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ABSTRACT

We show that there is a language in SyE/1 (symmetric exponential
time with one bit of advice) with circuit complexity at least 2" /n. In
particular, the above also implies the same near-maximum circuit
lower bounds for the classes 22E, (32E N II2E)/4, and ZPENP/l.
Previously, only “half-exponential” circuit lower bounds for these
complexity classes were known, and the smallest complexity class
known to require exponential circuit complexity was AsE = E>2P
(Miltersen, Vinodchandran, and Watanabe COCOON’99).

Our circuit lower bounds are corollaries of an unconditional zero-
error pseudodeterministic algorithm with an NP oracle and one
bit of advice (FZPPNP /1) that solves the range avoidance problem
infinitely often. This algorithm also implies unconditional infinitely-
often pseudodeterministic FZPPNP/; constructions for Ramsey
graphs, rigid matrices, two-source extractors, linear codes, and
KP°Y-random strings with nearly optimal parameters.

Our proofs relativize. The two main technical ingredients are
(1) Korten’s PNP reduction from the range avoidance problem to
constructing hard truth tables (FOCS’21), which was in turn in-
spired by a result of Jefabek on provability in Bounded Arithmetic
(Ann. Pure Appl. Log. 2004); and (2) the recent iterative win-win
paradigm of Chen, Lu, Oliveira, Ren, and Santhanam (FOCS’23).
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1 INTRODUCTION

Proving lower bounds against non-uniform computation (i.e., circuit
lower bounds) is one of the most important challenges in theoretical
computer science. From Shannon’s counting argument [18, 48], we
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know that almost all n-bit Boolean functions have near-maximum
(2" /n) circuit complexity.! Therefore, the task of proving circuit
lower bounds is simply to pinpoint one such hard function. More
formally, one fundamental question is:

What is the smallest complexity class that contains a
language of exponential (22(")) circuit complexity?

Compared with super-polynomial lower bounds, exponential
lower bounds are interesting in their own right for the following
reasons. First, an exponential lower bound would make Shannon’s
argument fully constructive. Second, exponential lower bounds have
more applications than super-polynomial lower bounds: For ex-
ample, if one can show that E has no 20(1) _gize circuits, then we
would have prP = prBPP [28, 43], while super-polynomial lower
bounds such as EXP ¢ P/, only imply sub-exponential time
derandomization of prBPP.?

Unfortunately, despite its importance, our knowledge about ex-
ponential lower bounds is quite limited. Kannan [31] showed that
there is a function in X3E N II3E that requires maximum circuit
complexity; the complexity of the hard function was later improved
to A3E = E>2P by Miltersen, Vinodchandran, and Watanabe [42],
via a simple binary search argument. This is essentially all we
know regarding exponential circuit lower bounds.?

We remark that Kannan [31, Theorem 4] claimed that 32E NTIE
requires exponential circuit complexity, but [42] pointed out a gap
in Kannan’s proof, and suggested that exponential lower bounds
for 32E N II;E were “reopened and considered an open problem.”
Recently, Vyas and Williams [51] emphasized our lack of knowledge
regarding the circuit complexity of 22EXP, even with respect to
relativizing proof techniques. In particular, the following question
has been open for at least 20 years (indeed, if we count from [31],
it would be at least 40 years):

OPEN PROBLEM 1.1. Can we prove that S2EXP ¢ SIZE[2¢"] for
some absolute constant € > 0, or at least show a relativization barrier
for proving such a lower bound?

!All n-input Boolean functions can be computed by a circuit of size (1 + +
logn
n
O( % ))2™/n [18]. Hence, in this paper, we say an n-bit Boolean function has near-
maximum circuit complexity if its circuit complexity is at least 2" /n.

2E = DTIME[29(" ] denotes single-exponential time and EXP = DTIME[2" ]
denotes exponential time; classes such as EN” and EXPNP are defined analogously.
Exponential time and single-exponential time are basically interchangeable in the
context of super-polynomial lower bounds (by a padding argument); the exponential
lower bounds proven in this paper will be stated for single-exponential time classes
since this makes our results stronger. Below, 23E and IT3E denote the exponential-time
versions of X3P = NPNPNP and II5P = coNPNPNP, respectively.

3We also mention that Hirahara, Lu, and Ren [25] recently proved that for every
constant £ > 0, BPEMCSP/,en requires near-maximum circuit complexity, where
MCSP is the Minimum Circuit Size Problem [30]. However, the hard function they
constructed requires subexponentially (2¢”) many advice bits to describe.

3logn
n

o( % ))2™ /n [18, 41], while most Boolean functions require circuits of size (1+

O(1)
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The half-exponential barrier. There is a richer literature regarding
super-polynomial lower bounds than exponential lower bounds.
Kannan [31] proved that 32E N II5E does not have polynomial-size
circuits. Subsequent works proved super-polynomial circuit lower
bounds for exponential-time complexity classes such as ZPEXPNP
[5, 35], S2EXP [8, 9], PEXP [1, 50], and MA-EXP [6, 46].

Unfortunately, all these works fail to prove exponential lower
bounds. All of their proofs go through certain Karp-Lipton collapses
[32]; such a proof strategy runs into a so-called “half-exponential
barrier”, preventing us from getting exponential lower bounds.
See subsection 5.1 for a detailed discussion.

2 OUR RESULTS
2.1 New Near-Maximum Circuit Lower Bounds

In this work, we overcome the half-exponential barrier mentioned
above and resolve Theorem 1.1 by showing that both X3E and
(22E NII2E) /1 require near-maximum (2" /n) circuit complexity.
Moreover, our proof indeed relativizes:

THEOREM 2.1.
SoE ¢ SIZE[2"/n] and (39E N TIE)/1¢ SIZE[2"/n].
Moreover, they hold in every relativized world.

Up to one bit of advice, we finally provide a proof of Kannan’s
original claim in [31, Theorem 4]. Moreover, with some more work,
we extend our lower bounds to the smaller complexity class SzE/1,
again with a relativizing proof:

THEOREM 2.2.
SoE/1¢ SIZE[2" /n].

