

The following corollary provides an exact closed-form expres-

sion of R̃c
c,s and its high-SNR approximation.

Corollary 10: The SR achieved by the uplink C-C design is

lower bounded by

R̃c
c,s=

1

L
log2

⎛

⎜
⎝1+

psLαsζ
2
(
∑

y∈Ys

∑

z∈Zs
δs(y, z)

)2

16π2+4πpcζ
∑

y∈Yc

∑

z∈Zc
δc(y, z)

⎞

⎟
⎠ .

(64)

For large p, its high-SNR approximation is given by

R̃c
c,s ≈

1

L
⎡

⎢
£log2 ps + log2

⎛

⎜
⎝

Lαsζ
2
(
∑

y∈Ys

∑

z∈Zs
δs(y, z)

)2

16π2+4πpcζ
∑

y∈Yc

∑

z∈Zc
δc(y, z)

⎞

⎟
⎠

¤

⎥
⎦ ,

(65)

indicating a hign-SNR slope of 1
L

.

Proof: The proof of this result is similar to that of

Theorem 1. �
Then, similar to the analysis of downlink scenario, we also

investigate the asymptotic uplink performance for the case when

Ny, Nz → ∞.

Corollary 11: When the number of array elements goes to

infinity, we have

lim
Ny,Nz→∞

R̃c
c,s =

1

L
log2

(

1 +
psLαsζ

2

9 + 3pcζ

)

, (66)

which is a finite quantity.

Proof: The proof of this result is similar to that of

Corollary 1. �
2) Performance of Communications: After the estimation of

the target response, the echo signalGXwill be removed from the

received superposed S&C signal. The remained communication

signal can be then directly detected with the optimal detection

vector
h∗

c

‖hc‖ without interference, which yields a similar CR to

the downlink C-C design by simply replacing ps with pc, i.e.,

Rc
c,c = log2(1 + pc‖hc‖2).

B. Sensing-Centric Design

In the S-C design, the BS initially detects the communication

signal, treating the echo signal GX as interference. Subse-

quently, the BS subtracts the detected communication signal

from the received signal, using the remaining part for sensing

purpose.

1) Performance of Communications: From a worst-case de-

sign perspective, the aggregate interference-plus-noise Zs =√
psGwsHs +Nu can be treated as the Gaussian noise [31].

Based on this, the uplink CR of the near-field ISAC is given

in the following theorem.

Theorem 8: In the S-C design, the uplink CR is given by

Rs
c,c=log2

[

1+pc

(

‖hc‖2−
psαs ‖hs‖2

∣
∣hH

c hs

∣
∣2

1 + psαs ‖hs‖4

)]

. (67)

Proof: Please refer to Appendix H. �

Given that
psαs‖hs‖2|hH

chs|2
1+psαs‖hs‖4 <

psαs‖hs‖2|hH
chs|2

psαs‖hs‖4 = ρ‖hc‖2 �
‖hc‖2 in the near-field region, we have Rs

c,c ≈ Rc
c,c. Further-

more, we provide a lower bound of the uplink CR under the S-C

design for ρ = 1, which is expressed as

R̃s
c,c = log2

(

1 +
pc ‖hc‖2

1 + psαs ‖hs‖4

)

. (68)

The following corollary provides an exact closed-form expres-

sion of R̃s
c,c and its high-SNR approximation.

Corollary 12: The CR achieved by the uplink S-C design is

lower bounded by

R̃s
c,c=log2

⎛

⎜
⎝1+

4πpcζ
∑

y∈Yc

∑

z∈Zc
δc(y, z)

16π2+psαsζ2
(
∑

y∈Ys

∑

z∈Zs
δs(y, z)

)2

⎞

⎟
⎠ .

(69)

For large pc, its high-SNR approximation is given by

R̃s
c,c ≈ log2 pc

+ log2

⎛

⎜
⎝

4πζ
∑

y∈Yc

∑

z∈Zc
δc(y, z)

16π2+psαsζ2
(
∑

y∈Ys

∑

z∈Zs
δs(y, z)

)2

⎞

⎟
⎠ , (70)

indicating a hign-SNR slope of one.

Proof: The proof of this result is similar to that of

Theorem 1. �
Corollary 13: When Ny, Nz → ∞, the asymptotic expres-

sion of R̃s
c,c follows

lim
Ny,Nz→∞

R̃s
c,c = log2

(

1 +
3pcζ

9 + psαsζ2

)

, (71)

which is a finite quantity.

