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ABSTRACT

The yield strength of a CrCoNiSiy 3 medium-entropy alloy is significantly increased from 450 MPa (quasi-static, 0.001s™') to 1600 MPa (at a
strain rate of 5000s~") under dynamic tension, with a considerable ductility of 60%. The high strain-rate sensitivity (SRS) of strength and
work hardening is obtained, and the strength SRS reaches 0.408. The dominant deformation mechanisms are abundant multiple-twinning,
increasing fractions of deformation twins and phase transformation from face-centered-cubic to hexagonal-close-packed (HCP) phases with
a strain rate. A universal dislocation-hardened constitutive model considering the evolution of the twin and HCP transformation is estab-

lished to predict the flow stress and microstructure evolution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0202924

Medium/high-entropy alloys (M/HEAs) show promise for
extreme environments due to their superior mechanical properties
compared to conventional alloys.' * Research on their tensile proper-
ties and deformation mechanisms at high strain rates is focused on a
few typical FCC-based M/HEAs (CrCoNi, CrFeNi, FeCoNiCr,
FeCoNiCrMn, Aly;CoCrFeNi, and Aly;Tio;CoCrFeNi' ') and on a
limited strain rate range, leaving gaps in understanding. The M/HEAs
exhibit high strain-rate sensitivity (SRS) and improved strength under
dynamic tension.” '’ The FeCoNiCr and FeCoNiCrMn HEAs exhibit
the simultaneous enhancement in strength and ductility because of the
formation of nanoscale deformation twins (DTs). The CrCoNi MEA is
improved in both strength and ductility by the denser DTs and the
appearance of multiple twinning. The deformation mechanism relates
to stacking-fault energy (SFE), with lower SFE activating more mecha-
nisms.'"'” The CrCoNiSips MEA was designed for synergistic
strength-ductility enhancement, with the FCC phase transforming to

the hexagonal-close-packed (HCP) phase, showing promising applica-
tions compared to CrCoNi MEA."” Consequently, the mechanical
behavior and mechanisms under high-speed tension are desired to be
studied.

Phenomenological and physical-based models like Johnson-
Cook, Khan-Huang-Liang, and Zerilli-Armstrong lack specificity in
reflecting microstructural evolution, *'” necessitating microstructural
evolution-based constitutive models for detailed deformation mecha-
nism understanding and alloy design guidance. The complexity of
microstructural evolution in MEAs/HEAs, especially under high-speed
loading, requires advanced constitutive models.” '’ Zhang et al. devel-
oped a dislocation-density-based hardening model for FeCoNiCr
HEA." Stress models considering FCC — BCC phase transformation
was established for austenitic stainless steels'® and FegoCo;sNi;sCryo
HEA'" and a crystal plasticity constitutive model containing FCC —
BCC phase transition was developed for metastable austenitic stainless
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steels at cryogenic temperatures.* However, there is a need for a con-
stitutive model considering the FCC — HCP transformation effect in
twin-dominated MEAs/HEAs.

This study investigates dynamic tensile mechanical behaviors and
strain rate effects over a wide range of strain rates on CrCoNiSig 3
MEA, revealing deformation mechanisms and establishing a constitu-
tive model based on microstructural evolution and dislocation-
hardening mechanism, considering FCC — HCP transformation.

The CrCoNiSiy; (in atomic proportion) and equiatomic CrCoNi
(as a contrast) MEAs were prepared by vacuum arc-melting. The as-cast
plates were homogenized at 1100°C for 5h, then cold-rolled to 70%
thickness, and annealed at 900 °C for 1 h, followed by water quenching.
The tensile specimens are dog-bone-shaped with the gauge geometry of
10.0 x 4.0 X 0.6 mm> (quasi-static) and 4.5 x 4.0 x 0.6 mm’ (dynamic).
Quasi-static uniaxial tensile tests were conducted with an Instron 5969
testing machine at a strain rate of 1 x 10~ >s~ ', Dynamic tension tests
were performed, using a split Hopkinson tensile bar (SHTB), with post-
mortem measurements determining fracture strains due to large fracture
strain and incomplete records.”

