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ABSTRACT

We perform an analysis of two-point galaxy clustering and galaxy bias using Subaru Hyper-

Suprime Cam (HSC) data taken jointly by the Subaru Strategic Program and the University

of Hawaii in the Cosmic Evolution Survey (COSMOS) field over an area of 1.8 sq deg. The

depth of the data is similar to the ongoing Hawaii Two-0 (H20) optical galaxy survey, thus

the results are indicative of future constraints from tenfold area. We measure the angular

autopower spectra of the galaxy overdensity in three redshift bins, defined by dropouts from

the g, r, and i bands, and compare them to the theoretical expectation from concordance

cosmology with linear galaxy bias. We determine the redshift distribution of each bin using

a standard template-based photometric redshift method, coupled with a self-organizing map

to quantify colour space coverage. We also investigate sources of systematic errors to inform

the methodology and requirements for H20. The linear galaxy bias fit results are bgal,g =
3.90 ± 0.33(stat)+0.64

−0.24(sys) at redshift z � 3.7, bgal,r = 8.44 ± 0.63(stat)+1.42
−0.72(sys) at z � 4.7,

and bgal,i = 11.94 ± 2.24(stat)+1.82
−1.27(sys) at z � 5.9.

Key words: methods: numerical – cosmological parameters – large-scale structure of Uni-

verse.

1 IN T RO D U C T I O N

The standard Lambda cold dark matter (�CDM) cosmological

model has proven extremely successful in describing various

observations of the Universe. The main observational pillars of

this model have been the cosmic microwave background (CMB)

at redshift z � 1100, type Ia supernovae up to around z � 1, and

the large-scale structure in various wide-angle galaxy surveys (e.g.

SDSS/BOSS, Dawson et al. 2013; Pan-STARRS, Chambers et al.

2016; DES, Dark Energy Survey Collaboration et al. 2016; VIPERS,

Scodeggio et al. 2018), with depths reaching up to z � 1.5. Quasar

maps are deeper (e.g. Gil-Marı́n et al. 2018, up to z � 2.2), at the

expense of being restricted to the largest scales due to shot noise.

Thus, despite enormous progress in pushing the limits of depth,

currently there are few measurements available to anchor the

�CDM model in the redshift range between the CMB and the

deepest wide-angle surveys. In the future, LSST will extend to

z � 3–4 and will cover an area of 30 000 sq deg (Ivezic et al. 2008),

while Euclid (Laureijs et al. 2011) and WFIRST (Akeson et al. 2019)

will reach z � 2, and 3, respectively, the latter in a smaller footprint.

The Hawaii Two-0 (H20) survey fills the redshift gap in obser-

vations – it is a 20 sq deg ultradeep optical galaxy survey with

� E-mail: beckrob@ifa.hawaii.edu (RB); szapudi@ifa.hawaii.edu (IS)

grizy broad-band photometry from the Hyper-Suprime Cam (HSC)

instrument of the Subaru telescope. It has two fields of 10 sq deg

each, at the North Ecliptic Pole and Chandra Deep Field-South.

The former overlaps with the Euclid Deep Calibration Field, thus

enabling synergy between observations. The expected depths in

each band for H20 are shown in Table 1.

H20 will include broad-band measurements of galaxies up to

z � 7. At this redshift, the comoving distance across each 10 sq deg

field is roughly 500 Mpc, large enough to include several clusters.

This coverage facilitates studying galaxy evolution as it relates

to environment at an unprecedented depth, while also providing

a sample large enough for cosmological study. In fact, the total

volume of H20 out to z = 7 will be roughly 1.4Gpc3.

The most elementary parameter to characterize a galaxy sample is

the linear galaxy bias bgal. This connects the theoretically modelled

matter overdensity δ to the measured galaxy overdensity δgal: δgal =
bgalδ. More precisely, b2 is the ratio of galaxy and dark matter

power spectra under the assumption that a deterministic and linear

bias holds. This is expected to be true on the large scales we consider

in this paper.

While the galaxy bias is sample-dependent and difficult to

interpret on its own, it is a necessary stepping stone towards more

universal cosmological parameters. In particular, the amplitude of

fluctuations, often described with the parameter σ 8, is entirely

degenerate with bgal from two-point clustering measurements.
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Table 1. Top: observational parameters for the H20 survey – 5σ point

source limiting magnitudes, HSC exposure times. Bottom: 5σ point source

limiting magnitudes for the SSP+UH HSC stack (Tanaka et al. 2017), used

in this paper.

Filter g r i z y

H20 limiting mag 27.5 27.5 27.0 26.5 26.0

H20 exposure time 1.1 h 2.5 h 4.1 h 4.8 h 9.0 h

SSP+UH limiting mag 27.8 27.7 27.6 26.8 26.2

Recent work (e.g. McCarthy et al. 2018) reveals a mild tension

between the concordance value of σ 8 within �CDM cosmology and

measurements of clustering in the local Universe. A high-redshift

constraint on σ 8 would help decide the significance of this tension.

