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Abstract—A point-to-point integrated sensing and communica-
tion (ISAC) system is considered where a transmitter conveys a
message to a receiver over a discrete memoryless channel (DMC)
and simultaneously estimates the state of the channel through
the backscattered signals of the emitted waveform. We derive
achievability and converse bounds on the rate-distortion-error
tradeoff in the finite blocklength regime, and also characterize the
second-order rate-distortion-error region for the proposed setup.
Numerical analysis shows that our proposed joint ISAC scheme
significantly outperforms traditional time-sharing based schemes
where the available resources are split between the sensing and
communication tasks.

I. INTRODUCTION

Integrating sensing capabilities into a communication net-

work is a promising approach to resolve the challenges of the

upcoming sixth generation (6G) wireless communication system

[1]–[5]. In fact, network sensing functionality is a key enabler to

allow sensory data collection from the environment, which is re-

quired in applications such as industrial robots and autonomous

vehicles. A recent paradigm, called integrated sensing and

communication (ISAC), suggests to fully integrate the sensing

functionality into the communication functionality [6]–[8]. In

other words, ISAC systems jointly perform both the sensing and

communication tasks using common hardware, antenna(s) and

spectrum. The benefits of such a joint approach are reductions

in hardware and signaling costs and improvements in energy

consumption and spectral efficiency [9], [10].

Despite a considerable amount of interesting ISAC research

efforts, the fundamental performance limits, and thus the inher-

ent tradeoffs between sensing and communication performances

of optimal systems, remain unsolved. In particular, while [12]–

[20] determined the information-theoretic fundamental perfor-

mance limits for the asymptotic infinite blocklength regime, the

focus of this article lies on the performances of real codes at

finite blocklengths.

Specifically, in this work we consider a point-to-point ISAC

system in which the transmitter conveys a message to a receiver

over a discrete memoryless state-dependent channel, and in

addition, based on a generalized feedback signal, it estimates the

memoryless state sequence of the channel so as to minimize a

given distortion criterion. We derive achievability and converse

bounds on the optimal tradeoff between the communication rate

and decoding error and the sensing distortion. Our achievability

and converse bounds are close, and coincide up to third-order

terms in the asymptotic regimes of infinite blocklengths. For this

asymptotic regime we thus refine the capacity-distortion result

in [14], [16] to the optimal scaling of the rate as a function

of the allowed distortion and decoding error probability. The

finite-blocklength behavior of ISAC has already been studied

in [21], however for a Gaussian channel model where a single

state (the channel coefficient) governs the entire transmission

and the receiver wishes to estimate this state with smallest

possible squared-error. In our setup, the state is described by

a memoryless sequence impacting the various channel uses and

the goal of the estimation is to reconstruct this sequence with

minimum distortion.

II. PROBLEM SETUP

Consider the point-to-point setup in Figure 1 where a trans-

mitter wishes to communicate a message M , which is uniformly

distributed over a set {1, . . . ,M}, to a receiver over a state-

dependent memoryless channel and at the same time wishes

to estimate the channel state sequence based on a generalized

feedback signal. We consider the discrete memoryless state-

dependent channel with finite input alphabet X , finite channel

state alphabet S , finite feedback alphabet Z , finite output

alphabet Y and the channel transition law

PY nZn|XnSn(yn, zn|xn, sn) =
n
∏

i=1

W (yi, zi|xi, si) (1)

for a given conditional pmf W (·, ·|·, ·).
So, if M = m, at a given time i ∈ {1, . . . , n} and after

observing the feedback sequence Zi−1, the transmitter sends an

input symbol

Xi = f
(n)
i (m,Zi−1) (2)

where for any i ∈ {1, . . . , n} the encoding function f
(n)
i is

defined on appropriate domains. The transmitter also estimates

the channel state Sn that is i.i.d according to a given distribution

PS as

Ŝn = h(n)(Zn, Xn), (3)

based on a block-estimation function h(n), defined on appropri-

ate domains.

