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Abstract—The technology of joint communications and sens-
ing (JCS) is expected to prevail in 6G wireless networks.
There exists a performance trade-off between the functions of
communications and sensing in JCS. One effective approach
to analyze the trade-off in JCS is to consider the level sets of
a given performance metric of sensing as the signaling space
of communication codewords. Then, performance bounds can
be obtained for communications using the approach of sphere
packing. The principle for generic sensing performance metric
has been studied in the first part of this paper. In the second
part of this paper, the concrete cases of sensing performance
metrics, namely the signal-to-noise ratio (SNR) and integrated
sidelobe level (ISL), are studied. The problems are turned into
the volume evaluation for the intersection of a (elliptic) sphere
(the quadratic approximation of the level set) and a hyperplane
(the constraint on the total transmit power). They are solved by
using the theory of Fourier-transform-based volume evaluation
of convex sets. It is found that the optimal waveform is not
unique, thus providing free lunch (although not plenty of) for
communications. Another finding is that the communication
data rate increases logarithmically with respect to the sensing
performance metric degradation.

I. INTRODUCTION

In joint communications and sensing (JCS), both functions

are carried by the same waveform: the forward propagation

of the electromagnetic (EM) wave sends communication

messages to the destination; upon significant reflectors, the

EM wave brings back the environment information for

sensing in the backward propagation. JCS is expected to

substantially improve the spectrum and power efficiency, thus

being a promising technology in 6G wireless communication

networks.

Due to the different goals and different preferences, there

exist conflicts between communications and sensing in JCS.

It is of critical importance to identify and assess the conflicts

and the corresponding performance trade-offs between the
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Fig. 1: Intersection of convex set.

two functions. An effective approach for evaluating the per-

formance trade-off in JCS is to identify the set of waveforms

that achieve a certain performance requirement for sensing

(e.g., given a tolerance on the sensing performance degrada-

tion due to data communications). Then, the communication

data rate is determined by the number of codewords (namely

the selected transmit waveforms) in the set. The sphere-

packing approach is effective [1] for bounding the number

of codewords by evaluating the volume of the signal space.

In the first paper of this paper [2], we have proposed a

generic principle for quantifying the communication-sensing

trade-off in JCS. The problem boils down to the volume

evaluation of the intersection of a (elliptic) sphere (the

quadratic approximation of the level set) and a hyperplane

(the constraint on the total transmit power). The first study of

this kind was credited to Laplace, who calculated the volume

of a unit cube in R
n intersected by a central hyperplane

perpendicular to the vector
(

1√
n
, ..., 1√

n

)

, as illustrated in

Fig. 1. Besides many peculiar phenomena of this volume

evaluation in the high dimensional space, it is found that such

a kind of problems is deeply related to Fourier analysis [3]. In

this second part of this paper, we use the above machinery to

study the communication-sensing trade-off, when the sensing

performance is evaluated using signal-to-noise ratio (SNR)

and integrated sidelobe level (ISL). It is found that the

optimal waveform is not unique, thus providing free lunch

(although insufficient) for communications. Another finding

is that the communication data rate increases logarithmically
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with respect to the sensing performance metric degradation.

The remainder of this paper is organized as follows. The

system model is introduced in Section II. Then, the analysis

on the sensing performance metrics of SNR and ISL is

carried out in Sections III and IV, respectively. The numerical

results and conclusions are provided in Sections V and VI,

respectively.

II. SYSTEM MODEL

The system model has been introduced in the first part of

this paper [2]. Here we restate it for self-containedness. The

continuous-time signal is denoted by x(t), whose N samples

(fast time chips) of x(t) within one pulse are denoted by x =
(x1, ..., xN )T . The transmit power, normalized by the pulse

duration, is denoted by Pt, while the power allocated to each

sub-carrier is denoted by {Pt,n}n=1,...,N . The total available

bandwidth is W . We consider a data matrix that consists of

M successive pulses (the slow time dimension). The signal

within the data matrix is denoted by the time domain signal

vectors x̄ = (x1, ...,xM ), or equivalently the frequency

domain vectors X̄ = (X1, ...,XM ). We assume that the

reflection of the radar target is frequency-selective. The

frequency response is denoted by H(jω), whose discrete-

time samples are given by Hk = H(j2π(fc+(k−1)W/N)),
k = 1, ..., N .

