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ABSTRACT

We show that there is a language in S2E/1 (symmetric exponential

time with one bit of advice) with circuit complexity at least 2=/=. In

particular, the above also implies the same near-maximum circuit

lower bounds for the classes Σ2E, (Σ2E ∩ Π2E)/1, and ZPENP/1.

Previously, only “half-exponential” circuit lower bounds for these

complexity classes were known, and the smallest complexity class

known to require exponential circuit complexity was Δ3E = EΣ2P

(Miltersen, Vinodchandran, and Watanabe COCOON’99).

Our circuit lower bounds are corollaries of an unconditional zero-

error pseudodeterministic algorithm with an NP oracle and one

bit of advice (FZPPNP/1) that solves the range avoidance problem

in�nitely often. This algorithm also implies unconditional in�nitely-

often pseudodeterministic FZPPNP/1 constructions for Ramsey

graphs, rigid matrices, two-source extractors, linear codes, and

Kpoly-random strings with nearly optimal parameters.

Our proofs relativize. The two main technical ingredients are

(1) Korten’s PNP reduction from the range avoidance problem to

constructing hard truth tables (FOCS’21), which was in turn in-

spired by a result of Jeřábek on provability in Bounded Arithmetic

(Ann. Pure Appl. Log. 2004); and (2) the recent iterative win-win

paradigm of Chen, Lu, Oliveira, Ren, and Santhanam (FOCS’23).
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1 INTRODUCTION

Proving lower bounds against non-uniform computation (i.e., circuit

lower bounds) is one of the most important challenges in theoretical

computer science. From Shannon’s counting argument [18, 48], we
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know that almost all =-bit Boolean functions have near-maximum

(2=/=) circuit complexity.1 Therefore, the task of proving circuit

lower bounds is simply to pinpoint one such hard function. More

formally, one fundamental question is:

What is the smallest complexity class that contains a

language of exponential (2Ω (=) ) circuit complexity?

Compared with super-polynomial lower bounds, exponential

lower bounds are interesting in their own right for the following

reasons. First, an exponential lower bound would make Shannon’s

argument fully constructive. Second, exponential lower bounds have

more applications than super-polynomial lower bounds: For ex-

ample, if one can show that E has no 2> (=) -size circuits, then we

would have prP = prBPP [28, 43], while super-polynomial lower

bounds such as EXP ⊄ P/poly only imply sub-exponential time

derandomization of prBPP.2

Unfortunately, despite its importance, our knowledge about ex-

ponential lower bounds is quite limited. Kannan [31] showed that

there is a function in Σ3E ∩ Π3E that requires maximum circuit

complexity; the complexity of the hard function was later improved

to Δ3E = EΣ2P by Miltersen, Vinodchandran, and Watanabe [42],

via a simple binary search argument. This is essentially all we

know regarding exponential circuit lower bounds.3

We remark that Kannan [31, Theorem 4] claimed that Σ2E∩Π2E

requires exponential circuit complexity, but [42] pointed out a gap

in Kannan’s proof, and suggested that exponential lower bounds

for Σ2E ∩ Π2E were “reopened and considered an open problem.”

Recently, Vyas andWilliams [51] emphasized our lack of knowledge

regarding the circuit complexity of Σ2EXP, even with respect to

relativizing proof techniques. In particular, the following question

has been open for at least 20 years (indeed, if we count from [31],

it would be at least 40 years):

Open Problem 1.1. Can we prove that Σ2EXP ⊄ SIZE[2Y=] for

some absolute constant Y > 0, or at least show a relativization barrier

for proving such a lower bound?

1All =-input Boolean functions can be computed by a circuit of size (1 +
3 log=
= +

$ ( 1
= ) )2=/= [18, 41], while most Boolean functions require circuits of size (1+

log=
= −

$ ( 1
= ) )2=/= [18]. Hence, in this paper, we say an =-bit Boolean function has near-

maximum circuit complexity if its circuit complexity is at least 2=/=.
2E = DTIME[2$ (=) ] denotes single-exponential time and EXP = DTIME[2=

$ (1)
]

denotes exponential time; classes such as ENP and EXPNP are de�ned analogously.
Exponential time and single-exponential time are basically interchangeable in the
context of super-polynomial lower bounds (by a padding argument); the exponential
lower bounds proven in this paper will be stated for single-exponential time classes
since this makes our results stronger. Below, Σ3E and Π3E denote the exponential-time

versions of Σ3P = NPNP
NP

and Π3P = coNPNP
NP

, respectively.
3We also mention that Hirahara, Lu, and Ren [25] recently proved that for every

constant Y > 0, BPEMCSP/2Y= requires near-maximum circuit complexity, where
MCSP is the Minimum Circuit Size Problem [30]. However, the hard function they
constructed requires subexponentially (2Y= ) many advice bits to describe.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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The half-exponential barrier. There is a richer literature regarding

super-polynomial lower bounds than exponential lower bounds.

Kannan [31] proved that Σ2E ∩ Π2E does not have polynomial-size

circuits. Subsequent works proved super-polynomial circuit lower

bounds for exponential-time complexity classes such as ZPEXPNP

[5, 35], S2EXP [8, 9], PEXP [1, 50], and MA-EXP [6, 46].

Unfortunately, all these works fail to prove exponential lower

bounds. All of their proofs go through certain Karp–Lipton collapses

[32]; such a proof strategy runs into a so-called “half-exponential

barrier”, preventing us from getting exponential lower bounds.

See subsection 5.1 for a detailed discussion.

2 OUR RESULTS

2.1 New Near-Maximum Circuit Lower Bounds

In this work, we overcome the half-exponential barrier mentioned

above and resolve Theorem 1.1 by showing that both Σ2E and

(Σ2E ∩ Π2E)/1 require near-maximum (2=/=) circuit complexity.

Moreover, our proof indeed relativizes:

Theorem 2.1.

Σ2E ⊄ SIZE[2=/=] and (Σ2E ∩ Π2E)/1⊄ SIZE[2=/=] .

Moreover, they hold in every relativized world.

Up to one bit of advice, we �nally provide a proof of Kannan’s

original claim in [31, Theorem 4]. Moreover, with some more work,

we extend our lower bounds to the smaller complexity class S2E/1,

again with a relativizing proof:

Theorem 2.2.

S2E/1⊄ SIZE[2=/=] .

Moreover, this holds in every relativized world.