Moreover, this holds in every relativized world.

The symmetric time class SoE. S2E can be seen as a “randomized”
version of ENP since it is sandwiched between ENP and ZPENP: it is
easy to show that ENP C S,E [45], and it is also known that S3E C
ZPENP [8]. We also note that under plausible derandomization
assumptions (e.g., ENP requires 2(")size SAT-oracle circuits), all
three classes simply collapse to ENP [34].

Hence, our results also imply a near-maximum circuit lower
bound for the class ZPENP /€ (22ENTI2E) /1. This vastly improves
the previous lower bound for A3E = E*2P,

COROLLARY 2.3.
ZPENP /¢ SIZE[2"/n].

Moreover, this holds in every relativized world.

2.2 New Algorithms for the Range Avoidance
Problem

Background on Avorp. Actually, our circuit lower bounds are
implied by our new algorithms for solving the range avoidance
problem (Avoip) [33, 36, 44], which is defined as follows: given a
circuit C: {0,1}" — {0,1}™"! as input, find a string outside the
range of C (we define Range(C) := {C(z) : z € {0,1}"}). That is,
output any string y € {0,1}™"! such that for every x € {0,1}",
C(x) #y.
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There is a trivial FZPPNP algorithm solving Avorp: randomly
generate strings y € {0,1}™"! and output the first y that is out-
side the range of C (note that we need an NP oracle to verify if
y ¢ Range(C)). The class APEPP (Abundant Polynomial Empty
Pigeonhole Principle) [33] is the class of total search problems
reducible to Avorp.

As demonstrated by Korten [36, Section 3], APEPP captures the
complexity of explicit construction problems whose solutions are
guaranteed to exist by the probabilistic method (more precisely,
the dual weak pigeonhole principle [29, 37]), in the sense that con-
structing such objects reduces to the range avoidance problem. This
includes many important objects in mathematics and theoretical
computer science, including Ramsey graphs [16], rigid matrices
[19, 22, 49], two-source extractors [11, 38], linear codes [22], hard
truth tables [36], and strings with maximum time-bounded Kol-
mogorov complexity (i.e., KP°Y-random strings) [44]. Hence, de-
randomizing the trivial FZPPNP algorithm for Avorp would imply
explicit constructions for all these important objects.

Our results: new pseudodeterministic algorithms for Avorp. We
show that, unconditionally, the trivial FZPPNP algorithm for Avorp
can be made pseudodeterministic on infinitely many input lengths.
A pseudodeterministic algorithm [20] is a randomized algorithm
that outputs the same canonical answer on most computational
paths. In particular, we have:

THEOREM 2.4. For every constant d > 1, there is a randomized
algorithm A with an NP oracle such that the following holds for
infinitely many integers n. For every circuit C: {0,1}" — {0,1}"*!
of size at most n9, there is a string yc € {0,1}" \ Range(C) such that
A(C) either outputs yc or L, and the probability (over the internal
randomness of A) that A(C) outputs yc is at least 2/3. Moreover,
this theorem holds in every relativized world.

As a corollary, for every problem in APEPP, we obtain zero-error
pseudodeterministic constructions with an NP oracle and one bit
of advice (FZPPNP/}) that works infinitely often®:

COROLLARY 2.5 (INFORMAL). There are infinitely-often zero-error
pseudodeterministic constructions for the following objects with an
NP oracle and one-bit of advice: Ramsey graphs, rigid matrices, two-
source extractors, linear codes, hard truth tables, and KPY _random
strings.

Actually, we obtain single-valued FS;P/; algorithms for the
explicit construction problems above, and the pseudodeterministic
FzPPNP /4 algorithms follow from Cai’s theorem that SoP C zppNP
[8]. We stated them as pseudodeterministic FZPPNP /; algorithms
since this notion is better known than the notion of single-valued
FS2P/1 algorithms.

Theorem 2.4 is tantalizingly close to an infinitely-often FPN al-
gorithm for Avorp (with the only caveat of being zero-error instead
of being completely deterministic). However, since an FPN® algo-
rithm for range avoidance would imply near-maximum circuit lower
bounds for ENP, we expect that it would require fundamentally new

“The one-bit advice encodes whether our algorithm succeeds on a given input length; it
is needed since on bad input lengths, our algorithm might not be pseudodeterministic
(i.e., there may not be a canonical answer that is outputted with high probability).
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ideas to completely derandomize our algorithm. Previously, Hira-
hara, Lu, and Ren [25, Theorem 36] presented an infinitely-often
pseudodeterministic FZPPNP algorithm for the range avoidance
problem using n bits of advice, for any small constant ¢ > 0. Our
result improves the above in two aspects: first, we reduce the num-
ber of advice bits to 1; second, our techniques relativize but their
techniques do not.

Lower bounds against non-uniform computation with maximum
advice length. Finally, our results also imply lower bounds against
non-uniform computation with maximum advice length. We men-
tion this corollary because it is a stronger statement than circuit
lower bounds, and similar lower bounds appeared recently in the
literature of super-fast derandomization [15].

COROLLARY 2.6. For every a(n) > w(1) and any constant k >
1, S2E/1¢ TIME[2K] /yn_ (). The same holds for Z3E, (32E N
I12E) /41, and ZPENP/1 in place of SoE /1. Moreover, this holds in every
relativized world.

3 INTUITIONS

In the following, we present some high-level intuitions for our new
circuit lower bounds.

3.1 Perspective: Single-Valued Constructions

A key perspective in this paper is to view circuit lower bounds (for
exponential-time classes) as single-valued constructions of hard
truth tables. This perspective is folklore; it was also emphasized in
recent papers on the range avoidance problem [36, 44].

Let IT € {0,1}* be an e-dense property, i.e., for every integer
N €N, |Iy| > ¢- 2N, (In what follows, we use Iy := II N {0, 1}
to denote the length-N slice of I1.) As a concrete example, let ITj,.q
be the set of hard truth tables, i.e., a string ¢t € IIy,,q if and only if
it is the truth table of a function f: {0,1}"* — {0, 1} whose circuit
complexity is at least 2" /n, where n := log N. (We assume that
n :=log N is an integer.) Shannon’s argument [18, 48] shows that
IThard is @ 1/2-dense property. We are interested in the following
question:

What is the complexity of single-valued constructions
for any string in ITj,4?

