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Sphere Packing Analysis for Performance
Trade-off in Joint Communications and
Sensing-Part II: Fourier Analysis of Volume
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Abstract—The technology of joint communications and sens-
ing (JCS) is expected to prevail in 6G wireless networks.
There exists a performance trade-off between the functions of
communications and sensing in JCS. One effective approach
to analyze the trade-off in JCS is to consider the level sets of
a given performance metric of sensing as the signaling space
of communication codewords. Then, performance bounds can
be obtained for communications using the approach of sphere
packing. The principle for generic sensing performance metric
has been studied in the first part of this paper. In the second
part of this paper, the concrete cases of sensing performance
metrics, namely the signal-to-noise ratio (SNR) and integrated
sidelobe level (ISL), are studied. The problems are turned into
the volume evaluation for the intersection of a (elliptic) sphere
(the quadratic approximation of the level set) and a hyperplane
(the constraint on the total transmit power). They are solved by
using the theory of Fourier-transform-based volume evaluation
of convex sets. It is found that the optimal waveform is not
unique, thus providing free lunch (although not plenty of) for
communications. Another finding is that the communication
data rate increases logarithmically with respect to the sensing
performance metric degradation.

I. INTRODUCTION

In joint communications and sensing (JCS), both functions
are carried by the same waveform: the forward propagation
of the electromagnetic (EM) wave sends communication
messages to the destination; upon significant reflectors, the
EM wave brings back the environment information for
sensing in the backward propagation. JCS is expected to
substantially improve the spectrum and power efficiency, thus
being a promising technology in 6G wireless communication
networks.

Due to the different goals and different preferences, there
exist conflicts between communications and sensing in JCS.
It is of critical importance to identify and assess the conflicts
and the corresponding performance trade-offs between the
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Fig. 1: Intersection of convex set.

two functions. An effective approach for evaluating the per-
formance trade-off in JCS is to identify the set of waveforms
that achieve a certain performance requirement for sensing
(e.g., given a tolerance on the sensing performance degrada-
tion due to data communications). Then, the communication
data rate is determined by the number of codewords (namely
the selected transmit waveforms) in the set. The sphere-
packing approach is effective [1] for bounding the number
of codewords by evaluating the volume of the signal space.

In the first paper of this paper [2], we have proposed a
generic principle for quantifying the communication-sensing
trade-off in JCS. The problem boils down to the volume
evaluation of the intersection of a (elliptic) sphere (the
quadratic approximation of the level set) and a hyperplane
(the constraint on the total transmit power). The first study of
this kind was credited to Laplace, who calculated the volume
of a unit cube in R™ intersected by a central hyperplane
perpendicular to the vector (ﬁ7 s ﬁ), as illustrated in
Fig. 1. Besides many peculiar phenomena of this volume
evaluation in the high dimensional space, it is found that such
a kind of problems is deeply related to Fourier analysis [3]. In
this second part of this paper, we use the above machinery to
study the communication-sensing trade-off, when the sensing
performance is evaluated using signal-to-noise ratio (SNR)
and integrated sidelobe level (ISL). It is found that the
optimal waveform is not unique, thus providing free lunch
(although insufficient) for communications. Another finding
is that the communication data rate increases logarithmically
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with respect to the sensing performance metric degradation.

The remainder of this paper is organized as follows. The
system model is introduced in Section II. Then, the analysis
on the sensing performance metrics of SNR and ISL is
carried out in Sections III and IV, respectively. The numerical
results and conclusions are provided in Sections V and VI,
respectively.

II. SYSTEM MODEL

The system model has been introduced in the first part of
this paper [2]. Here we restate it for self-containedness. The
continuous-time signal is denoted by z(t), whose N samples
(fast time chips) of (¢) within one pulse are denoted by x =
(x1,...,ox)T. The transmit power, normalized by the pulse
duration, is denoted by P;, while the power allocated to each
sub-carrier is denoted by {F;,,},_; . The total available
bandwidth is W. We consider a data matrix that consists of
M successive pulses (the slow time dimension). The signal
within the data matrix is denoted by the time domain signal
vectors X = (xi,...,Xp), or equivalently the frequency
domain vectors X = (Xi,...,Xy). We assume that the
reflection of the radar target is frequency-selective. The
frequency response is denoted by H(jw), whose discrete-
time samples are given by Hy, = H (j27(f.+(k—1)W/N)),
k=1,..,N.

