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Abstract

We present a new method based on information theory to find the optimal number of bands required to measure the
physical properties of galaxies with desired accuracy. As a proof of concept, using the recently updated COSMOS
catalog (COSMOS2020), we identify the most relevant wave bands for measuring the physical properties of
galaxies in a Hawaii Two-0- (H20) and UVISTA-like survey for a sample of i< 25 AB mag galaxies. We find that
with the available i-band fluxes, r, u, IRAC/ch2, and z bands provide most of the information regarding the
redshift with importance decreasing from r band to z band. We also find that for the same sample, IRAC/ch2, Y, r,
and u bands are the most relevant bands in stellar-mass measurements with decreasing order of importance.
Investigating the intercorrelation between the bands, we train a model to predict UVISTA observations in near-IR
from H20-like observations. We find that magnitudes in the YJH bands can be simulated/predicted with an
accuracy of 1σ mag scatter 0.2 for galaxies brighter than 24 AB mag in near-IR bands. One should note that these
conclusions depend on the selection criteria of the sample. For any new sample of galaxies with a different
selection, these results should be remeasured. Our results suggest that in the presence of a limited number of bands,
a machine-learning model trained over the population of observed galaxies with extensive spectral coverage
outperforms template fitting. Such a machine-learning model maximally comprises the information acquired over
available extensive surveys and breaks degeneracies in the parameter space of template fitting inevitable in the
presence of a few bands.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Astronomy data visualization (1968);
Galaxy evolution (594)

1. Introduction

Future ground-based and spaceborne observatories,

equipped with large aperture telescopes and sensitive large-

format detectors, will provide broadband imaging data for more

than a billion galaxies. These data are pivotal to a better

understanding of the dark sectors of the universe (i.e., dark

matter and dark energy) as well as the evolution of galaxies and

large-scale structures over cosmic time. The challenge,

however, is to obtain wide wave band coverage to constrain

the spectral energy distributions (SEDs) of millions of galaxies

and estimate their redshifts and physical parameters, such as

stellar masses and star formation rates.
Template fitting is widely used to infer the photometric

redshifts of galaxies and their physical properties (e.g., Arnouts

et al. 1999; Bolzonella et al. 2000; Ilbert et al. 2006). However,

theoretical synthetic templates may not be representative of the

real parameter space of galaxies. For example, templates can

include SEDs that do not have an observational analog. This will

cause degeneracy in parameter measurement, especially when we

reconstruct SEDs with few bands. Many of these degeneracies are

mitigated by obtaining data with wide spectral coverage (e.g.,

with a larger number of wave bands). An example of such a data

set is the Cosmic Evolution Survey (COSMOS; Scoville et al.

2007) that has been observed in more than 40 bands from X-ray

to radio wavelengths. The wealth of information in this field

provides very well-constrained SEDs for galaxies. However, not
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all surveys have as many photometric bands as the COSMOS
field. For instance, Euclid (Laureijs et al. 2011) will rely on near-
infrared Y, J, and H bands (960–2000 nm), complemented by
optical ground-based observations in u, g, r, i, and z, to measure
photometric redshifts (Euclid Collaboration et al. 2020). It is
therefore instructive to use the extensive data set in the COSMOS
field to identify essential bands that carry most of the information
regarding physical properties of galaxies.

The aim of this study is to transfer the information gained in
the COSMOS field to fields such as the Euclid deep fields,
where such extensive photometry does not exist. Using the
concepts of information theory, we can find if there is any
information shared between the bands and use these measure-
ments to identify the most important bands (those that reveal
most of the information about the physical properties of
galaxies). Based on the machine-learning techniques we can
then predict fluxes in the wave bands that are not observed in a
survey but share information with other available (observed)
bands. This allows us to carefully design future surveys and
only observe in selected wave bands that include most of the
information to significantly save in the observing time.

Machine learning has become popular in recent years to
build models based on spectroscopic redshifts (e.g., Carrasco
Kind & Brunner 2014; Masters et al. 2017) and train models
based on synthetic templates (e.g., Hemmati et al. 2019) or
mock catalogs generated from galaxy simulations (e.g.,
Davidzon et al. 2019; Simet et al. 2021). These methods are
particularly useful as machine-learning algorithms can learn
more complicated relations given a large and comprehensive
training data set (Mucesh et al. 2021). Moreover, these models
speed up parameter measurement, which is an important
characteristic with the flood of data imminent from upcoming
surveys (Hemmati et al. 2019).