Proof: The proof of this result is similar to that of

Corollary 1. �
2) Performance of Sensing: After the decoded communica-

tion signal is removed, the rest part can be directly used for

sensing without interference. It can be easily shown that under

this circumstance, sensing yields the same performance as in the

downlink S-C design, i.e., Rs
c,s =

1
L
log2(1 + psLαs‖hs‖4).

Based on the analysis of the near-field uplink ISAC above,

we can draw the following conclusion.

Remark 13: The SIC order does not influence the high-SNR

slopes for either CR or SR, but it has an effect on the S&C

performance by altering the high-SNR power offsets.

C. Rate Region Characterization

We now define the uplink SR-CR region achieved by the

near-field ISAC. By employing the time-sharing strategy [33],
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Fig. 4. Downlink performance versus SNR.

TABLE II
UPLINK HIGH-SNR SLOPES

we implement the S-C design with probability � and the C-C

design with probability 1− �. For a given �, the attainable

rate pair is denoted as (R�
c,s,R�

c,c), where R�
c,s = �Rs

c,s +
(1− �)Rc

c,s and R�
c,c = �Rs

c,c + (1− �)Rc
c,c. Therefore, the

achievable SR-CR region of uplink ISAC satisfies

Cc,i=
{
(Rs,Rc)

∣
∣Rs∈

[
0,R�

c,s

]
,Rc∈

[
0,R�

c,c

]
, � ∈ [0, 1]

}
.

(72)

Remark 14: By exploiting the sandwich theorem, we can

obtain that any rate pair achieved by the time-sharing strategy

yields the same high-SNR slopes.

D. Performance of FDSAC

The uplink FDSAC is served as baseline, where a fraction

κ ∈ [0, 1] of the total bandwidth is designated for sensing,

while the remaining fraction is designated for communications.

Accordingly, the SR and CR of FDSAC are given by

Rf
c,s =

κ

L
log2

(

1 +
psLαs ‖hs‖4

κ

)

, (73)

Rf
c,c = (1− κ) log2

(

1 +
pc ‖hc‖2
1− κ

)

. (74)

It is worth noting that (Rf
c,c,Rf

c,s) can be discussed in the way

we discuss (Rc
c,c,Rs

c,s). After completing all the analyses of the

uplink case, we summarize the results pertaining to the high-

SNR slope in Table II.

Remark 15: The results in Table II indicate that uplink ISAC

achieves larger high-SNR slopes than FDSAC in terms of both

SR and CR.

V. NUMERICAL RESULTS

In this section, numerical results for the S&C performance

of the near-field ISAC systems are presented. Without other-

wise specification, the simulation parameter settings are de-

fined as follows: λ = 0.125 m, d = λ

2 m, A = λ
2

4π , L = 4,

αs = 1,κ = ι = 0.5,Ny = Nz = 15,p = 90dB, (rc, θc, φc) =
(10 m, π

4 ,
π
6 ), and (rs, θs, φs) = (5 m, π

4 ,−π
6 ).

A. Downlink

Fig. 4(a) and (b) plot the downlink CRs and SRs versus the

transmit SNR p, respectively. It is evident that C-C ISAC attains

the best communication performance, while S-C ISAC records

the best sensing performance. The derived closed-form results

match the simulation results well, and the high-SNR approxima-

tions precisely track the results in the high-SNR region. We can

also observe that the C-C ISAC and the S-C ISAC have the same

high-SNR slopes in terms of both CR and SR, corroborating the

statement in Remark 9. Importantly, both of these high-SNR

slopes surpass those achieved by FDSAC.

Fig. 5(a) and (b) respectively illustrate the changes in CRs

and SRs for various channel models as the number of UPA

antennas varies. We can observe that as N increases, the CRs

achieved by our accurate model and the TCMs follow distinctly

different scaling patterns. The CRs and SRs achieved by the

accurate model converge to upper limits accurately tracked by

our derived asymptotic results, which is aligned with Remark 10.

In contrast, the CRs of the C-C design and the SRs of the

S-C design achieved by the TCMs exhibit unbounded growth

with N . This unrestrained increase is primarily attributed to the

neglect of aperture loss, leading to the potential violation of

the energy-conservation laws. Specifically, the NUSW model,

which accounts for both phase and power variations across array

elements, demonstrates diminishing returns for largeN , which is

more accurate than the UPW and USW models. However, due to

its failure to consider aperture loss and polarization loss, the CRs

and SRs of the NUSW model still exhibits a slow but persistent

increase with the number of array elements, which is not feasible

in practical scenarios. Therefore, though the USW and NUSW

models might find application in certain near-field scenarios,

they are not applicable for scenarios with a large number of
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Fig. 5. Downlink performance versus number of array elements.