After observing the channel outputs Y n, the receiver decodes

the message M as

M̂ = g(n)(Y n), (4)
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Ŝn
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Fig. 1: ISAC System model.

where g(n) is a decoding function on appropriate domains. The

quality of the state estimation at the transmitter is measured by

the expected average per-block distortion

∆(n) := E[d(Sn, Ŝn)] =
1

n

n
∑

i=1

E[d(Si, Ŝi)] (5)

for a given bounded per-symbol distortion function d(·, ·).
The decoding error probability is defined as:

ϵ(n) := P[M̂ ̸= M ]. (6)

Definition 1: Given a blocklength n, the rate-distortion-error

triple (R,D, ϵ) is said to be achievable, if there exist encoding,

decoding, and estimation functions {f (n), g(n), h(n)} satisfying

1

n
log2(M) g R, (7)

ϵ(n) f ϵ, (8)

∆(n) f D. (9)

III. OPTIMAL ESTIMATOR

For the described memoryless setup, the optimal state es-

timator is a symbolwise estimator applied to the transmitter’s

observations Xn and Zn:

Ŝn = [(ŝ∗(X1, Z1), ŝ
∗(X2, Z2), . . . , ŝ

∗(Xn, Zn)], (10)

where

ŝ∗(x, z) := arg min
s′∈Ŝ

∑

s∈S

PS|XZ(s|x, z)d(s, s′), (11)

with

PS|XZ(s|x, z) =
PS(s)PZ|SX(z|s, x)

∑

s̃∈S PS(s̃)PZ|SX(z|s̃, x) . (12)

The proof of optimality of this symbolwise estimator relies on

the Markov chain relation

(Xi−1, Xn
i+1, Z

i−1, Zn
i+1) ⊸−(Xi, Zi) ⊸−Si, (13)

see [16, Appendix A] for more details.

IV. MAIN RESULTS

Given two random variables X and Y having joint probability

mass function (pmf) PXY (x, y), define their information density

i(X;Y ) := log
PY |X(y|x)
PY (y)

, (14)

and notice that the expectation of the information density equals

the mutual information I(X;Y ) = E[i(X,Y )]. Denote the

higher central moments of the information density as

V := Var[i(X;Y )]

=
∑

x,y

PX(x)PY |X(y|x) log2 PY |X(y|x)
PY (y)

− I(X;Y )2, (15)

T := E[|i(X;Y )− I(X;Y )|3]

=
∑

x,y

PX(x)PY |X(y|x)
∣

∣

∣

∣

log
PY |X(y|x)
PY (y)

− I(X;Y )

∣

∣

∣

∣

3

. (16)

Our main results are the following theorems on the rate-

distortion-error tradeoff.

Theorem 1 (Achievability Bound): Given a blocklength n,

the rate-distortion-error tradeoff (R,D, ϵ) is achievable if there

exists a PX and a constant K > 0 such that the following two

conditions are satisfied,

R f I(X;Y )−
√

V

n
Q−1 (ϵ− ´u)− K

log(n)

n
, (17)

D g
∑

x∈X

∑

s∈S

∑

z∈Z

d(s, ŝ∗(x, z))PX(x)PS(s)PZ|XS(z|x, s), (18)

with

´u :=
1

nK
+

0.7975T√
nV3

, (19)

and where the mutual information I(X;Y ) and the two cen-

tral moments V and T are defined based on the joint pmf

PXY (x, y) = PX(x)PY |X(y|x).
Proof: See Section VI.

We also have the following converse bound.

Theorem 2 (Converse Bound): Given the blocklength n, a

rate-distortion-error triple (R,D, ϵ) is not achievable if for all

¶ > 0 and pmfs PX satisfying (18) the following lower bound

holds:

R g I(X;Y )−
√

V

n
Q−1 (ϵ+ ´l) +

log(n)

2n
− log ¶

n
, (20)

where

´l :=
0.7975T√

nV3
+

¶√
n
. (21)

Proof: The proof of the bound in (20) follows similar steps

as the proof of [22, Lemma 58], where one has to integrate the

optimal estimator in (10). See [26, Appendix A] for details.