In this paper, we develop a new technique based on
information theory to quantify the importance of each wave
band and identify essential bands to measure the physical
properties of galaxies. We also develop a machine-learning
model to predict fluxes in missing bands and thereby improve
the wavelength resolution of existing photometric data. To
demonstrate the application of these techniques, we apply our
methods to a sample of galaxies drawn from the latest version of
the COSMOS survey (COSMOS2020; Weaver et al. 2022),
analogous to that planned by the Euclid deep fields. A new
ground-based survey, Hawaii Two-0 (H20; C. McPartland et al.
2023, in preparation), has been designed to provide comple-
mentary photometric data for the Euclid mission. H20 will
provide u-band observations from the MegaCam instrument on
the Canada−France−Hawaii Telescope (CFHT) and g-, r-, i-,
and z-band imaging from the Hyper Suprime-Cam (HSC)

instrument on the Subaru Telescope over 20 deg2 of the Euclid
deep fields. Spitzer/IRAC observations from the Spitzer Legacy
Survey (SLS) are also available in the same fields (Moneti et al.
2022). In this paper, we identify the importance of wave bands
for an H20+UVISTA-like survey with similar wavelength
coverage expected in Euclid deep fields, incorporating the near-
IR YJH bands from UltraVISTA (McCracken et al. 2012) in
addition to the H20 and SLS wave bands. We then predict fluxes
in near-IR wave bands using the existing ground-based and mid-
IR Spitzer/IRAC (H20-like) observations of the deep fields.

In Section 2, we briefly introduce the COSMOS2020 catalog
and use that to build a sample of H20+UVISTA-like galaxies.
Section 3 describes the concepts of information gain and

quantifies the importance of each wave band based on them. In
Section 4, we use dimensionality reduction techniques to
visualize photometric data in two-dimensional space to explore
the feasibility of predicting fluxes in near-IR fluxes based on
ugriz and Spitzer/IRAC data. This is followed by Section 5
where we train a machine-learning algorithm, a random forest
model, to predict fluxes in UVISTA/YJH wave bands using
data in wave bands similar to the existing H20. In Section 6, we
investigate the accuracy of the photometric redshifts and stellar
masses given the limited number of bands available in H20-like
and H20+UVISTA-like data. We discuss and summarize our
results in Section 7.
Throughout this work, we assume flat ΛCDM cosmology

with H0= 70 km s−1 Mpc−1, 0.3,m0
W = and 0.7

0
W =L . All

magnitudes are expressed in the AB system, and the physical
parameters are measured assuming a Chabrier (2003) initial
mass function (IMF).

2. Data

Here we use the updated version of the COSMOS catalog,
COSMOS2020, to build a sample of galaxies analogous to those
that will be observed in the Euclid deep fields. Compared to the
COSMOS2015 catalog (Laigle et al. 2016), COSMOS2020
provides much deeper near-IR and mid-IR (Spitzer) photometric
data as well as two independent methods for photometric
extraction—the conventional and profile-fitting (The Farmer;
J. Weaver et al. 2023, in preparation) methods. We use The

Farmer photometry that contains consistent photometric data in
39 bands from far-ultraviolet to mid-IR including broad,
medium, and narrow filters. All the data are reduced to the
same scale with appropriate point-spread functions. Photometric
redshifts are calculated using LePhare (Arnouts et al. 1999; Ilbert
et al. 2006) with a similar configuration described in Ilbert et al.
(2013). Given the large number of bands with deep observations,
photometric redshift solutions are accurate, reaching a normal-
ized median absolute deviation (σNMAD; Hoaglin et al. 1983) of
0.02 for galaxies as faint as i∼ 25 AB mag (Weaver et al. 2022).
The redshifts of galaxies are then fixed on their estimated
photometric redshifts, and the stellar masses were estimated. In
this paper, we consider COSMOS2020 photometric redshifts
and stellar masses as a “ground truth” since spectroscopic
redshifts are only available for a limited number of galaxies, and
using a mixture of photometric and spectroscopic redshifts can
bias our sample toward specific populations of galaxies.

Figure 1. Redshift distribution for the subset of COSMOS2020 galaxies
brighter than i = 25 AB magnitude (3σ). The entropy of the redshift calculated
based on the distribution shown in this figure is less than the entropy of a
uniformly distributed redshift. In other words, we become less surprised when
we observe the redshift of a galaxy given this distribution (prior information).
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We use two sets of wave bands: (1) H20-like bands: A :=
{u, g, r, i, z, ch1, and ch2} and (2) H20+UVISTA-like bands:
B:={u, g, r, i, z, Y, J, H, ch1, and ch2}. u-band observations are
conducted by the MegaCam instrument at CFHT, and other
optical bands (g, r, i, and z) are available from Subaru’s HSC
imaging. The Spitzer/IRAC channel 1, 2 (ch1, ch2) data are
compiled from all the IRAC observations of the COSMOS field
(Moneti et al. 2022). Near-IR photometry in Y, J, and H bands are
obtained from the UltraVISTA survey (McCracken et al. 2012).
We select a subset of the COSMOS2020 galaxies that are
observed, but not necessarily detected, in all the aforementioned
bands and have i-band AB magnitude �25 with 3σ detection.
These selection criteria result in 165,807 galaxies out to z∼ 5.5.
Photometric measurements in the COSMSOS2020 catalog are not
corrected for Galactic extinction. We corrected them using the
Schlafly & Finkbeiner (2011) dust map. Moreover, some sources
have negative fluxes in the desired bands, which are due to the
variation of background flux across the image. We set these fluxes
to zero.