The x-ray diffraction (XRD) measurements were performed
using the BRUKER D8 diffractometer under Cu-Ku radiation at 40 kV
and 40 mA (scanning rate=1° min~ !, 20 =30°-100°, step=0.01°).
The microstructural characterizations were performed with a JEOL
JSM-7100F field emission gun-scanning electron microscopy equipped
with an electron backscatter diffraction (EBSD) detector and JEOL
JEM-2100F transmission electron microscope (TEM).

The quasi-static tensile mechanical behaviors of CrCoNi
and CrCoNiSiy; MEAs with various grain sizes are exhibited in

ARTICLE pubs.aip.org/aip/apl

Figs. 1(a) and 1(b), respectively. Both MEAs show decreased
strength and increased ductility with the increased grain size,
according to the Hall-Petch rule,'” while the strain hardening rate
is lower especially at the beginning of the stable stage (stage II) in
strain-hardening curves. More grain boundaries, rooted in smaller
grain size, create more obstacles to dislocation motion, which
enhances the work hardening capacity. The Hall-Petch equation is
fitted to be 0, =278.9+354.5d""* and 0, =370.3 +462.8d""*
for the CrCoNi and CrCoNiSiy; MEAs, respectively. The lattice-
friction stress and Hall-Petch slope of the CrCoNiSiy; MEA are
higher than those of the CrCoNi MEA, which maybe originate
from the solution strengthening of the Si element, lower SFE, and
more short-range ordered domains in the CrCoNiSi, ; MEA. This
trend indicates that the CrCoNiSip 3 MEA has a stronger grain-size
effect than the CrCoNi MEA."

The tensile engineering stress—strain curves of the CrCoNi and
CrCoNiSip; MEAs at different quasi-static strain rates are shown in
Figs. 1(d) and 1(e). Both MEAs showed increased strength and slightly
decreased ductility with the increased strain rate since the dislocation
motion had a shorter time and higher loads to overcome the obstacles.
Meanwhile, the shorter plastic-deformation coordination time reduces
ductility, in order to quantitatively analyze the strain-rate sensitivity
(SRS), defined as my; = dlng/d1In . Figure 1(f) presents the bilo-
garithmic diagram of the flow stress vs strain rate at various true
strains. The quasi-static SRS values of the CrCoNi and CrCoNiSig 3
MEAs are 0.0208 and 0.0235, respectively. The CrCoNiSip; MEA
shows a stronger SRS than the CrCoNi MEA, even exceeding the
BCC-structured M/HEAs with high SRS.”’
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FIG. 1. (a) and (b) Quasi-static tensile mechanical behavior with corresponding strain hardening rate curves illustrated for the CrCoNi and CrCoNiSiy 3 MEAs with various grain
sizes, respectively. (c) The Hall-Petch relationships; (d) and (e) tensile engineering stress-strain curves at different quasi-static strain rates; and (f) the bilogarithmic diagram of

the flow stress vs strain rate at various true strains, showing the SRS value.
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The engineering and true stress—strain curves of the CrCoNiSi 3
MEA under dynamic tension are presented in Figs. 2(a) and 2(b),
respectively. As the summary shown in Fig. 2(c), with increasing the
strain rate from 0.001 to 5000 s ', the yield strength () increases
from 450 to 1600 MPa, the ultimate tensile strength is increased from
960 to over 2000 MPa, and the engineering fracture strain is decreased
from 92% to 66%. The CrCoNiSiy 3 shows a similar dynamic tensile
strength law to CrCoNi MEA with the increased strain rate, while their
fracture elongation law is the opposite.