Proposition 1: Given D, ϵ and large blocklengths n, the

largest rate R such that the triple (R,D, ϵ) is achievable, is given

by

Rmax(D, ϵ, n) = max
PX

[

I(X;Y )−
√

V

n
Q−1 (ϵ) +O

(

log n

n

)

]

,

(22)
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where the maximum is over all pmfs PX satisfying (18).

Proof: By the differentiability Q−1 and by the forms of

´u and ´l in (19) and (21), we have

Q−1(ϵ− ´u) = Q−1(ϵ) +O

(

1√
n

)

, (23)

Q−1(ϵ+ ´l) = Q−1(ϵ) +O

(

1√
n

)

. (24)

Substituting (23) into (17), and (24) into (20) proves the

proposition.

Remark 1: Equality (22) agrees with [22, Theorem 49] which

determines the second-order coding rate of a DMC in the finite

blocklength regime.

V. COMPARISONS AND EXAMPLES

In this section, we evaluate Theorems 1 and 2 numerically

for a binary example and compare them also with the perfor-

mance of two baseline schemes that are frequently employed in

practice.

A. Time-Sharing Schemes

Many practical systems employ a basic resource-sharing

approach where a fraction of the resources (here (1 − µ)n
channel uses) are dedicated only to the communication task and

the remaining resources (here µn channel uses) to the sensing

task, each one completely ignoring the other task. A slightly

improved scheme uses the resources for the communication task

also for some basic sensing, but using the waveform that is

best for communication, and similarly uses the resources for

the sensing task also for communication, but using the best

waveform for sensing.

1) Basic Resource-Sharing Scheme: Given time-sharing pa-

rameter µ ∈ [0, 1], the performance of the basic resource-sharing

scheme described above achieves rate

R = (1− µ)Rmax (25)

and distortion

D = µDmin + (1− µ)Dtrivial, (26)

where Rmax is the largest achievable rate:

Rmax := max
PX

[

I(X;Y )−
√

V

n
Q−1 (ϵ− ´u)− K

log(n)

n

]

(27)

and Dmin denotes the best possible distortion while Dtrivial

denotes the distortion achieved by the optimal trivial estimator

that does not exploit the feedback:

Dmin := min
PX

∑

x∈X

∑

s∈S

∑

z∈Z

PX(x)PS(s)PZ|SX(z|s, x)ŝ∗(x, z),

(28)

Dtrivial := min
s′∈S

∑

s∈S

PS(s)d(s, s
′). (29)

2) Improved Resource-Sharing Scheme: For a given time-

sharing parameter µ ∈ [0, 1], the improved resource-sharing

scheme achieves rate

R = µRsense + (1− µ)Rmax (30)

and distortion

D = µDmin + (1− µ)Dcomm, (31)

where

Dcomm :=
∑

x∈X

P ⋆
X(x)

∑

s∈S

∑

z∈Z

PS(s)PZ|SX(z|s, x)ŝ∗(x, z) (32)

for P ⋆
X the optimizer in (27) and

Rsense := I(X;Y )−
√

V

n
Q−1 (ϵ− ´u)− K

log(n)

n
(33)

evaluated for PXY = P ′
XPY |X with P ′

X the optimizer of (28).

B. Binary Channel with Multiplicative Bernoulli State

Consider the channel

Y = SX, (34)

with binary alphabets X = S = Y ∈ {0, 1} and where the state

is Bernoulli-q with q ∈ (0, 1) and the feedback is perfect, i.e.,

Z = Y . We consider the Hamming distortion measure d(s, ŝ) =
s· ŝ.