The symmetric time class S2E. S2E can be seen as a “randomized”

version of ENP since it is sandwiched between ENP and ZPENP: it is

easy to show that ENP ⊆ S2E [45], and it is also known that S2E ⊆

ZPENP [8]. We also note that under plausible derandomization

assumptions (e.g., ENP requires 2Ω (=) -size SAT-oracle circuits), all

three classes simply collapse to ENP [34].

Hence, our results also imply a near-maximum circuit lower

bound for the class ZPENP/1⊆ (Σ2E∩Π2E)/1. This vastly improves

the previous lower bound for Δ3E = EΣ2P.

Corollary 2.3.

ZPENP/1⊄ SIZE[2=/=] .

Moreover, this holds in every relativized world.

2.2 New Algorithms for the Range Avoidance
Problem

Background on Avoid. Actually, our circuit lower bounds are

implied by our new algorithms for solving the range avoidance

problem (Avoid) [33, 36, 44], which is de�ned as follows: given a

circuit � : {0, 1}= → {0, 1}=+1 as input, �nd a string outside the

range of � (we de�ne Range(�) := {� (I) : I ∈ {0, 1}=}). That is,

output any string ~ ∈ {0, 1}=+1 such that for every G ∈ {0, 1}= ,

� (G) ≠ ~.

There is a trivial FZPPNP algorithm solving Avoid: randomly

generate strings ~ ∈ {0, 1}=+1 and output the �rst ~ that is out-

side the range of � (note that we need an NP oracle to verify if

~ ∉ Range(�)). The class APEPP (Abundant Polynomial Empty

Pigeonhole Principle) [33] is the class of total search problems

reducible to Avoid.

As demonstrated by Korten [36, Section 3], APEPP captures the

complexity of explicit construction problems whose solutions are

guaranteed to exist by the probabilistic method (more precisely,

the dual weak pigeonhole principle [29, 37]), in the sense that con-

structing such objects reduces to the range avoidance problem. This

includes many important objects in mathematics and theoretical

computer science, including Ramsey graphs [16], rigid matrices

[19, 22, 49], two-source extractors [11, 38], linear codes [22], hard

truth tables [36], and strings with maximum time-bounded Kol-

mogorov complexity (i.e., Kpoly-random strings) [44]. Hence, de-

randomizing the trivial FZPPNP algorithm for Avoid would imply

explicit constructions for all these important objects.

Our results: new pseudodeterministic algorithms for Avoid. We

show that, unconditionally, the trivial FZPPNP algorithm for Avoid

can be made pseudodeterministic on in�nitely many input lengths.

A pseudodeterministic algorithm [20] is a randomized algorithm

that outputs the same canonical answer on most computational

paths. In particular, we have:

Theorem 2.4. For every constant 3 ≥ 1, there is a randomized

algorithm A with an NP oracle such that the following holds for

in�nitely many integers =. For every circuit � : {0, 1}= → {0, 1}=+1

of size at most =3 , there is a string ~� ∈ {0, 1}= \Range(�) such that

A(�) either outputs ~� or ⊥, and the probability (over the internal

randomness of A) that A(�) outputs ~� is at least 2/3. Moreover,

this theorem holds in every relativized world.

As a corollary, for every problem in APEPP, we obtain zero-error

pseudodeterministic constructions with an NP oracle and one bit

of advice (FZPPNP/1) that works in�nitely often4:

Corollary 2.5 (Informal). There are in�nitely-often zero-error

pseudodeterministic constructions for the following objects with an

NP oracle and one-bit of advice: Ramsey graphs, rigid matrices, two-

source extractors, linear codes, hard truth tables, and Kpoly-random

strings.

Actually, we obtain single-valued FS2P/1 algorithms for the

explicit construction problems above, and the pseudodeterministic

FZPPNP/1 algorithms follow fromCai’s theorem that S2P ⊆ ZPPNP

[8]. We stated them as pseudodeterministic FZPPNP/1 algorithms

since this notion is better known than the notion of single-valued

FS2P/1 algorithms.

Theorem 2.4 is tantalizingly close to an in�nitely-often FPNP al-

gorithm for Avoid (with the only caveat of being zero-error instead

of being completely deterministic). However, since an FPNP algo-

rithm for range avoidancewould imply near-maximum circuit lower

bounds for ENP, we expect that it would require fundamentally new

4The one-bit advice encodes whether our algorithm succeeds on a given input length; it
is needed since on bad input lengths, our algorithm might not be pseudodeterministic
(i.e., there may not be a canonical answer that is outputted with high probability).
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ideas to completely derandomize our algorithm. Previously, Hira-

hara, Lu, and Ren [25, Theorem 36] presented an in�nitely-often

pseudodeterministic FZPPNP algorithm for the range avoidance

problem using =Y bits of advice, for any small constant Y > 0. Our

result improves the above in two aspects: �rst, we reduce the num-

ber of advice bits to 1; second, our techniques relativize but their

techniques do not.

Lower bounds against non-uniform computation with maximum

advice length. Finally, our results also imply lower bounds against

non-uniform computation with maximum advice length. We men-

tion this corollary because it is a stronger statement than circuit

lower bounds, and similar lower bounds appeared recently in the

literature of super-fast derandomization [15].

Corollary 2.6. For every U (=) ≥ l (1) and any constant : ≥

1, S2E/1⊄ TIME[2:=]/2=−U (=) . The same holds for Σ2E, (Σ2E ∩

Π2E)/1, and ZPE
NP/1 in place of S2E/1. Moreover, this holds in every

relativized world.

3 INTUITIONS

In the following, we present some high-level intuitions for our new

circuit lower bounds.

3.1 Perspective: Single-Valued Constructions

A key perspective in this paper is to view circuit lower bounds (for

exponential-time classes) as single-valued constructions of hard

truth tables. This perspective is folklore; it was also emphasized in

recent papers on the range avoidance problem [36, 44].

Let Π ⊆ {0, 1}∗ be an Y-dense property, i.e., for every integer

# ∈ N, |Π# | ≥ Y · 2# . (In what follows, we use Π# := Π ∩ {0, 1}#

to denote the length-# slice of Π.) As a concrete example, let Πhard

be the set of hard truth tables, i.e., a string CC ∈ Πhard if and only if

it is the truth table of a function 5 : {0, 1}= → {0, 1} whose circuit

complexity is at least 2=/=, where = := log# . (We assume that

= := log# is an integer.) Shannon’s argument [18, 48] shows that

Πhard is a 1/2-dense property. We are interested in the following

question:

What is the complexity of single-valued constructions

for any string in Πhard?

Here, informally speaking, a computation is single-valued if each

of its computational paths either fails or outputs the same value.