The SRS of the flow stress upon dynamic tension is shown in
Fig. 2(d). The values of SRS under different strains are basically similar,
and its average value is 0.406, which is superior to most M/HEAs," °
including the CrCoNi MEA. As shown in the plot of strain-hardening
components (¢ — ay) vs true plastic strains at different strain rates in
Fig. 2(e), the CrCoNiSig 3 MEA presents an obvious and positive SRS
on strain hardening capacity. The CrCoNi MEA had a higher work-
hardening rate under quasi-static tension than under dynamic tension
at the beginning of plastic deformation.” However, the CrCoNiSi
MEA shows consistently a higher strain-hardening component under

(b) 3000

~
-]
~—
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dynamic tension probably stemming from the lower SFE,"” which pro-
motes twinning earlier and improves the work hardening. Figure 2(f)
gives the comparison of strain hardening for CrCoNi and CrCoNiSi, 5
MEAs. Visibly, the CrCoNiSip; MEA exhibits a higher strain-
hardening capacity than CrCoNi MEA. Moreover, the higher SRS in
the CrCoNiSip 3 MEA originates from more localized plastic deforma-
tion and smaller activation volume due to its inherent chemical hetero-
geneity,”' i.e., higher lattice distortion and chemical short-range order,
than that of CrCoNi MEA."”

The EBSD and TEM observations were conducted to explore the
underlying deformation mechanisms of the CrCoNiSiy; MEA under
dynamic tension. Figures 3(a)-3(c) and 3(d)-3(f) exhibit EBSD-IQ,
phase, and KAM maps at the strain rates of 2100 and 5000 s, respec-
tively. The DTs” density gradually increases with the strain rate and is
higher than that upon quasi-static tension.”” Unlike the trace HCP
content under quasi-static tension, the HCP fraction increases with
increasing the strain rate under dynamic tension. Additionally, the
KAM values significantly increase with the strain rate, indicating a
higher dislocation density.
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FIG. 3. Microstructures after fracture at
different strain rates for the CrCoNiSij 3
MEA. EBSD-IQ (a) and (d), EBSD-phase
(b) and (e), and EBSD-KAM (c) and (f)
maps. (g)-(n) TEM micrographs. (n1) and
(n2) The corresponding enlarged image of
(n). (p) The XRD patterns. (q) The volume
fraction of HCP phases vs tensile strain
rates.

(p)

. T S des— .

Intensity

20 (degree) Strain rate (s")

Figures 3(g)-(j) and 3(k)-(n) exhibit the TEM micrographs after
tensile fracture for the CrCoNiSiy; MEA. Dislocation cells (DCs)
become denser and tighter as the strain rate increases from 2100 to
50005 " Specifically, a severely deformed microstructure appeared
under a tensile strain at 5000s ", as shown in the selected area diffrac-
tion patterns of the near-ring patterns in the inset of Fig. 3(k). This fea-
ture can further form nanograins. Combined with the previous
nanograin formation in the CrCoNi and CoCrFeNi MEAs,"** the no
appearance of nanocrystals appearance in the CrCoNiSiy; MEA
maybe resulted from: (1) The hard HCP partly prevents the multiple-
cutting of DTs; (2) The HCP transformation consumes too much
energy to provide enough energy for forming nanocrystals formation.

L s L L L L L L L L L L
30 40 50 60 70 80 920 100 0 1000 2000 3000 4000 5000

The formation of nanocrystals is a microscopic manifestation of soft-
ening, demonstrating a stronger hardening capacity in the present
CrCoNiSiy s MEA.

