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Abstract: Amorphous/crystalline high-entropy-alloy (HEA) composites show great promise as
structural materials due to their exceptional mechanical properties. However, there is still a lack
of understanding of the dynamic nanoindentation response of HEA composites at the atomic scale.
Here, the mechanical behavior of amorphous/crystalline HEA composites under nanoindentation is
investigated through a large-scale molecular dynamics simulation and a dislocation-based strength
model, in terms of the indentation force, microstructural evolution, stress distribution, shear strain
distribution, and surface topography. The results show that the uneven distribution of elements
within the crystal leads to a strong heterogeneity of the surface tension during elastic deformation.
The severe mismatch of the amorphous/crystalline interface combined with the rapid accumulation
of elastic deformation energy causes a significant number of dislocation-based plastic deformation
behaviors. The presence of surrounding dislocations inhibits the free slip of dislocations below the
indenter, while the amorphous layer prevents the movement or disappearance of dislocations towards
the substrate. A thin amorphous layer leads to great indentation force, and causes inconsistent
stacking and movement patterns of surface atoms, resulting in local bulges and depressions at
the macroscopic level. The increasing thickness of the amorphous layer hinders the extension of
shear bands towards the lower part of the substrate. These findings shed light on the mechanical
properties of amorphous/crystalline HEA composites and offer insights for the design of high-
performance materials.

Keywords: amorphous/crystalline high-entropy alloy; nanoindentation; mechanical properties;
microstructure

1. Introduction

High-entropy alloys (HEA) have received significant attention due to their remarkable
properties, including high strength, excellent thermal stability, and wear resistance [1-4].
In comparison to traditional alloys, CoCrFeNi system HEAs are relatively lightweight and
demonstrate higher yield strength and superior specific strength [3,5]. As a result, they
have great potential for application in key industrial sectors such as aerospace, vehicle
manufacturing, armor protection, and marine industries. In practical applications, HEA
devices are inevitably exposed to various mechanical loads. The plastic deformation and
associated damage progression in HEA materials play a crucial role in determining the
reliability of HEA devices in service, making further investigation essential.

Several studies show that the trade-off between strength and ductility is addressed
by the unique morphology of alloys [6,7]. Recently, there has been a growing interest in
amorphous/crystalline (A/C) composites, as they combine the unique features of both
amorphous and crystalline phases, and enhance the mechanical properties of materials
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through additional strengthening and toughening mechanisms, which can improve the
application prospects of alloys in a wide range of fields. Initially, the A/C composite was
introduced to tackle the strength—ductility trade-off of Mg alloys at room temperature [8-11].
The A/C Mg alloy demonstrates its ability to enhance the plasticity of Mg alloys through
an unconventional plastic deformation mechanism [8]. In a subsequent experimental study,
a nanosized A/C Mg alloy achieved near-theoretical strength and good plasticity [9]. A
significant discovery shows that the elemental diffusion from the amorphous phase to the
A/C interface can enhance the amorphization of the crystalline phase in A/C Mg alloys [10].
Following these successes with Mg alloys, A/C Mg alloys have been applied to enhance the
mechanical properties of HEAs [12-14]. An A/C HEA composite prepared by magnetron
sputtering technology showed hardness of 8.9 GPa, surpassing that of the most well-known
CoCrFeMnNi HEAs [12]. In a separate study, an experimentally fabricated A/C HEA
composite exhibited a yield strength close to theoretical levels and a uniform plastic strain
exceeding 45% under compression [13]. Furthermore, the impact of the position and
thickness of the amorphous layer on the deformation behavior and mechanical properties
of A/C HEA composites was studied through molecular dynamics (MD) simulation [14].
Despite the progress made in researching A /C HEA composites, this field is still emerging,
with numerous phenomena waiting to be fully understood and explored.

The interaction behavior between dislocations and amorphous phases plays a crucial
role in determining the mechanical properties of A/C composite. However, understanding
this interaction mechanism during the deformation process of HEA composites through
experiment remains challenging. In such cases, MD simulation has proven to be a valuable
alternative for revealing the microscopic deformation mechanism of materials, as it can
analyze microstructural interactions at the atomic scale. By employing MD simulation,
researchers can gain insight into the relationship between the outstanding mechanical
properties and microstructural evolution of A/C HEA composites, aiding in their design
and selection [15-20]. The impact of factors such as amorphous layer spacing, indenter
velocity, and indenter radius on the interaction between dislocations and amorphous
phases was examined in A/C CoCrFeMnNi HEA composite through MD simulation. It
was found that the critical indentation depth and force necessary for plastic deformation in
HEAs decrease as the indenter velocity increases, which is opposite to the behavior seen in
single-phase crystalline HEA composite. This research offers theoretical insights that can
guide the design and fabrication of high-performance A/C HEA composite.