To compare the performance specified in Theorems 1 and 2

with each other and with the performance of the two baseline

time-sharing schemes, we parametrize the binary input distribu-

tion PX by ³ := P[X = 1]. We also notice that the channel in

(34) is equivalent to a Z-Channel: input 0 always leads to the

output symbol 0 and input 1 leads to output 0 with probability

1−q and to output 1 with probability q. The mutual information

between input and output of the channel is then obtained as

I(X;Y ) = Hb(q³)− ³Hb(q), (35a)

where Hb(x) = −x log(x) − (1 − x) log(1− x) is the binary

entropy function. For the second and third central moments of

the information density we have

V³ = ³

(

q log2
1

³
+ (1− q) log2

1− q

1− q³

)

+(1− ³) log2
1

1− q³
− I(X;Y )2, (35b)

T³ = ³q

∣

∣

∣

∣

log
1

³
− I(X;Y )

∣

∣

∣

∣

3

+³(1− q)

∣

∣

∣

∣

log
1− q

1− q³
− I(X;Y )

∣

∣

∣

∣

3

+(1− ³)

∣

∣

∣

∣

log
1

1− q³
− I(X;Y )

∣

∣

∣

∣

3

, (35c)

We can then substitute I(X;Y ) and V,T from (35) into (17)

and (20) to obtain the desired bounds on the rate.

To calculate the distortion bound (18), notice that whenever

x = 1, then z = y = s and thus the distortion is zero. On

the other hand, when x = 0 then y = 0 and the transmitter
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does not receive any information about the state of the channel.

In this case, the optimal estimator is to choose the most likely

state symbol, i.e. ŝ = 0 if q < 1/2 and ŝ = 1 if q g 1/2. We

combine these observations to obtain the following bound:

D g PX(0)
∑

s,y

d(s, ŝ∗(x = 0, y))PS(s)PY |XS(y|x = 0, s) (36)

= PX(0)
∑

s∈S

d(s, ŝ∗(x = 0, y = 0))PS(s) (37)

= (1− ³)min{q, 1− q}. (38)

In other words, a distortion constraint imposes the following

bound on ³:

³ g 1− D

min{q, 1− q} . (39)

Thus, for this example Theorem 1 states that for any D > 0,

all triples (R,D, ϵ) are achievable if

R f max
³,Kg0

I(X;Y )−
√

V

n
Q−1 (ϵ− ´u)− K

log(n)

n
, (40)

where the maximization is over all ³ ∈ [0, 1] satisfying 1 g
³ g 1 − D

min{q,1−q} . Theorem 2 states that for any D > 0 all

triples (R,D, ϵ) satisfying

R g max
³,¶>0

I(X;Y )−
√

V

n
Q−1 (ϵ+ ´l)+

log(n)

2n
− log ¶

n
(41)

are not achievable. Here, the maximization is again over values

³ ∈
[

min
{

0, 1− D

min{q,1−q}

}

, 1
]

.

Notice that for this channel (which is a Z-channel) the

capacity is equal to [23]

C = log
(

1 + q(1− q)
1−q

q

)

, (42)

and is achieved for

P ⋆
X(1) = ³⋆ =

1

q
(

1 + 2
Hb(q)

q

) . (43)

The distortion achieved with this capacity-achieving ³⋆ is

Dcomm = (1− ³⋆)min{q, 1− q}.

C. Numerical Analysis

Fig. 2 illustrates the achievability and converse bounds on

the rate-distortion-error tradeoff presented in (40) and (41) for

ϵ = 0.05 and q = 0.4. As can be seen from this figure the

bounds are tight for large values of n. Notice that for q = 0.4
the capacity of the channel is C = 0.246 and the achieved

distortion is Dcomm = 0.2432.

Fig. 3 compares the rate-distortion-error tradeoff achieved

by our scheme with the tradeoff achieved under the basic and

improved resource-sharing schemes. As can be seen from this

figure, our scheme outperforms the other two baseline schemes.