3. Information Gain

Let us suppose that we do not have any prior information
about the redshift distribution of galaxies selected from the
criteria mentioned in Section 2. We therefore assume a uniform
distribution for the redshift. As an example, if we define four
bins of redshifts ({z1 = (0, 1]; z2 = (1, 2]; z3 = (2, 3]; and z4
= (3, 4]}) and want to identify which bin a galaxy belongs to,
we can encode it in two bits, as below:

Here, we need to ask two yes/no questions to identify the
bin a galaxy belongs to. However based on the available
observations of COSMOS2020, we know the redshift distribu-
tion of galaxies with i� 25 AB mag as background informa-
tion. We therefore update the decision tree above, considering

our prior information about the redshift distribution, to reduce
the average number of questions we need to ask to identify the
redshift bin of a galaxy. Based on the redshift distribution
shown in Figure 1, the probability of a galaxy being in each
redshift bin are P(z1)= 0.56, P(z2)= 0.32, P(z3)= 0.09, and
P(z4)= 0.03. Thus, one possible decision tree to identify the
redshift bin of a galaxy can be built as follows:

On average, 0.56× 1+ 0.32× 2+ (0.09+ 0.03)× 3= 1.56

questions (bits) are required to identify the redshift bin of a

galaxy. We find that the number of bits (questions) were

reduced from 2 to 1.56 when we added information regarding

the redshift distribution of galaxies. This decrease shows that

we will become less surprised when we observe the redshift of

a galaxy given that we know what the redshift distribution

looks like.
Given the above example, the optimal number of bits

required to store a variable called the Shannon Entropy (H) is
defined as (Shannon 1948)

( ) ( ) ( ) ( )H X P x P xlog , 1
i

i i2å= -

where xi is the possible outcome of a variable (X) that occurs

with probability P(xi). In this formulation, ( )P xlog i2 represents

the number of bits required to identify the outcome. Using

Equation (1), the Shannon Entropy of redshift based on the

probabilities in four bins is 1.45 bits. This means that we can

still make our tree more optimal to encode the redshift values in

1.45 bits instead of 1.56. One possible way would be by

building the tree to identify the redshift of two galaxies

simultaneously, which makes the average number of questions

Figure 2. Mutual information of redshift and wave bands in bits per galaxy. With greater mutual information, the entropy of the redshift will decrease more if we
include the band in photometric redshift measurements, thus increasing the importance of the band. Here, u is the most important followed by z band.
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Figure 3. Conditional mutual information of redshift and wave bands in bits per galaxy. The most relevant bands can be selected based on their conditional mutual
information. The sample is selected based on the magnitude of the i band, which implies that the first selected wave band is the i band. The top left panel shows the
mutual information of redshift and wave bands given that i-band data are available. Therefore we select the r band as the second-most relevant band since it provides
the most information. In the top right panel, we assume that i- and r-band data are available and find that the u band would be the third choice. We follow a similar
procedure to find relevant bands in order of their importance. We note that these results depend on the selection criteria. For any new sample of galaxies with a
different selection, these results should be remeasured.
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per galaxy even less than 1.56. However, we do not aim to find

the optimal compression algorithm to encode the redshift

information. We just use the Shannon Entropy to find the

maximal compression rate.
In the presence of other information, such as observed fluxes

in different bands, the entropy of the redshift decreases even
more. The amount of uncertainty (entropy) remaining in X after
we have seen Y is called conditional entropy and defined as

( ∣ ) ( )
( )

( )
( )H X Y P x y

P x y

P y
, log

,
, 2

x X y Y,
2å= -

Î Î

where P(x, y) is the joint probability distribution at (x, y).

Moreover, mutual information between X and Y (i.e., the

amount of uncertainty in X that is removed by knowing Y) is

defined as

( ) ( ) ( ∣ )

( ) ( ) ( ) ( )

I X Y H X H X Y

H X H Y H X Y

,

, , 3

= -
= + -

where H(X, Y) is the joint entropy of a pair of variables (X, Y).

In other words, I(X, Y) is a measure of the amount of

information (in bits) one can acquire about X by observing Y.

This parameter can be used to identify the wave band that will

be most useful for measuring galaxy properties (e.g., redshifts).