Here, informally speaking, a computation is single-valued if each
of its computational paths either fails or outputs the same value.
For example, an NP machine M is a single-valued construction for
I1 if there is a “canonical” string y € II such that (1) M outputs
y on every accepting computational path; (2) M has at least one
accepting computational path. (That is, it is an NPSV construction
in the sense of [4, 17, 23, 47].) Similarly, a BPP machine M is a single-
valued construction for IT if there is a “canonical” string y € II such
that M outputs y on most (say > 2/3 fraction of) computational
paths. (In other words, single-valued ZPP and BPP constructions
are another name for pseudodeterministic constructions [20].)°

SNote that the trivial construction algorithms are not single-valued in general. For
example, a trivial 3,P = NPNP construction algorithm for Il},.q4 is to guess a hard
truth table ¢# and use the NP oracle to verify that t¢ does not have size-N/log N
circuits; however, different accepting computational paths of this computation would
output different hard truth tables. Similarly, a trivial BPP construction algorithm for
every dense property II is to output a random string, but there is no canonical answer
that is outputted with high probability. In other words, these construction algorithms
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Hence, the task of proving circuit lower bounds is equivalent to
the task of defining, i.e., single-value constructing, a hard func-
tion, in the smallest possible complexity class. For example, a
single-valued BPP construction (i.e., pseudodeterministic construc-
tion) for Il,.q is equivalent to the circuit lower bound BPE ¢
i.0.-SIZE[2"/n].% In this regard, the previous near-maximum cir-
cuit lower bound for AsE := E*2P [42] can be summarized in one
sentence: The lexicographically first string in II},.4 can be con-
structed in A3P := P*2P (which is necessarily single-valued).

Reduction to Avorp. It was observed in [33, 36] that explicit con-
struction of elements from ITy,, 4 is a special case of range avoidance:
Let TT: {0, 1}N~1 — {0, 1}V (here N = 2™) be a circuit that maps
the description of a 2" /n-size circuit into its 2”-length truth ta-
ble (by [18], this circuit can be encoded by N — 1 bits). Hence, a
single-valued algorithm solving Avorp for TT is equivalent to a
single-valued construction for Il,,.q. This explains how our new
range avoidance algorithms imply our new circuit lower bounds
(as mentioned in subsection 2.2).

In the rest of section 3, we will only consider the special case of
Avorp where the input circuit for range avoidance is a P-uniform
circuit family. Specifically, let {Cp: {0,1}* — {0,1}?"} e be a
P-uniform family of circuits, where |Cp,| < poly(n).” Our goal is
to find an algorithm A such that for infinitely many n, A(1") €
{0,1}2" \ Range(C,); see Sections 5.3 and 5.4 of the full version for
how to turn this into an algorithm that works for arbitrary input
circuit with a single bit of stretch. Also, since from now on we will
not talk about truth tables anymore, we will use n instead of N to
denote the input length of AvoIp instances.

3.2 The Iterative Win-Win Paradigm of [12]

In a recent work, Chen, Lu, Oliveira, Ren, and Santhanam [12] intro-
duced the iterative win-win paradigm for explicit constructions, and
used that to obtain a polynomial-time pseudodeterministic construc-
tion of primes that works infinitely often. Since our construction
algorithm closely follows their paradigm, it is instructive to take
a detour and give a high-level overview of how the construction
from [12] works.?

In this paradigm, for a (starting) input length ng and some t =
O(log ng), we will consider an increasing sequence of input lengths
no, ni, ..., n (jumping ahead, we will set nj+1 = n; for a large
constant f), and show that our construction algorithm succeeds on
at least one of the input lengths. By varying ng, we can construct
infinitely many such sequences of input lengths that are pairwise

do not define anything; instead, a single-valued construction algorithm should define
some particular string in IT.

®To see this, note that (1) BPE ¢ i.0.-SIZE[2" /n] implies a simple single-valued BPP
construction for ITp,4: given N = 2", output the truth table of Ly, (L restricted to n-bit
inputs), where L € BPE is the hard language not in SIZE[2" /n]; and (2) assuming a
single-valued BPP construction A for Iy, one can define a hard language L such
that the truth table of L,, is the output ofA(lzn ), and observe that L € BPE.

"We assume that Cy, stretches n bits to 2n bits instead of n + 1 bits for simplicity;
Korten [36] showed that there is a PN reduction from the range avoidance problem
with stretch n + 1 to the range avoidance problem with stretch 2n.

8Indeed, for every 1/poly(n)-dense property IT € P, they obtained a polynomial-time
algorithm A such that for infinitely many n € N, there exists y,, € II,, such that
A(1™) outputs y,, with probability at least 2/3. By [2] and the prime number theorem,
the set of n-bit primes is such a property.
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disjoint, and therefore our algorithm succeeds on infinitely many
input lengths.

In more detail, fixing a sequence of input lengths ng, ny, ..., n;
and letting IT be an e-dense property, for each i € {0,1,...,t}, we
specify a (deterministic) algorithm ALG; that takes 1™ as input and
aims to construct an explicit element from IT,,;. We let ALGg be the
simple brute-force algorithm that enumerates all length-ng strings
and finds the lexicographically first string in Iy, ; it is easy to see
that ALGg runs in Ty := 20(™0) time.

The win-or-improve mechanism. The core of [12] is a novel win-
or-improve mechanism, which is described by a (randomized) algo-
rithm R. Roughly speaking, for input lengths n; and n;q, R(1")
attempts to simulate ALG; faster by using the oracle Il,,,, (hence
it runs in poly(n;4+1) time). The crucial property is the following
win-win argument:

(Win) Either R(1"™) outputs ALG;(1™) with probability at
least 2/3 over its internal randomness,
(Improve) or, from the failure of R(1"¢), we can construct an al-
gorithm ALG;4 that outputs an explicit element from
IIp,,, and runs in Tj41 = poly(T;) time.