III. GEOMETRIC TRADE-OFF ANALYSIS: SNR

In this section, we consider the SNR as the performance

metric of sensing and analyze the sphere-packing-based per-

formance bounds for communications.

A. Optimal Waveforms

We notice that only the power spectral density (PSD) is

specified for the optimal waveform and the phase spectrum is

free for selection. Therefore, for maximizing SNR, it is more

convenient to carry out coding independently at different

frequencies (as subcarriers in OFDM). According to Eq. (5)

in the first part of this paper [2], we require

P opt
t,n = E

[

|Xmn|2
]

∝ |Hn|2. (1)

Therefore, the signal can be considered as in a complex

sphere SMN√
MPt

⊂ C
MN with dimension MN and radius√

MPt
1 (since the sum pulse-duration-normalized power of

the M symbols is MPt). Hence, the set of optimal waveforms

for sensing is given by (where Pn is the projection to the

signal over the n-th subcarrier)

Σx =

{

z|z ∈ SMN√
MP

opt
t

,Pn(z) = SM
√

MP
opt
t,n

, n = 1, ..., N

}

=

N
∏

n=1

SM
√

MP
opt
t,n

, (2)

1Here, we allow transmitting without peak rate. Due to the concentration
phenomenon, most of the volume will be concentrated close to the surface,
when MN is sufficiently large.

which is essentially the product of N M -dimensional com-

plex balls in C
M with radius

{

√

MP opt
t,n

}

n=1,...,N

.

The volume of complex sphere SM
√

MP
opt
t,n

is equal to that of

real sphere S
2M
√

MP
opt
t,n

. Therefore, the volume of the feasible

waveform set Σx, whose real-valued dimension is 2MN , is

given by the standard formula of sphere volume:

V (Σx) =
πMN

ΓN (M + 1)
MMN

N
∏

n=1

(P opt
t,n )M . (3)

B. Suboptimal Waveforms

Now, we allow some slight deviation from the optimal

power allocation
{

P opt
t,n

}

n=1,...,N
that maximizes the sensing

SNR.

1) Constraint: We denote by Pt,n the transmit power

allocated to subcarrier n, and define the power deviation

δPt,n = P opt
t,n − Pt,n the deviation from the optimal power

allocation, which is assumed to be small. Note that power

deviation δPt,n should satisfy the following constraint on the

deviation of transmit power:

N
∑

n=1

δPt,n = 0, (4)

due to the invariance of total transmit power.

2) Volume Analysis: Since the SNR is given by

γ =
1

N0W

N
∑

n=1

|Hn|2Pt,n, (5)

where N0 is the noise PSD, and the optimal SNR is given

by

γopt =
1

N0W

∑N
n=1 |Hn|4Pt
∑N

n=1 |Hn|2
, (6)

the level set corresponding to the SNR degradation is then

given by

N
∑

n=1

|Hn|2δPt,n ≤ N0Wδγ, (7)

where δγ is the maximal tolerable SNR degradation.

Therefore, the set of feasible {δPt,n}n=1,...,N that result

in tolerable SNR degradation is given by

ΣP = PN−1 ∩ CN , (8)

where the subscript N − 1 or N indicates the corresponding

dimension, PN−1 = 1
⊥
N (1N = (1, 1, 1, ..., 1)) is a hyper-

plane2, and CN is a convex polytope defined as

CN =

{

N
∑

n=1

|Hn|2δPt,n ≤ N0Wδγ, P ∗
t,n − δPt,n ≥ 0

}

. (9)

2
x
⊥ means the hyperplane perpendicular to the vector x.
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The volume evaluation of the intersection of the hyperplane

PN−1 and the convex polytope CN is difficult, due to the

lack of symmetry and the complexity of the face structure.