III. GEOMETRIC TRADE-OFF ANALYSIS: SNR

In this section, we consider the SNR as the performance
metric of sensing and analyze the sphere-packing-based per-
formance bounds for communications.

A. Optimal Waveforms

We notice that only the power spectral density (PSD) is
specified for the optimal waveform and the phase spectrum is
free for selection. Therefore, for maximizing SNR, it is more
convenient to carry out coding independently at different
frequencies (as subcarriers in OFDM). According to Eq. (5)
in the first part of this paper [2], we require

PP = E (| Xomn|?] o< |[Hnl?. (1)

Therefore, the signal can be considered as in a complex

sphere SyN— C CMY with dimension M N and radius

VMP,! (since the sum pulse-duration-normalized power of
the M symbols is M P;). Hence, the set of optimal waveforms
for sensing is given by (where P, is the projection to the
signal over the n-th subcarrier)

{z|z € S%,”Pn(z)

N
= H ]\4}:‘017"7

Here, we allow transmitting without peak rate. Due to the concentration
phenomenon, most of the volume will be concentrated close to the surface,
when M N is sufficiently large.

IR =8M

n=1,.., N
N T }

which is essentially the product of N M-dimensional com-

plex balls in CM with radius {\/Wtoﬁ25 }

The volume of complex sphere S MMP —

t,n

= Therefore, the volume of the feasible

n=1,...,N
is equal to that of

real sphere S/
t,n

waveform set X3, whose real-valued dimension is 2M N, is
given by the standard formula of sphere volume:

7.‘.MN

V) = NG

MJWN H Popt (3)

B. Suboptimal Waveforms

Now, we allow some slight deviation from the optimal
power allocation {Pgﬁt that maximizes the sensing
SNR.

1) Constraint: We denote by P, the transmit power
allocated to subcarrier n, and define the power deviation
0P, = Pt‘:ff — P, ,, the deviation from the optimal power
allocation, which is assumed to be small. Note that power
deviation § P; ,, should satisfy the following constraint on the

deviation of transmit power:

n=1,....,N

N
> 6P, =0, )

due to the invariance of total transmit power.
2) Volume Analysis: Since the SNR is given by

N

1
= xNT 117 H712Pn7 5
Y NOW;| [P, 5)

where Ny is the noise PSD, and the optimal SNR is given
by
N
1 Zn 1 |H |4Pt
NoW Z _1 [ Ha]?

the level set corresponding to the SNR degradation is then
given by

opt _

Yy ) (6)

N
Z |Hn|26Ptm < NoWén, @)
n=1

where J+ is the maximal tolerable SNR degradation.

Therefore, the set of feasible {0P;,, }n=1,.. ~ that result
in tolerable SNR degradation is given by

Yp=Pn_1NCn, (®)

where the subscript N — 1 or N indicates the corresponding
dimension, Py_; = 13 (Ix = (1,1,1,...,1)) is a hyper-
plane?, and Cy is a convex polytope defined as

<2> N
{Z|H 6P, < NoW o, Py, — 6P > 0}. )

n=1
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x~— means the hyperplane perpendicular to the vector x.
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The volume evaluation of the intersection of the hyperplane
Pn—1 and the convex polytope Cp is difficult, due to the
lack of symmetry and the complexity of the face structure.
Therefore, we consider deriving a lower bound by noticing

N N
ST HPOP | <Y [H P 10P, - (10)
n=1 n=1

Therefore, when d+ is sufficiently small, we have

N

eyl = {m,n S H P8P < NOWM} c Cy, (11)

n=1

where & jl\‘,'”l is 1-norm ellipsoid. Therefore, we evaluate the
volume of Py_q and &£ ]\1[-H1 to obtain a lower bound for the
volume of feasible power allocation.

To facilitate the analysis, we rescale the coordinates, define
z, = |H,|*6P; ,, and evaluate Vol(Pn_1) ﬂél‘l,'ul, where the
rescaled sets are given by

1 )l
[Hn|?