We call the above (Win-or-Improve), since either we have a
pseudodeterministic algorithm R(1"¢) that constructs an explicit
element from IT,, in poly(ni+1) < poly(n;) time (since it simulates
ALG;), or we have an improved algorithm ALG;;; at the input
length n;;1 (for example, on input length ny, the running time of

1/
ALG; is ZO(nl ’ < 20(m)) The (Win-or-Improve) part in [12] is
implemented via the Chen-Tell targeted hitting set generator [14]
(we omit the details here). Jumping ahead, in this paper, we will
implement a similar mechanism using Korten’s PNP reduction from
the range avoidance problem to constructing hard truth tables [36].

Getting polynomial time. Now we briefly explain why (Win-or-
Improve) implies a polynomial-time construction algorithm. Let
a be an absolute constant such that we always have Tj4; < Tl.“ ;

we now set f := 2a. Recall that n; = niﬁ_1 for every i. The crucial
observation is the following:

Although Ty is much larger than ng, the sequence {T;}
grows slower than {n;}.

Indeed, a simple calculation shows that when ¢ = O(logng), we
will have T; < poly(n;); see [12, Section 1.3.1].

For each 0 < i < t, if R(1™) successfully simulates ALG;, then
we obtain an algorithm for input length n; running in poly(n;41) <
poly(n;) time. Otherwise, we have an algorithm ALG;;; running
in Tj41 time on input length n;41. Eventually, we will hit ¢ such that
T; < poly(n;), in which case ALG; itself gives a polynomial-time
construction on input length n;. Therefore, we obtain a polynomial-
time algorithm on at least one of the input lengths ng, ny, .. ., ns.

3.3 Algorithms for Range-Avoidance via
Korten’s Reduction
Now we describe our new algorithms for Avoip. Roughly speaking,

our new algorithm makes use of the iterative win-win argument in-
troduced above, together with an easy-witness style argument [27]
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and Korten’s reduction [36].° In the following, we introduce the
latter two ingredients and show how to chain them together via
the iterative win-win argument.

An easy-witness style argument. Let BF be the 20(n) _time brute-
force algorithm outputting the lexicographically first non-output of
Cp. Our first idea is to consider its computational history, a unique
20(n) Jength string hgF (that can be computed in 20(") time), and
branch on whether hgp has a small circuit or not. Suppose hgf admits
a, say, n%*-size circuit for some large @, then we apply an easy-
witness-style argument [27] to simulate BF by a single-valued FX,P
algorithm running in poly(n%) = poly(n) time (see subsection 4.2).
Hence, we obtained the desired algorithm when hgF is easy.

However, it is less clear how to deal with the other case (when
hgF is hard) directly. The crucial observation is that we have gained

. :1s . O(n)
the following ability: we can generate a string hgr € {0, 1}?
that has circuit complexity at least n?, in only 20" time.

Korten’s reduction. We will apply Korten’s recent work [36] to
make use of the “gain” above. So it is worth taking a detour to review
the main result of [36]. Roughly speaking, [36] gives an algorithm
that uses a hard truth table f to solve a derandomization
task: finding a non-output of the given circuit (that has more
output bits than input bits).'?

Formally, [36] gives a PNP-computable algorithm Korten(C, f)
that takes as inputs a circuit C: {0,1}" — {0,1}*" and a string
f € {0,1}7 (think of n < T), and outputs a string y € {0, 1}%". The
guarantee is that if the circuit complexity of f is sufficiently larger
than the size of C, then the output y is not in the range of C.

This fits perfectly with our “gain” above: for < a and m = n”,
Korten(Cp,, hgf) solves Avolp for Cy, since the circuit complex-
ity of hgp, n?, is sufficiently larger than the size of Cy,. Moreover,
Korten(Cp,, hgf) runs in only 20(n) time, which is much less than
the brute-force running time 20(m) Therefore, we obtain an im-
proved algorithm for AvoIp on input length m.

The iterative win-win argument. What we described above is
essentially the first stage of an win-or-improve mechanism similar
to that from subsection 3.2. Therefore, we only need to iterate the
argument above to obtain a polynomial-time algorithm.

For this purpose, we need to consider the computational history
of not only BF, but also algorithms of the form Korten(C, f).!! For
any circuit C and “hard” truth table f, there is a unique “compu-
tational history” h of Korten(C, f), and the length of h is upper
bounded by poly(|f]). We are able to prove the following statement
akin to the easy witness lemma [27]: if h admits a size-s circuit (think
of s < T), then Korten(C, f) can be simulated by a single-valued

Korten’s result was inspired by [29], which proved that the dual weak pigeonhole
principle is equivalent to the statement asserting the existence of Boolean functions
with exponential circuit complexity in a certain fragment of Bounded Arithmetic.
OThis is very similar to the classical hardness-vs-randomness connection [28, 43],
which can be understood as an algorithm that uses a hard truth table f (i.e., a truth
table without small circuits) to solve another derandomization task: estimating the
acceptance probability of the given circuit. This explains why one may want to use
Korten’s algorithm to replace the Chen-Tell targeted generator construction [14]
from [12], as they are both hardness-vs-randomness connections.

1 Actually, we need to consider all algorithms ALG; defined below and prove the
properties of computational history for these algorithms. It turns out that all of ALG;
are of the form Korten(C, f) (including ALGy), so in what follows we only consider
the computational history of Korten(C, f').
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FX2P algorithm in time poly(s); see subsection 4.2 for details on
this argument.'?

Now, following the iterative win-win paradigm of [12], for a
(starting) input length ny and some t = O(lognyg), we consider
an increasing sequence of input lengths ng, ny, ..., ny, and show
that our algorithm A succeeds on at least one of the input lengths
(ie., A(1%) € {0,1}%% \ Range(Cy,) for some i € {0,1,...,t}).
For each i € {0,1,...,t}, we specify an algorithm ALG; of the
form Korten(Cy;, —) that aims to solve AvoIb for Cy;; in other
words, we specify a string f; € {0,1}7 for some T; and let ALG; :
Korten(Cp,, fi).

