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ABSTRACT Spatiotemporal graph convolutional networks (STGCNs) have emerged as a desirable model for skeleton-
based human action recognition. Despite achieving state-of-the-art performance, there is a limited understanding of
the representations learned by these models, which hinders their application in critical and real-world settings. While
layerwise analysis of CNN models has been studied in the literature, to the best of our knowledge, there exists no study
on the layerwise explainability of the embeddings learned on spatiotemporal data using STGCNs. In this paper, we first
propose to use a local Dataset Graph (DS-Graph) obtained from the feature representation of input data at each layer to
develop an understanding of the layer-wise embedding geometry of the STGCN. To do so, we develop a window-based
dynamic time warping (DTW) method to compute the distance between data sequences with varying temporal lengths.
To validate our findings, we have developed a layer-specific Spatiotemporal Graph Gradient-weighted Class Activation
Mapping (L-STG-GradCAM) technique tailored for spatiotemporal data. This approach enables us to visually analyze
and interpret each layer within the STGCN network. We characterize the functions learned by each layer of the STGCN
using the label smoothness of the representation and visualize them using our L-STG-GradCAM approach. Our proposed
method is generic and can yield valuable insights for STGCN architectures in different applications. However, this
paper focuses on the human activity recognition task as a representative application. Our experiments show that STGCN
models learn representations that capture general human motion in their initial layers while discriminating different
actions only in later layers. This justifies experimental observations showing that fine-tuning deeper layers works well
for transfer between related tasks. We provide experimental evidence for different human activity datasets and advanced
spatiotemporal graph networks to validate that the proposed method is general enough to analyze any STGCN model and
can be useful for drawing insight into networks in various scenarios. We also show that noise at the input has a limited
effect on label smoothness, which can help justify the robustness of STGCNs to noise.

INDEX TERMS STGCN, NNK, KNN, geometric interpretation, graph neural network, transfer learning.

I. INTRODUCTION
Deep learning models have led to significant advances in appli-
cation domains, such as images and video [1], [2], where data is
available on a regular grid, e.g., formed by pixels. More recently,
graph neural networks (GNNs) [3], and graph convolutional net-
works (GCNs) [4] have been proposed to handle data with irregular
structures, such as social networks [5], skeleton-based motion cap-
ture data (MoCap) [6]. In this paper, we focus on spatiotemporal
graph convolutional networks (STGCNs). STGCNs can efficiently
handle the temporal aspects of graph data and have wide-ranging
applications, including in tasks such as traffic forecasting [7] and the
recognition of actions based on skeletal data [8], [9].

When it comes to training STGCN models, there are several cru-
cial design choices to consider, such as the architecture, optimization
routine, loss function, and dataset. Usually, these choices interplay
in intricate ways to shape the characteristics of the final model.
Therefore, selecting a particular model is often primarily based on
its performance on specific datasets. While this practical perspective
has led to significant advances, achieving a deeper understanding
of the system is essential for ensuring safe and robust real-world
deployment.

Two major approaches have been used in the literature to under-
stand deep learning systems. Function approximation methods are
based on the inductive bias of the loss function [10], the ability of
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the optimization to achieve good minima [11], or consider the study
of classifier margins [12]. Data-driven analysis methods consider
the relative position of sample data points in the representation do-
main for characterization [13], [14], [15]. Data-driven approaches
can provide a unified framework for understanding models because
they can abstract the specific functional components. Specifically,
in a data-driven approach, functions do not need to be explicitly
modeled; they can be characterized implicitly using the outputs they
produce.

