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Sphere Packing Analysis for Performance
Trade-off in Joint Communications and
Sensing-Part I: General Principle

Husheng Li, Zhu Han, H. Vincent Poor

Abstract—Joint communications and sensing (JCS) provides
an effective approach to enhance the spectral efficiency of
wireless systems. When integrating these historically indepen-
dent functions in the same waveform, both communication
and sensing may suffer from performance degradation, thus
resulting in a trade-off between their performances. A funda-
mental question is how to obtain bounds for the communication-
sensing trade-off in JCS. In this paper, a geometric approach is
adopted, namely evaluating the volume of a feasible waveform
set given the tolerable performance degradation of sensing
and then bounding the number of possible communication
codewords using the sphere packing methodology. In particular,
mathematical tools in high-dimensional geometry are leveraged
for the volume calculation in the first of this paper. Applications
for concrete sensing performance metrics will be left to the
second part of the paper.

I. INTRODUCTION

In recent years, joint communications and sensing (JCS)
has received substantial attention due to the potential appli-
cations in 6G wireless networks and various cyber physical
systems (CPSs). In JCS, both functions of communications
and sensing are accomplished via the emission of the same
waveform, thus saving significant power and spectrum. A
convenient methodology is to reuse existing communication
or sensing waveforms, such as orthogonal frequency division
multiplexing (OFDM) and frequency modulation continuous
wave (FMCW). For example, OFDM communication signal
with modulating data (known to the JCS transceiver) can
be considered as an OFDM radar waveform, while the
parameters (e.g., the chirp rate) of FMCW radar can be
modulated for conveying communication messages.

However, due to the conflict between the purposes of
communications and sensing, there exists a trade-off between
their performances, which has been studied by the first author
[1]-[3] and other researchers [4]-[7]. Therefore, existing
communication or sensing waveforms may not achieve the
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Fig. 1: Level sets and sphere packing.

optimal performance since they are optimized for individual
functions. Hence, in this paper, we study dedicated wave-
forms designed for JCS, which take the functional trade-
off between communications and sensing into account. It is
important to find bounds for performance metrics, such as
the communication data rate, and ranging mean square error
(MSE) or the ambiguity function (AF) for sensing, which
can provide performance upper bounds and insights for the
design of practical JCS waveforms.

To explicitly quantify the trade-off between communica-
tions and sensing in JCS, we use a geometric viewpoint.
When we fix a value for the performance of sensing, the
corresponding waveforms achieving the performance form a
manifold in Euclidean space. Even the optimal waveform is
not necessarily unique. For example, when the performance
metric is the integrated sidelobe level (ISL) [8] in the
autocorrelation function, which is expected to be small in
order to reduce possible confusion between sidelobes and
weak targets, the signal, as a vector, can be multiplied by a
phase shift, without the loss of ISL performance. Therefore,
the manifold of optimal sensing waveform is [0, 27], which
allows phase shift keying (PSK) for communications. For
the general case, the waveforms of the same performance
metric form a level set, while the waveforms satisfying a
performance guarantee, as the union of level sets, form a
manifold of nonzero volume. Then, the data rate of communi-
cations is dependent on the volume of the sensing waveform
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manifold. The greater the manifold volume is, the worse
the sensing performance guarantee is, while more codewords
with prescribed separation distance can be squeezed into
the sensing waveform manifold, thus yielding a higher data
rate. Using the sphere packing argument [9], bounds can be
obtained for the communication data rate, given a sensing
performance bound, and thus characterizing the performance
trade-off between communications and sensing, as illustrated
in Fig. 1. This geometric analysis directly relates data com-
munication and radar sensing performance metrics, without
the assumption of infinite codeword length in information
theoretic argument, thus benefiting both fundamental research
and practical interest.

The major challenge is how to evaluate the volume of the
sensing waveform manifold. In the first part of this two-part
paper, we will propose a generic framework for evaluating
the volume of the feasible sensing waveform set, which will
be applied to concrete sensing performance metrics in the
second part of the paper.

The remainder of this paper is organized as follows. In
Section II, existing researches related to this paper are briefly
discussed. Then, the system model is introduced in Section
III. The main part of this paper, namely the geometric
analysis of the sensing waveform manifold and the generic
principle of volume evaluation, is introduced in Section IV.
Finally the numerical results and conclusions are given in
Sections V and VI, respectively.