For instance, the wave band with the highest I(redshift, wave

band) carries the most information and decreases the entropy of

the redshift the most.
The mutual information as in Equation (3) is defined for

discrete variables. In the case of continuous variables (e.g.,
redshift, flux, and stellar mass), we need to properly discretize
the data. Kraskov et al. (2004; hereafter KSG) introduced a k-
nearest neighbor estimator to compute the mutual information
of continuous variables. This method detects the underlying
probability distribution of data by measuring distances to the
kth nearest neighbors of points in the data set. There is nonzero
mutual information when some points are clustered in the X–Y
space, which allows us to predict y ä Y given an x ä X
coordinate. We refer readers to the original KSG paper for
details of the method. Figure 2 shows the mutual information
between the redshift and each wave band based on the KSG
algorithm with k= 100 nearest neighbors. It suggests that given
the sample of i< 25 AB mag galaxies, the u band provides the
largest information regarding the redshift compared to the rest
of the H20+UVISTA-like bands. However, our sample is
selected based on i-band magnitudes, so we assumed that i-
band data are already available. Suppose that for our sample u-
band fluxes are highly correlated with i-band data. In this case,
the u band carries no information in the presence of i-band data.
To take into account such an effect, we need to compute the
conditional mutual information, defined as

( ∣ ) ( ∣ ) ( ∣ ) ( )I X Y Z H X Z H X Y Z, , , 4= -

where I(X, Y|Z) is the mutual information of X and Y given that

Z is observed. Following the KSG algorithm, we find the

conditional mutual entropy to sort wave bands based on their

importance. We compute I(redshift, wave band|i band) and

choose the wave band with the highest conditional mutual

information as the most important band. The conditional

mutual information estimations reveal that the r band is the

most important wave band given that i-band data are available.

We continue computing conditional mutual information, I

(redshift, wave band|swave band), where swave band is the

previously selected wave band.

Figure 4. Similar to Figure 2 but for the stellar mass. Mutual information of stellar mass and wave bands in bits per galaxy is shown. With greater mutual information,
the entropy of stellar mass will decrease more if we include the band instellar-mass measurements, making the band more important.

Figure 5.Mutual information of stellar mass and wave bands in bits per galaxy
in the bins of redshift. The map is colored based on the value of mutual
information, with red representing the most important band and blue
representing the least important band. The role of low wavelength bands
decreases as we approach higher redshift, as we would expect.
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Figure 6. Similar to Figure 3 but for the stellar mass. Each panel shows the conditional mutual information of stellar mass and wave bands given that all the previously
selected bands are available. We find that for the i-band selected sample, the ch2, Y, r, and u bands are the four most relevant bands with decreasing order of
importance. The top left panel shows that IRAC data are essential for stellar-mass measurements.

6

The Astrophysical Journal, 942:91 (13pp), 2023 January 10 Chartab et al.



Figure 3 shows the nonzero conditional mutual information

as we select relevant wave bands. We find that for i< 25 AB

mag galaxies, r, u, ch2, and z bands are the bands that provide

most of the information about the redshift with decreasing

importance from r band to z band. We repeat these analyses for
stellar-mass measurements. In Figure 4, we measure the mutual
information between stellar mass and each wave band for the
whole sample, and in Figure 5 we measure the same quantity, I
( ( ) |M M ilog , wave band band/ * ), in the bins of redshifts. As
we expect, the role of short wavelength bands decreases as we
approach higher redshifts. We further compute the important
wave bands given the availability of i-band data in Figure 6.
We find that ch2, Y, r, and u bands are the most relevant bands
in the stellar-mass measurements with decreasing order of
importance. One can constrain the redshift and repeat the
analysis to find the optimal bands for stellar-mass measure-
ments in the desired redshift range given the availability of
i-band data.
One should note that these conclusions depend on the

selection criteria of the sample. This method provides a
powerful tool in designing future surveys and quantifying the
importance of each wave band. An efficient observation can be
conducted by prioritizing important wave bands identified by
the information gain-based method.
Moreover, different wave band fluxes can be intercorrelated

for a specific sample of galaxies. For instance, the top left panel
in Figure 6 shows that IRAC/ch1 and ch2 provide a
comparable amount of information for stellar-mass measure-
ments, which suggests that these bands are intercorrelated for
our sample with i< 25 AB mag. Figure 7 visualizes the mutual
information between different bands. A greater value of mutual
information indicates that the wave bands are more correlated.
Intercorrelation between wave bands allows us to predict/
simulate fluxes of galaxies in missing bands. In the following,
we investigate the possibility of predicting/simulating near-IR
UVISTA/YJH fluxes based on H20-like data for a sample of
galaxies with i< 25 AB mag.