For example, an NP machine" is a single-valued construction for

Π if there is a “canonical” string ~ ∈ Π such that (1) " outputs

~ on every accepting computational path; (2) " has at least one

accepting computational path. (That is, it is an NPSV construction

in the sense of [4, 17, 23, 47].) Similarly, a BPPmachine" is a single-

valued construction for Π if there is a “canonical” string ~ ∈ Π such

that " outputs ~ on most (say ≥ 2/3 fraction of) computational

paths. (In other words, single-valued ZPP and BPP constructions

are another name for pseudodeterministic constructions [20].)5

5Note that the trivial construction algorithms are not single-valued in general. For

example, a trivial Σ2P = NPNP construction algorithm for Πhard is to guess a hard
truth table CC and use the NP oracle to verify that CC does not have size-# /log#
circuits; however, di�erent accepting computational paths of this computation would
output di�erent hard truth tables. Similarly, a trivial BPP construction algorithm for
every dense property Π is to output a random string, but there is no canonical answer
that is outputted with high probability. In other words, these construction algorithms

Hence, the task of proving circuit lower bounds is equivalent to

the task of de�ning, i.e., single-value constructing, a hard func-

tion, in the smallest possible complexity class. For example, a

single-valued BPP construction (i.e., pseudodeterministic construc-

tion) for Πhard is equivalent to the circuit lower bound BPE ⊄

i.o.-SIZE[2=/=].6 In this regard, the previous near-maximum cir-

cuit lower bound for Δ3E := EΣ2P [42] can be summarized in one

sentence: The lexicographically �rst string in Πhard can be con-

structed in Δ3P := PΣ2P (which is necessarily single-valued).

Reduction to Avoid. It was observed in [33, 36] that explicit con-

struction of elements fromΠhard is a special case of range avoidance:

Let TT : {0, 1}#−1 → {0, 1}# (here # = 2=) be a circuit that maps

the description of a 2=/=-size circuit into its 2=-length truth ta-

ble (by [18], this circuit can be encoded by # − 1 bits). Hence, a

single-valued algorithm solving Avoid for TT is equivalent to a

single-valued construction for Πhard. This explains how our new

range avoidance algorithms imply our new circuit lower bounds

(as mentioned in subsection 2.2).

In the rest of section 3, we will only consider the special case of

Avoid where the input circuit for range avoidance is a P-uniform

circuit family. Speci�cally, let {�= : {0, 1}
= → {0, 1}2=}=∈N be a

P-uniform family of circuits, where |�= | ≤ poly(=).7 Our goal is

to �nd an algorithm � such that for in�nitely many =, �(1=) ∈

{0, 1}2= \ Range(�=); see Sections 5.3 and 5.4 of the full version for

how to turn this into an algorithm that works for arbitrary input

circuit with a single bit of stretch. Also, since from now on we will

not talk about truth tables anymore, we will use = instead of # to

denote the input length of Avoid instances.

3.2 The Iterative Win-Win Paradigm of [12]

In a recent work, Chen, Lu, Oliveira, Ren, and Santhanam [12] intro-

duced the iterative win-win paradigm for explicit constructions, and

used that to obtain a polynomial-time pseudodeterministic construc-

tion of primes that works in�nitely often. Since our construction

algorithm closely follows their paradigm, it is instructive to take

a detour and give a high-level overview of how the construction

from [12] works.8

In this paradigm, for a (starting) input length =0 and some C =

$ (log=0), we will consider an increasing sequence of input lengths

=0, =1, . . . , =C (jumping ahead, we will set =8+1 = =
V
8 for a large

constant V), and show that our construction algorithm succeeds on

at least one of the input lengths. By varying =0, we can construct

in�nitely many such sequences of input lengths that are pairwise

do not de�ne anything; instead, a single-valued construction algorithm should de�ne
some particular string in Π.
6To see this, note that (1) BPE ⊄ i.o.-SIZE[2=/=] implies a simple single-valued BPP
construction for Πhard : given# = 2= , output the truth table of != (! restricted to=-bit
inputs), where ! ∈ BPE is the hard language not in SIZE[2=/=]; and (2) assuming a
single-valued BPP construction� for Πhard , one can de�ne a hard language ! such

that the truth table of != is the output of�(12
=
) , and observe that ! ∈ BPE.

7We assume that �= stretches = bits to 2= bits instead of = + 1 bits for simplicity;

Korten [36] showed that there is a PNP reduction from the range avoidance problem
with stretch = + 1 to the range avoidance problem with stretch 2=.
8Indeed, for every 1/poly(=)-dense property Π ∈ P, they obtained a polynomial-time
algorithm � such that for in�nitely many = ∈ N, there exists ~= ∈ Π= such that
�(1= ) outputs ~= with probability at least 2/3. By [2] and the prime number theorem,
the set of =-bit primes is such a property.
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disjoint, and therefore our algorithm succeeds on in�nitely many

input lengths.

In more detail, �xing a sequence of input lengths =0, =1, . . . , =C
and letting Π be an Y-dense property, for each 8 ∈ {0, 1, . . . , C}, we

specify a (deterministic) algorithm ALG8 that takes 1
=8 as input and

aims to construct an explicit element from Π=8 . We let ALG0 be the

simple brute-force algorithm that enumerates all length-=0 strings

and �nds the lexicographically �rst string in Π=0 ; it is easy to see

that ALG0 runs in )0 := 2$ (=0 ) time.

The win-or-improve mechanism. The core of [12] is a novel win-

or-improve mechanism, which is described by a (randomized) algo-

rithm '. Roughly speaking, for input lengths =8 and =8+1, '(1
=8 )

attempts to simulate ALG8 faster by using the oracle Π=8+1 (hence

it runs in poly(=8+1) time). The crucial property is the following

win-win argument:

(Win) Either '(1=8 ) outputs ALG8 (1
=8 ) with probability at

least 2/3 over its internal randomness,

(Improve) or, from the failure of '(1=8 ), we can construct an al-

gorithm ALG8+1 that outputs an explicit element from

Π=8+1 and runs in )8+1 = poly()8 ) time.

We call the above (Win-or-Improve), since either we have a

pseudodeterministic algorithm '(1=8 ) that constructs an explicit

element from Π=8 in poly(=8+1) ≤ poly(=8 ) time (since it simulates

ALG8 ), or we have an improved algorithm ALG8+1 at the input

length =8+1 (for example, on input length =1, the running time of

ALG1 is 2
$
(
=
1/V
1

)
≪ 2$ (=1 ) ). The (Win-or-Improve) part in [12] is

implemented via the Chen–Tell targeted hitting set generator [14]

(we omit the details here). Jumping ahead, in this paper, we will

implement a similar mechanism using Korten’s PNP reduction from

the range avoidance problem to constructing hard truth tables [36].