Since H20 observations are ongoing, we chose to perform an

analysis of galaxy bias on a readily available HSC data set, allowing

us to test our methodology and software in preparation for the

processing of actual H20 data.

Section 2 describes our data sets, Section 3 outlines the theoretical

background, Section 4 details our methods to extract the redshift

distribution of our samples, Section 5 describes the angular power

spectra obtained and the linear galaxy bias fits, and finally Section 6

summarizes and discusses our results. Appendix A contains an

analysis of the magnification bias that is ancillary to our main topic.

2 DATA SET

2.1 Photometric data

An earlier HSC survey, performed jointly by the Subaru Strategic

Program and the University of Hawaii, provides ultradeep optical

images in the COSMOS field (SSP+UH survey, Tanaka et al. 2017).

The data set is public, uses the same instrumentation as H20, and has

a similar – albeit slightly higher – depth. Table 1 lists the limiting

magnitudes of SSP + UH in each photometric band, as well as

the anticipated corresponding values for H20. While the SSP+UH

survey has full depth in only one HSC pointing (with an area of

Figure 1. The detection mask of the SSP+UH survey. The yellow region

represents pixels in the observed field that contain valid photometric

observations, and have not been flagged for any observational artefacts.

≈1.8 sq deg), it was selected as the best candidate to perform our

preliminary analysis for H20.

In this work, we use the reduced data and source catalogue of

Tanaka et al. (2017), specifically the fluxes measured in a 1.5 arcsec

diameter circular aperture, in the HSC grizy broad-band photometric

filters.

2.2 Dropout selection

To select galaxy subsamples within a well-defined redshift range,

we adopt the methodology of the GOLDRUSH project of the Subaru

Strategic Program (Harikane et al. 2018; Ono et al. 2018). Following

Hildebrandt et al. (2009), they defined colour cuts and measurement

quality criteria in order to select dropout samples in the HSC g, r, i,

and z bands, which they found to correspond to redshift bins around

z � 4, 5, 6, and 7, respectively, with little overlap.

We consider only the g-, r-, and i-band dropouts, since z-band

dropouts by definition are detected in the y band only and thus have

a higher risk of including spurious detections. The original colour

cuts for our three dropout bands were defined in Ono et al. (2018) as

g − r > 1.0

r − i < 1.0 (1)

g − r > 1.5(r − i) + 0.8

for g dropouts,

r − i > 1.2

i − z < 0.7 (2)

r − i > 1.5(i − z) + 1.0

for r dropouts, and finally

i − z > 1.5

z − y < 0.5 (3)

i − z > 2.0(z − y) + 1.1

for i-band dropouts.

Additionally, Ono et al. (2018) required that g dropouts have

signal-to-noise ratio S/N > 5.0 in i band, r dropouts have S/N > 5.0

in z band, and i dropouts have both S/N > 5.0 in z band and S/N >

4.0 in y band. Finally, r-dropouts had to be undetected (specifically,

S/N < 2.0) in g band, and i dropouts needed to be undetected in

both g and r bands. We adopt these criteria as well.

The equations above reveal that g dropouts require photometry

in the g, r, and i bands, r dropouts in the r, i, and z bands, and

finally i dropouts in the i, z, and y bands. Sources that have valid

photometry and are not flagged for any artefacts (e.g. satellite trail,

saturation, and diffraction spike; Ono et al. 2018) in these three sets

of photometric bands constitute the parent catalogues from which

the respective dropout samples are selected. The pixels in the field

that have valid photometry, and have not been flagged for any issue

are shown in Fig. 1.

We also performed an independent test of the validity of the colour

cuts using the combined spectroscopic catalogue in the COSMOS

field (Salvato, private communication). The well-measured spec-

troscopic sources (quality flag Q ≥ 3) were cross-matched with the

three dropout samples using a matching radius of 1.5 arcsec. We

found 750, 63, and 2 spectroscopic matches with the g, r, and i

dropouts, respectively.

MNRAS 493, 2318–2328 (2020)
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Figure 2. Left-hand panel: the colour space position of sources that both satisfy the g-band dropout selection criteria, and have a spectroscopic counterpart.

Blue dots denote galaxies above z = 3, while red dots have z < 3, i.e. are low-redshift contaminants. The grey dashed line represents the original Ono et al.

(2018) cut, while the black solid line is our updated boundary. Right-hand panel: the redshift distribution of the combined COSMOS spectroscopic catalogue.

z > 3 galaxies are heavily under-represented in the cross-match.