The algorithm ALGy is simply the brute force algorithm BF at
input length ng. (A convenient observation is that we can specify an
exponentially long string fy € {0, 1}20(n0) so that Korten(Cp,, fo)
is equivalent to BF = ALGy; see Fact 3.4 in the full version.) For
each 0 < i < t, to specify ALGj41, let fit1 denote the history of
the algorithm ALG;, and consider the following win-or-improve
mechanism.

(Win) If fi41 admits an n{-size circuit (for some large con-
stant ), by our easy-witness argument, we can simulate
ALG; by a poly(n;)-time single-valued FX,P algorithm.
(Improve) Otherwise fi,1 has circuit complexity at least nf, we
plug it into Korten’s reduction to solve Avoip for Cy,,, .
That is, we take ALG;11 = Korten(Cp,,,, fi+1) as our

new algorithm on input length njyq.

Let T; = |fi|, then Tj11 < poly(T;). By setting nj41 = n‘f for a
sufficiently large f, a similar analysis as [12] shows that for some
t = O(log ng) we would have T; < poly(n;), meaning that ALG;
would be a poly(n;)-time FPNP algorithm (thus also a single-valued
FX,P algorithm) solving AvoIp for Cp, . Putting everything together,
we obtain a polynomial-time single-valued FX,P algorithm that
solves AvoID for at least one of the Cy,.

The hardness condenser perspective. Below we present another
perspective on the construction above which may help the reader
understand it better. In the following, we fix C,: {0, 1} — {0,1}2"
to be the truth table generator TT,, 2, that maps an n-bit descrip-
tion of a log(2n)-input circuit into its length-2n truth table. Hence,
instead of solving AvoID in general, our goal here is simply con-
structing hard truth tables (or equivalently, proving circuit lower
bounds).

We note that Korten(TTp 24, f) can then be interpreted as a
hardness condenser [7]:'> Given a truth table f € {0,1}7 whose
circuit complexity is sufficiently larger than n, it outputs a length-2n
truth table that is maximally hard (i.e., without n/log n-size circuits).
The win-or-improve mechanism can be interpreted as an iterative
application of this hardness condenser.

At the stage i, we consider the algorithm

ALG; := Korten(T Ty, 2n;, fi),

which runsin T; ~ |f;| time and creates (roughly) n; bits of hardness.
(That is, the circuit complexity of the output of ALG; is roughly

12With an “encoded” version of history and more effort, we are able to simulate
Korten(C, f') by a single-valued FS, P algorithm in time poly(s), and that is how our
S2E lower bound is proved; see subsection 4.3 for details.

13A hardness condenser takes a long truth table f with certain hardness and outputs a
shorter truth table with similar hardness.
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n;.) In the (Win) case above, ALG; admits an n{-size history fi+1
(with length approximately |f;|) and can therefore be simulated in
F3,P. The magic is that in the (Improve) case, we actually have
access to much more hardness than n;: the history string fi+1 has
n{ > n; bits of hardness. So we can distill these hardness by
applying the condenser to fi+; to obtain a maximally hard truth
tables of length 2njyq = an} , establish the next algorithm ALG;4q :=
Korten(TTy;,, 2n,.,, fi+1), and keep iterating.

Observe that the string fi;1 above has n? > nlﬁ = nj41 bits

of hardness. Since |fi+1| = |fi| and nj41 = n’f.g, the process above
creates harder and harder strings, until |fi11]| < njyq < nf‘, so the
(Win) case must happen at some point.

4 PROOF OVERVIEW

In this section, we elaborate on the computational history of Korten
and how the easy-witness-style argument gives us FX,P and FS,P
algorithms.

4.1 Korten’s Reduction

We first review the key concepts and results from [36] that are
needed for us. Given a circuit C: {0,1}" — {0, 1}?" and a parameter
T > 2n, Korten builds another circuit GGMt[C] stretching n bits
to T bits as follows:'*
e On input x € {0,1}", we set vgo = x. For simplicity, we
assume that T/n = 2¥ for some k € N. We build a full binary
tree with k + 1 layers; see Figure 1 for an example with k = 3.
e Foreveryie {0,1,...,k—1}and j € {0,1,...,2! — 1}, we
set vj41,2j and v;41,2j+1 to be the first n bits and the last n
bits of C(v;,;), respectively.
e The output of GGMT[C](x) is defined to be the concatena-
tion of vg g, U 1 - -

. ’Uk,Zk—l'

[030] [vsa] [o32] [vs3] [v3a] [vss]| [v36] [v37]

Figure 1: An illustration of the GGM Tree, in which, for in-
stance, it holds that (v34,v35) = C(v22).

The following properties of GGMT[C] are established in [36],
which will be useful for us:

(1) Giveni € [T],C and x € {0, 1}", by traversing the tree from
the root towards the leaf with the i-th bit, one can compute
the i-th bit of GGMT[C](x) in poly(SIZE(C),logT) time.
Consequently, for every x, GGMT[C](x) has circuit com-
plexity at most poly(SIZE(C),log T).

4We use the name GGM because the construction is similar to the pseudorandom
function generator of Goldreich, Goldwasser, and Micali [21].
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(2) There is a PNP algorithm Korten(C, f) that takes an input
f eAo, 1Ty Range(GGMr[C]) and outputs a string u €
{0, 1}?"\Range(C). Note that this is a reduction from solving
Avoib for C to solving Avorp for GGMT[C].

In particular, letting f be a truth table whose circuit complexity
is sufficiently larger than SIZE(C), by the first property above, it is
not in Range(GGMT[C]), and therefore Korten(C, f) solves Avorp
for C. This confirms our description of Korten in subsection 2.2.