Getting polynomial time. Now we brie�y explain why (Win-or-

Improve) implies a polynomial-time construction algorithm. Let

U be an absolute constant such that we always have )8+1 ≤ )U
8 ;

we now set V := 2U . Recall that =8 = =
V
8−1 for every 8 . The crucial

observation is the following:

Although)0 is much larger than =0, the sequence {)8 }

grows slower than {=8 }.

Indeed, a simple calculation shows that when C = $ (log=0), we

will have )C ≤ poly(=C ); see [12, Section 1.3.1].

For each 0 ≤ 8 < C , if '(1=8 ) successfully simulates ALG8 , then

we obtain an algorithm for input length =8 running in poly(=8+1) ≤

poly(=8 ) time. Otherwise, we have an algorithm ALG8+1 running

in)8+1 time on input length =8+1. Eventually, we will hit C such that

)C ≤ poly(=C ), in which case ALGC itself gives a polynomial-time

construction on input length =C . Therefore, we obtain a polynomial-

time algorithm on at least one of the input lengths =0, =1, . . . , =C .

3.3 Algorithms for Range-Avoidance via
Korten’s Reduction

Now we describe our new algorithms for Avoid. Roughly speaking,

our new algorithm makes use of the iterative win-win argument in-

troduced above, together with an easy-witness style argument [27]

and Korten’s reduction [36].9 In the following, we introduce the

latter two ingredients and show how to chain them together via

the iterative win-win argument.

An easy-witness style argument. Let BF be the 2$ (=) -time brute-

force algorithm outputting the lexicographically �rst non-output of

�= . Our �rst idea is to consider its computational history, a unique

2$ (=) -length string ℎBF (that can be computed in 2$ (=) time), and

branch on whether ℎBF has a small circuit or not. Suppose ℎBF admits

a, say, =U -size circuit for some large U , then we apply an easy-

witness-style argument [27] to simulate BF by a single-valued FΣ2P

algorithm running in poly(=U ) = poly(=) time (see subsection 4.2).

Hence, we obtained the desired algorithm when ℎBF is easy.

However, it is less clear how to deal with the other case (when

ℎBF is hard) directly. The crucial observation is that we have gained

the following ability: we can generate a string ℎBF ∈ {0, 1}2
$ (=)

that has circuit complexity at least =U , in only 2$ (=) time.

Korten’s reduction. We will apply Korten’s recent work [36] to

make use of the “gain” above. So it is worth taking a detour to review

the main result of [36]. Roughly speaking, [36] gives an algorithm

that uses a hard truth table 5 to solve a derandomization

task: �nding a non-output of the given circuit (that has more

output bits than input bits).10

Formally, [36] gives a PNP-computable algorithm Korten(�, 5 )

that takes as inputs a circuit � : {0, 1}= → {0, 1}2= and a string

5 ∈ {0, 1}) (think of = ≪ ) ), and outputs a string ~ ∈ {0, 1}2= . The

guarantee is that if the circuit complexity of 5 is su�ciently larger

than the size of � , then the output ~ is not in the range of � .

This �ts perfectly with our “gain” above: for V ≪ U and< = =V ,

Korten(�<, ℎBF) solves Avoid for �< since the circuit complex-

ity of ℎBF, =
U , is su�ciently larger than the size of �< . Moreover,

Korten(�<, ℎBF) runs in only 2$ (=) time, which is much less than

the brute-force running time 2$ (<) . Therefore, we obtain an im-

proved algorithm for Avoid on input length<.

The iterative win-win argument. What we described above is

essentially the �rst stage of an win-or-improve mechanism similar

to that from subsection 3.2. Therefore, we only need to iterate the

argument above to obtain a polynomial-time algorithm.

For this purpose, we need to consider the computational history

of not only BF, but also algorithms of the form Korten(�, 5 ).11 For

any circuit � and “hard” truth table 5 , there is a unique “compu-

tational history” ℎ of Korten(�, 5 ), and the length of ℎ is upper

bounded by poly( |5 |). We are able to prove the following statement

akin to the easy witness lemma [27]: ifℎ admits a size-B circuit (think

of B ≪ ) ), then Korten(�, 5 ) can be simulated by a single-valued

9Korten’s result was inspired by [29], which proved that the dual weak pigeonhole
principle is equivalent to the statement asserting the existence of Boolean functions
with exponential circuit complexity in a certain fragment of Bounded Arithmetic.
10This is very similar to the classical hardness-vs-randomness connection [28, 43],
which can be understood as an algorithm that uses a hard truth table 5 (i.e., a truth
table without small circuits) to solve another derandomization task: estimating the
acceptance probability of the given circuit. This explains why one may want to use
Korten’s algorithm to replace the Chen–Tell targeted generator construction [14]
from [12], as they are both hardness-vs-randomness connections.
11Actually, we need to consider all algorithms ALG8 de�ned below and prove the
properties of computational history for these algorithms. It turns out that all of ALG8

are of the form Korten(�, 5 ) (including ALG0), so in what follows we only consider
the computational history of Korten(�, 5 ) .
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FΣ2P algorithm in time poly(B); see subsection 4.2 for details on

this argument.12

Now, following the iterative win-win paradigm of [12], for a

(starting) input length =0 and some C = $ (log=0), we consider

an increasing sequence of input lengths =0, =1, . . . , =C , and show

that our algorithm � succeeds on at least one of the input lengths

(i.e., �(1=8 ) ∈ {0, 1}2=8 \ Range(�=8 ) for some 8 ∈ {0, 1, . . . , C}).

For each 8 ∈ {0, 1, . . . , C}, we specify an algorithm ALG8 of the

form Korten(�=8 ,−) that aims to solve Avoid for �=8 ; in other

words, we specify a string 58 ∈ {0, 1})8 for some )8 and let ALG8 :=

Korten(�=8 , 58 ).

The algorithm ALG0 is simply the brute force algorithm BF at

input length =0. (A convenient observation is that we can specify an

exponentially long string 50 ∈ {0, 1}2
$ (=0 )

so that Korten(�=0 , 50)

is equivalent to BF = ALG0; see Fact 3.4 in the full version.) For

each 0 ≤ 8 < C , to specify ALG8+1, let 58+1 denote the history of

the algorithm ALG8 , and consider the following win-or-improve

mechanism.