Therefore, we consider deriving a lower bound by noticing
∣

∣

∣

∣

∣

N
∑

n=1

|Hn|2δPt,n

∣

∣

∣

∣

∣

≤
N
∑

n=1

|Hn|2|δPt,n|. (10)

Therefore, when δγ is sufficiently small, we have

E‖·‖1

N =

{

δPt,n

∣

∣

∣

∣

N
∑

n=1

|Hn|2||δPt,n| ≤ N0Wδγ

}

⊂ CN , (11)

where E‖·‖1

N is 1-norm ellipsoid. Therefore, we evaluate the

volume of PN−1 and E‖·‖1

N to obtain a lower bound for the

volume of feasible power allocation.

To facilitate the analysis, we rescale the coordinates, define

xn = |Hp|2δPt,n and evaluate Vol(P̃N−1)∩Ẽ‖·‖1

N , where the

rescaled sets are given by










P̃N−1 =
(

1
|H1|2 ,

1
|H2|2 , ...,

1
|HN |2

)⊥

Ẽ‖·‖1

N =

{

xn

∣

∣

∣

∣

∑N
n=1 |xn| ≤ N0Wδγ

} . (12)

Since Ẽ‖·‖1

N is now a 1-norm sphere, we apply Theorem 1 in

the first part of this paper [2], and obtain

V ol(P̃N−1) ∩ Ẽ‖·‖1

N

=
(N0Wδγ)N

π(N − 1)Γ (N − 1)

∫ ∞

0

N
∏

k=1

γ1

(

t

|Hk|2
)

dt,(13)

where the term (N0Wδγ)N is due to the radius N0Wδγ and

the dimension N .
Notice that the Fourier transform γ1(ω) = F

(

e−|t|) =
2

ω2+1 . Therefore, the challenge is how to evaluate the integral
of the product of N terms. For simplicity, we assume that all
the values of |Hk|2 are distinct. Thanks to the trick of partial
fraction expansion [4], we have

∫ ∞

0

N
∏

k=1

2|Hk|
2

t2 + |Hk|2
dt

=

∫ ∞

0

N
∑

k=1

Ak

t2 + |Hk|2
dt

=

N
∑

k=1

∫ ∞

0

Ak

t2 + |Hk|2
dt

=

N
∑

k=1

Ak

|Hk|2

(

tan−1

(

x

|Hk|2

) ∣

∣

∣

∣

x=∞

− tan−1

(

x

|Hk|2

∣

∣

∣

∣

x=0

))

=

N
∑

k=1

Akπ

2|Hk|2
, (14)

where the residue Ak of each term is given by

Ak =
N
∏

l=1

2|Hl|2(x+ |Hk|2)
x+ |Hl|2

∣

∣

∣

∣

x=−|Hk|2
(15)

C

i

-i

R

z

Fig. 2: Contour of integral.

Substituting (14) into (23), we obtain

V ol(P̃N−1) ∩ Ẽ‖·‖1

N

=
2(N0Wδγ)N

(N − 1)Γ (N − 1)

N
∑

k=1

Ak

|Hk|2
, (16)

Note that the above derivation is based on the assumption

that |Hk|2 6= |Hl|2 for k 6= l; otherwise, the partial fraction

expansion does not hold. Here we consider the other extreme

case in which |Hk|2 = 1 for all k, namely the frequency

manitude response is flat. In this case, we need to evaluate

the following integral:

∫ ∞

0

(

2

t2 + 1

)N

dt = lim
R→∞

1

2

∮

C

2N

(z2 + 1)N
dz, (17)

where the contour C is shown in Fig. 2. We notice that there

are two N -order poles at i and −i, where i is surrounded by

C. Note that the integral over the arc vanlishes as R → ∞,

since
∫

C:|z|=R

1

(z2 + 1)N
dz ≤

∫

C:|z|=R

1

|z2 + 1|N dz

≤
∫

C:|z|=R

1

(R4 − 2R2 + 1)
N
2

=
πR

(R4 − 2R2 + 1)
N
2

→ 0, (18)

as R → ∞. Note that the second inequality is due to

∣

∣(a+ jb)2 + 1
∣

∣

2
= |a2 − b2 + 1 + 2jab|2

= (a2 − b2 + 1)2 + (2ab)2

= (a2 + b2)2 + 1 + 2a2 − 2b2

≥ (a2 + b2)2 + 1− 2b2

≥ R4 − 2R2 + 1. (19)

Then, according to the Residue Theorem in complex

analysis [5], we have

1

2

∮

C

2N

(z2 + 1)N
dz = jπ2NRes(f, i), (20)
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where f = 1
(z2+1)N

and the residue at the N -th order pole i
is given by

Res(f, i) =
1

(N − 1)!

dN−1

dzN−1

1

(z + j)N

∣

∣

∣

∣

z=j

=
(2N − 1)!