4.2 Computational History of Korten and an
Easy-Witness Argument for FX,P
Algorithms

The algorithm Korten(C, f) works as follows: we first view f as the
labels of the last layer of the binary tree, and try to reconstruct the
whole binary tree, layer by layer (start from the bottom layer to the
top layer, within each layer, start from the rightmost node to the
leftmost one), by filling the labels of the intermediate nodes. To fill
v, j, we use an NP oracle to find the lexicographically first string
u € {0,1}" such that C(u) = v;11,2j ©vi+1,2j+1, and set v; j = u. If no
such u exists, the algorithm stops and report v;412j 0v;+1,2j+1 as the
solution to Avoip for C. Observe that this reconstruction procedure
must stop somewhere, since if it successfully reproduces all the
labels in the binary tree, we would have f = GGMT[C](vg) €
Range(GGMT[C]), contradicting the assumption. For details, see
[36, Theorem 7] or Lemma 3.3 of the full version.

The computational history of Korten. The algorithm described
above induces a natural description of the computational history
of Korten, denoted as History(C, f), as follows: the index (ix, jx)
when the algorithm stops (i.e., the algorithm fails to fill in v;, ;, ) con-
catenated with the labels of all the nodes generated by Korten(C, f)
(for the intermediate nodes with no label assigned, we set their la-
bels to a special symbol _L); see Figure 2 for an illustration. This
history has length at most 57T, and for convenience, we pad addi-
tional zeros at the end of it so that its length is exactly 57T.

(ix, jx) = (2,1)

[0s0] [v31] [o32] [033] [034] [v35] [vss] [v37]

Figure 2: An illustration of the history of Korten(C, f). Here
we have History(C, f) = (2,1)oLL1110032002300300...0037
and Korten(C, f) = v32 0 v33.

A local characterization of History(C, f). The crucial observa-
tion we make on History(C, f) is that it admits a local characteri-
zation in the following sense: there is a family of local constraints
{wx}xe{o,l}poly(n) , where each ¢/ : {0,1}°T x{0,1}T — {0, 1} reads
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only poly(n) many bits of its input (we think about it as a local con-
straint since usually n < T), such that for fixed f, History(C, f) o f
is the unique string making all the i/, outputting 1.

The constraints are follows: (1) for every leaf node vy ;, its content
is consistent with the corresponding block in f’ (2) all labels at or
before node (i, jx) are L;!° (3) for every z € {0,1}*, C(z) #
Vi, +1,2j, © Vi +1,2j,+1 (meaning the algorithm fails at v;, ;,); (4)
for every (i, j) after (ix, jx), C(Z)j}j) = 0i+1,2j © Vi+1,2j+1 (Uj}j is the
correct label); (5) for every (i, j) after (ix, jx) and for every v’ < v; j,
C(v") # viy1,2j © vit1,2j+1 (vi,j is the lexicographically first correct
label). It is clear that each of these constraints above only reads
poly(n) many bits from the input and a careful examination shows
they precisely define the string History(C, f).

A more intuitive way to look at these local constraints is to treat
them as a poly(n)-time oracle algorithm Vyjstory that takes a string
x € poly(n) as input and two strings h € {0, 157 and f € {0, 1T
as oracles, and we simply let V:i{tory (x) = ¢Yx(h o f). Since the
constraints above are all very simple and only read poly(n) bits of
ho f, Viistory runs in poly(n) time. In some sense, Vyistory is a local
I1; verifier: it is local in the sense that it only queries poly(n) bits
from its oracles, and it is IT; since it needs a universal quantifier
over x € {0, 1}P°Y(") to perform all the checks.

FX2P algorithms. Before we proceed, we give a formal definition
of a single-valued FX;P algorithm A. Here A is implemented by an
algorithm V4 taking an input x and two poly(|x|)-length witnesses
71 and ;5. We say A(x) outputs a string z € {0,1}¢ (we assume
¢ = £(x) can be computed in polynomial time from x) if z is the
unique length-¢ string such that the following hold:

e there exists 7y such that for every 72, Vhistory (x, 1, 72, 2) =
1.10

We can view Vyistory as a verifier that checks whether z is the
desired output using another universal quantifier: given a proof
71 and a string z € {0, 1}. A accepts z if and only if for every 2,
Vhistory (%, 71, 712, 2) = 1. That is, A can perform exponentially many
checks on 71 and z, each taking poly(|x|) time.

The easy-witness argument. Now we are ready to elaborate on the
easy-witness argument mentioned in subsection 2.2. Recall that at
stage i, we have ALG; = Korten(Cp,, f;) and fi41 = History(Cp,, f3)
(the history of ALG;). Assuming that fi1; admits a poly(n;)-size
circuit, we want to show that Korten(Cp,, f;) can be simulated by
a poly(n;)-time single-valued FX,P algorithm.

Observe that for every t € [i + 1], f;—1 is simply a substring
of f; since f; = History(Cy,_,, fr—1). Therefore, fi;1 admitting a
poly(n;)-size circuit implies that all f; admit poly(n;)-size circuits
for t € [i]. We can then implement A as follows: the proof 7 is
a poly(n;)-size circuit Ci41 supposed to compute fi+1, from which
one can obtain in polynomial time a sequence of circuits Cy, ..., C;
that are supposed to compute fi, .. ., fi, respectively. (Also, one can
easily construct a poly(ng)-size circuit Co computing fp.) Next, for
everyt € {0,1,...,i}, Achecks whether (Ct4+1)o(Ct) satisfies all the

I5We say that (i, j) is before (after) (ix, jx) if the pair (i, j) is lexicographically
smaller (greater) than (i, jx ).

16Note that our definition here is different from the formal definition we used in the full
version of this paper. But from this definition, it is easier to see why FX,P algorithms
for constructing hard truth tables imply circuit lower bounds for 2, E.
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local constraints /,’s from the characterization of History(Cp,, f;).

VCH-]:Ct (x) =1 fOI' all X €

In other words, A checks whether it
istory

{0, 1}Poly(ne)

The crucial observation is that since all the C; have size poly(n;),
each check above can be implemented in poly(n;) time as they only
read at most poly(n;) bits from their input, despite that (Ct41) ©
(Ct) itself can be much longer than poly(n;). Assuming that all
the checks of A above are passed, by induction we know that
fi+1 = History(Cy,, f;) for every t € {0,1,...,i}. Finally, A checks
whether z corresponds to the answer described in (Ci41) = fi41.