4. Data Visualization

Fluxes of galaxies in N wave bands are used to measure the
photometric redshifts and physical parameters of galaxies. For
example, the H20-like data with N= 7 bands occupy a seven-
dimensional space, where the position of each galaxy is
determined by its fluxes in seven bands. Therefore, galaxies
with similar positions in N-dimensional space are expected to
have similar redshifts and physical parameters if N is large
enough to fully sample the observed SED of galaxies.
Similarly, it is expected that they will have similar fluxes in
the (N+ 1)th wave band. However, showing galaxy fluxes in a
high-dimensional space (e.g., seven-dimensional space) is
impossible, and thus, we use dimensionality reduction
techniques to present them in 2D space such that the
information of higher dimension is maximally preserved. In
this work, we use the Uniform Manifold Approximation and
Projection (UMAP; McInnes et al. 2018) technique to visualize
our sample in a two-dimensional space. UMAP is a nonlinear
dimensionality reduction technique that estimates the topology
of high-dimensional data and uses this information to construct
a low-dimensional representation of data that preserves
structure information on local scales. It also outperforms other
dimensional reduction algorithms such as t-Distributed Sto-
chastic Neighbor Embedding (van der Maaten & Hinton 2008)
used in the literature (Steinhardt et al. 2020) since it preserves
structures on global scales as well. In a simple sense, UMAP
constructs a high-dimensional weighted graph by extending a
radius around each data point and connecting points when their

Figure 7. Visual representation of the mutual information between different
wave bands for a sample of i < 25 AB mag galaxies. The map is colored based
on the value of mutual information, with purple representing the most
correlated bands and yellow representing the least correlated bands (mostly
independent). For instance, the mutual information of ch1 and ch2 quantifies
the bits of information about the IRAC/ch1 flux obtained by observing IRAC/
ch2 flux. It is similar to the correlation coefficient, but it is able to capture
nonlinear relationships.

Figure 8. 2D visualization of the sample with H20-like bands using the UMAP
technique. The mapped data are color coded by the H-band fluxes. The smooth
gradient of H-band fluxes in the 2D representation reassures us that galaxies
with similar fluxes in H20-like bands have similar H-band fluxes as well.
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radii overlap. This radius varies locally based on the distance to
the nth nearest neighbor of each point. The number of the
nearest neighbor (n) is the hyperparameter in UMAP that
should be fixed to construct high-dimensional graphs. Small
(large) values for n will preserve more local (global) structures.
Once the high-dimensional weighted graph is constructed,
UMAP optimizes the layout of a low-dimensional map to be as
similar as possible to the high-dimensional graph.

We use the UMAP Python library15 to map seven-
dimensional flux space of H20-like data to two dimensions
considering 50 of the nearest neighbors to provide a balance
between preserving local and global structures. We do not map
magnitudes or colors since nondetected values cannot be
handled properly when using them. Multiwave band fluxes
contain all the information regarding colors, but using colors
misses information regarding fluxes or magnitudes. Therefore,
mapping fluxes of galaxies from that space to two dimensions
is a better way than using colors. Since fluxes in different bands
have fairly similar distributions, no normalization is needed
before applying UMAP. In the case of significantly distinct
distributions, normalization is needed to avoid the dominance
of a wave band with a larger dynamic range. Figure 8 shows a
2D visualization of the sample with H20-like bands using the
UMAP algorithm. As an example, the mapped data are color
coded by the H-band fluxes (not present in H20 photometry) in
μJy. The smooth transition of the H-band fluxes in the 2D
representation in Figure 8 reassures us that galaxies with
similar fluxes in H20-like bands also have similar H-band
fluxes. We note that the H20-like data set does not include H-
band data.

Visualized data in Figure 8 show qualitatively that the H-
band fluxes are predictable to some extent using H20-like data.
To perform a quantitative assessment on how accurately one
can predict fluxes in the UVISTA YJH bands given H20-like
observations, we train a random forest (Breiman 2001) model
with half of our sample and evaluate the model’s performance
with the other half. A random forest consists of an ensemble of
regression trees. The algorithm picks a subsample of the data
set, builds a regression tree based on the subsample, and
repeats this procedure numerous times. The final value is the
average of all the values predicted by all the trees in the forest.
Having numerous decision trees based on subsampled data
makes this algorithm unbiased and unaffected by overfitting.
Another advantage of this method is that the inputs do not need
to be scaled before feeding into the model. In the following

section, we train a random forest model and evaluate its
accuracy.