II. RELATED WORKS

Comprehensive surveys on the coexistence of communica-
tions and radar can be found in [10]-[14]. There have been
substantial excellent studies on the fundamental performance
evaluation of JCS. A rate-distortion theoretic argument is
employed in [15] in a similar manner to the traditional rate-
distortion theory for communications. In [16], [17], a multiple
access channel is used to model the co-existence of com-
munications and sensing, thus assessing the corresponding
rate region. A related study on joint data transmission and
channel state estimation can be found in [18]. The complexity
analysis of the electromagnetic (EM) field is used to evaluate
the degrees of freedom (DoF) of the field, which characterizes
the trade-off between communications and sensing [3], [19].
Other studies on the trade-off between communications and
sensing in JCS have been carried out; e.g., the conflict
between the deterministic sensing waveform and random
communication messages [6] and the compromise between
the Cramér-Rao bound of sensing and the error exponent
of communications [7]. Note that the concept of sphere
packing has been employed in [4], [20] for JCS. However, the
arguments therein are more qualitative, without an analytic
calculation of the volumes.
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Fig. 2: Fast time and slow time data matrix.

III. SYSTEM MODEL

In this section, we introduce the system model of JCS,
without specifying the detailed schemes of modulation and
coding.

A. Signal Model

For simplicity, we consider only ranging for the purpose
of sensing. The proposed methodology in this paper can
be extended to the estimation of angle of arrivals (AoA)
and Doppler frequency shift, despite different details of
calculations. The continuous-time signal within one pulse
is denoted by z(t). We assume N samples of x(t) within
one pulse, which are called chips and are denoted by x =
(21, ...,ox)T. The total available transmit power (normalized
by the pulse duration) is denoted by FP.. We assume that
E|[||x||3] = P,. Note that the instantaneous value [x||3
is not necessarily P;. The chip period is denoted by 7.
Therefore, the signal bandwidth is approximately given by
W = T% The waveform x is a function of the communication
message. The frequency-spectrum signal, namely the Fourier
transform of the time-domain signal x, is denoted by X (jw)
or the discrete Fourier transform X = (X3,...,Xy), for
continuous and discrete cases, respectively. As illustrated in
Fig. 2, we consider M successive pulses along the slow time
dimension. Therefore, the fast time (chips) and slow time
(pulses) dimensions form a 2-dimensional matrix, over which
the communication message is encoded, and the waveforms
within different pulses could be different. The signal within
the data matrix is denoted by X = (x1,...,Xps), OF equiva-
lently X = (Xl, ,XM)

We further assume that there are L distinct 2-dimensional
waveforms for transmission. Each time the JCS transceiver
selects one waveform to transmit, thus sending R = log, L
bits. Therefore, each waveform can be considered as a code-
word for communications, while the ensemble of waveforms
corresponds to the codebook. For simplicity, we assume a
single antenna at the transmitter and receiver. The extension
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to MIMO cases needs nontrivial additional studies, which we
plan to study in future work.

B. Performance Metrics

1) Communications: The performance of communications
can be characterized by the data rate R and error probability
Pe. When the Euclidean distance between two codewords
(sensing waveforms) is d, while the noise is Gaussian with
signal-to-noise ratio (SNR) ~, the error rate p. of these two
codewords is given by p. = @ (@ .

2) Sensing: In this paper, we consider the following two
performance metrics of sensing:

o Ambiguity Function (AF): For single-antenna signals
(thus being scalars), the performance of radar sensing
is characterized by the AF proposed by Woodward [8],
which is defined as

x(r,v) = / z(t)z*(t — 7)e 72T g, (1)
where z is the continuous-time transmitted scalar signal,
T is the time delay and v is the Doppler-shift. The
integral for continuous-time signal can be replaced by
summation for discrete-time signal. The AF is expected
to be peaky at the origin, and the sidelobes should
be made as small as possible, in order to reduce the
confusion of target. In this paper, we consider only the
task of ranging. It simplifies the analysis in the discretize
signals. The autocorrelation function of the discrete-time
signal is given by

N—m
rlm] = Z Ty, - (2)
n=1

Note that r[0] = P;. The normalized ISL [8] is defined
as

> v—1) IrIm][* = [r[0]|?

<= RO ’

3)

which is expected to be as low as possible.

o SNR: In the performance metric of ISL, the impact of
noise is not taken into account. Therefore, an alternative
and useful performance metric is the SNR, which is
proportional to | P(jw)|H (jw)|?dw. Then, the optimal
PSD of the transmitted signal is given by
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Fig. 3: Projections to subspaces.

P(jw). The discrete version of the optimal power allo-
cation is
H,|?P,
Pt = R 5)
Zm:l Hm‘
Note that other possible performance metrics include MSE
[21] and signal-to-clutter ratio [22]. The proposed framework
also applies to these performance metrics.