(Win) If 58+1 admits an =U8 -size circuit (for some large con-

stantU), by our easy-witness argument, we can simulate

ALG8 by a poly(=8 )-time single-valued FΣ2P algorithm.

(Improve) Otherwise 58+1 has circuit complexity at least =U8 , we

plug it into Korten’s reduction to solve Avoid for�=8+1 .

That is, we take ALG8+1 := Korten(�=8+1 , 58+1) as our

new algorithm on input length =8+1.

Let )8 = |58 |, then )8+1 ≤ poly()8 ). By setting =8+1 = =
V
8 for a

su�ciently large V , a similar analysis as [12] shows that for some

C = $ (log=0) we would have )C ≤ poly(=C ), meaning that ALGC

would be a poly(=C )-time FPNP algorithm (thus also a single-valued

FΣ2P algorithm) solvingAvoid for�=C . Putting everything together,

we obtain a polynomial-time single-valued FΣ2P algorithm that

solves Avoid for at least one of the �=8 .

The hardness condenser perspective. Below we present another

perspective on the construction above which may help the reader

understand it better. In the following, we �x�= : {0, 1}
= → {0, 1}2=

to be the truth table generator TT=,2= that maps an =-bit descrip-

tion of a log(2=)-input circuit into its length-2= truth table. Hence,

instead of solving Avoid in general, our goal here is simply con-

structing hard truth tables (or equivalently, proving circuit lower

bounds).

We note that Korten(TT=,2=, 5 ) can then be interpreted as a

hardness condenser [7]:13 Given a truth table 5 ∈ {0, 1}) whose

circuit complexity is su�ciently larger than=, it outputs a length-2=

truth table that is maximally hard (i.e., without=/log=-size circuits).

The win-or-improve mechanism can be interpreted as an iterative

application of this hardness condenser.

At the stage 8 , we consider the algorithm

ALG8 := Korten(TT=8 ,2=8 , 58 ),

which runs in)8 ≈ |58 | time and creates (roughly)=8 bits of hardness.

(That is, the circuit complexity of the output of ALG8 is roughly

12With an “encoded” version of history and more e�ort, we are able to simulate
Korten(�, 5 ) by a single-valued FS2P algorithm in time poly(B ) , and that is how our
S2E lower bound is proved; see subsection 4.3 for details.
13A hardness condenser takes a long truth table 5 with certain hardness and outputs a
shorter truth table with similar hardness.

=8 .) In the (Win) case above, ALG8 admits an =U8 -size history 58+1
(with length approximately |58 |) and can therefore be simulated in

FΣ2P. The magic is that in the (Improve) case, we actually have

access to much more hardness than =8 : the history string 58+1 has

=U8 ≫ =8 bits of hardness. So we can distill these hardness by

applying the condenser to 58+1 to obtain a maximally hard truth

tables of length 2=8+1 = 2=
V
8 , establish the next algorithm ALG8+1 :=

Korten(TT=8+1,2=8+1 , 58+1), and keep iterating.

Observe that the string 58+1 above has =U8 > =
V
8 = =8+1 bits

of hardness. Since |58+1 | ≈ |58 | and =8+1 = =
V
8 , the process above

creates harder and harder strings, until |58+1 | ≤ =8+1 ≤ =U8 , so the

(Win) case must happen at some point.

4 PROOF OVERVIEW

In this section, we elaborate on the computational history of Korten

and how the easy-witness-style argument gives us FΣ2P and FS2P

algorithms.

4.1 Korten’s Reduction

We �rst review the key concepts and results from [36] that are

needed for us. Given a circuit� : {0, 1}= → {0, 1}2= and a parameter

) ≥ 2=, Korten builds another circuit GGM) [�] stretching = bits

to ) bits as follows:14

• On input G ∈ {0, 1}= , we set E0,0 = G . For simplicity, we

assume that) /= = 2: for some : ∈ N. We build a full binary

tree with : + 1 layers; see Figure 1 for an example with : = 3.

• For every 8 ∈ {0, 1, . . . , : − 1} and 9 ∈ {0, 1, . . . , 28 − 1}, we

set E8+1,29 and E8+1,29+1 to be the �rst = bits and the last =

bits of � (E8, 9 ), respectively.

• The output of GGM) [�] (G) is de�ned to be the concatena-

tion of E:,0, E:,1, . . . , E:,2:−1.

E0,0

E1,0

E2,0

E3,0 E3,1

E2,1

E3,2 E3,3

E1,1

E2,2

E3,4 E3,5

E2,3

E3,6 E3,7

Figure 1: An illustration of the GGM Tree, in which, for in-

stance, it holds that (E3,4, E3,5) = � (E2,2).

The following properties of GGM) [�] are established in [36],

which will be useful for us:

(1) Given 8 ∈ [) ],� and G ∈ {0, 1}= , by traversing the tree from

the root towards the leaf with the 8-th bit, one can compute

the 8-th bit of GGM) [�] (G) in poly(SIZE(�), log) ) time.

Consequently, for every G , GGM) [�] (G) has circuit com-

plexity at most poly(SIZE(�), log) ).

14We use the name GGM because the construction is similar to the pseudorandom
function generator of Goldreich, Goldwasser, and Micali [21].
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(2) There is a PNP algorithm Korten(�, 5 ) that takes an input

5 ∈ {0, 1}) \ Range(GGM) [�]) and outputs a string D ∈

{0, 1}2=\Range(�). Note that this is a reduction from solving

Avoid for � to solving Avoid for GGM) [�].

In particular, letting 5 be a truth table whose circuit complexity

is su�ciently larger than SIZE(�), by the �rst property above, it is

not in Range(GGM) [�]), and therefore Korten(�, 5 ) solvesAvoid

for � . This con�rms our description of Korten in subsection 2.2.

4.2 Computational History of Korten and an
Easy-Witness Argument for FΣ2P

Algorithms

The algorithm Korten(�, 5 ) works as follows: we �rst view 5 as the

labels of the last layer of the binary tree, and try to reconstruct the

whole binary tree, layer by layer (start from the bottom layer to the

top layer, within each layer, start from the rightmost node to the

leftmost one), by �lling the labels of the intermediate nodes. To �ll

E8, 9 , we use an NP oracle to �nd the lexicographically �rst string

D ∈ {0, 1}= such that� (D) = E8+1,29 ◦E8+1,29+1, and set E8, 9 = D. If no

suchD exists, the algorithm stops and report E8+1,29 ◦E8+1,29+1 as the

solution to Avoid for� . Observe that this reconstruction procedure

must stop somewhere, since if it successfully reproduces all the

labels in the binary tree, we would have 5 = GGM) [�] (E0,0) ∈

Range(GGM) [�]), contradicting the assumption. For details, see

[36, Theorem 7] or Lemma 3.3 of the full version.

