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Abstract—Joint communications and sensing (JCS) provides
an effective approach to enhance the spectral efficiency of
wireless systems. When integrating these historically indepen-
dent functions in the same waveform, both communication
and sensing may suffer from performance degradation, thus
resulting in a trade-off between their performances. A funda-
mental question is how to obtain bounds for the communication-
sensing trade-off in JCS. In this paper, a geometric approach is
adopted, namely evaluating the volume of a feasible waveform
set given the tolerable performance degradation of sensing
and then bounding the number of possible communication
codewords using the sphere packing methodology. In particular,
mathematical tools in high-dimensional geometry are leveraged
for the volume calculation in the first of this paper. Applications
for concrete sensing performance metrics will be left to the
second part of the paper.

I. INTRODUCTION

In recent years, joint communications and sensing (JCS)

has received substantial attention due to the potential appli-

cations in 6G wireless networks and various cyber physical

systems (CPSs). In JCS, both functions of communications

and sensing are accomplished via the emission of the same

waveform, thus saving significant power and spectrum. A

convenient methodology is to reuse existing communication

or sensing waveforms, such as orthogonal frequency division

multiplexing (OFDM) and frequency modulation continuous

wave (FMCW). For example, OFDM communication signal

with modulating data (known to the JCS transceiver) can

be considered as an OFDM radar waveform, while the

parameters (e.g., the chirp rate) of FMCW radar can be

modulated for conveying communication messages.

However, due to the conflict between the purposes of

communications and sensing, there exists a trade-off between

their performances, which has been studied by the first author

[1]–[3] and other researchers [4]–[7]. Therefore, existing

communication or sensing waveforms may not achieve the
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Fig. 1: Level sets and sphere packing.

optimal performance since they are optimized for individual

functions. Hence, in this paper, we study dedicated wave-

forms designed for JCS, which take the functional trade-

off between communications and sensing into account. It is

important to find bounds for performance metrics, such as

the communication data rate, and ranging mean square error

(MSE) or the ambiguity function (AF) for sensing, which

can provide performance upper bounds and insights for the

design of practical JCS waveforms.

To explicitly quantify the trade-off between communica-

tions and sensing in JCS, we use a geometric viewpoint.

When we fix a value for the performance of sensing, the

corresponding waveforms achieving the performance form a

manifold in Euclidean space. Even the optimal waveform is

not necessarily unique. For example, when the performance

metric is the integrated sidelobe level (ISL) [8] in the

autocorrelation function, which is expected to be small in

order to reduce possible confusion between sidelobes and

weak targets, the signal, as a vector, can be multiplied by a

phase shift, without the loss of ISL performance. Therefore,

the manifold of optimal sensing waveform is [0, 2π], which

allows phase shift keying (PSK) for communications. For

the general case, the waveforms of the same performance

metric form a level set, while the waveforms satisfying a

performance guarantee, as the union of level sets, form a

manifold of nonzero volume. Then, the data rate of communi-

cations is dependent on the volume of the sensing waveform
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manifold. The greater the manifold volume is, the worse

the sensing performance guarantee is, while more codewords

with prescribed separation distance can be squeezed into

the sensing waveform manifold, thus yielding a higher data

rate. Using the sphere packing argument [9], bounds can be

obtained for the communication data rate, given a sensing

performance bound, and thus characterizing the performance

trade-off between communications and sensing, as illustrated

in Fig. 1. This geometric analysis directly relates data com-

munication and radar sensing performance metrics, without

the assumption of infinite codeword length in information

theoretic argument, thus benefiting both fundamental research

and practical interest.

The major challenge is how to evaluate the volume of the

sensing waveform manifold. In the first part of this two-part

paper, we will propose a generic framework for evaluating

the volume of the feasible sensing waveform set, which will

be applied to concrete sensing performance metrics in the

second part of the paper.

The remainder of this paper is organized as follows. In

Section II, existing researches related to this paper are briefly

discussed. Then, the system model is introduced in Section

III. The main part of this paper, namely the geometric

analysis of the sensing waveform manifold and the generic

principle of volume evaluation, is introduced in Section IV.