5. Flux Predictions

We split the sample (described in Section 2) randomly into a
training and a test sample. To evaluate if the training sample is
representative, we construct a 2D projection of H20-like fluxes
similar to Figure 8 for both training and test samples. Figure 9
shows the 2D visualizations color coded by the properties of
galaxies (photometric redshift and stellar mass). We find that
the training and test samples share the same properties, so the
training sample is representative of the galaxies in the
COSMOS field. With 82,903 galaxies as a training sample,
we build a random forest model with 100 regression trees to
predict the UVISTA YJH bands from the H20-like band fluxes.
We use Python implementation of the algorithm (Scikit-learn;
Pedregosa et al. 2011)16 with its default parameters to build the
model. The true (observed) fluxes in the YJH bands are
available in the COSMOS2020 catalog. Using the trained
random forest model, we then predict the expected fluxes for
galaxies not included in the training set, with the results
compared in Figure 10. For each band, we compare the
predicted magnitudes (MagPredicted) with the true observed
magnitudes (MagTrue). We find that the random forest model
predicts unbiased YJH fluxes with high accuracy. The bottom
panel in each figure shows the scatter of the MagPredicted−
MagTrue as a function of true magnitudes. With median
magnitude discrepancy (Δ) of ∼0.01, we find that the offset
is comparable with discrepancies that arise from different
methods of photometric data reduction. Weaver et al. (2022)
found that the median tension between the magnitudes derived
from aperture photometry and profile-fitting extraction is
Δ∼ 0.002 in YJ bands and Δ∼ 0.02 in the H-band for
sources brighter than the 3σ depth of each band. Thus, such
small offsets in the random forest regressor are within the
intrinsic uncertainties of the data reduction techniques. The
green solidanddashed lines in the subpanels of Figure 10
show the median of Δ and 1σ (68%) scatter, respectively. The
scatter in the prediction is <0.17 mag for galaxies brighter than
24 AB mag. This shows that YJH near-IR observations of
UVISTA can be simulated with acceptable accuracy from the
available observations of H20 for a sample of galaxies with
i< 25 AB mag. Our results remain consistent when we rebuild
a new random forest with different randomly selected training
samples. While our focus in this paper is on the UVISTA/YJH

Figure 9. Similar to Figure 8 but for training (two left panels) and test (two right panels) samples. Maps are color coded with photometric redshifts and stellar masses.
We find that the training and test samples share the same properties, so the randomly selected training sample is representative of the galaxies in the COSMOS field.

15
https://github.com/lmcinnes/umap

16
https://scikit-learn.org/stable
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and H20 bands, the method we present is general and directly
applicable to other surveys.

6. Photometric Redshift and Stellar Mass

In the previous section, we showed that given the
observations of the H20 survey, near-IR observations of
UVISTA can be constrained to some extent. In other words,
observations of the COSMOS field provide valuable informa-
tion regarding the distribution of galaxies in the flux space even
if we do not observe galaxies as extensively as it is done in the
COSMOS field in terms of the spectral coverage. When we use
the template-fitting code with synthetic templates, we usually
do not take into account this constraint. There are two
approaches to incorporate this information in the photometric
redshifts or physical parameters measurements. First, add a
prior to fluxes in the bands that are not observed in the survey.
For instance, when we perform SED fitting using H20-like
bands, we can add priors to the YJH bands based on a random
forest model, which is trained over the population of galaxies
from the COSMOS observations. Second, train a model based
on SED-fitting results calculated with a large number of bands.
In this case, when we feed our model with H20-like data, it will
decide the best value of a parameter based on both the
existence of similar observations in the COSMOS field
(information from galaxy populations) and the SED-fitting
solution for that galaxy.
In this section, we employ the latter approach to train a

model to predict the photometric redshifts and the stellar
masses of galaxies based on H20-like and H20+UVISTA-like
bands. We train a random forest model based on a training
sample of observed galaxies. The inputs of the model are H20-
like fluxes, and the output is either photometric redshift or
stellar mass computed from SED fitting over 29 bands available
in the COSMOS2020 catalog. We also train another similar
model where the inputs are H20+UVISTA-like bands.
Figure 11 shows the performance of trained models on the
test sample with 82,904 galaxies. We find that both models
recover photometric redshifts and stellar masses with compar-
able accuracy, although a model trained on H20+UVISTA-like
data has slightly higher accuracy. Normalized median absolute
deviation (σNMAD) of Δz/(1+ z) is ∼0.03 for both models
with ∼4% outlier fraction. Outlier galaxies are defined as
galaxies with Δz/(1+ z)> 0.15. The median absolute devia-
tion of ( )M Mlog

*  is ∼0.1 dex for both models. We explain
this similar performance using the results of Sections 3 and 5.
The random forest model with H20-like bands comprises most
of the information regarding UVISTA bands as we trained the
model with the population of observed COSMOS galaxies.
Therefore, it should recover photometric redshifts and stellar
masses as accurately as the model that includes near-IR (YJH)

observations.
We repeat a similar analysis starting with only i-band data

and adding other important bands in the same order as we
identified in Section 3. Figure 12 shows the the normalized
median absolute deviation of Δz/(1+ z) and ( )M Mlog

*  as a
function of bands used to measure the parameter. We find that
i, r, u, ch2, and z bands are the minimal number of bands to
reach an acceptable accuracy of ( ) 0.03z z1

NMADs =D + to measure
photometric redshifts of i< 25 AB mag. For the same sample,
i, ch2, Y, r, and u bands are the optimal bands for stellar-mass
measurements reaching an accuracy of ( ) 0.15M Mlog

NMAD

* 
s = dex.