4.3 Selectors and an Easy-Witness Argument for
FS:P Algorithms

Finally, we discuss how to implement the easy-witness argument
above with a single-valued FSyP algorithm. It is known that any
single-valued FSzBPP algorithm can be converted into an equiva-
lent single-valued FSyP algorithm outputting the same string [10,
45]. Therefore, in the following we aim to give a single-valued
FS2BPP algorithm for solving range avoidance, which is easier to
achieve.

FS2BPP algorithms and randomized selectors. Before we proceed,
we give a formal definition of a single-valued FS2BPP algorithm
A. We implement A by a randomized algorithm Vj that takes an
input x and two poly(|x|)-length witnesses 7; and 72.!7 We say
that A(x) outputs a string z € {0, 1} (we assume ¢ = £(x) can be
computed in polynomial time from x) if the following hold:

o there exists a string h such that for every 7, both V4 (x, h, 1)
and V4 (x, 7, h) output z with probability at least 2/3. (Note
that such z must be unique if it exists.)

Actually, our algorithm A will be implemented as a randomized
selector: given two potential proofs 7y and o, it first selects the
correct one and then outputs the string z induced by the correct
proof.!8

Recap. Revising the algorithm in subsection 3.3, our goal now
is to give an FS;BPP simulation of Korten(Cy;,, f;), assuming that
History(Cp;, f;) admits a small circuit. Similar to the local II; veri-
fier used in the case of FX,P algorithms, now we consider a local ran-
domized selector Vigject Which takes oracles 1, 7 € {0,1}°7 and
f Ao, 137 such that if exactly one of the 7y and 73 is History (C, .
Vselect Outputs its index with high probability.

Assuming that fi11 = History(Cy,, f;) admits a small circuit, one
can similarly turn Vet into a single-valued FS;BPP algorithms
A computing Korten(Cp,, f;): treat two proofs 71 and 7 as two
small circuits C and D both supposed to compute fi41, from C and
D we can obtain a sequence of circuits {C;} and {D;} supposed to
compute the f; for t € [i]. Then we can use the selector Vggject to
decide for each t € [i + 1] which of the C; and D; is the correct

17FS,P algorithms are the special case of FS;BPP algorithms where the algorithm V4
is deterministic.

181f both proofs are correct or neither proofs are correct, it can select an arbitrary one.
The condition only applies when exactly one of the proofs is correct.
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circuit for f;. Finally, we output the answer encoded in the selected
circuit for f,~+1.19

Observation: it suffices to find the first differing node label. Ignore
the (ix, jx) part of the history for now. Let {uil’j} and {uiz’j} be the
node labels encoded in 7; and sy, respectively. We also assume
that exactly one of them corresponds to the correct node labels
in History(C, f). The crucial observation here is that, since the
correct node labels are generated by a deterministic procedure node
by node (from bottom to top and from rightmost to leftmost), it
is possible to tell which of the {v}’j} and {Uiz’j} is correct given
the largest (i’, j/) such that v},’j, # vl.z,’j,. (Note that since all (i, j)
are processed by Korten(C, f) in reverse lexicographic order, this
(i, j") corresponds to the first node label that the wrong process
differs from the correct process, so we call this the first differing
point.)

In more detail, assuming we know this (i’, j/), we proceed by
discussing several cases. First of all, if (i’, j/) corresponds to a leaf,
then one can query f to figure out which of vil,’ ., and viz,’j, is consis-
tent with the corresponding block in f. Now we can assume (i’, j’)
corresponds to an intermediate node. Since (i’, j*) is the first differ-
ing point, we know that U}'+1,2j' ° Z’3'+1,2j/+1 = 041,27 O Vire12j741
(we let this string to be a for convenience). By the definition of
History(C, f), it follows that the correct v j» should be uniquely
determined by «, which means the selector only needs to read a,
vl.l,’ Iz and Z)iz,’ Iz and can then be implemented by a somewhat te-
dious case analysis (so it is local). We refer readers to the proof
of Lemma 5.5 in the full version for the details and only highlight
the most illuminating case here: if both of v},’j, and vl?,’j, are good
(we say a string y is good, if y # L and C(y) = a), we select the
lexicographically smaller one. To handle the (i, jx) part, one needs
some additional case analysis. We omit the details here and refer
the reader to the proof in the full version.

The takeaway here is that if we can find the first differing label
(i, "), then we can construct the selector Vgejec; and hence the
desired single-valued FS;BPP algorithm.

Encoded history. However, the above assumes the knowledge of
(i’,j7). In general, if one is only given oracle access to {vl.l, ;}and
{U?’j}, there is no poly(n)-time oracle algorithm computing (i’, j’)
because there might be exponentially many nodes. To resolve this
issue, we will encode {011]} and {012]} via Reed—Muller codes.

Formally, recall that History (C, f) is the concatenation of (ix, jx)
and the string S, where S is the concatenation of all the labels on
the binary tree. We now define the encoded history, denoted as
History(C, f), as the concatenation of (ix, jx) and a Reed—Muller
encoding of S. The new selector is given oracle access to two can-
didate encoded histories together with f. By applying low-degree
tests and self-correction of polynomials, we can assume that the
Reed—-Muller parts of the two candidates are indeed low-degree
polynomials. Then we can use a reduction to polynomial iden-
tity testing to compute the first differing point between {v}’ j} and

{0? j} in randomized polynomial time. See the proof of Lemma 5.3
YHowever, for the reasons to be explained below, we will actually work with the

encoded history instead of the history, which entails a lot of technical challenges in
the actual proof.
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in the full version for the details. This part is similar to the selector
construction from [24].

5 DISCUSSIONS

We conclude the introduction by discussing some related works.