Fig. 6. Downlink performance versus distance with Ny = Nz = 1001.

antennas. Further, it can be observed from Fig. 5(a) and (b)

that both CRs and SRs for the scenario where the polarization

mismatch is avoided also converge to finite limits asN increases,

which is consistent with our analysis. The S&C performance

achieved under this scenario is larger than performance in the

case with polarization loss, establishing an ideal performance

upper bound.

By setting rs = r and rc = 2r, Fig. 6 illlusrates S&C per-

formance as it relates to r. We can observe that, for a given

number of antennas, the performance gap between different

models diminishes as the distances from the CU and target to

the BS increase. This is because the effect of the near-field

is pronounced at short distances, where the effective antenna

apertures and polarization mismatches among the elements vary

significantly. Consequently, the rates of the TCMs, which ignore

such impacts, are markedly overestimated when the CU and

target are located near the BS. As the distance extends, the CU

and target move toward the far field where the near-field effect

is alleviated, though effective aperture loss and polarization

loss remain, resulting in a narrow but constant gap between the

accurate model and the TCMs at large distance.

Fig. 7 presents the downlink SR-CR regions achieved by

the two systems: ISAC system (as defined in (60)) and the

baseline FDSAC system (as defined in (61)). On the graph, we

can observe two marked points representing the S-C and C-C

designs, respectively. The curve connecting these two points

Fig. 7. Downlink rate regions.

signifies the Pareto boundary of the downlink ISAC’s rate region,

which was obtained by solving the problem (51) for values of

σ ranging from 1 to 0. It’s essential to emphasize that the rate

region attained by downlink FDSAC is entirely encompassed

within the rate region of ISAC, thus validating Theorem 6.

Furthermore, we also observe that the Pareto boundary achieved

by the beamformer outlined in Theorem 5 perfectly coincides

with the boundary obtained from the beamformer presented in

Corollary 9, which provides further support for the conclusion

presented in Remark 11.
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Fig. 8. Uplink performance versus SNR.

Fig. 9. Uplink performance versus number of array elements.

B. Uplink

For the uplink results, we first focus on Fig. 8(a) and (b), which

demonstrates the uplink CR and SR concerning the transmit

SNR pc and ps, respectively. As anticipated, the C-C ISAC ex-

hibits the highest communication performance, while S-C ISAC

achieves the highest SR. Remarkably, C-C ISAC and S-C ISAC

exhibit the same high-SNR slopes, which outperform those

achieved by FDSAC, as stated in Remark 15. Furthermore, both

for CR and SR, a consistent performance gap exists between S-C

ISAC and C-C ISAC in the high-SNR region. This observation

aligns with the discussions presented in Remark 13.

In Fig. 9(a) and (b), we present the uplink CR and SR

as functions of the number of antennas N , respectively. As

mentioned before, the gaps of the CRs and SRs between the

uplink C-C and S-C designs under our accurate model are

negligible in the near-field region, which is consistent with

the results in these two graphs. Thus, the figures also display

the derived lower bounds for the CR of the S-C design and the

SR of the C-C designs. Notably, for small values of N , the rates

achieved in all models exhibit a linear increase with logN . This

is because, when N is small, the CU/target can be treated as in

the far field, where all models are accurate. However, when N is

sufficiently large, the disparity in effective antenna apertures and

polarization mismatches across the UPA becomes significant.

In this case, the rates of the TCMs are overestimated due to the

Fig. 10. Uplink rate region with ps = 85 dB and pc = 60 dB.

ignorance of the above impacts and will grow unboundedly with

N , breaking the law of energy conservation. By contrast, as N

approaches infinity, with the accurate model, the CRs and SRs,

along with their aforementioned lower bounds and upper bounds

achieved through mitigating polarization mismatch, are capped

at finite values, justifying the accuracy of the near-field channel

model proposed in our work.

Fig. 10 illustrates the SR-CR regions attained by the uplink

near-field FDSAC and ISAC systems. The two points on the plot
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correspond to the rates achieved by the S-C and C-C schemes,

respectively, while the line segment connecting these points

represents the rates attainable through a time-sharing strategy

between the two schemes. The inner bound is achieved by the

lower bounds of SR and CR as specified in (63) and (68), respec-

tively. A crucial observation from the plot is that the achievable

rate region of the uplink FDSAC is wholly contained within that

of the uplink ISAC and even its inner bound, illustrating the

superiority of ISAC over FDSAC in the near-field region.