Figure 10. The performance of the random forest model on the 82,904 test
galaxies not used for the training of the model. The model is trained based on
H20-like bands (u, g, r, i, z, ch1, and ch2) and predicts UVISTA YJH bands.
Bottom panels show the scatter of MagPredicted −MagTrue as a function of true
magnitudes, and Δ is the median offset in these scatter plots.
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6.1. Synthetic Templates

In the following, we use UMAP to visualize the photometry

of synthetic SED models commonly used in template-fitting

procedures. We build a set of theoretical templates using the

2016 version of a library of Bruzual & Charlot (2003),

considering Chabrier (2003) IMF. Star formation histories are

modeled with an exponentially declining function
(SFR∝ e− t/ τ

), where τ is the star formation timescale. Dust
attenuation is applied using the Calzetti et al. (2000) law, and
solar stellar metallicity is assumed for all templates. We build
∼750,000 theoretical templates assuming τä (0.1, 10)Gyr,
tä (0.1, 13.7)Gyr, AV ä (0, 2)mag, and z ä (0, 5.5). t and AV

are the stellar age and the extinction in the visual band,

Figure 11. Performance of the random forest model to predict photometric redshifts and stellar masses when the model is trained by H20-like bands (left panels) and
H20+UVISTA-like bands (right panels). Both trained models recover photometric redshifts and stellar masses with high accuracy. The similar performance of the
model with and without YJH bands originates from the fact that the H20-like bands capture most of the information available in YJH bands as shown in Figure 10. The
black dashed−dotted lines show one-to-one relation, and the gray dashed−dotted lines correspond to the predicted redshifts at ±0.15(1 + z) (outlier definition
boundaries).

Figure 12. The normalized median absolute deviation of Δz/(1 + z) (left panel) and ( )M Mlog
*  (right panel) as a function of bands used to measure the parameter.

As the sample is selected based on the i-band magnitude of galaxies, we start with training a random forest model based on only i-band data, and then we add other
bands following the same order of importance we find in Figures 3 and 6. The red hatched region represents a region where the normalized median absolute deviation
exceeds the scatter of the data relative to their mean value.
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respectively. We then calculate the synthetic photometry in
both the H20-like and H20+UVISTA-like bands by applying
the corresponding filter response function.

As we learned the topology of fluxes in the H20-like bands
for real observed galaxies in the COSMOS2020 catalog
(Figure 8), we can transform the H20-like band fluxes of
synthetic photometry into the learned space. Figure 13 shows
the 2D visualization of the theoretical templates with H20-like
bands in that learned space. As an example, data points in the
reduced dimension are color coded by their synthetic H-band
fluxes in μJy. Comparing theoretical templates with the
observed data shown in Figure 8 reveals that model galaxies
encounter degeneracies. In this specific example, we show that
templates with similar H20-like fluxes have more diverse H-
band fluxes than real observations, which can produce
degenerate results when template fitting is performed based
on H20-like bands. Adding the information of the COS-
MOS2020 observations as a prior imposes a strong correlation
between the observed and missing bands and makes the
theoretical templates less degenerate as shown in Figure 8. For
example, the dark blue arc on the left side of Figure 13
mismatches with the observational counterpart. In other words,
synthetic templates predict the H-band flux of ∼0.1 μJy for
galaxies in that vicinity (i.e., the dark blue arc), but real
observations show that they have in fact an H-band flux of ∼10
μJy. This shows that the extra information that exists in the
previous observations can add valuable information to
template-fitting analyses.

If one adds a predicted band in the template-fitting
procedure, the errors should be assigned based on the 1σ
scatter of the predicted flux (dashed lines in Figure 10). It is
particularly important to properly take into account the
systematic scatter of the predicted bands in template fitting
and ensure that the predicted bands are not overweighted in

best-template selection. In the following section we perform a
simple template fitting to evaluate the values added by
predicted fluxes. However, it is worth highlighting that the
better approach would be using a machine-learning model that
is trained based on template-fitting results of a galaxy
population with well-constrained SEDs such as COSMOS2020
(Figure 11).

6.2. Template Fitting

We perform template fitting for three cases using 1) H20-like
bands, 2) H20-like+predicted YHJ bands, and 3) H20
+UVISTA-like bands. For this purpose, we split the test
sample used in Section 5 into half to have a validation set as
well as a new test sample. The validation sample is used to
measure the 1σ scatter of the predicted flux (similar to the
dashed lines in Figure 10). We assign errors to the predicted
fluxes of the new test sample based on 1σ scatter of the
validation sample at a given magnitude. We use a template-
fitting code LePhare with the same configuration as Ilbert
et al. (2015). This configuration differs from the templates used
for COSMOS2020 redshift measurements. In the COS-
MOS2020 catalog, the photometric redshifts are measured
based on templates employed by Ilbert et al. (2013), followed
by stellar masses measured in the same manner as Ilbert et al.
(2015) at fixed photometric redshifts, but here we fit both
photometric redshifts and stellar masses simultaneously.
Figure 14 presents the results of the template fitting for these
three cases. We find that the lack of observed near-IR fluxes in
template fitting increases the σNMAD and outlier fraction by
50% and 80%, respectively. We also find that adding predicted
fluxes improves the σNMAD and outlier fraction by 10% and
25%, respectively. Predicted fluxes also improve the scatter of
the stellar-mass measurements by 7%.
Improvement in template-fitting results by adding predicted

fluxes suggests that observationally driven priors on near-IR
fluxes can help reduce both scatter and outlier fraction of SED-
derived properties. Moreover, we find that adding observed
near-IR data significantly (∼50%) improves the template-fitting
results, but this is not the case for the random forest model
shown in Figure 11 (∼10% improvement). This suggests that
machine-learning models are able to fully incorporate the
information gathered from extensive surveys and avoid the
degeneracies in template-fitting parameters that are inevitable
when a few bands are present.