The computational history of Korten. The algorithm described

above induces a natural description of the computational history

of Korten, denoted as History(�, 5 ), as follows: the index (8★, 9★)

when the algorithm stops (i.e., the algorithm fails to �ll in E8★, 9★) con-

catenated with the labels of all the nodes generated by Korten(�, 5 )

(for the intermediate nodes with no label assigned, we set their la-

bels to a special symbol ⊥); see Figure 2 for an illustration. This

history has length at most 5) , and for convenience, we pad addi-

tional zeros at the end of it so that its length is exactly 5) .

⊥

⊥

⊥

E3,0 E3,1

⊥

E3,2 E3,3

⊥

E2,2

E3,4 E3,5

E2,3

E3,6 E3,7

(8★, 9★) = (2, 1)

Figure 2: An illustration of the history of Korten(�, 5 ). Here

we haveHistory(�, 5 ) = (2, 1) ◦⊥⊥⊥⊥⊥◦E2,2 ◦E2,3 ◦E3,0 ◦ . . .◦E3,7
and Korten(�, 5 ) = E3,2 ◦ E3,3.

A local characterization of History(�, 5 ). The crucial observa-

tion we make on History(�, 5 ) is that it admits a local characteri-

zation in the following sense: there is a family of local constraints

{kG }G∈{0,1}poly(=) , where eachkG : {0, 1}
5) ×{0, 1}) → {0, 1} reads

only poly(=) many bits of its input (we think about it as a local con-

straint since usually = ≪ ) ), such that for �xed 5 ,History(�, 5 ) ◦ 5

is the unique string making all thekG outputting 1.

The constraints are follows: (1) for every leaf node E:,8 , its content

is consistent with the corresponding block in 5 ; (2) all labels at or

before node (8★, 9★) are ⊥;15 (3) for every I ∈ {0, 1}= , � (I) ≠

E8★+1,29★ ◦ E8★+1,29★+1 (meaning the algorithm fails at E8★, 9★); (4)

for every (8, 9) after (8★, 9★), � (E8, 9 ) = E8+1,29 ◦ E8+1,29+1 (E8, 9 is the

correct label); (5) for every (8, 9) after (8★, 9★) and for every E
′
< E8, 9 ,

� (E ′) ≠ E8+1,29 ◦ E8+1,29+1 (E8, 9 is the lexicographically �rst correct

label). It is clear that each of these constraints above only reads

poly(=) many bits from the input and a careful examination shows

they precisely de�ne the string History(�, 5 ).

A more intuitive way to look at these local constraints is to treat

them as a poly(=)-time oracle algorithm+History that takes a string

G ∈ poly(=) as input and two strings ℎ ∈ {0, 1}5) and 5 ∈ {0, 1})

as oracles, and we simply let +
ℎ,5
History

(G) = kG (ℎ ◦ 5 ). Since the

constraints above are all very simple and only read poly(=) bits of

ℎ ◦ 5 ,+History runs in poly(=) time. In some sense,+History is a local

Π1 veri�er: it is local in the sense that it only queries poly(=) bits

from its oracles, and it is Π1 since it needs a universal quanti�er

over G ∈ {0, 1}poly(=) to perform all the checks.

FΣ2P algorithms. Before we proceed, we give a formal de�nition

of a single-valued FΣ2P algorithm �. Here � is implemented by an

algorithm+� taking an input G and two poly( |G |)-length witnesses

c1 and c2. We say �(G) outputs a string I ∈ {0, 1}ℓ (we assume

ℓ = ℓ (G) can be computed in polynomial time from G) if I is the

unique length-ℓ string such that the following hold:

• there exists c1 such that for every c2, +History (G, c1, c2, I) =

1.16

We can view +History as a veri�er that checks whether I is the

desired output using another universal quanti�er: given a proof

c1 and a string I ∈ {0, 1}ℓ . � accepts I if and only if for every c2,

+History (G, c1, c2, I) = 1. That is,� can perform exponentially many

checks on c1 and I, each taking poly( |G |) time.

The easy-witness argument. Nowwe are ready to elaborate on the

easy-witness argument mentioned in subsection 2.2. Recall that at

stage 8 , we have ALG8 = Korten(�=8 , 58 ) and 58+1 = History(�=8 , 58 )

(the history of ALG8 ). Assuming that 58+1 admits a poly(=8 )-size

circuit, we want to show that Korten(�=8 , 58 ) can be simulated by

a poly(=8 )-time single-valued FΣ2P algorithm.

Observe that for every C ∈ [8 + 1], 5C−1 is simply a substring

of 5C since 5C = History(�=C−1 , 5C−1). Therefore, 58+1 admitting a

poly(=8 )-size circuit implies that all 5C admit poly(=8 )-size circuits

for C ∈ [8]. We can then implement � as follows: the proof c1 is

a poly(=8 )-size circuit �8+1 supposed to compute 58+1, from which

one can obtain in polynomial time a sequence of circuits �1, . . . ,�8
that are supposed to compute 51, . . . , 58 , respectively. (Also, one can

easily construct a poly(=0)-size circuit �0 computing 50.) Next, for

every C ∈ {0, 1, . . . , 8},� checkswhether (Ct+1)◦(Ct) satis�es all the

15We say that (8, 9 ) is before (after) (8★, 9★) if the pair (8, 9 ) is lexicographically
smaller (greater) than (8★, 9★) .
16Note that our de�nition here is di�erent from the formal de�nition we used in the full
version of this paper. But from this de�nition, it is easier to see why FΣ2P algorithms
for constructing hard truth tables imply circuit lower bounds for Σ2E.
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local constraintskG ’s from the characterization of History(�=C , 5C ).

In other words, � checks whether +�C+1,�C

History
(G) = 1 for all G ∈

{0, 1}poly(=C ) .

The crucial observation is that since all the�C have size poly(=8 ),

each check above can be implemented in poly(=8 ) time as they only

read at most poly(=8 ) bits from their input, despite that (Ct+1) ◦

(Ct) itself can be much longer than poly(=8 ). Assuming that all

the checks of � above are passed, by induction we know that

5C+1 = History(�=C , 5C ) for every C ∈ {0, 1, . . . , 8}. Finally, � checks

whether I corresponds to the answer described in (Ci+1) = fi+1.