Tests done by Ono et al. (2018), using both template spectra

and spectroscopic galaxies from the VIMOS VLT Deep Survey

(VVDS, Le Fèvre et al. 2013), noticed no significant low-redshift

contamination in their ultradeep COSMOS sample, which is most

similar to our data set. Contrary to this however, we found that

75.3 per cent of the g-band matches were below z = 3, with most

contaminants having z < 1. The left-hand panel of Fig. 2 shows

the position of these contaminants in colour space, along with the

colour cut. Clearly, the low-redshift galaxies are scattered around

the original cut boundary; therefore we decided to raise the diagonal

boundary by 0.4 mag, and thus the empirical colour cut we use for

g-band dropouts became

g − r > 1.0

r − i < 1.0 (4)

g − r > 1.5(r − i) + 1.2,

instead of equation (1).

While the new colour cut reduces the size of the g-band dropout

sample by 49.0 per cent, z < 3 contaminants in the matched

sample were limited to only 11.6 per cent (13 out of 112 remaining

matches). We note that the spectroscopic sample we matched with

is not at all representative of the photometric dropout samples in

terms of the distribution of observables and underlying physical

parameters, due to significant biases introduced by the target selec-

tion. In fact, the spectroscopic sample is extremely biased towards

low-redshift sources, as illustrated on the right-hand panel of Fig. 2.

Because of this, we can assume that the level of contamination

in the dropout sample does not exceed a few per cent with the

updated cut.

A similar analysis of r- and i-band dropouts provided no evidence

of such issues, albeit the sample size was very limited: 3 of 63

matches had z < 4 for the r dropouts, and neither of the two i-band

matches were below z = 5. Thus, in these bands the cuts were left

unchanged.

The disparity between our findings and those of Ono et al. (2018)

regarding g-band dropout selection in the ultradeep field is unclear

at this point – it might be due e.g. to an unknown cut in the data

processing pipeline, or a difference in photometric scatter. A more

thorough analysis of this issue is left to a future work.

After applying the colour and quality cuts to the SSP+UH

catalogue, we obtain 36 769, 3815, and 262 galaxies in the g-,

r- and i-band dropout samples, respectively. The top row of Fig. 3

shows the position of these galaxies in the sky.

3 TH E O RY

In this section, we briefly present the theoretical calculations

performed while deriving the linear galaxy bias. (See Desjacques,

Jeong & Schmidt 2018 for a comprehensive review of galaxy bias.)

Our specific notation follows Beck et al. (2018) and was influenced

by the equations in Peiris & Spergel (2000), Afshordi (2004), Ho

et al. (2008), Loverde, Hui & Gaztañaga (2008), and Ziour & Hui

(2008).

From a galaxy survey, a map of the ngal(θ) surface number density

of sources can be created, in directions θ on the sky. The galaxy

overdensity map is defined as

δgal(θ) =
ngal(θ ) − ngal

ngal

, (5)

where ngal is the mean surface number density.

The linear galaxy bias bgal is defined through the relation δgal =
bgalδ, which assumes a simple linear relationship between the

underlying matter distribution and that of the matter tracers, i.e.

the galaxies. Thus, a computation of the theoretical expectation for

the overall matter overdensity δ is required to find bgal.

There are several public cosmology codes that can compute

the theoretical Pδ(k, z) power spectrum of the matter overdensity

via a Boltzmann equation framework, e.g. CMBFAST (Seljak &

Zaldarriaga 1996), CAMB (Lewis, Challinor & Lasenby 2000;

Lewis & Challinor 2002; Challinor & Lewis 2005), and CLASS
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Figure 3. Top row: the location of our g-, r-, and i-band dropout galaxy samples. Bottom row: the HEALPIX pixelized overdensity maps generated from the

respective dropout samples, using a resolution of NSIDE = 1024.

(Lesgourgues 2011). Pδ(k, z) is the power spectrum of δ(k, z), the

Fourier transform of the 3D overdensity field, which we wish to

relate to the angular δgal(θ ) that we measure.

Given the redshift distribution �(z) = dNgal/dz of the tracer

sample, and the redshift-dependent linear bias b(z), we can perform

a spherical projection through the expression

C
gg

l =
2

π

∫

dk k2
[

G
g

l (k)
] [

G
g

l (k)
]

+ CPoisson, (6)

where we have the kernel function for galaxy density

[

G
g

l (k)
]

=
∫

dτ b(z(τ ))�(z)
dz

dτ
Pδ(k, z(τ ))jl[χ (τ )k], (7)

and the constant Poisson shot noise term

CPoisson =
4πfsky

Ngal

. (8)

In equations (7) and (8), τ denotes the conformal time, χ (τ ) =
c(τ 0 − τ ) is the conformal lookback distance, jl is a spherical

Bessel function of the first kind, fsky represents the sky coverage

fraction of the survey, and Ngal is the number count of tracer

objects (i.e. galaxies). We define Pδ(k, z) =
√

Pδ(k, z). Also, �(z)

is normalized to unit integral.

The CPoisson term has been added to account for the fact that,

in practice, a survey measures a discrete number count of objects

in a given sky pixel, which is affected by Poisson shot noise. The

autocorrelation of this noise component is positive and does not

depend on the l spherical index.