VI. CONCLUSION

This paper has investigated the S&C performance of a near-

field ISAC system for both downlink and uplink scenarios.

By incorporating the impacts of effective aperture and polar-

ization loss, a more accurate channel model than the TCMs

was employed in our investigation. The downlink ISAC was

analyzed under three scenarios: S-C design, C-C design, and

Pareto optimal design, while two different scenario based on the

interference cancellation order were considered in uplink case.

For each scenario, CRs, SRs and their high-SNR approximations

were derived. To gain further insight into our near-field channel

model, we also derived the asymptotic performance when the

UPA of the BS has an infinite number of antennas. Furthermore,

we characterized the attainable SR-CR rate regions of ISAC and

the traditional FDSAC for both downlink and uplink scenarios.

These results have demonstrated the superior S&C performance

of ISAC over FDSAC, and more importantly, have underscored

the accuracy of the proposed near-field ISAC model.

APPENDIX A

PROOF OF LEMMA 1

Vectorizing the sensing signal Ys in (17), we get

vec (Ys) =
√
phT

s wvec
(
hss

H
)
β + vec (Ns) . (A.1)

It is worth noting that the conditional MI between vec(Ys) and

β is equivalent to the capacity of a MISO Gaussian channel

with a Gaussian distributed input β ∼ CN (0, αs): ẏ = ḣβ +
ṅ, where ḣ =

√
phT

s wvec(hss
H) represents the channel vector,

and ṅ ∼ CN (0, I). Therefore, the sensing MI can be calculated

as I(Ys;β|X) = log2 det(I+ ḣḣH). By applying Sylvester’s

identity, we can further obtain

I (Ys;β|X) = log2

(

1 + ḣHḣ
)

= log2

(

1 + pLαs ‖hs‖2
∣
∣hT

s w
∣
∣
2
)

. (A.2)

Substituting (A.2) into (18), we obtain the final result.

APPENDIX B

PROOF OF THEOREM 1

Based on (7), we can calculate ‖hc‖2 as

‖hc‖2 =
AΨc

4πr2c

Ny−1

2∑

ny=−Ny−1

2

Nz−1
2∑

nz=−Nz−1
2

× Ψ2
c + (Ωc − nzεc)

2

[

(nyεc − Φc)
2 + (nzεc − Ωc)

2 +Ψ2
c

] 5
2

. (B.1)

We define the function f(y, z) � Ψ2+(Ω−z)2

[(y−Φc)2+(z−Ωc)2+Ψ2]
5
2

in the

rectangular area H = {(y, z) | −Nyεc
2 � y �

Nyεc
2 ,−Nzεc

2 �

z � Nzεc
2 } that is then partitioned into NyNz sub-rectangles,

each with equal area ε2c . Since εc � 1, we have f(y, z) ≈
f(nyεc, nzεc) for ∀(y, z) ∈ {(y, z) | (ny − 1

2 )εc � y � (ny +
1
2 )εc, (nz − 1

2 )εc � z � (nz +
1
2 )εc}. Based on the concept of

integral, we have
∑Ny−1

2

ny=−Ny−1

2

∑Nz−1
2

nz=−Nz−1
2

f(nyεc, nzεc)ε
2
c ≈

∫∫

H f(y, z)dydz. Therefore, (B.1) can be rewritten as

‖hc‖2 =
ζΨc

4π

∫ Nzεc
2

−Nzεc
2

∫ Nyεc
2

−Nyεc
2

× Ψ2
c + (Ωc − z)2

[

(y − Φc)
2 + (z − Ωc)

2 +Ψ2
c

] 5
2

dydz. (B.2)

We can calculate the inner integral with the aid of [[34] Eq.

(2.263.3) & (2.264.5)] and then the outer integral with the aid

of [[34] Eq. (2.284.5)], which yields

‖hc‖2 =
ζ

4π

∑

y∈Yc

∑

z∈Zc

δc(y, z). (B.3)

Substituting (B.3) into (22), we obtain the final results in (23).

For the high-SNR approximation, by applying the fact that

limx→∞ log2(1 + x) ≈ log2 x to (23), we can easily get (25).