In this paper, we develop a data-driven approach to achieve a
better understanding of STGCN models. Our approach is based on
a layer-wise analysis, interpretation, and visualization of the em-
beddings produced by the STGCN. Our proposed method starts by
defining a Dataset graph (DS-Graph), which captures the pair-
wise similarities between sequences in the set, represented by their
embedding. This allows us to compare models obtained with very
different architectures by simply comparing the DS-Graphs they
produce in their respective embedded spaces. While our method
is widely applicable, our experiments focus on a human activity
recognition task using skeleton-based data as an illustrative task to
evaluate our STGCN analysis methods. This type of data has been
widely used in human action recognition due to its view-invariant
representation of pose structure, robustness to sensor noise [16], and
efficiency in computation and storage [17], [18]. Recently, STGCN
approaches have gained popularity by demonstrating superior per-
formance in human activity understanding [19], [20], [21], [22]
and have become one of the state-of-the-art methods in the field
of activity recognition. As will be shown experimentally, our pro-
posed layer-wise analysis of STGCNs helps us to (i) understand
their generalization, (ii) detect bias toward learning any particular
feature, (iii) evaluate model invariance to a set of functions, and
(iv) assess robustness to perturbations to the input data. For example,
in STGCN for skeleton-based activity recognition [8], some layers
may focus on learning the motion of specific body parts. Therefore,
some models will not be suitable for new action classes where the
motion is localized in other body parts.

While layer-wise analysis of CNN models [23] and feature visual-
ization methods [24], [25] have been studied in the literature [1], [2],
to the best of our knowledge, there exists no study on the layer-wise
explainability of the embeddings learned on spatiotemporal data us-
ing STGCNs. Moreover, layer-wise feature visualization techniques
for STGCNs are also not available. In fact, most of the work on
STGCN interpretation has studied only the final layer [19], [26].
Extending the layer-wise analysis to STGCNs is not straightforward
because of the varying lengths of the STGCN embeddings. This
variability makes it difficult to find the similarity of embeddings
of data points, such as action sequences with differing lengths, as
the commonly employed similarity metrics (e.g., cosine similarity or
Euclidean distance) are unsuitable for sequences of varying lengths.

Our first major contribution is a geometric framework to char-
acterize the data manifolds corresponding to each STGCN layer
output. Our approach analyzes these manifolds by constructing a
Non-Negative Kernel (NNK) DS-Graph [27] (Section II-C), where
nodes represent input sequences (actions) and distances between
nodes are computed using dynamic time warping (DTW) [28]
(Section II-D). This allows a distance to be computed between ac-
tions with different durations. We choose the NNK construction
due to its robust performance in local estimation across different
machine learning tasks [14]. The benefits of the NNK construction
will be demonstrated through a comparison with k-NN DS-Graph
constructions in Section IV-B.

For the DS-Graph at each layer, we quantify the label smoothness
as a way to track how the STGCN learns (Fig. 1).

Our approach has several important advantages: (1) the analysis is
agnostic to the training procedure, architecture, or loss function used
to train the model; (2) it allows for the comparison of features having
different dimensions; (3) it can be applied to data that were not used
for training (e.g., unseen actions or data in a transfer setting); (4) it
allows us to observe how the layerwise representations are affected
by external noise added to the input.

Our second major contribution is to extend our previous method,
spatiotemporal graph GradCAM (STG-GradCAM) [26], to perform
layerwise visualization of the contributions of different Skeleton-
Graph (S-Graph) nodes. To achieve this, we merge the class-specific
gradient for a datapoint at each layer with the learned representa-
tions by that layer. This enables us to interpret individual layers
within an STGCN network. The resulting layerwise STG-GradCAM
(L-STG-GradCAM) allows us to visualize the importance of any
node in any STGCN layer for the classification of a particular query
class (action). This visualization helps confirm the results obtained
through our analysis of the STGCN model using NNK-based ge-
ometric methods. It enhances the transparency of the model and
deepens our comprehension of the representations learned at each
layer. With our proposed data-driven label smoothness and layerwise
visualization from L-STG-GradCAM, we can show that: (1) Initial
layers learn low-level features corresponding to general human mo-
tion, while specific actions are recognized only in the later layers.
(2) In a transfer task, the choice of which layers to leave unchanged
and which layers to fine-tune can be informed by the changes in label
smoothness for the target task on a network trained for the source
task. (3) Experimentally, the label smoothness of an STGCN model
over the layers as measured in the dataset graph is not affected sig-
nificantly when Gaussian noise is added to the inputs, which justifies
the observation that the model is robust to noise.