4.3 Selectors and an Easy-Witness Argument for
FS2P Algorithms

Finally, we discuss how to implement the easy-witness argument

above with a single-valued FS2P algorithm. It is known that any

single-valued FS2BPP algorithm can be converted into an equiva-

lent single-valued FS2P algorithm outputting the same string [10,

45]. Therefore, in the following we aim to give a single-valued

FS2BPP algorithm for solving range avoidance, which is easier to

achieve.

FS2BPP algorithms and randomized selectors. Before we proceed,

we give a formal de�nition of a single-valued FS2BPP algorithm

�. We implement � by a randomized algorithm +� that takes an

input G and two poly( |G |)-length witnesses c1 and c2.
17 We say

that �(G) outputs a string I ∈ {0, 1}ℓ (we assume ℓ = ℓ (G) can be

computed in polynomial time from G ) if the following hold:

• there exists a string ℎ such that for every c , both+� (G, ℎ, c)

and +� (G, c, ℎ) output I with probability at least 2/3. (Note

that such I must be unique if it exists.)

Actually, our algorithm � will be implemented as a randomized

selector: given two potential proofs c1 and c2, it �rst selects the

correct one and then outputs the string I induced by the correct

proof.18

Recap. Revising the algorithm in subsection 3.3, our goal now

is to give an FS2BPP simulation of Korten(�=8 , 58 ), assuming that

History(�=8 , 58 ) admits a small circuit. Similar to the local Π1 veri-

�er used in the case of FΣ2P algorithms, nowwe consider a local ran-

domized selector +select which takes oracles c1, c2 ∈ {0, 1}5) and

5 ∈ {0, 1}) such that if exactly one of the c1 and c2 isHistory(�, 5 ),

+select outputs its index with high probability.

Assuming that 58+1 = History(�=8 , 58 ) admits a small circuit, one

can similarly turn +select into a single-valued FS2BPP algorithms

� computing Korten(�=8 , 58 ): treat two proofs c1 and c2 as two

small circuits � and � both supposed to compute 58+1, from � and

� we can obtain a sequence of circuits {�C } and {�C } supposed to

compute the 5C for C ∈ [8]. Then we can use the selector +select to

decide for each C ∈ [8 + 1] which of the �C and �C is the correct

17FS2P algorithms are the special case of FS2BPP algorithms where the algorithm+�
is deterministic.
18If both proofs are correct or neither proofs are correct, it can select an arbitrary one.
The condition only applies when exactly one of the proofs is correct.

circuit for 5C . Finally, we output the answer encoded in the selected

circuit for 58+1.
19

Observation: it su�ces to �nd the �rst di�ering node label. Ignore

the (8★, 9★) part of the history for now. Let {E18, 9 } and {E28, 9 } be the

node labels encoded in c1 and c2, respectively. We also assume

that exactly one of them corresponds to the correct node labels

in History(�, 5 ). The crucial observation here is that, since the

correct node labels are generated by a deterministic procedure node

by node (from bottom to top and from rightmost to leftmost), it

is possible to tell which of the {E18, 9 } and {E28, 9 } is correct given

the largest (8′, 9 ′) such that E18′, 9 ′ ≠ E28′, 9 ′ . (Note that since all (8, 9)

are processed by Korten(�, 5 ) in reverse lexicographic order, this

(8′, 9 ′) corresponds to the �rst node label that the wrong process

di�ers from the correct process, so we call this the �rst di�ering

point.)

In more detail, assuming we know this (8′, 9 ′), we proceed by

discussing several cases. First of all, if (8′, 9 ′) corresponds to a leaf,

then one can query 5 to �gure out which of E18′, 9 ′ and E
2
8′, 9 ′ is consis-

tent with the corresponding block in 5 . Now we can assume (8′, 9 ′)

corresponds to an intermediate node. Since (8′, 9 ′) is the �rst di�er-

ing point, we know that E18′+1,29 ′ ◦ E
1
8′+1,29 ′+1 = E28′+1,29 ′ ◦ E

2
8′+1,29 ′+1

(we let this string to be U for convenience). By the de�nition of

History(�, 5 ), it follows that the correct E8′, 9 ′ should be uniquely

determined by U , which means the selector only needs to read U ,

E18′, 9 ′ , and E28′, 9 ′ , and can then be implemented by a somewhat te-

dious case analysis (so it is local). We refer readers to the proof

of Lemma 5.5 in the full version for the details and only highlight

the most illuminating case here: if both of E18′, 9 ′ and E
2
8′, 9 ′ are good

(we say a string W is good, if W ≠ ⊥ and � (W) = U), we select the

lexicographically smaller one. To handle the (8★, 9★) part, one needs

some additional case analysis. We omit the details here and refer

the reader to the proof in the full version.

The takeaway here is that if we can �nd the �rst di�ering label

(8′, 9 ′), then we can construct the selector +select and hence the

desired single-valued FS2BPP algorithm.

Encoded history. However, the above assumes the knowledge of

(8′, 9 ′). In general, if one is only given oracle access to {E18, 9 } and

{E28, 9 }, there is no poly(=)-time oracle algorithm computing (8′, 9 ′)

because there might be exponentially many nodes. To resolve this

issue, we will encode {E18, 9 } and {E28, 9 } via Reed–Muller codes.

Formally, recall thatHistory(�, 5 ) is the concatenation of (8★, 9★)

and the string ( , where ( is the concatenation of all the labels on

the binary tree. We now de�ne the encoded history, denoted as
�History(�, 5 ), as the concatenation of (8★, 9★) and a Reed–Muller

encoding of ( . The new selector is given oracle access to two can-

didate encoded histories together with 5 . By applying low-degree

tests and self-correction of polynomials, we can assume that the

Reed–Muller parts of the two candidates are indeed low-degree

polynomials. Then we can use a reduction to polynomial iden-

tity testing to compute the �rst di�ering point between {E18, 9 } and

{E28, 9 } in randomized polynomial time. See the proof of Lemma 5.3

19However, for the reasons to be explained below, we will actually work with the
encoded history instead of the history, which entails a lot of technical challenges in
the actual proof.

1996



STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Lijie Chen, Shuichi Hirahara, and Hanlin Ren

in the full version for the details. This part is similar to the selector

construction from [24].

5 DISCUSSIONS

We conclude the introduction by discussing some related works.