VI. PROOF OF THEOREM 1

A. Codebook Generation

Choose PX satisfying (18). The codebook C = {xn(m)}Mm=1

is generated by randomly and independently choosing each

entry according to PX .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D

0

0.05

0.1

0.15

0.2

0.25

R

Capacity

n = 3000, converse

n = 3000, achievability

n = 800, converse

n = 800, achievability

Fig. 2: Achievability and converse bounds on the rate-distortion-

error trade-off of Theorems 1 and 2 for ϵ = 0.05, q = 0.4, and

different values of n.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D

0

0.05

0.1

0.15

0.2

0.25

R

Converse (Theorem 2)

Achievability (Theorem 1)

Improved Time-Sharing

Basic Time-Sharing

Fig. 3: Comparison of the rate-distortion-error trade-off in

Theorems 1 and 2 with the basic and improved resource-sharing

schemes for ϵ = 0.05, q = 0.4, and n = 700.

B. Encoding

To send a message m, the transmitter encodes this message

via the codeword xn(m) and sends it over the channel.

C. Estimation

After observing the feedback sequence Zn = zn, the trans-

mitter estimates the channel state through (10).

D. Decoding

Given the channel outputs Y n = yn, the receiver estimates

the message M by choosing the index m̂ that corresponds to

the codeword xn(m̂) that maximizes the information density:

m̂ := argmax
m

i (xn(m); yn) . (44)

The receiver then produces the guess M̂ = m̂.
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E. Error Analysis

To analyze P[M̂ ̸= M ], we use the threshold-based metric

bound in [22]. For any µ ∈ R, we have

P[M̂ ̸= M ] f P[i(Xn;Y n) f µ] +M · P[i(X̄n;Y n) g µ], (45)

where X̄n ∼ PXn and is independent of Xn and Y n. We will

set

µ := logM+ K log n, (46)

for some K > 0, and employ the Berry-Esseen theorem and

Bayes’ formula to evaluate the two terms on the right-hand

side of (45).

By the strengthening of the Berry-Esseen theorem in [24], and

because E[i(Xn;Y n)] = nI(X;Y ), we have with the definition

in (46)

P [i(Xn;Y n) f µ] f Q

(− logM+ nI(X;Y )− K log(n)√
nV

)

+
0.7975T√

nV3
. (47)

To bound P[i(X̄n;Y n) g µ], we first use Bayes’ formula to

write

PXn(xn) =
PY n(yn)PXn|Y n(xn|yn)

PY n|Xn(yn|xn)
(48)

= PXn|Y n(xn|yn)2−i(x̄n;yn). (49)

For any yn ∈ Rn, we then have
∑

x̄n∈X

1 {i(x̄n; yn) > µ}PXn(xn)

=
∑

x̄n∈X

2−i(x̄n;yn)
1

{

PY n|Xn(yn|xn)

PY n(yn)
> 2µ

}

· PXn|Y n(xn|yn) (50)

f
∑

x̄n∈X

2−i(x̄n;yn)PY n|Xn(yn|xn)

PY n(yn)
2−µPXn|Y n(xn|yn)

=
∑

x̄n∈X

PXn|Y n(xn|yn)2−µ

= 2−µ . (51)

As a consequence,

P[i(X̄n;Y n) g µ] f 2−µ (52)

and

MP[i(X̄n;Y n) g µ] f 2−µ+logM = n−K. (53)

Combining (45), (47), and (53), we obtain

P[M̂ ̸= M ] f Q

(− logM+ nI(X;Y )− K log(n)√
nV

)

+ ´u,

(54)

where ´u is defined in (19).

Thus, the probability of error stays below ϵ whenever

ϵ− ´u g Q

(− logM+ nI(X;Y )− K log(n)√
nV

)

, (55)

or equivalently when

logM f nI(X;Y )−
√
nVQ−1(ϵ− ´u)− K log(n), (56)

establishing the bound in (17).

F. Expected Distortion

The expected distortion can be written as

∆(n) =
1

n

n
∑

i=1

E[d(Si, Ŝi)] (57)

=
∑

x∈X

∑

s∈S

∑

z∈Z

d(s, ŝ∗(x, z))PX(x)PS(s)PZ|XS(z|x, s).