II. PRELIMINARIES
A. SKELETON GRAPH AND POLYNOMIAL GRAPH FILTERS
A skeleton graph (S-Graph) is a fixed undirected graph GS =
{V, E, Â} composed of a vertex set V of cardinality |V| = N , an
edge set E connecting vertices, and Â, a weighted adjacency ma-
trix. Â is a real symmetric N × N matrix, where ai, j ≥ 0 is the
weight assigned to the edge connecting nodes i and j. An STGCN
layer (Section II-B) is a function of this adjacency matrix Â and
the identity matrix I representing a self-loop. Specifically, STGCN
uses the normalized adjacency matrix A = D− 1

2 (Â + I)D− 1
2 where

(D)ii = (
∑

j ai, j ) + 1. Intuitively, the elementary graph filter A com-
bines graph signals from adjacent nodes. Self-loops are added so that
a node’s own features are combined with those of its neighbors for
learning.

Fig. 2 provides an example of how human motion (in this case,
we consider a skeleton graph with 25 nodes) is projected onto
the eigenvectors of A, leading to energy that is typically concen-
trated in the eigenvectors corresponding to the larger eigenvalues
of A (i.e., λ17, . . ., λ25).1 In each layer, we use simple filters of
the form xout = AxinW, where W are trainable weights. Applying
these simple one-hop filters in multiple successive layers allows us
to learn over multi-hop graph neighborhoods, analogous to what

1Note that the larger eigenvalues of A correspond to the smaller eigenval-
ues of the graph Laplacian I − A. Thus, energy concentration in the higher
eigenvalues of A shows that typical human motion is smooth.
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FIGURE 1. Proposed data-driven approach to understanding the geometry of the embedding manifold in STGCNs using windowed dynamic time warping
(DTW) and non-negative kernel (NNK) graphs. Left: We construct dataset NNK Graphs (DS-Graph) where each node corresponds to an action sequence,
and the weights of edges connecting two nodes are derived from pairwise distances between the features representing the corresponding action
sequences. In this example, we show how the two classes (corresponding to red and blue nodes on the DS-Graph) become more clearly separated in
deeper layers of the network. We also observe the skeleton graph (S-Graph) node importance for each action using a layerwise STG-GradCAM (the
three-time slice example corresponds to a Throw action). Right: For a set of spatiotemporal input action sequences, we observe the label smoothness on
the DS-Graph constructed using the features obtained for the sequences after each STGCN layer. The observed label smoothness at each layer of the
STGCN network averaged over three super-classes corresponding to actions involving the upper body, lower body, and full body. In this plot, lower
variation corresponds to greater smoothness. We note that the label smoothness increases in the deeper layers, in which the different actions can be
classified (see DS-Graphs at the bottom of the left plot).

FIGURE 2. Energy graph spectrum of the human actions (NTURGB
120 [30]) of the normalized adjacency matrix of the S-Graph (A). We use
the graph spectrum of the adjacency matrix, as used in the STGCN, for ease
of understanding.

could be achieved with higher-order polynomials of the adjacency
matrix,where an l-degree polynomial captures the data in a l-hop
neighborhood. For example, in the human activity recognition task,
the S-Graph has 25 nodes and 24 edges [29]. For this tree-structured
graph, the maximum distance between two leaf nodes is 10. Thus,
a 10-degree polynomial can capture information about the entire
graph. This justifies using at most 10 layers of STGCN units in the
STGCN network under consideration, where each layer is a function
of A, i.e., a polynomial of degree 1.