((N − 1)!)2
(−1)N−1

(z + j)2N−1

∣

∣

∣

∣

z=j

=
(2N − 1)!

((N − 1)!)2
(−1)N−1

(2j)2N−1

=
(2N − 1)!

((N − 1)!)2
(−1)N−1

j22N−1j2N−2

=
(2N − 1)!

((N − 1)!)2
1

j22N−1
, (21)

which leads to

1

2

∮

C

2N

(z2 + 1)N
dz = jπ2N × (2N − 1)!

((N − 1)!)2
1

j22N−1

=
2π(2N − 1)!

((N − 1)!)22N
. (22)

Substituting (22) into (23), we obtain

V ol(P̃N−1) ∩ Ẽ‖·‖1

N

=
2(N0Wδγ)N (2N − 1)!

(N − 1)2NΓ (N − 1) ((N − 1)!)2
, (23)

Since the set P̃N−1 has been scaled, we need to rescaled

it back to the original coordinate. Hence, in summary, we

obtain the following lower bounds for the space of power

allocation:

Vol(ΣP ) ≥
2(N0Wδγ)N

(N − 1)Γ (N − 1)
∏N

n=1 |Hn|2
N
∑

k=1

Ak

|Hk|2
, (24)

for the case of unequal channel gains, and

Vol(ΣP ) ≥

2(N0Wδγ)N (2N − 1)!

(N − 1)(2π)NΓ (N − 1) ((N − 1)!)2
∏N

n=1
|Hn|2

, (25)

for the case of equal channel gains.

C. Sphere Packing Analysis

1) Optimal SNR: As we have discussed, the waveform

corresponding to the optimal SNR is not unique, thus pro-

viding a free lunch for data communications. According

to Eq. (10) in the first paper of this paper, the maximum

communication data rate in JCS, given the minimum distance

dmin, is lower bounded by

Rfix ≥ log2

[

V (Σ)

V (Bdmin)

]

= log2





Γ(MN + 1)MMN

ΓN (M + 1)

N
∏

n=1

(

P opt
t,n

d2min

)M


 .(26)

2) Suboptimal SNR - Lower Bound: The volume analysis

results in (24) and (25) provide lower bounds. According to

(11) in the first part of this paper [2], we have

Rflx ≥ log2
V (ΣP )

V

(

B d2
min

M

)

V (Σ)

V (Bdmin)

= Rfix + log2 C0 +N log2 δγ, (27)

where the offset C0 equals

C0 =
2(MN0W )N (2N − 1)!Γ

(

N
2

− 1
)

(N − 1)(2π)NΓ (N − 1) ((N − 1)!)2
∏

N
n=1

|Hn|2d2

min

. (28)

We observe that the degradation of SNR provides an extra

data rate in a logarithmic manner. Note that the above results

are valid when δγ is sufficiently small, such that the power

allocations in the spheres are nonnegative, while dmin is even

smaller such that the power allocation space contains one or

more spheres. Therefore, the above conclusion applies for

slight sensing performance degradation and high SNR.

3) Suboptimal SNR - Upper Bound: Note that we may

still derive upper bounds for the volume evaluation of ΣP ,

such that we can derive upper bounds for the codebook size

similarly to the Hamming bound. Notice that the inequality

(7) is equivalent to

δPt,n ≤ 1

|Hn|2



N0Wδγ −
N
∑

l=1,l 6=n

|Hl|2δPt,l



 , (29)

for n = 1, ..., N , which implies

|δPt,n| ≤
1

|Hn|2



N0Wδγ +

N
∑

l=1,l 6=n

|Hl|
2|δPt,l|





≤
1

|Hn|2



N0Wδγ +

N
∑

l=1,l 6=n

|Hl|
2|P opt

t,l |



 , (30)

for n = 1, ..., N , which is equivalent to

max
n

|δPt,n ≤ Θ, (31)

where Θ = maxn
1

|Hn|2
(

N0Wδγ +
∑N

l=1,l 6=n |Hl|2|P opt
t,l |
)

.