In the literature, the assumption of linear growth is often made,

introducing the D(z(τ )) growth factor to describe the redshift

dependence of the matter power spectrum, yielding the expression

Pδ(k, z) = D2(z(τ ))Pδ(k). This way, Pδ(k) can be moved outside
[

G
g

l (k)
]

in equation (6) to speed up the calculation. We do not make

this assumption in our work, although the effect of non-linearity is

negligible when compared to the statistical and systematic errors

(refer to Section 5 for more details).

When dealing with small angular scales (e.g. l > 20), the Limber

approximation (Limber 1953; Kaiser 1992) is often adopted to

considerably reduce computational cost by simplifying the Bessel

functions. Since our survey area is rather small, we can safely make

this assumption. Under the Limber approximation, equation (6)

becomes

C
gg

l =
∫

dτ
1

cχ2(τ )
Pδ(k, z(τ ))b2(z(τ ))�2(z)

(

dz

dτ

)2

+
4πfsky

Ngal

.

(9)

Instead of using the general, redshift-dependent form for the

linear galaxy bias, we assume and fit a single bias value for each

dropout band, therefore b(z(τ )) = bgal.
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C
gg

l is the theoretical spherical autocorrelation power spectrum

of the galaxy overdensity, and it scales with b2. By measuring

the δgal(θ ) overdensity map in our survey, and computing its

autocorrelation, we get C̃
gg

l , the empirical spherical power spectrum.

We can then simply fit b by scaling C
gg

l to C̃
gg

l .

We note that in magnitude-limited samples, gravitational lensing

magnification by foreground matter can provide a contribution to

the observed δgal(θ ) overdensity. We show in Appendix A that such

magnification bias is negligible in our data set.

We use POLSPICE (Szapudi et al. 2001; Challinor et al. 2011) to

calculate empirical spherical power spectra, as it can handle heavily

masked fields. Also, we use PYCAMB,1 a PYTHON wrapper for CAMB,

to compute Pδ(k, z). We have developed the SPHERICOSMO
2

PYTHON

package both to wrap the required functionality in POLSPICE and

PYCAMB, and to compute, in a convenient manner, the Bessel and

Limber spherical power formulae for matter, the integrated Sachs–

Wolfe effect, and the auto- and cross-correlations for weak lensing

and lensing magnification.

For all calculations in this paper, we adopted the cosmologi-

cal parameters of Planck Collaboration (2016), specifically the

following: H0 = 67.74, 	bh2 = 0.0223, 	ch2 = 0.1188, τ =
0.066, ns = 0.9667, σ 8 = 0.8159, spatially flat geometry, and

no contribution from tensor modes (i.e. 	k = 0 and r0.002 = 0).

Additionally, a single massive neutrino of mass mν = 0.06 eV was

assumed.

4 R EDSHIFT D ISTRIBUTIONS

As discussed in Section 3, the �(z) redshift distribution of the matter

tracer sample is required to compute equation (9). Thus, we need

to estimate the redshift distribution of the g-, r-, and i-band dropout

galaxy samples.

To perform this task, we turn to photometric redshift (photo-

z) estimation. A wide variety of methods have been published in

the literature, which can broadly be categorized as either machine

learning (Csabai et al. 2003; Wadadekar 2005; Carliles et al. 2010;

Gerdes et al. 2010; Brescia et al. 2014; Beck et al. 2016) or spectral

template fitting (Benı́tez 2000; Arnouts et al. 2002; Coe et al. 2006;

Ilbert et al. 2006; Brammer, van Dokkum & Coppi 2008; Beck

et al. 2017a) approaches. Refer to Hildebrandt et al. (2010), Dahlen

et al. (2013), and Beck et al. (2017b) for comparisons of different

methods.

At the high redshifts which we are probing, the spectroscopic

coverage is very limited. Thus, machine learning photo-z methods

are effectively ruled out, as they rely on a spectroscopic training

set that should cover the space of physical parameters. Instead, we

selected EAZY,3 a public template fitting photo-z code (Brammer

et al. 2008, 2011) to perform the redshift estimation.

We ran EAZY in two configurations, the first with the default

set of spectral templates and settings, denoted by EAZY-def, and

the second using the updated templates of the newest code release,

denoted by EAZY-new. The redshift grid spanned z = 0.001–8.0

with a step size of 0.01/(1 + z). We use the zpeak maximum likelihood

redshift output.

1http://camb.readthedocs.io/en/latest/
2https://github.com/beckrob/SpheriCosmo
3https://github.com/gbrammer/eazy-photoz

4.1 Monte Carlo sampling

The r- and i-dropout samples are relatively small in size (3815

and 262 galaxies), which means that, taken directly, their redshift

histograms would be a rather crude sampling of the underlying �(z)

distribution. One option would be to simply smooth the histograms

by the estimated redshift inaccuracy; however, that would artificially

blur the sharp boundaries expected in such dropout samples (Ono

et al. 2018).