B. SPATIOTEMPORAL GRAPH CONVOLUTIONAL NETWORK
STGCN for action recognition was first adopted in [8], where the
spatial graph represented the intra-body connections of joints. While
considering a spatiotemporal signal x, the input feature is represented
as a C × N × T tensor, where C, N, and T represent the number of

channels, number of joints, and the temporal length of the activity
sequence, respectively. Graph convolutions are performed in two
stages. First, a convolution is performed with a temporal kernel of
size (1 × τ ). Second, to capture the intra-joint variations, the result-
ing tensor is multiplied by the normalized adjacency matrix A along
the spatial axis. Denoting the input and output features of an STGCN
layer as xin and xout , the STGCN mapping is given by xout = AxinW,
where W represents trainable weight tensor corresponding to mul-
tiple input channels. Another matrix Q is introduced to learn the
edge weights of the graph. Thus, each STGCN layer is implemented
as follows:

xout =
∑

j

D− 1
2

j (A j ⊗ Q)D− 1
2

j xinW j, (1)

where ⊗ denotes the Hadamard product.

C. NON-NEGATIVE KERNEL(NNK) NEIGHBORHOODS
We use non-negative kernel regression (NNK) neighborhoods and
graphs [31] for our manifold analysis because this results in better
neighborhood construction with improved and robust local estima-
tion performance in various machine learning tasks [14], [32]. The
key advantage of NNK is its geometric interpretation for each neigh-
borhood constructed. While in KNN points x j and xk are included in
the neighborhood of a data point xi solely based on their similarity
to xi, i.e., s(xi, x j ) and s(xi, xk ), in NNK this decision is made by
also taking into account the metric s(x j, xk ). Consequently, x j and
xk are both included in the NNK neighborhood only if they are not
geometrically redundant, the details are given in (II-C). NNK uses
KNN as an initial step, with only a modest additional runtime re-
quirement [31]. The computation can be accelerated using tools [33]
developed for KNN when dealing with large datasets. NNK requires
kernels with a [0, 1] range. In this work, we use the cosine similarity
with the windowed aggregation in (3). This kernel is applied to
representations obtained after ReLU and satisfies the NNK definition
requirement.
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D. DYNAMIC TIME WARPING
While Euclidean distance permits only one-to-one point comparison,
Dynamic Time Warping (DTW) (Section II-C) accommodates many-
to-one comparisons, allowing precise alignment while considering
temporal variations. In our action recognition task, we work with
action sequences of different durations, and our STGCN-based fea-
ture extraction retains temporal information. In this study, we employ
DTW to measure the similarity between temporal features extracted
by STGCN. DTW is computed using 2, where dtw(i, j) represents
the minimum warp distance between two time series of lengths i and
j. Each element in the accumulated matrix reflects the DTW distance
between series U1:i and V1: j .

DTW(i, j) = dist(ui, v j ) + min(DTW(i − 1, j),

DTW(i, j − 1), DTW(i − 1, j − 1)) (2)

III. PROPOSED GEOMETRIC ANALYSIS OF STGCN
A. NEIGHBORHOOD ANALYSIS USING DYNAMIC DTW
Once we have a fully trained STGCN network, we construct an NNK
DS-Graph using the representation generated by each layer of the
STGCN model and refer to this graph as the NNK NNK Dataset
Graph GD. Note that each node corresponds to a data point in our
NNK DS-Graph, i.e., an action sequence represented by its features
(learned by the STGCN). This differs from the S-Graph used in
the STGCN model, which provides the original representation of an
action sequence from which the features are extracted. After NNK
DS-Graph construction, we observe the smoothness of the class la-
bels with respect to the graph, as shown in Fig. 1. Graph smoothness
or label smoothness in a graph represents the variation of the label of
the neighboring node for each node in the DS-Graph. A DS-Graph
has higher label smoothness when there is less variation in the labels
of neighboring nodes. Our work uses label smoothness as a metric
for assessing the representation of different layers within a network.

The main challenge with spatiotemporal action data is that each
individual activity corresponds to a data sequence with a different
temporal length.

To address this issue, we develop a DTW-based distance metric
to find the similarity between the representations (Section II-D).
Computation of this window-based DTW distance metric w-DTW
involves the following steps.! Consider two sequences si and s j divided temporally into m

windows. The dimension of si and s j is N × Ti and N × Tj

respectively. Here N denotes the number of spatial joints and
Ti denotes the temporal length of the ith sequence.! sw

i denotes the w-th window of the sequence, then the distance
between two sequences is computed as follows.

wDTW(si, s j ) =
m∑

w=1

αwDTW(sw
i , sw

j ) (3)

αw is the weight to the w-th window,
∑m

w=1 αw = 1.! The weights are chosen such that they decrease along the tem-
poral axis based on the length statistic of all the sequences
in the dataset i.e., the number of samples that have non-zero
padding in a particular temporal window.