Finally the numerical results and conclusions are given in

Sections V and VI, respectively.

II. RELATED WORKS

Comprehensive surveys on the coexistence of communica-

tions and radar can be found in [10]–[14]. There have been

substantial excellent studies on the fundamental performance

evaluation of JCS. A rate-distortion theoretic argument is

employed in [15] in a similar manner to the traditional rate-

distortion theory for communications. In [16], [17], a multiple

access channel is used to model the co-existence of com-

munications and sensing, thus assessing the corresponding

rate region. A related study on joint data transmission and

channel state estimation can be found in [18]. The complexity

analysis of the electromagnetic (EM) field is used to evaluate

the degrees of freedom (DoF) of the field, which characterizes

the trade-off between communications and sensing [3], [19].

Other studies on the trade-off between communications and

sensing in JCS have been carried out; e.g., the conflict

between the deterministic sensing waveform and random

communication messages [6] and the compromise between

the Cramér-Rao bound of sensing and the error exponent

of communications [7]. Note that the concept of sphere

packing has been employed in [4], [20] for JCS. However, the

arguments therein are more qualitative, without an analytic

calculation of the volumes.
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Fig. 2: Fast time and slow time data matrix.

III. SYSTEM MODEL

In this section, we introduce the system model of JCS,

without specifying the detailed schemes of modulation and

coding.

A. Signal Model

For simplicity, we consider only ranging for the purpose

of sensing. The proposed methodology in this paper can

be extended to the estimation of angle of arrivals (AoA)

and Doppler frequency shift, despite different details of

calculations. The continuous-time signal within one pulse

is denoted by x(t). We assume N samples of x(t) within

one pulse, which are called chips and are denoted by x =
(x1, ..., xN )T . The total available transmit power (normalized

by the pulse duration) is denoted by Pt. We assume that

E[‖x‖22] = Pt. Note that the instantaneous value ‖x‖22
is not necessarily Pt. The chip period is denoted by Tc.

Therefore, the signal bandwidth is approximately given by

W = 1
Tc

. The waveform x is a function of the communication

message. The frequency-spectrum signal, namely the Fourier

transform of the time-domain signal x, is denoted by X(jω)
or the discrete Fourier transform X = (X1, ..., XN ), for

continuous and discrete cases, respectively. As illustrated in

Fig. 2, we consider M successive pulses along the slow time

dimension. Therefore, the fast time (chips) and slow time

(pulses) dimensions form a 2-dimensional matrix, over which

the communication message is encoded, and the waveforms

within different pulses could be different. The signal within

the data matrix is denoted by x̄ = (x1, ...,xM ), or equiva-

lently X̄ = (X1, ...,XM ).
We further assume that there are L distinct 2-dimensional

waveforms for transmission. Each time the JCS transceiver

selects one waveform to transmit, thus sending R = log2 L
bits. Therefore, each waveform can be considered as a code-

word for communications, while the ensemble of waveforms

corresponds to the codebook. For simplicity, we assume a

single antenna at the transmitter and receiver. The extension
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to MIMO cases needs nontrivial additional studies, which we

plan to study in future work.

B. Performance Metrics

1) Communications: The performance of communications

can be characterized by the data rate R and error probability

pe. When the Euclidean distance between two codewords

(sensing waveforms) is d, while the noise is Gaussian with

signal-to-noise ratio (SNR) γ, the error rate pe of these two

codewords is given by pe = Q
(√

γd

2

)

.