We chose to instead perform a Monte Carlo sampling of the colour

space, randomly generating fluxes for each source by sampling from

Gaussian distributions with the same mean and standard deviation

as each measured flux and flux error. Photometric errors are a

major obstacle in obtaining accurate photo-zs, as they enhance

degeneracies between different galaxy types at different redshifts

(Benı́tez 2000). By augmenting our galaxy samples in this manner,

our goal is to better represent their colour space footprint, and at

the same time take into account photometric errors in the photo-zs

without arbitrarily modifying the redshift distribution itself.

In practice, we performed the Monte Carlo flux sampling on

the parent catalogue of each dropout sample, and only afterwards

applied the dropout colour and quality cuts (see Section 2.2). This

was done to simulate galaxies randomly scattering across the colour-

cut boundaries. Over 5 million samples were generated for each

dropout band to ensure the colour space is properly covered, and

the results are stable.

4.2 Self-organizing maps

As spectral template fitting photo-z approaches are comparatively

slow, we followed the approach of Masters et al. (2015, 2019) and

used self-organizing maps (SOMs) to quantize the large number

of Monte Carlo samples into a much smaller number of colour

space cells. We trained SOMs on the parent catalogue of each

dropout sample and projected from the 5D magnitude space into

a 2D 100 × 100 rectangular grid of SOM cells. To perform this

computation, we used the SOMPY4 PYTHON package.

The SOM introduces another source of randomness into the

results, as the training process involves random starting points for

the cells, and the training data are also processed in random order.

To ensure the stability of the results, we trained 20 different SOMs

for each dropout sample, and the final redshift distributions have

been averaged over these instances.

4.3 Redshift results

With the SOM projection done, we only need to run EAZY on the

centrepoint of each SOM cell (in 5D magnitude space, converted to

fluxes), and then the photo-z of each cell is weighted by the number

of Monte Carlo samples that fell into that cell when creating the

redshift histogram.

As described above, the whole process, including the random

sampling, has been repeated for 20 SOM instances, and the SOM-

wise redshift histograms have been averaged for every redshift bin.

The resulting final redshift histograms for the EAZY-def and

EAZY-new configurations, for the three dropout galaxy samples, are

shown in Fig. 4. For reference, we also show the redshift histograms

from Ono et al. (2018) for their similar dropout samples. While the

histograms for a given dropout band are largely similar, it is clear

4https://github.com/sevamoo/SOMPY
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Figure 4. The �(z) redshift histograms for the three dropout galaxy samples, obtained via Monte Carlo sampling of the colour space. The left-hand panel

represents the EAZY-def (dashed line) and EAZY-def-sm (solid line) configurations, and the right-hand panel shows the EAZY-new (dashed) and EAZY-new-

sm (solid) photo-z setups. The blue, orange, and green colours denote the g-, r- and i-band dropouts, respectively. The black dashed lines show the Ono et al.

(2018) redshift histograms.

Figure 5. Empirical spherical autocorrelation power spectra for the g-, r-, and i-band dropout galaxy samples, from left to right. Dotted lines show the raw

measured spectra, while points and error bars represent the binned measurements and their uncertainty. The black dashed line depicts the expected CPoisson

shot noise.

that the choice of templates (and, more broadly, methodology) can

lead to significant redshift bias and change in the shape of the

histograms.

Furthermore, despite the random sampling, the peculiarities of

a template set can lead to relatively sharp peaks. Based on our

tests of the dropout cuts in Section 2.2, and on the fact that the

peaks change both shape and position with the choice of templates,

we do not believe the sharp peaks are physical. For this reason, we

introduce a small amount of smoothing to the two sets of histograms,

using a Gaussian kernel of σ = 0.01/(1 + z). The smoothed redshift

histograms, denoted EAZY-def-sm and EAZY-new-sm, are also

shown in Fig. 4.

5 G A L A X Y AU TO C O R R E L AT I O N R E S U LT S

We next computed δgal(θ ) for HEALPIX
5 (Górski et al. 2005)

pixelized maps of the g-, r-, and i-band dropout galaxy samples,

5http://healpix.sourceforge.net/

shown in the bottom row of Fig. 3. Specifically, we used the HEALPY
6

PYTHON wrapper, choosing a HEALPIX resolution of NSIDE = 1024.

We note that the HEALPIX pixels in Fig. 3 are ≈3600 times larger

in area than the original pixels of the detection mask in Fig. 1. We

consider HEALPIX pixels with less than a 40 per cent valid detection

area as masked, and within non-masked pixels the object counts

were weighted in accordance with their valid area to calculate the

overdensity.

We then utilized the POLSPICE package (via SPHERICOSMO, see

Section 3) to compute the C̃
gg

l empirical spherical autocorrelation

power spectra of the three overdensity maps. Because of the small

survey area of SSP+UH, apodization of θ = 1.374◦ was required

to ensure numerical stability (Szapudi, Prunet & Colombi 2001;

Szapudi et al. 2005).