While STGCN involves complex mappings, the transformations
they induce and the corresponding structure of each representation
space can be studied using a graph constructed on the embedded
features. Consider an STGCN model and a spatiotemporal dataset.
At each layer, all sequences in the dataset can be represented using
the NNK Dataset Graph. In this graph, each node corresponds to a

sequence, and the action labels are treated as ‘signals’ or attributes
associated with these nodes, as illustrated in Fig. 1. At the output of
each layer, each input sequence is mapped to new values (in some
other feature space). Thus, we can associate a new NNK DS-graph
to the same set of data points (with the same signal, i.e., label).
Thus, instead of directly working with the high dimensional features
or the model’s overparameterized space, the focus is on the relative
positions of the feature embeddings obtained in STGCN layers. This
allows us to characterize the geometry of the manifold spaces en-
coded by an STGCN and to develop a quantitative understanding of
the model.

We now present a theoretical result (Theorem 1) relating the
respective label smoothnesses of the input and output features of a
single layer in a neural network to that of its complexity measured
by the ℓ2-norm [12], [34]. The proof for the theorem is provided in
the supplementary materials (Section VI.B).

Definition 1 (Label smoothness): Given a graph represented by its
Laplacian L and a label signal y on the graph, the Laplacian quadratic
y⊤Ly captures the smoothness of the label on the graph [35], [36].
Note that smaller values of y⊤Ly correspond to smoother signals.
In other words, an increase in the label similarity of the connected
nodes is commensurate with a decrease in y⊤Ly.

Theorem 1: Consider the features corresponding to the input and
output of a layer in a neural network denoted by xout = φ(Wxin)
where φ(x) is a slope restricted nonlinearity applied along each
dimension of x. Let us suppose that the smoothness of the labels y
in the feature space is proportional to the smoothness of the data x.
Then,

y⊤Lout y ≤ c ||W||22 y⊤Liny (4)

where L corresponds to the graph laplacian obtained using NNK in
the feature space. Note that c > 0 depends only on constants related
to data smoothness and the slope of the non-linearity.

Remark 1: Theorem 1 states that the change in label smoothness
between the input and output spaces of a network layer is indicative
of the complexity of the mapping induced by that layer, i.e., a big
change in label smoothness corresponds to a larger transformation of
the features space.

Remark 2: Theorem 1 does not make any assumption on the
model architecture and makes an assumption about the relationship
between the respective smoothness of the data and the labels. The
slope restriction on the nonlinearity is satisfied by activation func-
tions used often in practice. For example, the ReLU function is slope
restricted between 0 and 1 [37], [38].

The idea of characterizing intermediate representations using
graphs was previously studied in [39], [40]. However, these works
were limited to images and did not study spatiotemporal data. To the
best of our knowledge, our work presents the first method for use
with structured input sequences for analysis and understanding of
STGCN networks.

Our method uses NNK for analysis similar to [23]. However,
unlike other approaches, our work focuses on the geometry of the
feature manifold induced by the STGCN layer using the NNK graphs
constructed.

B. LAYERWISE (L) STG-GRADCAM
As in regular convolutional layers, unlike fully-connected layers,
spatiotemporal graph convolution layers retain localized information
both in the spatial and temporal axis. [26] proposed STG-GradCAM
for visualizing the importance of the nodes in the spatiotemporal
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FIGURE 3. Smoothness of labels on the manifold induced by the STGCN layer mappings in a trained model. As the label smoothness increases, the
Laplacian quadratic (y⊤Ly) decreases. Intuitively, a lower value of y⊤Ly corresponds to the features belonging to a particular class having graph
neighbors from the same class.We divide the actions in NTU-RGB60 into three super-classes (Upper body (Left), Lower body (Middle), Full body (Right))
and present smoothness with respect to each action in the grouping. We emphasize that, though the smoothness is displayed per class, the NNK Dataset
Graph is constructed using the features corresponding to all input action data points. We observe that the model follows a similar trend, where the
smoothness of labels is flat in the initial layers (indicative of no class-specific learning) and increases in value in the later layers (corresponding to
discriminative learning). Outliers exist to this trend (e.g., in upper body group drop, brushing) where the smoothness decreases in intermediate layers.
This may imply that the representations for these actions are affected by features from other actions to accommodate for learning other classes.