7. Discussion and Summary

In this paper, we present an information gain-based method
to quantify the importance of wave bands and find the optimal
set of bands needed to be observed to constrain the photometric
redshifts and physical properties of galaxies. To demonstrate
the application of this method we build a subsample of galaxies
from the COSMOS2020 catalog with similar wave band
coverage (ugrizYJH and IRAC/ch1, ch2) that will be available
in Euclid deep fields. For a sample of galaxies with i< 25 AB
mag, we find that given the availability of i-band fluxes, r, u,
IRAC/ch2, and z bands provide most of the information for
measuring the photometric redshifts with importance decreas-
ing from the r band to the z band. We also find that for the same
sample, IRAC/ch2, Y, r, and u bands are the most relevant
bands in stellar-mass measurements with decreasing order of
importance. We note that these results should be remeasured

Figure 13. Similar to Figure 8 but for synthetic photometric data. The high-
dimensional synthetic H20-like data are transformed to the space learned in
Figure 8. The map is color coded by the synthetic H-band fluxes. Existing
dissimilarities between this figure and Figure 8 show that synthetic models lack
the observed information.
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for any new sample with different selection criteria. Moreover,
we present the relative importance of wave bands for stellar-
mass measurements in the bins of redshifts since their
importance depends on the redshift. We also investigate the
intercorrelation between the flux in different wave bands and
use a machine-learning technique to predict/simulate missing
fluxes from a survey. To prove the concept, we apply the
method trained on the COSMOS2020 data to predict UVISTA
near-IR observations based on the H20-like survey data, which
include ugriz and Spitzer/IRAC observations. We find that
near-IR bands (YJH) can be predicted/simulated from ground-
based (ugriz) and mid-IR Spitzer (IRAC/ch1, ch2) observa-
tions with an accuracy of 1σ mag scatter 0.2 for galaxies
brighter than 24 AB mag in near-IR bands. We demonstrate
that theoretical templates lack such valuable information
already observed through numerous bands in the COSMOS
field. We conclude that degeneracies in template fitting can be
alleviated if one trains a model based on template-fitting
solutions for observed galaxies with extensive observations
instead of using conventional SED fitting. We show that a
model trained on H20-like bands has comparable accuracy to a
model that is trained over H20+UVISTA-like bands, given that
the model is trained over the observed galaxy population with a
vast number of wave bands.

Masters et al. (2015) mapped the high-dimensional color
space of COSMOS galaxies in UVISTA bands using the self-
organizing map (SOM) technique (Kohonen 1982) and
proposed a spectroscopy survey to fully cover regions in
reduced color space with no spectroscopic redshifts. This

survey, C3R2, was awarded 44.5 nights on the Keck Telescope
to map the color−redshift relation necessary for weak lensing
cosmology (Masters et al. 2017, 2019). Later on, Hemmati
et al. (2019) used SOM to map the color space of theoretical
models and used the reduced map as a fast template-fitting
technique. In the present work, we use a new technique,
UMAP, to create a two-dimensional representation of a high-
dimensional flux distribution. This technique can also be
utilized to map the color space of galaxies and study their
physical properties (similar to Figure 9), providing an
opportunity for further analyses that can be performed in the
future.
Acquiring data for galaxy surveys over wide areas and a

range of wavelengths with a large number of wave bands is
costly. A new method based on machine-learning algorithms is
presented in this paper to supplement the present and future
surveys in their missing bands with information from previous
extensive surveys (e.g., COSMOS). It can be used to optimize
observations of future surveys, as well as to predict the
photometry of observatories that have ceased operation
(Dobbels et al. 2020).

We thank the anonymous referee for providing insightful
comments and suggestions that improved the quality of this
work. N.C. and A.C. acknowledge support from NASA ADAP
80NSSC20K0437. I.D. has received funding from the
European Union’s Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agreement
No. 896225.

Figure 14. Template-fitting results are compared against photometric redshifts and stellar masses of the COSMOS2020 catalog (derived from 29 bands) for three
cases: 1) using observed ugrizch1ch2 bands (left panels), 2) using observed ugrizch1ch2+predicted JHK bands (middle panels), and 3) using observed
ugrizYJHch1ch2 bands (right panels).
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