IV. STRUCTURE OF FEASIBLE WAVEFORM SET

In this section, we discuss the structure of the feasible
waveform set, in which the codewords can be selected.
The clarified geometric structure will be employed in the
concrete analysis in Part 2 of this paper. We notice that the
signal structure has a two-layer structure, in which the higher
layer is the power allocation over different frequencies (or
subcarriers in the terminology of OFDM) and the lower layer
is the detailed signaling within each subcarrier, as illustrated
in Fig. 3.

A. Fixed Power Allocation

Given a power allocation to each subcarrier
{P;,n}n=1,...,~n. The corresponding codeword on subcarrier
n is denoted by X = {Xmn}tm=1,.. Mmn=1,. ~N, Where
the coding is over the whole fast time and slow time data
matrix. The projections of each codeword X as a vector
to subspace X,, = (X14,..., Xpn) (the n-th subcarrier),
denoted by P,(X), falls on the M-dimensional complex
sphere SMMP , as illustrated in Fig. 3.

t,n

H(iw)l2 Then, the feasible waveform set is given by the product of

P, topt (Jw) = wl) t (4)  the M-dimensional spheres corresponding to each subcarrier:

JH(i$)[*dé ’

whose optimality is obviously guaranteed by the Xz = {Z|Z € 3%,7%@) = Si\;m, n=1,.., N}
Cauchy-Schwartz inequality. Note that the PSD P(jw) N '

is in the average sense. For each communication symbol _ H SM )

(radar pulse), the instantaneous PSD is not necessarily oot V/MP; .’
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Fig. 4: An illustration of the product waveform set.

Signal space

An illustration of the product waveform set is illustrated in
Fig. 4, where the the dimensions of subcarriers 1 and 2 are 2
and 1, respectively, thus resulting in a 3-dimensional cylinder.

The volume of complex sphere & i”/fm is equal to that of

real sphere SQMMP . Therefore, the volume of the feasible

t,n

waveform set X, whose real-valued dimension is 2M N, is
the product of each signal sphere of each subcarrier, given
by the standard formula of sphere volume:

N
MMNTTPen)™. )
n=1

,/TIMN

V&) = G

B. Flexible Power Allocation

For the case of multiple possible power allocations, the
product structure of the feasible waveform set is no longer
valid. An illustration for two possible power allocations is
given in Fig. 5. The corresponding feasible waveform set
is the union of two cylinders. When the possible power
allocation is a non-discrete subset, the feasible waveform
set, as the union of all feasible waveform sets corresponding
to each power allocation, could be very complicated, which
makes the explicit description prohibitive, needless to say
the volume evaluation. Therefore, we have to consider a
manipulable subset of the entire feasible waveform set.

To this end, we consider the sphere packing in the space
of power allocation, as illustrated in Fig. 6. For the feasible
set of power allocation denoted by X p, we consider a || - ||;
sphere packing with radius 2 a7 Then, we consider two power
allocations P! = (P},,..., P! y) and P* = (P}, ..., P2y)
in different spheres, which satisfy

// Power
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Fig. 5: Waveform sets corresponding to two different power
allocations.
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Fig. 6: Sphere packing in the power allocation space.

Subcarrier 2

We assume that A > 0, which is difficult to prove rigorous
but can be justified by numerical results.

Then, for two waveforms X; and X, satisfying the power
allocations P! and P2, respectively, we have

=

M
”Xl*XQ”% = | mn mn|2

3
ﬂ‘
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,n

Y

(10)

M)\Z| t,n

where the first inequality is due to the triangle inequality and
the last inequality is due to (8). This implies

Pt2,n| Z d27

N X1 — Xafl2 > d. an
1 2 &
Z |Pen = P tm' = MN ®) Then, we can design one sub-codebook for each sphere in
n=t ] the power allocation space and use the union of the sub-
where the parameter A is defined as codebook as the final codebook for JCS. If we guarantee
P P2 that the codewords in each sub-codebook are separated by a
. n 1 ‘ Vitn T\ i Euclidean distance of at least d, then the d-separation also
A= ©)
Z N ptl pt2n| holds for the final codebook.
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C. Sphere Packing: Gilbert—Varshamov Bound

We only derive lower bounds for the codebook size using
a sphere packing argument, in a similar manner to the
Gilbert—Varshamov bound [9]. To this end, we denote by
dpmin the minimum Euclidean distance between any pair
of codewords. The number of codewords in the maximum
codebook is denoted by L(dmin). Then, any point in the
waveform space should be contained within the sphere cen-
tered at a codeword and of radius d,,;,. Otherwise, we can
add this point to the codebook without violating the definition
of dpin, thus conflicting with the assumption of maximum
codebook. Hence, the volume sum of the spheres centered
at the codewords and with radius d,;, is greater than the
volume of the feasible waveform set.