More abundant and denser multiple-twins are presented in the
CrCoNiSip3; MEA deformed at higher strain rates [Figs. 3(h) and 3(1)].
The DTs’ density is obviously higher than that at quasi-static tension.
Distinctly, the HCP bundles can be observed, marked by the red
arrows in Figs. 3(i) and 3(m). The average twin thickness is measured
to be 3nm through the high resolution transmission electron micro-
scope (HRTEM) images [Figs. 3(j) and 3(n) and 3(n2)], smaller than
the quasi-static ones (5nm),"” and the thickness of the HCP sequence
(AB-AB...... ) increases with increasing the strain rate. Consistent
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with those under quasi-static tension, ’ the HCP sequence was distrib-
uted in the area of DT bundles and located in the DT-space [Figs. 3(n)
and 3(n1)], indicating that the accumulation of stacking faults (SFs) at
the twin boundary formed the HCP [Figs. 3(n) and 3(n2)], and the
twin and SFs could be used as the nucleation sites of HCP.
Furthermore, the FCC — BCC phase transition was also found in jet
penetration experiment under ultrahigh explosive loading” and MD
simulations results at the strain rate of 10® s™' (Refs. 21 and 24) for
CrCoNi MEA, but there is no BCC phase observed in the present
CrCoNiSiy 3 MEA at the present strain rate of 10° s *. The DTs frac-
tion is estimated by combining the EBSD with TEM measurements,”
i.e.,, the product of the fraction of DTs-bundles and that of DTs in
DTs-bundles. Eventually, the volume fractions of DTs are 8.9% and
9.8% at 2100 and 5000 s, respectively.

In a word, with increasing the strain rate, the denser DTs, richer
multiple-twinning, and more HCP transformations with increasing
the strain rate together provide higher work hardening and strength,
while the gradual increase in HCP phases decreases the ductility.

The XRD experiments were conducted to calculate the volume
fraction of HCP phases. The HCP volume fraction can be quantita-
tively calculated as follows:™

1 noipi
-~ ;Zizl L/R,
1 n i pi 1 nipi ’
;Zi:l L/R, + ;Zi:l L/R,

where n and I represent the number of examined peaks and the inte-
grated intensity of the diffraction peak, respectively. The material scat-

tering factor (R) was calculated using R = 1 F>P ( HC"SZZO) e M Here,

sin 0 sin 20

\Z

1

v, F, P, e M and 0 represent the volume of the unit cell, structure
factor, multiplicity factor, temperature factor, and diffraction
angle, respectively. Compared to trace HCP detection under quasi-
static tension, the intensity of the (101 1) diffraction peak gradu-
ally enhances under dynamic tension [Fig. 3(p)], and the calculated
volume fraction of the HCP phase after fracture for the
CrCoNiSip 3 MEA aggrandizes with increasing the strain rate, as
exhibited in Fig. 3(q).

The plastic deformation of metals can be regarded as the move-
ment and accumulation of dislocations within the rate-controlled
mechanism. Generally, the dislocation barriers for FCC metals could
be categorized as thermal and rate-independent (ie., athermal).”*””
Correspondingly, the flow stress could be decomposed into the
following:

0= Oah + O, (2)

where ¢ is the flow stress and o,y and oy, are the athermal and ther-
mal components of the flow stress, respectively.

Grain-boundary strengthening (o = kd~'/) is considered as
the athermal stress, and the flow stress can be expressed as

U:as(é,T)+aG+oH(sp,é,T), 3)

where o,(¢, T) is the initial yield strength mainly from the solid solu-
tion and gy (&, &, T) is the strain-hardening component.

A modified Johnson-Cook (MJ-C) model was adopted to
describe o, to describe the high SRS of the mechanical behavior in the
CrCoNiSiy 3 MEA,"

ARTICLE pubs.aip.org/aip/apl

g, =C

& 1 1
oA MANICN (UL I | ) 4
2y 3(C4—lné% q)] @

where £* is the reference strain rate (taken as 0.001 s™'). C;, Cy, C,

and C, are material constants and obtained as 450, 0.0172, 0.985, and

1

o) < Cs can describe

15.83, respectively. The term of C; (Q—ﬁ —

the increasing SRS of flow stress. The deviation in SRS is controlled by
C;. Hence, the MJ-C model can describe materials whose o;y deviates
from the linear relationship with the logarithm of strain rate.”*