(58)

By our choice of PX , our scheme thus satisfies the requirement

on the distortion.

VII. CONCLUSIONS

We have studied the rate-distortion-error tradeoff of a point-

to-point ISAC system where a transmitter conveys a message to

a receiver over a discrete memoryless state-dependent channel

and simultaneously estimates the state of the channel. We

have derived achievability and converse bounds on the rate-

distortion-error tradeoff in the finite blocklength regime. We

also have characterized the second-order rate-distortion-error

region of the proposed setup. Our numerical analysis shows that

our joint design scheme significantly outperforms the resource-

sharing baseline schemes where the available resources are split

between the sensing and communication tasks. In our model

the receiver has no state-information. The generality of our

model allows however to obtain results for perfect or partial

state-information as special cases from our Theorems 1 and

2, simply by including the state-information as part of the

receiver’s output. An interesting line of future work is to study

the ISAC problem with general state and channel distribution

in the finite blocklength regime [25].

ACKNOWLEDGMENT

The work of H. Nikbakht and H. V. Poor has been supported

by the U.S National Science Foundation under Grant CNS-

2128448. The work of S. Shamai (Shitz) has been supported

by the US-Israel Binational Science Foundation (BSF) under

grant BSF-2018710 and by the German Research Foundation

(DFG) via the German-Israeli Project Cooperation (DIP), under

Project SH 1937/1-1.

REFERENCES

[1] F. Liu et al., "Integrated sensing and communications: Toward dual-
functional wireless networks for 6G and beyond," IEEE Journal on

Selected Areas in Communications, vol. 40, no. 6, pp. 1728–1767, June
2022.

[2] J. M. Mateos-Ramos et al., “End-to-end learning for integrated sensing and
communication," in Proceedings of the IEEE International Conference

on Communications, Seoul, Korea, Republic of, pp. 1942–1947, 16-20
May, 2022.

[3] H. Zhang et al., “Holographic integrated sensing and communication,"
IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp.
2114–2130, July 2022.

2794Authorized licensed use limited to: Princeton University. Downloaded on November 19,2024 at 20:21:05 UTC from IEEE Xplore.  Restrictions apply. 



[4] A. Liu, M. Li, M. Kobayashi, and G. Caire, “Fundamental limits for
ISAC: Information and communication theoretic perspective", in F. Liu,

C. Masouros, Y.C. Eldar, (eds), Integrated Sensing and Communications.

Springer, Singapore, 2023.

[5] A. Liu et al., "A survey on fundamental limits of integrated sensing and
communication," IEEE Communications Surveys & Tutorials, vol. 24, no.
2, pp. 994–1034, Secondquarter 2022.

[6] X. Cheng, D. Duan, S. Gao and L. Yang, “Integrated sensing and
communications (ISAC) for vehicular communication networks (VCN),"
IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23441–23451, Dec.,
2022.

[7] H. Li, Z. Han, and H. V. Poor, “Cellular system based integrated sensing
and communications for wide-area monitoring," in Proceedings of the

IEEE International Geoscience and Remote Sensing Symposium, pp. 592-
595, Pasadena, CA, USA, July 16-21, 2023.

[8] Z. Wei et al., "Integrated sensing and communication signals toward 5G-A
and 6G: A survey," IEEE Internet of Things Journal, vol. 10, no. 13, pp.
11068-11092, 1 July1, 2023.

[9] D. K. P. Tan et al., “Integrated sensing and communication in 6G:
Motivations, use cases, requirements, challenges and future directions,"
in Proceedings of the IEEE International Online Symposium on Joint

Communications & Sensing, Dresden, Germany, pp. 1–6, 2021.

[10] C. Chaccour, W. Saad, M. Debbah, and H. V. Poor, “Joint sensing,
communication, and AI: A trifecta for resilient THz user experiences,”
Online: arXiv:2305.00135, May, 2023.