skeleton graph for a particular action. However, that work only used
the last STGCN layer to provide an interpretation. In this paper,
we extended STG-GradCAM to L-STG-GradCAM for use with all
layers of an STGCN model.

The gradient information flowing into each STGCN layer is
used in our proposed L-STG-GradCAM to compute the importance
of each neuron for a particular class prediction and to determine
whether the intermediate layers are learning something meaning-
ful. We use the gradients as the weight of the representations at
each layer. The outcome of L-STG-GradCAM helps us to un-
derstand which part of the data in each layer contributes to the
final decision. Let the kth graph convolutional feature map at
layer ℓ be defined as: Fℓ

k (X, A) = σ (ÃFℓ−1(X, A)Wℓ
k ). Here, Ã =

(D− 1
2 (A + I)D− 1

2 ) ⊙ Q.
Here, the kth feature at the ℓth layer is denoted by Fℓ

k,n,t for node
n and time t . Then, L-STG-GradCAM’s label-specific weights for
class c at layer l and for feature k are calculated by:

βc,ℓ
k = 1

NT

N∑

n=1

T∑

t=1

δyc

δFℓ
k,n,t

. (5)

Here, yc is the cth class score. Then, we can compute the importance
of the nodes in a specific layer ℓ using:

Hc,ℓ
ST = ReLU

(
∑

k

βc,ℓ
k Fℓ

k

)

. (6)

L-STG-GradCAM enables us to visualize the class-specific spa-
tiotemporal importance (Fig. 5) of the representation for any layer ℓ

of the network. The code is https://github.com/daspraty/stg-gradcam.
gitavailable.

IV. RESULTS
A. EXPERIMENT SETTING
1) NETWORK ARCHITECTURE
The STGCN model used for human action recognition by [8] com-
prises 10 STGCN layers implemented as in Section II-B. The first
four layers have 64 output channels, the next three layers have 128,
and the last three have 256. Afterward, a global pooling layer with

FIGURE 4. Label smoothness of STGCN for different DS-graph construction
methods (blue)-NNK, (red)-k-NN.

a softmax is used as a classifier. The model is trained using cross-
entropy loss with batch SGD for 100 epochs.

2) DATASETS: NTU-RGB60
We use the STGCN model described above and introduced in [8] and
train the model in cross-subject (x-sub) settings on NTU-RGB60 [29]
dataset. This dataset contains 56,000 action clips corresponding to
60 action classes performed by 40 subjects, e.g., Throw, Kick). The
dataset includes annotated 3D joint locations (X, Y, Z) of 25 joints.
NTU-RGB120: NTU-RGB120 [30] extends NTU-RGB60 with an
additional 57,367 skeleton sequences over 60 extra action classes,
from 106 distinct subjects.