APPENDIX C

PROOF OF THEOREM 2

Following steps similar to those in Appendix B, we can obtain

∥
∥h̄c

∥
∥2 =

ζΨc

4π

∫ Nzεc
2

−Nzεc
2

∫ Nyεc
2

−Nyεc
2

× (y2 + z2 − 2Φcy − 2Ωcz + 1)−
3
2 dydz. (C.1)

We can calculate the inner integral with the aid of [34, Eq.

(2.264.5)] and then the outer integral with the aid of [34,

Eq. (2.284.5)], which yields the results of (28). The asymp-

totic results for Ny, Nz → ∞ can be derived based on

limy,z→∞ arctan( yz

Ψc

√
Ψ2

c+y2+z2
) = π

2 .

APPENDIX D

PROOF OF THEOREM 5

The optimal solution of problem (51) can be obtained from

the Karush-Kuhn-Tucker (KKT) condition as follows:

{

∇ (−R) + λ∇
(

‖w‖2 − 1
)

+ μ1∇f1 + μ2∇f2 = 0, (D.1)

μ1f1 = 0, μ2f2 = 0, μ1 � 0, μ2 � 0, (D.2)

where f1 = 2(1−σ)R − 1− p|hT

cw|2, f2 = 2σLR − 1−
pξ2|hT

s w|2 and λ, μ1, μ2 are real Lagrangian multipliers.
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From (D.1) and the constraint ‖w‖2 = 1, we obtain

⎧

⎪⎪«

⎪⎪¬

μ1phch
H

c w + μ2pξ
2hsh

H

s w = λw, (D.3)

μ1p
∣
∣hT

cw
∣
∣2 + μ2pξ

2
∣
∣hT

s w
∣
∣2 = λwHw = λ, (D.4)

μ12
(1−σ)R (1− σ) ln 2 + μ22

σLRσL ln 2 = 1. (D.5)

It follows from (D.5) that μ1 and μ2 cannot be 0 at the same

time. Subsequently, we discuss three cases as follows.

1) μ1 > 0 & μ2 = 0

In this case, we have

⎧

⎪⎪⎪«

⎪⎪⎪¬

μ1phch
H

c w = λw, (D.6)

μ1p
∣
∣hT

cw
∣
∣2 = λ, (D.7)

μ12
(1−σ)R (1− σ) ln 2 = 1, (D.8)

f2 = 0 ⇒ p
∣
∣hT

cw
∣
∣2 = 2(1−σ)R − 1. (D.9)

According to (D.9), to maximize R, we can obtain the optimal

beamforming vector as w�
σ = wc, which is followed by

R� =
1

1− σ
log

(

1 + p ‖hc‖2
)

=
Rc

d,c

1− σ
. (D.10)

Under this circumstance, we have Rd,s = Rc
d,s � σR�, which

yields σ ∈ [0,
Rc

d,s

Rc
d,c+Rc

d,s
].

2) μ1 = 0 & μ2 > 0

Following the similar steps in the first case, we can obtain

w�
σ = ws and R� =

Rs
d,s

σ
, for σ ∈ [

Rs
d,s

Rs
d,c+Rs

d,s
, 1].

3) μ1 > 0 & μ2 > 0

In this case, we have

{

f1 = 0 ⇒ p
∣
∣hT

cw
∣
∣2 = 2(1−σ)R − 1,

f2 = 0 ⇒ pξ2
∣
∣hT

s w
∣
∣2 = 2σLR − 1.

(D.11)

From (D.3), we can write w as follows:

w =
μ1ph

H

c w

λ
hc +

μ2pξ
2hH

s w

λ
hs � ahc + bhs. (D.12)

Substituting (D.12) into (D.3) gives

μ1p

(

‖hc‖2 +
b

a
hH

c hs

)

= μ2pξ
2
(

‖hs‖2 +
a

b
hH

s hc

)

= λ,

(D.13)

where a
b
= μ1χ

−1

μ2ξ2e
−j∠(hH

chs)
is obtained according to (D.11). By

combining (D.13) and (D.5), we can derive the expressions

of μ1, μ2 and λ. Substituting these expressions into (D.4), we

can obtain the (53) for R. Since the left-hand side of (53) is a

monotonic function with respect to R, ranging from 0 to ∞, and

the right-hand side is non-negative, a solution of the equation

can be definitely found, which is followed by the results of w�
σ .