Prno1 = (
|zn] < NOW(h}

1 1
H12° THL 2
[Hi] J\V 2] (12)
Zn:l

glllf-‘ll _

Tn

Since £ ]‘l,'Hl is now a l-norm sphere, we apply Theorem 1 in
the first part of this paper [2], and obtain

VOl(’]SN,l)ﬂg]‘l,.Hl
o N ¢
1 5z ) dt(13)
[ 1 ()

(NoWéy)N
is due to the radius NoW d~ and

(N -1 (N —1)

where the term (NoW §)Y
the dimension V.

Notice that the Fourier transform v;(w) = F (e~ Il) =
w2 7- Therefore, the challenge is how to evaluate the integral
of the product of IV terms. For simplicity, we assume that all
the values of |H},|? are distinct. Thanks to the trick of partial
fraction expansion [4], we have

/ H C2lHk
0 2 + |Hk|2
/ Z t2 |Hk|2

_ / Ay
r=170 2 + |Hy|?

_ oy (o ()|~ (e )
k=1 |‘Hk|2 |'E[k:|2 =00 |Hk‘2 =0
N

Akﬂ'

= D 5mp (14)

k=1

where the residue Ay, of each term is given by

N
21 H,|2(z + | Hy|?)
A =
e=11 x+ [Hi|?

=1

5)

ZD:—lHk|2

Fig. 2: Contour of integral.

Substituting (14) into (23), we obtain

VOl(ﬁN 1) n g”Hl

(N0W57
- 1) Z |H |2’

(N-1)T
Note that the above derivation is based on the assumption
that |Hy|? # |H;|? for k # I; otherwise, the partial fraction
expansion does not hold. Here we consider the other extreme
case in which |Hy|?> = 1 for all k, namely the frequency
manitude response is flat. In this case, we need to evaluate

the following integral:
oo N N
2 1 2
— | dt= lim - ¢ ——
/0 (t2+1) R%Qﬁ(zQ—&-l)N

where the contour C' is shown in Fig. 2. We notice that there
are two N-order poles at ¢ and —¢, where ¢ is surrounded by
C'. Note that the integral over the arc vanlishes as R — oo,

Since
/ = 2 1 1
CIIZ‘ R | |N

1
/C:|z|—R (22 + l)N
/ 1
C:|z|=R (R4 —2R2 + 1)

TR
(Ri—2RE+1)% 019

second inequality is due to

(16)

dz,  (17)

dz dz

IN

N
2

as R — oo. Note that the

= |a® —b? +1+2jab|?

(a® = b* + 1) + (2ab)?
(a® + %) +1 + 2a% — 20*
> (a®+ %)% 41— 207

> R'-2R?+1.

(a+jb)? + 1]

19)

Then, according to
analysis [5], we have

the Residue Theorem in complex

2N

1
§7i(z2+1)1v

dz = jn2" Res(f,1), (20)
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where f = ﬁ and the residue at the /N-th order pole @
is given by
, 1 aV! 1
Res(F) = N-mi@av 1 za )8
_@N-1) (-
(N =D (44N
_ eN-n =DM
(N =1)1)2 (25)>N
_ eN-1t (=DM
T (N =12 j22N-T2N -2
2N —1)! 1
ERGCEEEe ey
which leads to
1 2N (2N —1)! 1
.t s — imoN
2 ]{c @y T AT Xy T g
2r(2N —1)!
RS 2
Substituting (22) into (23), we obtain
Vol(Py_1) nELT
B 2(NogWy)N (2N —1)! 23)
(N =1)2NT (N = 1) (N —1)1)2’

Since the set 75N,1 has been scaled, we need to rescaled
it back to the original coordinate. Hence, in summary, we
obtain the following lower bounds for the space of power
allocation:

VOI(EP) >
(N — 1)r (N — 1)H L HL|? 2 IH |2
for the case of unequal channel gains, and
VO](EP) Z
2(NoWéy)N (2N — 1)! 25)

(N = DEmNT (N = 1) (N = D) [T,_

for the case of equal channel gains.

L [ Hal?