Our HEALPIX resolution choice of NSIDE = 1024 allows us to

safely perform an analysis up to a spherical index of l � 2000. At

higher values of l, the scales are small enough that, even at the high

redshift of our samples, the non-linear component of the matter

power spectrum would start to dominate. As the modelling of the

6https://github.com/healpy/healpy
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Figure 6. Theoretical model fits to the spherical autocorrelation power spectra of the g-, r-, and i-dropout galaxy samples (left-hand, centre, and right-hand

columns, respectively). Each row corresponds to a different redshift distribution setup, indicated on the right edge. Binned empirical measurements are in solid

black points and error bars, and expected Poisson shot noise is in dashed grey lines. Solid coloured lines represent non-linear theoretical model curves, fitted

to the data, while dashed lines show the linear models. The resulting bgal linear galaxy bias fit values and statistical uncertainties are also indicated, along with

the median redshift of the given redshift distribution.

matter power spectrum is more complex in non-linear regime, we

terminated our analysis at lmax = 2000.

To obtain the minimum l, corresponding to the largest scales we

can probe, the obvious limitation is the small area of the survey.

An angular separation of 1◦ roughly corresponds to l � 180, and

therefore we selected lmin = 200 as the largest scale such that enough

galaxy pairs exist in the two-point correlation.

A side effect of the apodization performed by POLSPICE is that

nearby l values in the power spectrum become correlated and

thus can no longer be considered independent measurements. To

account for this fact, we bin C̃
gg

l into l bands of width �l = 300,

weighting each l uniformly, and computing the error of the binned

measurement from the block average of the covariance matrix

reported by POLSPICE.

In summary, our analysis focuses on six l bands of width

300, covering the range l = 200–2000. The raw and binned

autocorrelation power spectra appear in Fig. 5.

In addition to C̃
gg

l , we determined the C
gg

l theoretical auto-

correlation power spectra using equation (9), as implemented in

SPHERICOSMO. We calculated the spectra for each of the four redshift

MNRAS 493, 2318–2328 (2020)
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Figure 7. Left-hand panel: the redshift distribution of the EAZY-new-sm photo-z configuration, with added artificial redshift bias. Solid lines show the

unmodified �(z) curves, the dashed and fainter lines represent the �z/(1 + z) = ±0.02 curves, while the dotted and faintest curves correspond to �z/(1 + z) =
±0.04. Right-hand panel: the fitted bgal linear galaxy bias values as functions of the redshift bias, for the three dropout galaxy samples. The dashed horizontal

lines correspond to the original galaxy bias values.

distributions described in Section 4.3: EAZY-def, EAZY-def-sm,

EAZY-new, and EAZY-new-sm. Additionally, for reference, we

performed the computations for the Ono et al. (2018) redshift dis-

tributions, labelled Ono2018. The theoretical spectra were binned

in the same way as the empirical spectra.

Finally, for each redshift setup, the best-fitting bgal linear bias

was computed using the Levenberg–Marquardt method (see chapter

15.5.2 of Press et al. 2007, as implemented by the curve fit function

of SCIPY), fitting the binned C
gg

l values to the binned C̃
gg

l values.

We show the bias fit results for all redshift setups in Fig. 6.

Theoretical curves corresponding to both the non-linear (which

uses a halo model) and linear 3D matter power spectra from CAMB

are plotted, but we report the results only for the non-linear model.

The autocorrelation curve shapes of the different models are

barely different, except for their amplitude, and thus the fitted

bgal. One discernible disparity is the amount of extra power the

non-linear model predicts, especially at high l values for the

EAZY-new configuration and the g-band dropouts. The non-linear,

small scales are mainly introduced by the sharp z � 0.4 peak of

the redshift histogram, as predicted by the photo-z method (see

Fig. 4). Without a spectroscopic sample which is representative of

our dropout catalogues, we currently have no reasonable method of

better constraining the relative strength of these low-z contaminant

peaks.

The fitted bgal values of Fig. 6 demonstrate that the particular

choices made when deriving the �(z) distributions can significantly

affect the results. In fact, the systematic bias caused by the �(z)

setup is as large as, or even larger than the statistical uncertainty

of the measurements, even with the relatively small sample sizes

available in the SSP+UH survey.

We attempt to quantify the systematic bias in our results by

artificially adding plausible amounts of photo-z bias to our most

reasonable photo-z configuration.

5.1 Systematic effects of photo-z bias

The EAZY-new-sm photo-z setup has been chosen as our fiducial

�(z) distribution in the following test, for several reasons. First,

it yielded the median of the five bgal values in our fits for the

i- and r-band dropouts (and was one away from the median for

g dropouts). Second, it utilizes the newest, most complete set of

template spectra available with EAZY. Third, while the distribution

shows some unphysical ‘peakiness’, it has been somewhat mitigated

by the applied extra smoothing.