B. LABEL SMOOTHNESS COMPUTED FROM THE FEATURES
To provide insights into the representations of the intermediate layers
of the STGCN network, we make use of our geometric analysis of
the representation using the DTW-based NNK method described in
Section III. Fig. 1 (right) shows the label smoothness over the layers
of STGCN for different sets of the upper body, lower body, and full
body actions (refer to Table 3). We see a sudden fall in the Laplacian
quadratic after layer 8, while the slope is small before that layer.
This implies that the early layers have features that are mostly not
class-specific. In contrast, the smoothness improves (corresponds to
a decrease in the value of y⊤Lout y) using the representations after
layer 8 consistently across all input actions. Following Theorem 1,
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FIGURE 5. L-STG-GradCAM visualization of spatiotemporal node importance for action class Kick of a trained STGCN network used in experiments. The
size of the blue bubble denotes the relative importance of the node in a layer for prediction by the final softmax classifier and is scaled to have values in
[0, 1] at each layer. The node importance values are normalized across layers to have a clear comparison among the layers. We observe that the
localization of the action as observed using the L-STG-GradCAM is evident only in later layers while initial layers have no class-specific influence. The
visualizations allow for transparency in an otherwise black-box model to explain any class prediction. Our approach is applicable to any STGCN model
and is not affected by the model size, optimization strategy, or dataset used for training.

we can state that the large change in the label smoothness from
layer 8 to 9 corresponds to a larger transformation (equivalent to the
functional norm of the layer is large) in the input-output mapping of
this layer. Our earlier visualization using L-STG-GradCAM validates
this analysis visually. Fig. 3 presents action-wise label smoothness
over the layers of STGCN. This figure helps us better understand
which actions are learned over the layer of STGCN. For example,
in Fig. 3 (left), action reading and writing are poorly learned. The
value of y⊤Lout y in the plot is not monotonically decreasing for all
the actions. For example, for the action drop, the label smoothness
decreases in the middle and increases again at the end. The possible
reason behind this pattern is that the network tries to accommodate
other actions and again learns all the actions gradually before the
last layer.

Comparison between NNK and k-NN: Fig. 4 shows the effect on
label smoothness for different choices of graph construction meth-
ods like NNK and k-NN. Higher label smoothness (small value of
y⊤Lout y) represents better the construction of the graph, reducing the
prediction error at each layer. NNK clearly performs better than k-
NN in choosing the right neighbors and their corresponding weights.

C. L-STG-GRADCAM VISUALIZATION
The STGCN model in Section IV-A with NTU-RGB60 achieves
82.1% accuracy on NTU-RGB60 xsub setting [8]. We use (6) to
generate a class-specific skeleton joint-time importance map using
all the data points corresponding to a given class. Fig. 5 shows the
layerwise variation of joint importance for the action ‘Kick’ for three
time-slices. The node’s size in the S-graph denotes the degree of
importance of the body joint at that time point for the final prediction.
For the action Kick, which mostly involves lower body parts, we
notice in the figure that the initial layers (up to layer 8) have very
weak, if any, GradCAM localization corresponding to the action. In
contrast, the last three STGCN layers show explicit node importance
heatmap where the leg and the back joints are relatively more ac-
tive, indicative of the action. We present additional examples in the
supplementary (Fig. 12, Fig. 13) corresponding to an upper-body
action (Throw) and a full body action (Sitting down). In both cases,
we find a similar trend where the STGCN graph filters learned in
the initial layers capture general human motion, focusing on all the

nodes in the S-graph and having class-specific node importance only
in a few final layers of the network.

D. EFFECT OF NOISE IN THE DATA
We analyze the robustness of the STGCN network in the presence of
noise in the data. In our experiments, we add noise at various peak
signal-to-noise ratio (PSNR) levels to a set of actions and compare
the label smoothness over the layers concerning the original signal.

A popular approach to incorporate noise into the spatiotemporal
data is to add additive white Gaussian noise to the measurement [6].
Fig. 6 shows label smoothness for three actions drop, hop, and
standing up (from a sitting position). It is clear from these examples
that the overall performance degraded slightly, while the smoothness
of the labels through successive layers of the network is better than
the original signal. Specifically for the action drop, as we discussed
in Section IV-B, the label smoothness degraded in the middle of
the network and recovered at the end. However, for the noisy sig-
nal, we notice a more stable, non-increasing pattern as in other
actions. The accuracy of the STGCN network on this partially noisy
dataset is 80.2%. Hence, the network is robust to this additive white
Gaussian noise.