C. Sphere Packing Analysis

1) Optimal SNR: As we have discussed, the waveform
corresponding to the optimal SNR is not unique, thus pro-
viding a free lunch for data communications. According
to Eq. (10) in the first paper of this paper, the maximum
communication data rate in JCS, given the minimum distance
dmin, 18 lower bounded by

M
OMN + )MMY = (PR
I'N(M +1) A

min

sz'.'c

min)

log,

n=

2) Suboptimal SNR - Lower Bound: The volume analysis
results in (24) and (25) provide lower bounds. According to
(11) in the first part of this paper [2], we have

V(i V(Z
Rflm > 10g2 ( P) V(B( )
v (b,) 7
l]‘[\;n
= Ryip +logy, Co + Nlog, 67, 27
where the offset Cy equals
Co = 2(MNW)N 2N — D)IT (¥ - 1) 28

(N =1)@m)NT(N = 1) (N = DY2TIV, | Hal2d2,

We observe that the degradation of SNR provides an extra
data rate in a logarithmic manner. Note that the above results
are valid when d+ is sufficiently small, such that the power
allocations in the spheres are nonnegative, while d,;, is even
smaller such that the power allocation space contains one or
more spheres. Therefore, the above conclusion applies for
slight sensing performance degradation and high SNR.

3) Suboptimal SNR - Upper Bound: Note that we may
still derive upper bounds for the volume evaluation of X p,
such that we can derive upper bounds for the codebook size
similarly to the Hamming bound. Notice that the inequality
(7) is equivalent to

N
1
OPin < 75 | NoWoy = > IHP6Py ], ©29)
n 1=1,l#n
for n = 1,..., N, which implies
1 N
0Pin| < S | NoWoy+ D |Hi*[0P.]
|Hn| 1=1,l#n
1 N
2 opt
< p | Nower+ l:lzl;n [Hi[*| P77 ) (30)
for n = 1,..., N, which is equivalent to

max 0P, < O, (€28)
where © = max, 7z (NOVV(W + Zfil)l#n \Hl|2\Pth\).
Therefore, the following set

9

[Hnl? )

which is a ball of norm || - || and provides an upper bound
for the volume of X p. Due to the limited space of the paper,
we omit the corresponding volume analysis, which is also an
application of Theorem 1 in the first part of this paper [2],
[3].

Cy C &bl = {5Pt,n max [P , < (32)

IV. GEOMETRIC TRADE-OFF ANALYSIS: ISL

In this section, we focus on the sensing performance based
on ISL, which employs similar mathematical tool for volume
evaluation and sphere packing to the previous section. The
definition of ISL can be found in the first part of this paper.
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A. Optimal Waveforms

We first consider the optimal waveforms in both the time
and frequency domains.

1) Time Domain: We first assume that ISL is the per-
formance metric for radar sensing and denote by x°P? the
optimal sequence of signal that achieves the minimum ISL
(namely the optimal performance). Obviously, e/’x obtained
from adding a phase change 6 does not change the ISL,
since the phase change is canceled out when calculating the
ISL. Therefore, there exists a free lunch for the coding of
communications. However, it is difficult for further analysis
in the time domain.

2) Frequency Domain: 1t is easier to study the optimal
waveform in the frequency domain of the discrete-time
signals. It is well known that the autocorrelation function in
Eq. (2) in the first part of this paper and the PSD | X (5Q)|?
are a pair of Discrete-Time Fourier Transform (DTFT), based
on the Wiener-Khintchine Theorem [6]. According to the
Parseval’s Theorem [6], we have

N-1 1 m
> =g [ GOt 69
m=—(N-1) -

Meanwhile, according to the Parseval’s Theorem for the
DTFT pair (z, X), we have

TR SR [ P oa
n="(N-1) -
We notice that the normalized ISL ¢ is given by
L/ o
¢ = | > =0
- 7«21[0] x 2177/_: X ()|t
_ r21[0] (;ﬁ /7; |X(jQ)|2dQ>2
— o (E[XG] - B [X G
_ Var [[XGYP] 5)

E2[IXGQPT

which turns out to be the standard deviation of the PSD of
the signal {x[n]},=1..

Take N samples on the spectrum X (j€2), which are
denoted by X|[1],..., X[n]. We observe that the change of
phase in X [n] does not change the ISL. Therefore, the space
of optimal waveforms is essentially [—7, 7]V, The volume
assessment is the same as that of the SNR analysis, which is
omitted here due to the limited space.