Starting with this fiducial distribution, we applied an artificial

redshift bias of �z/(1 + z) = ±0.02 and �z/(1 + z) = ±0.04 to the

EAZY-new-sm �(z) distributions and re-ran the computations for

the bgal fits. This photo-z bias range covers, and indeed exceeds, the

overall bias expectation for EAZY (Hildebrandt et al. 2010; Dahlen

et al. 2013).

The resulting redshift distributions and fitted bgal values are shown

in Fig. 7. There is a clear trend in bgal due to the redshift bias.

We summarize the results of this test using the largest observed

statistical error value for the overall statistical error, and the

difference between the highest (lowest) observed bgal and the

original galaxy bias as the positive (negative) systematic bias. We

get bgal, g = 3.90 ± 0.30(stat) ± 0.15(sys) for the g dropouts,

bgal,r = 8.44 ± 0.57(stat)+0.29
−0.28(sys) for the r dropouts, and bgal,i =

11.94 ± 2.06(stat)+0.38
−0.41(sys) for the i dropouts.

While the above numbers do represent the systematic effect

of redshift bias, the test assumes that other details of the photo-

z distribution are correct. To more thoroughly take into account

potential systematics, we determine the difference between bgal of

the fiducial �(z) and the largest (smallest) bgal-value of any other

redshift setup; we then add that difference to the positive (negative)

systematic error. Again, the overall statistical error was chosen to

be the largest observed such value for a given dropout sample.

Thus, our final, more conservative estimate for the linear galaxy

bias is bgal,g = 3.90 ± 0.33(stat)+0.64
−0.24(sys) for g-band dropout galax-

ies, with median redshift z� 3.7; bgal,r = 8.44 ± 0.63(stat)+1.42
−0.72(sys)

for r-band dropout galaxies at z � 4.7; and bgal,i = 11.94 ±
2.24(stat)+1.82

−1.27(sys) for i-band dropout galaxies at z � 5.9.

With this choice of summarizing, we may be overestimating

the systematic error by ‘double counting’ the redshift bias, as

the different �(z) distributions might be biased around a central

value. On the other hand, we may not be taking into account all

potential idiosyncrasies of redshift distributions, and thus could be

underestimating the systematic error.
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In the future, this question could be reasonably resolved by

verifying our photo-z distribution with a statistically representative

sample of spectroscopic redshifts.

6 D ISCUSSION AND CONCLUSION

In this paper, we have presented a measurement of linear galaxy bias

at high redshifts, using dropout galaxy catalogues in the SSP+UH

survey.

The g-band dropout sample at z � 3.7 yields bgal,g = 3.90 ±
0.33(stat)+0.64

−0.24(sys), the r-band dropout sample at z � 4.7 yields

bgal,r = 8.44 ± 0.63(stat)+1.42
−0.72(sys); and the i-dropout sample at

z � 5.9 yields bgal,i = 11.94 ± 2.24(stat)+1.82
−1.27(sys).

The value of the galaxy bias depends strongly on the specifics of

the sample selection and, in particular, on the depth of the potential

wells occupied by the galaxies we measure. Our bgal results are

somewhat larger than expected (e.g. Tegmark & Peebles 1998),

i.e. the galaxies selected by our colour cuts correspond to higher

density regions on average, especially in the case of i dropouts.

Beyond the fact that these galaxies are situated in higher mass

haloes, we cannot draw further conclusions due to the uncertainties

in the redshift distributions.

Our work will facilitate performing a similar analysis in the 20 sq

deg area of the upcoming H20 survey. With an area approximately

ten times larger, the statistical error in the measurement is expected

to be a factor of ≈
√

10 lower (e.g. Szapudi & Colombi 1996).

We have identified the largest source of our systematic error as

the determination of the �(z) redshift distribution of the respective

galaxy samples. In the future, we will obtain spectroscopic redshifts

for a subset of our data with the Keck Deep Imaging Multi-Object

Spectrograph (DEIMOS, Faber et al. 2003). This will enable a more

precise calibration of our photometric redshifts and the redshift

distributions.

At present, we expressed our results in terms of the linear galaxy

bias, assuming concordance �CDM cosmology. With the larger

H20 data set and better calibrated photometric redshifts, we can con-

strain cosmology, in particular measure σ 8 at high redshifts. Since

the galaxy power spectrum constrains σ 8 × bgal in the linear regime,

we need to add at least another measurement. The possibilities

include: galaxy overdensity–weak lensing correlations; constrain

the bias itself using counts-in-cells distributions (Szapudi & Pan

2004; Repp & Szapudi 2019), and then fit σ 8; compute higher

order statistics, going to three-point correlations instead of using

two-point correlations only (e.g. Pan & Szapudi 2005).