5.1 Previous Approach: Karp-Lipton Collapses
and the Half-Exponential Barrier

In the following, we elaborate on the half-exponential barrier men-
tioned earlier in the introduction.?’ Let C be a “typical” uniform
complexity class containing P, a Karp—Lipton collapse to C states
that if a large class (say EXP) has polynomial-size circuits, then this
class collapses to C. For example, there is a Karp-Lipton collapse
to C = 2,P:

Suppose EXP € P/,1y, then EXP = 3,P. ([32], attrib-
uted to Albert Meyer)

Now, assuming that EXP C P/po|y = EXP = C, the following
win-win analysis implies that C-EXP, the exponential-time version
of C, is not in P/,q1y: (1) if EXP & P/ 01y, then of course C-EXP 2
EXP does not have polynomial-size circuits; (2) otherwise EXP C
P/poly- We have EXP = C and by padding EEXP = C-EXP. Since
EEXP contains a function of maximum circuit complexity by direct
diagonalization, it follows that C-EXP does not have polynomial-
size circuits.

Karp-Lipton collapses are known for the classes 32 P [32], ZPPNP
[5], S2P [8] (attributed to Samik Sengupta), PP, MA [3, 40], and
ZPPMCSP [26]. All the aforementioned super-polynomial circuit
lower bounds for Z2EXP, ZPEXPNP, S,EXP, PEXP, MA-EXP, and
ZPEXPMCSP are proven in this way.?!

The half-exponential barrier. The above argument is very success-
ful at proving various super-polynomial lower bounds. However,
a closer look shows that it is only capable of proving sub-half-
exponential circuit lower bounds. Indeed, suppose we want to show
that C-EXP does not have circuits of size f(n). We will have to
perform the following win-win analysis:

o if EXP ¢ SIZE[f(n)], then of course C-EXP 2 EXP does not
have circuits of size f(n);

if EXP C SIZE[f(n)], then (a scaled-up version of) the Karp-
Lipton collapse implies that EXP can be computed by a C
machine of poly(f(n)) time. Note that TIME[2Poly(f (m))]
does not have circuits of size f(n) by direct diagonaliza-
tion. By padding, TIME[2P°Y(/(m)] can be computed by
a C machine of poly(f(poly(f(n)))) time. Therefore, if f
is sub-half-exponential (meaning f(poly(f(n))) = 2°0(™),
then C-EXP does not have circuits of size f(n).

Intuitively speaking, the two cases above are competing with
each other: we cannot get exponential lower bounds in both cases.

20A function f: N — N is sub-half-exponential if f(f(n)¢) = 2°0") for every
constant ¢ > 1, i.e., composing f twice yields a sub-exponential function. For example,
for constants ¢ > 1 and € > 0, the functions f(n) = n° and f(n) = 208 are
sub-half-exponential, but the functions f(n) = 2% and f(n) = 2°" are not.
2IThere are some evidences that Karp-Lipton collapses are essential for proving circuit
lower bounds [13].
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5.2 Implications for the Missing-String
Problem?

In the MISSING-STRING problem, we are given a list of m strings
X1, %2, ..., Xm € {0,1}" where m < 2", and the goal is to output any
length-n string y that does not appear in {x1, x3, ..., Xp, }. Vyas and
Williams [51] connected the circuit complexity of MISSING-STRING
with the (relativized) circuit complexity of ZoE:

THEOREM 5.1 ([51, THEOREM 32], INFORMAL). The following are
equivalent:

o 39E4 ¢ 1.0.-SIZEA[22(")] for every oracle A;

o forM = 2N Y the MissING-STRING problem can be solved
by a “good” circuit family (roughly speaking, a uniform fam-
ily of depth-3 ACO circuits of size 2N and bottom fan-in
poly(N)).

The intuition behind Theorem 5.1 is roughly as follows. For
every oracle A, the set of truth tables with low A-oracle circuit
complexity induces an instance for M1SSING-STRING, and solving
this instance gives us a hard truth table relative to A. If the algorithm
for MISSING-STRING is a uniform AC? circuit of depth 3, then the
hard function is inside Z,E4.

However, despite our Theorem 2.1 being completely relativiz-
ing, it does not seem to imply any non-trivial depth-3 AC? circuit
for Mi1ssING-STRING. The reason is the heavy win-win analysis
across multiple input lengths: for each 0 < i < t, we have a single-
valued FX,P construction algorithm for hard truth tables relative
to oracle A on input length n;, but this algorithm needs access to
Ap,,,, a higher input length of A. Translating this into the language
of MISSING-STRING, we obtain a weird-looking depth-3 AC? cir-
cuit that takes as input a sequence of MIsSING-STRING instances
Ty In,s - . ., In, (Where each I,; C {0,1}" is a set of strings), looks
at all of the instances (or, at least 7, and Iy,,, ), and outputs a pur-
portedly missing string of 7y, . It is guaranteed that for at least one
input length i, the output string is indeed a missing string of 7y, .
However, if our algorithm is only given one instance 7 C {0, 1}",
without assistance from a larger input length, it does not know how
to find any missing string of 7.

6 SUBSEQUENT DEVELOPMENTS

Just one month after our paper was posted online, Li [39] strength-
ened our results and removed the need of the iterative win-win
argument. This allows [39] to prove that:

THEOREM 6.1 ([39]). The following are true:

o SyE ¢ i.0.-SIZE[2" /n]. Consequently, the classes Z2E N II5E
and ZPENP also admit the same almost-everywhere near-
maximum circuit lower bounds. Moreover, this holds in every
relativized world.

There is a single-valued FSyP algorithm for the range avoid-
ance problem that works on every input length. Consequently,
there are zero-error pseudodeterministic polynomial-time con-
structions for Ramsey graphs, rigid matrices, two-source extrac-
tors, linear codes, hard truth tables, and KPY —random strings,
with an NP oracle.

o There is a uniform family of quasi-polynomial-size depth-3

AC? circuit solving the MISSING-STRING problem.
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Compared to our results, Theorem 6.1 holds on almost every
input length and does not require the advice bit.

Following our work, the proof of [39] also utilizes the history of
Korten’s reduction. The crucial insight of [39] is that a variant of
“history” (called Histree in [39, Definition 3.5]) always have succinct
descriptions. Instead, our proof needs to branch on whether our
History has succinct descriptions and perform a win-win analysis.
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