[11] J. Wang, N. Varshney, C. Gentile, S. Blandino, J. Chuang, and N.
Golmie, “Integrated sensing and communication: Enabling techniques,
applications, tools and data sets, standardization, and future directions,"
IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23416–23440, Dec.
2022.

[12] J. An, H. Li, D. W. K. Ng, and C. Yuen, “Fundamental detection probabil-
ity vs. achievable rate tradeoff in integrated sensing and communication
systems," IEEE Transactions on Wireless Communications, vol. 22, no.
12, pp. 9835–9853, Dec. 2023.

[13] H. Joudeh and F. M. J. Willems, “Joint communication and binary state
detection,” IEEE Journal on Selected Areas in Information Theory, vol.
3, no. 1, pp. 113–124, 2022.

[14] M. Kobayashi, G. Caire, and G. Kramer, “Joint state sensing and com-
munication: Optimal tradeoff for a memoryless case," in Proceedings of

the IEEE International Symposium on Information Theory, pp. 111–115,
Vail, CO, USA, June 17-22, 2018.

[15] M. Kobayashi, H. Hamad, G. Kramer, and G. Caire, “Joint state sensing
and communication over memoryless multiple access channels,” in Pro-

ceedings of the IEEE International Symposium on Information Theory,
pp. 270–274, 2019.

[16] M. Ahmadipour, M. Kobayashi, M. Wigger, and G. Caire, “An
information-theoretic approach to joint sensing and communication,” IEEE

Transactions on Information Theory, vol. 70, pp. 1124 – 1146, 2022.

[17] M. Ahmadipour, M. Wigger, and S. Shamai, “Integrated communication
and receiver sensing with security constraints on message and state," in
Proceedings of the IEEE International Symposium on Information Theory,
pp. 2738–2743, Taipei, Taiwan, June 25–30, 2023.

[18] M. Ahmadipour and M. Wigger, "An information-theoretic approach to
collaborative integrated sensing and communication for two-transmitter
systems," IEEE Journal on Selected Areas in Information Theory, vol. 4,
pp. 112–127, 2023.

[19] H. Hua, T. X. Han, and J. Xu, “MIMO integrated sensing and communica-
tion: CRB-rate tradeoff," IEEE Transactions on Wireless Communications,
Aug. 2023.

[20] J. Yao, L. Mai, and Q. Zhang, “Approximate capacity-distortion region of
joint state sensing and communication in MIMO real Gaussian channels,"
IEEE Transactions on Communications, Dec. 2023.

[21] X. Shen, N. Zhao, and Y. Shen, “On the performance tradeoff of an ISAC
system with finite blocklength," in Proceedings of the IEEE International

Conference on Communications, pp. 4628–4633, Rome, Italy, 28 May-01
June, 2023.

[22] Y. Polyanskiy, H. V. Poor and S. Verdú, “Channel coding rate in the finite
blocklength regime," IEEE Transactions on Information Theory, vol. 56,
no. 5, pp. 2307–2359, May, 2010.

[23] L. G. Tallini, S. Al-Bassam and B. Bose, "On the capacity and codes for
the Z-channel," in Proceedings of the IEEE International Symposium on

Information Theory, pp. 422, Lausanne, Switzerland, 2002.

[24] P. Van Beeck, “An application of Fourier methods to the problem
of sharpening the Berry-Esseen inequality,” Zeitschrift für Wahrschein-

lichkeitstheorie und Verwandte Gebiete, vol. 23, pp. 187–196, 1972.
[25] Y. Chen, T. Oechtering, M. Skoglund, and Y. Luo, “On general capacity-

distortion formulas of integrated sensing and communication,” Online:
arXiv:2310.11080, Oct. 2023.

[26] H. Nikbakht, M. Wigger, S. Shamai, and H. V. Poor, “Integrated sensing
and communication in the finite blocklength regime,” arXiv, 2024.

2795Authorized licensed use limited to: Princeton University. Downloaded on November 19,2024 at 20:21:05 UTC from IEEE Xplore.  Restrictions apply. 