1) Fixed Power Allocation: For the fixed power allocation,
we obtain the following lower bound for the codebook size:
V()

L(dmin) > W]\[)7

12
Z V(s (12)

for which we need to evaluate the total volume X, and the
volume of the 2M N-dimensional' real sphere SzM N with
radius dppin.

2) Flexible Power Allocation: For the flexible power allo-
cation, we first carry out s;)here packing for the power allo-
cation space with radius

d2.
o 2. The number of such spheres

V(Er)

is lower bounded by . For each N-dimensional

v(sw,

min

sphere in the power allocation space, we design a sub-
codebook with minimum distance dy,;,. The inequality (11)
guarantees that the minimum distance of the final codebook,
as the union of the sub-codebooks, is lower bounded by dy;iy.
Hence, the lower bound of the codebook size is given by

V(s Vs,
|codebook| > (Zr) (QMJ)V . (13)
( N )V(Sd ')
v (sh,
MA
The sets 3, S,  and S3 are spheres, whose volumes

can be easily calculated. The major challenge is the compu-
tation of the volume of the feasible power allocation space.

D. Volume of Generic Intersections

For a generic performance metric 6 of sensing (the greater,
the better), as a function of the power allocation P, the
feasible power allocation set F is defined by the level set
of 6:

F = {P|9(P) 2 aopt - A0}7 (14)

IThe M N-dimensional complex sphere is 2M N-dimensional in the real
space.
2Here we assume that the performance degradation 8+ is sufficiently small

and each optimal power allocation Ptoff is sufficiently large, such that all
the power allocations in each sphere are nonnegative.

Performance of sensing (e.g., SNR)

Fig. 7: Intersection of level set and power constraint.

where A6 is the tolerable performance degradation of sens-
ing. Meanwhile, the total transmit power should not change.
Therefore, we have the linear constraint 25:1 P, =PF
as a hyperplane P. Thus, the volume of the feasible power
allocation set is the intersection of the level set F and the
hyperplane P:

s, =FNP. (15)

For the volume evaluation of the interaction of a set
and a hyperplane, we need the following theorem which
provides a formula for calculating the the volume using
Fourier transform. The volume calculation of intersections
between hyperplanes and generic convex bodies can also be
found in [23].

Theorem 1 (Theorem 3.2 in [23]). For every & =
(&1, ..,&,) € S"7L, where S"71 is the n — 1-dimensional
real sphere, and every q > 0, the volume of the intersection
of the n-dimensional sphere By with norm || - ||, and the
hyperplane £ perpendicular to ¢ is given by

Vol,_1(B} NEX)
q Rt
= t&)dt,  (16)
ﬂ-(nl)r‘("ql>/0 }};[1%1( k)

where vy, is the Fourier transform of the function e I'l",

V. NUMERICAL RESULTS

We consider a JCS system in the 2.5GHz band with a
bandwidth of 400MHz. We assume that the target is 100m
away from the JCS transceiver. The target is assumed to be a
ball with radius of 0.3m. Since the target size is comparable
with the wavelength (0.12m at 2.5GHz), the reflection of the
target is frequency-selective.

We evaluated the value of A defined in (9), which is
difficult to assess analytically. For different levels of deviation
from the optimal power allocation, quantified by the power
allocation variance, we randomly sample 100,000 sets of
power allocation and evaluate the value of A. The results
are shown in Fig. 8, where we empirically observe that a
larger deviation results in greater values of positive .
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Fig. 9: Proportion of inner sphere for different values of M. 13
In the theoretical analysis, we relaxed the transmit power
constraint, such that the transmitter does not necessarily [14]
transmit with peak power. The argument is that most of
the volume (thus the codewords) is concentrated near the [i5]
boundary. To verify this assumption, we plotted the volume
ratio of waveform set with power (1 — n)P; and P, versus
different values of 7, when 7 is very small. Figure 9 shows [i6]
that the number of codewords not close to the boundary is
negligible, unless M is small.
[17]
VI. CONCLUSIONS
In this paper, we have studied the fundamental trade-off
between communications and sensing in JCS systems. We [18]
have started from the set of optimal sensing waveforms,
and discussed the volume of optimal waveforms for con- |
structing the communication codebook. We have proposed
a general principle for evaluating the volume of feasible [20]
waveform set for sensing, based on which the sphere-packing
argument yields bounds for the data communication rate, [21]
thus characterizing the trade-off between communications
. . . . [22]
and sensing in JCS. The concrete computation for specific
sensing performance metrics will be left to the second part [23]
of this paper [24].
paper [24] [24]
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