E. TRANSFER PERFORMANCE
So far, we see that the first few network layers focus on under-
standing general human motion, which is needed before learning the
specific task. Therefore, the hypothesis is that the network should
exhibit similar behavior in the layerwise representations for a similar
human activity dataset. To explore the area of adapting the pre-
trained STGCN model to a new dataset and analyze the transfer
performance of STGCN, we use the new 60 actions (61-120) in
NTU-RGB120 [30] dataset. In the rest of the paper, we refer to these
new actions 61-120 as NTU-RGB61-120.

We first analyze the label smoothness of the NTU-RGB61-120
dataset on the pre-trained STGCN model trained on the NTU-RGB60
dataset. Fig. 7 (Left) shows the label smoothness over the successive
layers of the network. We divided NTU-RGB61-120 into three sets,
lower body, upper body, and full body actions, depending on the
involvement of the body joints (Table 3) We notice a similar pattern
as we observed for NTU-RGB60. There is a big jump in the label
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FIGURE 6. Impact of noise added to the input sequence on the label smoothness observed using the corresponding features obtained with the model.
The Laplacian quadratic (y⊤Lout y) decreases as the label smoothness increases. We show the impact of noise on one action per super-class grouping
(upper, lower, and full body). We observe that in actions where the Laplacian quadratic had a steady (non-increasing) trend, it remained mostly
unaffected by adding noise to the input action sequence. However, actions where the label smoothness decreased before increasing were affected by
noise. This implies that the features learned in the early layers for these actions are not robust, and adding noise allows us to see the modified manifold
induced in these layers.

FIGURE 7. Left: Label smoothness of unseen action classes
(NTU-RGB61-120) using a model trained on NTU-RGB60. We present
results averaged over each super-class (Upper, Lower, and Full body). We
see that the model embedding allows the features corresponding to new
action sequences to be separable. Further, y⊤Ly follows a similar
non-increasing trend as in the case of the NTU-RGB60 in a much smaller
range of scale. This implies that the features learned by the model can be
used for the novel classes, and model transfer can be done with simple
fine-tuning. Right: Classification accuracy on NTU-RGB61-120 test-set
using a 10-layer STGCN network. Performance comparison between a
model trained from scratch and one obtained with transfer learning by
fine-tuning a model trained on NTU-RGB60. We can see the effectiveness
of model transfer, which was predicted by our label smoothness analysis.

smoothness after layer 8, while the slope changes slowly before that.
Therefore, although the network is not trained on NTU-RGB61-120,
it shows similar behavior, proving our hypothesis. The overall accu-
racy of the network is 9%, which states the need for fine-tuning and
it achieves 78% accuracy after fine-tuning.

Fig. 7 (Right) shows the validation accuracy (validation loss in
supplementary Fig. 14) of the STGCN network with respect to the
training epochs. In the case of transfer learning, we can fine-tune the
last few layers depending on the performance or the availability of
the data. We consider 3 cases of fine-tuning varying the number of
layers, such as 1. training only the FCN layer, 2. training the last 3
STGCN layers, including the FCN layer, and 3. training the whole
network. Interestingly, we see that in this case, only fine-tuning the
FCN layer (case 1) provides good performance. This means that
STGCN captures a good representation of these human motions. If
we have a dataset where the actions are very different than the trained
dataset, we can fine-tune more layers depending on the availability
of the data.

V. CONCLUSION
We present a data-driven approach for understanding STGCN mod-
els using windowed-DTW distance-based NNK graphs.

Analyzing the label smoothness of the successive layers on the
NNK Dataset Graph, we show that the initial layers focus on
general human motion, and features for individual action recog-
nition are learned by the model only in the later layers. We also
present a comparison between graph construction methods, show-
ing the superiority of the NNK graph over the k-NN graph. To
validate our insights from label smoothness, we introduce an L-STG-
GradCAM method to visualize the importance of different nodes at
each layer for predicting the action. We then present our analysis
of label smoothness and its impact on the transfer performance
of a trained STGCN model to unseen action classes. Finally, we
present an analysis of the robustness of the features at each layer
of an STGCN in the presence of input Gaussian noise. We show
that the added noise does not affect the label smoothness of several
action classes.
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