2) Sensing: In this paper, we consider the following two

performance metrics of sensing:

• Ambiguity Function (AF): For single-antenna signals

(thus being scalars), the performance of radar sensing

is characterized by the AF proposed by Woodward [8],

which is defined as

χ(τ, ν) =

∫ ∞

−∞
x(t)x∗(t− τ)e−j2πν(t−τ)dt, (1)

where x is the continuous-time transmitted scalar signal,

τ is the time delay and ν is the Doppler-shift. The

integral for continuous-time signal can be replaced by

summation for discrete-time signal. The AF is expected

to be peaky at the origin, and the sidelobes should

be made as small as possible, in order to reduce the

confusion of target. In this paper, we consider only the

task of ranging. It simplifies the analysis in the discretize

signals. The autocorrelation function of the discrete-time

signal is given by

r[m] =

N−m
∑

n=1

xnx
∗
n+m. (2)

Note that r[0] = Pt. The normalized ISL [8] is defined

as

ξ =

∑N−1
m=−(N−1) |r[m]|2 − |r[0]|2

|r[0]|2 , (3)

which is expected to be as low as possible.

• SNR: In the performance metric of ISL, the impact of

noise is not taken into account. Therefore, an alternative

and useful performance metric is the SNR, which is

proportional to
∫

P (jω)|H(jω)|2dω. Then, the optimal

PSD of the transmitted signal is given by

P
opt
t (jω) =

|H(jω)|2
∫

|H(jφ)|2dφPt, (4)

whose optimality is obviously guaranteed by the

Cauchy-Schwartz inequality. Note that the PSD P (jω)
is in the average sense. For each communication symbol

(radar pulse), the instantaneous PSD is not necessarily

Power 
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projection

1-sphere

Fig. 3: Projections to subspaces.

P (jω). The discrete version of the optimal power allo-

cation is

P
opt
t,n =

|Hn|2Pt
∑N

m=1 |Hm|2
. (5)

Note that other possible performance metrics include MSE

[21] and signal-to-clutter ratio [22]. The proposed framework

also applies to these performance metrics.

IV. STRUCTURE OF FEASIBLE WAVEFORM SET

In this section, we discuss the structure of the feasible

waveform set, in which the codewords can be selected.

The clarified geometric structure will be employed in the

concrete analysis in Part 2 of this paper. We notice that the

signal structure has a two-layer structure, in which the higher

layer is the power allocation over different frequencies (or

subcarriers in the terminology of OFDM) and the lower layer

is the detailed signaling within each subcarrier, as illustrated

in Fig. 3.

A. Fixed Power Allocation

Given a power allocation to each subcarrier

{Pt,n}n=1,...,N . The corresponding codeword on subcarrier

n is denoted by X̄ = {Xmn}m=1,...,M,n=1,...,N , where

the coding is over the whole fast time and slow time data

matrix. The projections of each codeword X̄ as a vector

to subspace Xn = (X1,n, ..., XM,n) (the n-th subcarrier),

denoted by Pn(X), falls on the M -dimensional complex

sphere SM√
MPt,n

, as illustrated in Fig. 3.

Then, the feasible waveform set is given by the product of

the M -dimensional spheres corresponding to each subcarrier:

Σx =

{

z|z ∈ SMN√
MPt

,Pn(z) = SM√
MPt,n

, n = 1, ..., N

}

=

N
∏

n=1

SM√
MPt,n

, (6)
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Fig. 4: An illustration of the product waveform set.

An illustration of the product waveform set is illustrated in

Fig. 4, where the the dimensions of subcarriers 1 and 2 are 2

and 1, respectively, thus resulting in a 3-dimensional cylinder.

The volume of complex sphere SM√
MPt,n

is equal to that of

real sphere S
2M√

MPt,n

. Therefore, the volume of the feasible

waveform set Σx, whose real-valued dimension is 2MN , is

the product of each signal sphere of each subcarrier, given

by the standard formula of sphere volume:

V (Σ) =
πMN

ΓN (M + 1)
MMN

N
∏

n=1

(Pt,n)
M . (7)

B. Flexible Power Allocation

For the case of multiple possible power allocations, the

product structure of the feasible waveform set is no longer

valid. An illustration for two possible power allocations is

given in Fig. 5. The corresponding feasible waveform set

is the union of two cylinders. When the possible power

allocation is a non-discrete subset, the feasible waveform

set, as the union of all feasible waveform sets corresponding

to each power allocation, could be very complicated, which

makes the explicit description prohibitive, needless to say

the volume evaluation. Therefore, we have to consider a

manipulable subset of the entire feasible waveform set.