Therefore, the following set

CN ⊂ E‖·‖∞

N =

{

δPt,n

∣

∣

∣

∣

max
n

|δPt,n ≤ Θ

|Hn|2
}

, (32)

which is a ball of norm ‖ · ‖∞ and provides an upper bound

for the volume of ΣP . Due to the limited space of the paper,

we omit the corresponding volume analysis, which is also an

application of Theorem 1 in the first part of this paper [2],

[3].

IV. GEOMETRIC TRADE-OFF ANALYSIS: ISL

In this section, we focus on the sensing performance based

on ISL, which employs similar mathematical tool for volume

evaluation and sphere packing to the previous section. The

definition of ISL can be found in the first part of this paper.
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A. Optimal Waveforms

We first consider the optimal waveforms in both the time

and frequency domains.

1) Time Domain: We first assume that ISL is the per-

formance metric for radar sensing and denote by x
opt the

optimal sequence of signal that achieves the minimum ISL

(namely the optimal performance). Obviously, ejθx obtained

from adding a phase change θ does not change the ISL,

since the phase change is canceled out when calculating the

ISL. Therefore, there exists a free lunch for the coding of

communications. However, it is difficult for further analysis

in the time domain.

2) Frequency Domain: It is easier to study the optimal

waveform in the frequency domain of the discrete-time

signals. It is well known that the autocorrelation function in

Eq. (2) in the first part of this paper and the PSD |X(jΩ)|2
are a pair of Discrete-Time Fourier Transform (DTFT), based

on the Wiener-Khintchine Theorem [6]. According to the

Parseval’s Theorem [6], we have

N−1
∑

m=−(N−1)

|r[m]|2 =
1

2π

∫ π

−π

|X(jΩ)|4dΩ. (33)

Meanwhile, according to the Parseval’s Theorem for the

DTFT pair (x,X), we have

r[0] =

N−1
∑

n=−(N−1)

|x[n]|2 =
1

2π

∫ π

−π

|X(jΩ)|2dΩ. (34)

We notice that the normalized ISL ξ is given by

ξ =
1

r2[0]





N−1
∑

m=−(N−1)

|r[m]|2 − r2[0]





=
1

r2[0]
× 1

2π

∫ π

−π

|X(jΩ)|4dΩ

− 1

r2[0]

(

1

2π

∫ π

−π

|X(jΩ)|2dΩ
)2

=
1

2r[0]

(

E
[

|X(jΩ)|4
]

− E2
[

|X(jΩ)|2
])

=
V ar

[

|X(jΩ)|2
]

E2[|X(jΩ)|2] , (35)

which turns out to be the standard deviation of the PSD of

the signal {x[n]}n=1,...,N .

Take N samples on the spectrum X(jΩ), which are

denoted by X[1], ..., X[n]. We observe that the change of

phase in X[n] does not change the ISL. Therefore, the space

of optimal waveforms is essentially [−π, π]N . The volume

assessment is the same as that of the SNR analysis, which is

omitted here due to the limited space.

B. Suboptimal Waveforms

Now, we relax the optimality on the waveforms and

consider possible degradation of sensing performance. We

denote by Pt,n = |X[n]|2 the power of the n-th sample in the

PSD |X(jΩ)|2. According to (35), the ISL is approximated

given by

ξ ≈ V ar[{Pt,n}n=1,...,N ]

E2[{Pt,n}n=1,...,N ]
=

N2V ar[{Pt,n}n=1,...,N ]

P 2
t

, (36)

where the optimal PSD is the uniform distribution P ∗
t,n = pt

N
.