In summary, we found that within the context of Planck con-

cordance cosmology, a linear bias model adequately explains the

clustering of galaxies at z � 3–6.5. With 10 times more data in

the near future and better redshift calibration, the H20 survey will

produce high-redshift constraints on cosmological parameters and

galaxy formation.
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APPENDIX A : A N A NA LY SIS O F

MAGNIFICATION BIAS

The δgal(θ ) galaxy overdensity that is observed in magnitude-

limited galaxy samples can be modulated by an effect known as

magnification bias. Foreground matter density can enhance (or

diminish) observed source counts via weak gravitational lensing,

by pushing sources above (or below) the detection limit. Here, we

provide an analysis of how magnification bias affects our results.

First, we give a short summary of how the modelling described

in Section 3 changes due to the inclusion of magnification bias.

The formulae are based on the works of Hui, Gaztañaga & Loverde

(2007), Loverde et al. (2008), Ziour & Hui (2008), and Joachimi &

Bridle (2010), refer to these for more theoretical details.

Instead of measuring the galaxy overdensity directly, the over-

density we observe can be written as

δO(θ ) = δgal(θ ) + δμ(θ ), (A1)

where O denotes observed, and μ denotes the magnification contri-

bution.

Accordingly, the empirical spherical autocorrelation power spec-

trum of this observed overdensity becomes C̃OO
l , and the theoretical

model for it is

COO
l = C

gg

l + 2C
gμ

l + C
μμ
l . (A2)

The gμ and μμ terms can be computed through the analogues

of equation (6),

C
gμ

l =
2

π

∫

dk k2
[

G
g

l (k)
] [

G
μ
l (k)

]

(A3)

and

C
μμ
l =

2

π

∫

dk k2
[

G
μ
l (k)

] [

G
μ
l (k)

]

, (A4)

where we introduced the kernel function for lensing magnification

[

G
μ
l (k)

]

= (5s − 2)
3H 2

0 	m

2c

∫

dτ g(z(τ )) (1 + z(τ ))

×Pδ(k, z(τ ))jl[χ (τ )k]. (A5)

Above, H0 is the Hubble constant at present time, 	m denotes

the cosmological mass density parameter, c is the speed of light,

s =
d log10 N (< m)

dm

∣

∣

∣

∣

m0

(A6)

is the slope of the galaxy number count function at the limiting

magnitude m0, and finally

g(z) = χ (z)

∫ ∞

z

dz′ χ (z′) − χ (z)

χ (z′)
�(z) (A7)

is the lensing weight function.

Figure A1. Additive components of the COO
l theoretical spherical autocorrelation power spectra (see equation A2), for the g-, r-, and i-band dropout galaxy

samples, from left to right. Solid lines show C
gg
l , dotted lines show C

μμ
l , and dashed lines show |2C

gμ

l |. The sign of C
gμ

l is negative, at all l values.
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Again, we adopt the Limber approximation (Limber 1953) to

speed up the computation, yielding

C
gμ

l = (5s − 2)
3H 2

0 	m

2c

∫

dτ
1

cχ2(τ )
Pδ(k, z(τ ))

× b(z(τ ))�(z)

(

dz

dτ

)

g(z(τ )) (1 + z(τ )) (A8)

and

C
μμ
l = (5s − 2)2

(

3H 2
0 	m

2c

)2 ∫

dτ
1

cχ2(τ )
Pδ(k, z(τ ))

× g2(z(τ )) (1 + z(τ ))2 . (A9)

Examining the components of COO
l in equation (A2), it is clear

that C
gg

l scales with b2
gal (see equation 9), C

gμ

l scales with bgal, and

C
μμ
l does not depend on the galaxy bias.

We evaluated the theoretical expressions via SPHERICOSMO, and

performed the linear galaxy bias fit on the dropout samples using

our fiducial EAZY-new-sm �(z) distribution.

The results are bgal, g = 3.89 ± 0.29, bgal, r = 8.44 ± 0.55, and

bgal, i = 11.93 ± 2.00 (statistical error only) for the three dropout

galaxy samples. These values are indistinguishable from the original

EAZY-new-sm results (see Fig. 6), which did not take into account

magnification bias.

The reason why the results are unaffected by magnification bias

can be illustrated by comparing the components of COO
l , shown in

Fig. A1. It is clear that C
μμ
l and C

gμ

l are orders of magnitude smaller

than C
gg

l at all considered l values.

We note that C
gμ

l and C
μμ
l scale with the factor (5s − 2) and (5s

− 2)2. The number count slope was determined to be s = 0.11 for

g dropouts, s = 0.13 for r dropouts, and s = 0.16 for i dropouts,

based on the i, z, and y magnitude distributions, respectively. The

value of s depends on the exact choice of limiting magnitude at the

edge of the sample, but the credible interval for all dropout samples

certainly does not extend beyond the range [0.0,0.3]. Within this

range, (5s − 2) is small enough that the magnification contribution

remains inconsequential.

We conclude that, at the precision currently allowed by our data,

the effect of magnification bias is negligible.
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