To this end, we consider the sphere packing in the space

of power allocation, as illustrated in Fig. 6. For the feasible

set of power allocation denoted by ΣP , we consider a ‖ · ‖1
sphere packing with radius d2

2M . Then, we consider two power

allocations P
1 = (P 1

t,1, ..., P
1
t,N ) and P

2 = (P 2
t,1, ..., P

2
t,N )

in different spheres, which satisfy

N
∑

n=1

|P 1
t,n − P 2

t,n| ≥
d2

Mλ
, (8)

where the parameter λ is defined as

λ = inf
P

∑N

n=1

∣

∣

∣

√

P 1
t,n −

√

P 2
t,n

∣

∣

∣

2

∑N

n=1 |P 1
t,n − P 2

t,n|
. (9)

Power 

allocation

Subcarrier 1

Subcarrier 2

Signal 

space 1

Signal 

space 2

Power 

allocation 2

Power 

allocation 1

Fig. 5: Waveform sets corresponding to two different power

allocations.

Power 

allocation

Subcarrier 1 Subcarrier 1

Subcarrier 2

Subcarrier 2
Distance more

than d

Distance more

than d

Fig. 6: Sphere packing in the power allocation space.

We assume that λ > 0, which is difficult to prove rigorous

but can be justified by numerical results.

Then, for two waveforms X̄1 and X̄2, satisfying the power

allocations P
1 and P

2, respectively, we have

‖X̄1 − X̄2‖22 =

N
∑

n=1

M
∑

m=1

|X1
mn −X2

mn|2

≥
N
∑

n=1

∣

∣

∣

∣

∣

∣

√

√

√

√

M
∑

m=1

|X1
mn|2 −

√

√

√

√

M
∑

m=1

|X2
mn|2

∣

∣

∣

∣

∣

∣

2

= M

N
∑

n=1

∣

∣

∣

√

P 1
t,n −

√

P 2
t,n

∣

∣

∣

2

≥ Mλ

N
∑

n=1

|P 1
t,n − P 2

t,n| ≥ d2, (10)

where the first inequality is due to the triangle inequality and

the last inequality is due to (8). This implies

‖X̄1 − X̄2‖2 ≥ d. (11)

Then, we can design one sub-codebook for each sphere in

the power allocation space and use the union of the sub-

codebook as the final codebook for JCS. If we guarantee

that the codewords in each sub-codebook are separated by a

Euclidean distance of at least d, then the d-separation also

holds for the final codebook.
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C. Sphere Packing: Gilbert–Varshamov Bound

We only derive lower bounds for the codebook size using

a sphere packing argument, in a similar manner to the

Gilbert–Varshamov bound [9]. To this end, we denote by

dmin the minimum Euclidean distance between any pair

of codewords. The number of codewords in the maximum

codebook is denoted by L(dmin). Then, any point in the

waveform space should be contained within the sphere cen-

tered at a codeword and of radius dmin. Otherwise, we can

add this point to the codebook without violating the definition

of dmin, thus conflicting with the assumption of maximum

codebook. Hence, the volume sum of the spheres centered

at the codewords and with radius dmin is greater than the

volume of the feasible waveform set.

1) Fixed Power Allocation: For the fixed power allocation,

we obtain the following lower bound for the codebook size:

L(dmin) ≥
V (Σx)

V
(

S2MN
dmin

) , (12)

for which we need to evaluate the total volume Σx and the

volume of the 2MN -dimensional1 real sphere S
2MN
dmin

with

radius dmin.

2) Flexible Power Allocation: For the flexible power allo-

cation, we first carry out sphere packing for the power allo-

cation space with radius
d2

min

Mλ
2. The number of such spheres

is lower bounded by
V (ΣP )

V



SN

d2
min

Mλ





. For each N -dimensional

sphere in the power allocation space, we design a sub-

codebook with minimum distance dmin. The inequality (11)

guarantees that the minimum distance of the final codebook,

as the union of the sub-codebooks, is lower bounded by dmin.