Following the methodology of analyzing the

communication-sensing trade-off in SNR, we first calculate

the first- and second-order derivatives of ISL:














∂
∂Pt,n

ISL =
2NPt,n

P 2

t

− 2
Pt

∂2

∂P 2
n
ISL = 2N

P 2

t

∂2

∂Pt,n∂Pm
ISL = 0, if m 6= n.

. (37)

Due to the optimality of the performance at the PSD

{P opt
t,n }n=1,...,N , we consider the second order approxima-

tion:

2N

P 2
t

N
∑

n=1

δP 2
t,n ≤ δξ, (38)

where δξ is the tolerable performance degradation of ISL.

Therefore, when the tolerable performance decay is δξ, the

feasible power deviations {δPt,n} are within the following

N -dimensional elliptic sphere:

EN =

{

{δPt,n}
∣

∣

∣

∣

N
∑

n=1

δP 2
t,n ≤ ∆ξ

}

, (39)

where ∆ξ =
δξP 2

t

2N . Meanwhile, we also have the constraint

of total transmit power, namely {δPt,n} should lie on the

N − 1 dimensional hyperplane

PN−1 =

{

{δPt,n}
∣

∣

∣

∣

N
∑

n=1

δPt,n = 0

}

. (40)

Then, the set of feasible power deviations is the unit N−1-

dimensional intersection of the N − 1-hyperplane PN−1 and

the N -dimensional sphere EN , namely

FISL
N−1 = PN−1 ∩ EN , (41)

as illustrated in Fig. 3.

Fortunately, intersection is an N − 1-dimensional sphere,

whose volume is given by

V ol(FN−1) =
(2π)

N−1

2

Γ
(

N−1
2

) (∆ξ)
N−1

2 . (42)

The sphere-packing analysis is similar to that of the SNR

case. The detailed analysis is omitted due to the limited space.

The rule-of-thumb is that the data rate increases with an extra

term N−1
2 log2 ∆ξ.
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Fig. 3: Illustration of intersection and projection.

V. NUMERICAL RESULTS

As the first part of this paper, we consider a JCS system in

the 2.5GHz band with a bandwidth of 400MHz. We assume

that a ball of radius 0.3m, as a the target, is located 100m

away from the JCS transceiver. The noise PSD is assumed to

be 10−17, and the signal path loss in the round trip is 20dB.

Due to the limited space, we consider only the sensing per-

formance metric of SNR. In Fig. 4, we plotted the bound of

data rate in (26), obtained from the sphere packing argument,

versus different values of M and target radius. We observe

that, even fixing the optimal waveform, the data rate can still

be very high (in the order of Gbps), in the ideal case. We

also notice that the data rate is increased by 10% or so, as M
is increased from 10 to 30, which demonstrates the benefit of

joint coding across different slow data blocks. An interesting

observation is that, as the target radius increases, the data rate

drops by approximately 10% and then keeps slow decreasing.

The reason for the dependency on target radius is that small

targets incur less frequency selectivity, thus resulting in flatter

signal PSD and greater communication channel capacity.

In Fig. 5, we plot the lower bound in (27) for the data

rate as a function of relative sensing SNR reduction. We

observe that the data rate increases slowly as the sensing

performance deteriorates. For example, when M = 30, the

data rate increases for about 1% as the sensing SNR drops

for 10%. Therefore, for the system setting in this paper, it is

more desirable to stay close to the optimal power allocation

and encode the communication data in the phase.

VI. CONCLUSIONS

In this paper, we have studied the fundamental trade-off

between communications and sensing in JCS systems. Based
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Fig. 4: Data rate with waveform maximizing SNR.
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Fig. 5: Data rate versus relative SNR drop.

on the generic principle introduced in the first part of this

paper, we have started from the set of optimal sensing wave-

forms, in terms of SNR or ISL, and discussed the volume

of optimal waveforms for constructing the communication

codebook. Then, we have relaxed the optimality and studied

the volume of level sets of sensing, given the specified

sensing performance degradation. Bounds for communication

data rate have been derived based on the volume analysis

and sphere packing argument. Numerical simulation results

have shown that the sensing performance degradation is

compensated by linearly increasing communication data rate,

which justifies the theoretical validity of JCS.
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