5.1 Previous Approach: Karp–Lipton Collapses
and the Half-Exponential Barrier

In the following, we elaborate on the half-exponential barrier men-

tioned earlier in the introduction.20 Let C be a “typical” uniform

complexity class containing P, a Karp–Lipton collapse to C states

that if a large class (say EXP) has polynomial-size circuits, then this

class collapses to C. For example, there is a Karp–Lipton collapse

to C = Σ2P:

Suppose EXP ⊆ P/poly, then EXP = Σ2P. ([32], attrib-

uted to Albert Meyer)

Now, assuming that EXP ⊆ P/poly =⇒ EXP = C, the following

win-win analysis implies that C-EXP, the exponential-time version

of C, is not in P/poly: (1) if EXP ⊄ P/poly, then of course C-EXP ⊇

EXP does not have polynomial-size circuits; (2) otherwise EXP ⊆

P/poly. We have EXP = C and by padding EEXP = C-EXP. Since

EEXP contains a function of maximum circuit complexity by direct

diagonalization, it follows that C-EXP does not have polynomial-

size circuits.

Karp–Lipton collapses are known for the classes Σ2P [32],ZPP
NP

[5], S2P [8] (attributed to Samik Sengupta), PP, MA [3, 40], and

ZPPMCSP [26]. All the aforementioned super-polynomial circuit

lower bounds for Σ2EXP, ZPEXP
NP, S2EXP, PEXP, MA-EXP, and

ZPEXPMCSP are proven in this way.21

The half-exponential barrier. The above argument is very success-

ful at proving various super-polynomial lower bounds. However,

a closer look shows that it is only capable of proving sub-half-

exponential circuit lower bounds. Indeed, suppose we want to show

that C-EXP does not have circuits of size 5 (=). We will have to

perform the following win-win analysis:

• if EXP ⊄ SIZE[5 (=)], then of course C-EXP ⊇ EXP does not

have circuits of size 5 (=);

• if EXP ⊆ SIZE[5 (=)], then (a scaled-up version of) the Karp–

Lipton collapse implies that EXP can be computed by a C

machine of poly(5 (=)) time. Note that TIME[2poly(5 (=) ) ]

does not have circuits of size 5 (=) by direct diagonaliza-

tion. By padding, TIME[2poly(5 (=) ) ] can be computed by

a C machine of poly(5 (poly(5 (=)))) time. Therefore, if 5

is sub-half-exponential (meaning 5 (poly(5 (=))) = 2> (=) ),

then C-EXP does not have circuits of size 5 (=).

Intuitively speaking, the two cases above are competing with

each other : we cannot get exponential lower bounds in both cases.

20A function 5 : N → N is sub-half-exponential if 5 (5 (=)2 ) = 2> (=) for every
constant 2 ≥ 1, i.e., composing 5 twice yields a sub-exponential function. For example,

for constants 2 ≥ 1 and Y > 0, the functions 5 (=) = =2 and 5 (=) = 2log
2 = are

sub-half-exponential, but the functions 5 (=) = 2=
Y
and 5 (=) = 2Y= are not.

21There are some evidences that Karp–Lipton collapses are essential for proving circuit
lower bounds [13].

5.2 Implications for the Missing-String
Problem?

In the Missing-String problem, we are given a list of< strings

G1, G2, . . . , G< ∈ {0, 1}= where< < 2= , and the goal is to output any

length-= string ~ that does not appear in {G1, G2, . . . , G<}. Vyas and

Williams [51] connected the circuit complexity ofMissing-String

with the (relativized) circuit complexity of Σ2E:

Theorem 5.1 ([51, Theorem 32], Informal). The following are

equivalent:

• Σ2E
�
⊄ i.o.-SIZE� [2Ω (=) ] for every oracle �;

• for " = 2#
Ω (1)

, the Missing-String problem can be solved

by a “good” circuit family (roughly speaking, a uniform fam-

ily of depth-3 AC0 circuits of size 2#
$ (1)

and bottom fan-in

poly(# )).

The intuition behind Theorem 5.1 is roughly as follows. For

every oracle �, the set of truth tables with low �-oracle circuit

complexity induces an instance for Missing-String, and solving

this instance gives us a hard truth table relative to�. If the algorithm

for Missing-String is a uniform AC0 circuit of depth 3, then the

hard function is inside Σ2E
� .

However, despite our Theorem 2.1 being completely relativiz-

ing, it does not seem to imply any non-trivial depth-3 AC0 circuit

for Missing-String. The reason is the heavy win-win analysis

across multiple input lengths: for each 0 ≤ 8 < C , we have a single-

valued FΣ2P construction algorithm for hard truth tables relative

to oracle � on input length =8 , but this algorithm needs access to

�=8+1 , a higher input length of �. Translating this into the language

of Missing-String, we obtain a weird-looking depth-3 AC0 cir-

cuit that takes as input a sequence of Missing-String instances

I=0 ,I=1 , . . . ,I=C (where each I=8 ⊆ {0, 1}=8 is a set of strings), looks

at all of the instances (or, at least I=8 and I=8+1 ), and outputs a pur-

portedly missing string of I=8 . It is guaranteed that for at least one

input length 8 , the output string is indeed a missing string of I=8 .

However, if our algorithm is only given one instance I ⊆ {0, 1}= ,

without assistance from a larger input length, it does not know how

to �nd any missing string of I.

6 SUBSEQUENT DEVELOPMENTS

Just one month after our paper was posted online, Li [39] strength-

ened our results and removed the need of the iterative win-win

argument. This allows [39] to prove that:

Theorem 6.1 ([39]). The following are true:

• S2E ⊄ i.o.-SIZE[2=/=]. Consequently, the classes Σ2E ∩ Π2E

and ZPENP also admit the same almost-everywhere near-

maximum circuit lower bounds. Moreover, this holds in every

relativized world.

• There is a single-valued FS2P algorithm for the range avoid-

ance problem that works on every input length. Consequently,

there are zero-error pseudodeterministic polynomial-time con-

structions for Ramsey graphs, rigid matrices, two-source extrac-

tors, linear codes, hard truth tables, and Kpoly-random strings,

with an NP oracle.

• There is a uniform family of quasi-polynomial-size depth-3

AC0 circuit solving the Missing-String problem.

1997
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Compared to our results, Theorem 6.1 holds on almost every

input length and does not require the advice bit.

Following our work, the proof of [39] also utilizes the history of

Korten’s reduction. The crucial insight of [39] is that a variant of

“history” (calledHistree in [39, De�nition 3.5]) always have succinct

descriptions. Instead, our proof needs to branch on whether our

History has succinct descriptions and perform a win-win analysis.
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