B. Suboptimal Waveforms

Now, we relax the optimality on the waveforms and
consider possible degradation of sensing performance. We
denote by P; ,, = | X[n]|? the power of the n-th sample in the
PSD | X (j€2)|?. According to (35), the ISL is approximated
given by
Var[{Pt,n}nzl,m,N] o N2V@T[{Pt,n}n:1,...
EQ[{Pt,n}n=1,...,N] Pt2

where the optimal PSD is the uniform distribution Py, = .
Following the methodology of analyzing

£~ N (36

the
communication-sensing trade-off in SNR, we first calculate
the first- and second-order derivatives of ISL:

o ISLf Mon 2

an P

2
(;332 ISL = (37
mISL = O if m 7é n.

Due to the optimality of the performance at the PSD
{P"pt}n 1,...N» we consider the second order approxima-
tion:

Z 5P7, < (38)
where ¢ is the tolerable performance degradation of ISL.

Therefore, when the tolerable performance decay is 6&, the
feasible power deviations {0P;,} are within the following
N-dimensional elliptic sphere:

N
Zapt%n<Af}a

n=1

En = {{5Pt,n} (39)

where Ag =
of total transmlt power, namely {0P,,} should lie on the
N — 1 dimensional hyperplane

N
> 6P, = 0} . (40)

n=1

Pn-1= {{5Pt7n}

Then, the set of feasible power deviations is the unit N —1-
dimensional intersection of the N — 1-hyperplane Py _; and
the N-dimensional sphere £y, namely

FEE =Py_1nén, (41)

as illustrated in Fig. 3.

Fortunately, intersection is an N — 1-dimensional sphere,
whose volume is given by
N—1

(2m) :
e

VOl(]:Nfl) == (42)

The sphere-packing analysis is similar to that of the SNR
case. The detailed analysis is omitted due to the limited space.
The rule-of-thumb is that the data rate increases with an extra

term &1 log, A
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Fig. 3: Illustration of intersection and projection.

V. NUMERICAL RESULTS

As the first part of this paper, we consider a JCS system in
the 2.5GHz band with a bandwidth of 400MHz. We assume
that a ball of radius 0.3m, as a the target, is located 100m
away from the JCS transceiver. The noise PSD is assumed to
be 10717, and the signal path loss in the round trip is 20dB.

Due to the limited space, we consider only the sensing per-
formance metric of SNR. In Fig. 4, we plotted the bound of
data rate in (26), obtained from the sphere packing argument,
versus different values of M and target radius. We observe
that, even fixing the optimal waveform, the data rate can still
be very high (in the order of Gbps), in the ideal case. We
also notice that the data rate is increased by 10% or so, as M
is increased from 10 to 30, which demonstrates the benefit of
joint coding across different slow data blocks. An interesting
observation is that, as the target radius increases, the data rate
drops by approximately 10% and then keeps slow decreasing.
The reason for the dependency on target radius is that small
targets incur less frequency selectivity, thus resulting in flatter
signal PSD and greater communication channel capacity.

In Fig. 5, we plot the lower bound in (27) for the data
rate as a function of relative sensing SNR reduction. We
observe that the data rate increases slowly as the sensing
performance deteriorates. For example, when M = 30, the
data rate increases for about 1% as the sensing SNR drops
for 10%. Therefore, for the system setting in this paper, it is
more desirable to stay close to the optimal power allocation
and encode the communication data in the phase.

VI. CONCLUSIONS

In this paper, we have studied the fundamental trade-off
between communications and sensing in JCS systems. Based

data rate (bps)

n
S

N
a

21r

2.05 . . . . . ]
0 0.05 0.1 0.15 0.2 0.25 0.3

target radius
Fig. 4: Data rate with waveform maximizing SNR.
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Fig. 5: Data rate versus relative SNR drop.

on the generic principle introduced in the first part of this
paper, we have started from the set of optimal sensing wave-
forms, in terms of SNR or ISL, and discussed the volume
of optimal waveforms for constructing the communication
codebook. Then, we have relaxed the optimality and studied
the volume of level sets of sensing, given the specified
sensing performance degradation. Bounds for communication
data rate have been derived based on the volume analysis
and sphere packing argument. Numerical simulation results
have shown that the sensing performance degradation is
compensated by linearly increasing communication data rate,
which justifies the theoretical validity of JCS.
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