APPENDIX E

PROOF OF COROLLARY 9

The attainable SR-CR regions achieved by w�
σ and wτ are

given by

Cσ={(Rs,Rc) |Rs∈ [0,Rσ
s ] ,Rc∈ [0,Rσ

c ] , σ∈ [0, 1]} , (E.1)

Cτ ={(Rs,Rc) |Rs∈ [0,Rτ
s ] ,Rc∈ [0,Rτ

c ] , τ ∈ [0, 1]} , (E.2)

where (Rσ
s ,Rσ

c ) and (Rτ
s ,Rτ

c ) denote the rate pairs achieved by

w�
σ and wτ , respectively. Since Cσ encompasses all achievable

rate pairs, we have Cτ ⊆ Cσ . Furthermore, because w�
σ is the

linear combination of hc and hse
−j∠ψ with non-negative real

coefficients, and wτ can represent any arbitrary linear combina-

tion of hc and hse
−j∠ψ with non-negative real coefficients, we

have Cσ ⊆ Cτ . Consequently, we obtain Cσ = Cτ , leading to the

results presented in Corollary 9.

APPENDIX F

PROOF OF THEOREM 6

Firstly, We define an auxiliary region as follow:

Ca =
{
(Rs,Rc)|Rs∈

[
0,Rς

a,s

]
,Rc∈

[
0,Rς

a,c

]
, ς∈[0, 1]

}
,

(F.1)

where Rς
a,s and Rς

a,c are, respectively, defined as

Rς
a,s =

1
L
log2(1 + ςpLαs‖hs‖4) and Rς

a,c = log2(1 + (1−
ς)p‖hc‖2). As Ca is achieved by allocating power separately for

communication and sensing while utilizing the entire bandwidth

for each purpose, we have Cd,f ⊆ Ca. It noteworthy that Rς
a,s

monotonically increases with ς , while Rς
a,c monotonically

decreases with ς . When ς = 0, we have R0
a,c = Rc

d,c = R0
d,c

and R0
a,s = 0 < Rc

d,s = R0
d,s. When ς = 1, we have

R1
a,s = Rs

d,s = R1
d,s and R1

a,c = 0 < Rs
d,c = R1

d,c. Therefore,

it is easily shown that Ca ⊆ Cd,i. Consequently, we obtain

Cd,f ⊆ Ca ⊆ Cd,i.

APPENDIX G

PROOF OF THEOREM 7

Substituting (12) and (16) into (20), the received signal of the

BS can be written as Y = βhsh
T

s wsHs + Zc. Vectorizing the

signal, we have

vec (Y) =
√
phT

s wvec
(
hss

H

s

)
β + zc, (G.1)

where zc = vec(Zc). By regarding (G.1) as a MISO channel

model with a zero-mean Gaussian noise zc, the maximum SR

with w = ws can be calculated as follows:

Rc
c,s=

1

L
log2

[

1+αsps ‖hs‖2 vecH
(
hss

H

s

)
R−1

c vec
(
hss

H

s

)]

,

(G.2)

whereRc = E{zczHc }. Since we haveE{scsHc } = IL andNu ∼
CN (0, I), Rc is a block diagonal matrix composed of L blocks

of A=pchch
H

c +IN . Thus, (G.2) can be rewritten as

Rc
c,s =

1

L
log2

(

1 + psLαs ‖hs‖2 hH

s A
−1hs

)

. (G.3)
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By applying the Woodbury matrix identity, we can obtain

A−1=
(
pchch

H

c + IN
)−1

= IN − puhc

(

1+pc ‖hc‖2
)−1

hH

c .

(G.4)

Substituting (G.4) into (G.3) yields the results in Theorem 7.

APPENDIX H

PROOF OF THEOREM 8

Since the CR remains constant across all time slots, with-

out loss of generality, we focus on the lth time slot with

l ∈ {1, . . . , L}. Under the S-C design, to reach the optimal SR,

we have w = ws, and thus the received signal of BS at lth time

slot is given by

yl =
√
pchcsc,1 +

√
pβ ‖hs‖hsss,l + nu,l

︸ ︷︷ ︸

zs,l

, (H.1)

where zs,l is a zero-mean Gaussian noise. In this case, the

maximum achievable CR is calculated as follows:

Rs
c,c = log2

(
1 + pch

H

c R
−1
s hc

)
, (H.2)

where Rs = E{zszHs } = psαs‖hs‖2hsh
H

s + IN . By applying

the Woodbury matrix identity, R−1
s can be written as

R−1
s = IN − psαs ‖hs‖2 hs

(

1 + psαs ‖hs‖4
)−1

hH

s . (H.3)

Substituting (H.3) into (H.2) yields the results in Theorem 8.
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