A Taylor-hardening model is used to reflect the flow stress during
plastic deformation,””

oy = M&Gb\/ﬁ, (5)

where M is the Taylor factor (3.06), G is the shear modulus (86 GPa,
from CrCoNi MEA®" ), and o, p, and b represent the factor related to
the dislocation interaction strength (04),° total dislocation density,
and the Burgers vector (0.262 nm), respectively. The evolution of total
dislocation density considering the competition between the disloca-
tion storage and recovery can be given by the following expression:

dp 1
E*M(m—krp)7 (6)

where k, is the dislocation recovery factor and A is the dislocation
mean free path. The main microstructure strengthening mechanisms
in the present CrCoNiSij 3 MEA are the DTs and HCP transformation,
which play a crucial role in the evolution of dislocations. Twins and
HCP phase affect dislocation evolution primarily by providing bound-
aries impeding dislocations motion, thus taking them into the mean
free path,”’” so the expression is described as follows:

1 in Jn

A kit Ntwin * Aucp’ @
where Awyin and Agcp are the mean spacing between twins and
HCP islands, respectively. i and j, are constants for scaling the
contribution of the average twin spacing and average HCP path to
the effective boundary distance. The mean spacing is associated
with the average thickness, f, and volume fraction, F, of DTs and
HCP phases,

1-F
A=2t—. 8
F ®)

According to twinning and phase-transition kinetics,”* the frac-
tion evolution of DTs and HCP phases can be expressed as

Ftwin =1- eXP(—¢(3p - 8critftwin))’ (9)
Fucp = 1 — exp(—p(1 — exp(—o(& — écrit-ncr))"), (10)

where &qit—twin and &qi—pcp are the initial strain for the twinning and
HCP transition determined by the critical twinning stress (6 crit—twin)
and the critical HCP stress (0cric—mcp), respectively. The 0it—yin and
Guit_ticp are 890 and 1340 MPa from the reference, respectively.”'”
The initial strains for the twinning and HCP transition are taken from
the true stress—strain curves. The &uit—twin 1S determined to be 0.16 and
0.02 true strains at 0.001 and 1200 s~ strain rates, respectively, and
these ecrit_twin at 2100, 3500, 4200, and 5000 s ' are consistent with
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where k;, is the recovery factor at 0 K and k is the Boltzmann constant.
Here, the reference strain rate, &*, is taken as 10’ s~ ', and A is a mate-
rial parameter dependent on the SFE (calculated to be 3.08 x 10~ 97).
The fitted parameters of k;, are 0.017 and 0.020 under quasi-static and
dynamic tension, respectively.

During dynamic deformation, the adiabatic temperature rise,
which significantly affects the dislocation evolution, is defined as’’

no[*
AT=T-T, = J ade, (12)
PC Jo
where Ty is the initial temperature (298 K), T is the current tran-
sient temperature, AT is the temperature rise, p is the mass density
of the alloy (7.86 g/cm?), and C, is the specific heat capacity [452 ]/
(kg K)];.30 n is the converted fraction of the plastic work into heat
(0.9).0,; 6

The predicted o for the CrCoNiSiy 3 MEA and CoCrNi MEA"*
exhibited in Fig. 4 shows reasonable consistency with the experi-
mental counterparts. Figure 5(a) shows that the flow-stress predic-
tions of our model agree well with the experimental data. The
dynamic-experimental data were not fully recorded, and the UTS
could be predicted through the model prediction [see Fig. 5(a)].
Furthermore, the previous experimental results™” of the CoCrNi
MEA and CrCoNiSiy; MEA deformed at 77K are predicted, and
the good predictions are obtained as shown in Figs. 5(b)-5(d). This
feature also verifies the universal applicability of the established
model where the DTs and FCC — HCP transformation are domi-
nant mechanisms. Figures 5(¢) and 5(f) show the predicted disloca-
tion density evolution of the CrCoNiSip; and CrCoNi MEAs
during deformation. One can note that the dislocation density
increases with increasing the strain rate, further underpinning the
greater work hardening.

In summary, the yield strength of the CrCoNiSij 3 MEA is signifi-
cantly increased from 450 to 1600 MPa with increasing the strain rate,
along with 60% ductility at 5000 s, the high strength SRS, and work
hardening. This trend originates from abundant multiple-twinning,
increasing DTs and HCP-transformation amounts with the strain rate.
A universal constitutive model is established based on the microstruc-
ture evolution.
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