Hence, the lower bound of the codebook size is given by

|codebook| ≥ V (ΣP )

V

(

SN
d2
min

Mλ

)

V (Σx)

V
(

S2MN
dmin

) . (13)

The sets Σx, SN
d2
min

Mλ

and S
2MN
dmin

are spheres, whose volumes

can be easily calculated. The major challenge is the compu-

tation of the volume of the feasible power allocation space.

D. Volume of Generic Intersections

For a generic performance metric θ of sensing (the greater,

the better), as a function of the power allocation P, the

feasible power allocation set F is defined by the level set

of θ:

F = {P|θ(P) ≥ θopt −∆θ}, (14)

1The MN -dimensional complex sphere is 2MN -dimensional in the real
space.

2Here we assume that the performance degradation δγ is sufficiently small

and each optimal power allocation P
opt

t,n is sufficiently large, such that all
the power allocations in each sphere are nonnegative.
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Fig. 7: Intersection of level set and power constraint.

where ∆θ is the tolerable performance degradation of sens-

ing. Meanwhile, the total transmit power should not change.

Therefore, we have the linear constraint
∑N

n=1 Pt,n = Pt

as a hyperplane P . Thus, the volume of the feasible power

allocation set is the intersection of the level set F and the

hyperplane P:

Σx = F ∩ P. (15)

For the volume evaluation of the interaction of a set

and a hyperplane, we need the following theorem which

provides a formula for calculating the the volume using

Fourier transform. The volume calculation of intersections

between hyperplanes and generic convex bodies can also be

found in [23].

Theorem 1 (Theorem 3.2 in [23]). For every ξ =
(ξ1, ..., ξn) ∈ S

n−1, where S
n−1 is the n − 1-dimensional

real sphere, and every q > 0, the volume of the intersection

of the n-dimensional sphere Bn
q with norm ‖ · ‖q and the

hyperplane ξ⊥ perpendicular to ξ is given by

V oln−1(B
n
q ∩ ξ⊥)

=
q

π(n− 1)Γ
(

n−1
q

)

∫ ∞

0

n
∏

k=1

γq(tξk)dt, (16)

where γq is the Fourier transform of the function e−|·|q .

V. NUMERICAL RESULTS

We consider a JCS system in the 2.5GHz band with a

bandwidth of 400MHz. We assume that the target is 100m

away from the JCS transceiver. The target is assumed to be a

ball with radius of 0.3m. Since the target size is comparable

with the wavelength (0.12m at 2.5GHz), the reflection of the

target is frequency-selective.

We evaluated the value of λ defined in (9), which is

difficult to assess analytically. For different levels of deviation

from the optimal power allocation, quantified by the power

allocation variance, we randomly sample 100,000 sets of

power allocation and evaluate the value of λ. The results

are shown in Fig. 8, where we empirically observe that a

larger deviation results in greater values of positive λ.
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In the theoretical analysis, we relaxed the transmit power

constraint, such that the transmitter does not necessarily

transmit with peak power. The argument is that most of

the volume (thus the codewords) is concentrated near the

boundary. To verify this assumption, we plotted the volume

ratio of waveform set with power (1 − η)Pt and Pt versus

different values of η, when η is very small. Figure 9 shows

that the number of codewords not close to the boundary is

negligible, unless M is small.

VI. CONCLUSIONS

In this paper, we have studied the fundamental trade-off

between communications and sensing in JCS systems. We

have started from the set of optimal sensing waveforms,

and discussed the volume of optimal waveforms for con-

structing the communication codebook. We have proposed

a general principle for evaluating the volume of feasible

waveform set for sensing, based on which the sphere-packing

argument yields bounds for the data communication rate,

thus characterizing the trade-off between communications

and sensing in JCS. The concrete computation for specific

sensing performance metrics will be left to the second part

of this paper [24].
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