In the present work, MD simulations were employed to investigate the deformation
mechanisms and mechanical properties of A/C HEA composites during nanoindentation.
The thickness of the layers was systematically varied, and the mechanical behavior of the
nanolaminates was studied using atomistic simulations during nanoindentation. By ana-
lyzing deformation snapshots and creating mechanism maps based on the microstructure,
the interaction mechanism between dislocations and amorphous phases in A/C dual phase
HEA composites was revealed, enhancing new understanding of the transformation of de-
formation mechanisms. The study also examined how shifts in these mechanisms impacted
the mechanical properties of the composites. Overall, the current research established a
theoretical framework for a better understanding of the mechanical properties of HEA
composites at the nanoscale, providing theoretical guidance for the design and preparation
of high-performance A/C dual phase HEA.

2. Simulation Method and Model

Figure 1 shows the nanoindention simulations of amorphous/crystalline HEA Fe-
CrCoN:i structures, showcasing a model that includes both amorphous and crystalline
HEA components. The dimension of the amorphous/crystalline HEA FeCrCoNi sample
is 464 A x 455 A x 460 A. To explore how size impacts nanoindention deformation in
amorphous/crystalline HEA composites, the amorphous HEA layer thicknesses range from
2 to 12 nm. The amorphous/crystalline HEA FeCoCrNi comprises randomly distributed
Fe, Co, Cr, and Ni atoms. To obtain the amorphous HEA model, it was melted at 2500 K
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rigid spherical indenter is employed to model the interaction between the indenter and
the HEA composite [17-21]. The time step was 1 fs in all MD simulations, using the large-



Materials 2024, 17, 3689

40f18

atomic/molecular massively parallel simulator (LAMMPS) (version LAMMPS-64bit-latest-
MPL.exe) [33].

Table 1. Computational parameters used in the MD simulations.

Materials Am:ggogzlnfg:;lline Virtual Indenter
Dimensions 464 A x 455 A x 460 A Radius 100 A
Number of atoms 5,595,219
Time step 1fs
Initial temperature 300 K
Indentation velocity 10m/s
Depth of indentation 40 A

Thickness of amorphous layer 2 nm, 5 nm, 8 nm, and 12 nm

The microstructural evolution was visualized using the Ovito software (version Ovito
2.9.0.exe) [34]. The common neighbor analysis (CNA) was employed to identify the differ-
ent microstructures following deformation. In this analysis, red atoms indicate the presence
of stacking faults, green atoms signify the face-centered cubic (FCC) structure, and white
atoms correspond to dislocation cores, interface structures, and amorphous regions. Here,
the effect of vacancy on indentation behavior is neglected due to its extremely low vacancy
concentration.

3. Result and Discussion
3.1. The Nanoindention Process

From the previous experiments [35,36], the evolution of the indenter load can provide
insight into the elastic and plastic deformation of the matrix metal. Here, Figure 2a shows
the relationship between indentation force and the depth of indentation. The process of
indentation is divided into four distinct stages, which include elastic deformation, yielding,
strain hardening, and softening. Here, the elastic deformation is defined as the process in
which material undergoes deformation without the formation of dislocations. The yielding
is defined as the initial nucleation stage of dislocations. The strain hardening is defined as
numerous dislocation proliferations, and the softening is defined as the process in which
dislocations continue to proliferate at a relatively constant indentation force. Therefore,
it is essential to examine the changes in surface morphology and microstructure within
each of the four time intervals, in order to gain a better understanding of the deformation
behavior of HEA composites at the atomic level. Figure 2b—e illustrate the evolution process
of surface morphology as the indentation depth increases. In the initial stage of elastic
deformation, the uneven distribution of elements within the crystal causes heterogeneity in
surface tension. This trend leads to fluctuations in the height of surface atoms in specific
regions of the HEA [37].

However, once the deformation reaches the yield stage, this effect begins to diminish
as plastic deformation takes over. In particular, the outermost circle of the indenter’s
contact area shows a significant buildup of atoms, causing them to shift outward. The
subsequent stages of hardening and constant load (softening) display distinct fluctuations
in the local atomic height of the surface (Figure 2b—e). This is a result of the intense local
plastic deformation altering the distribution of atoms, pulling them towards the direction
of the indenter in a network-like fashion [17-20]. This phenomenon differs slightly from
observations at a macroscopic level, where deformation is primarily concentrated within
1.2 times the indenter diameter range. At the microscale, this region can extend beyond
twice that size, highlighting the importance of atomic size effects in adapting to large local
deformations.
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After entering the yield stage, plastic deformation further activates dislocatior
other directions, and then reacts violently and increases in value with the stacking d
cations generated during the elastic deformation stage. This phenomenon has
through both hardening and softening stages. The stacking fault structure continu
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tends deeper towards the substrate, compared to the characteristics of atomic displacement
and strain distribution. The high strain region and high stress region of HEA composites
are not completely consistent. This will lead to a coupling effect on material properties due
to the dual effect of the strain gradient and stress gradient [6,17-20]. The effect range of
stress gradient is wider during the stage of severe plastic deformation of materials. This
comparison result allows us to evaluate two differences at the atomic scale. Previous results
have also shown that there is a difference between the two.
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1nev1tably lead to 51gmf1cant differences in rmcrostructure evolution. Figure 9b shows
that the distribution and configuration of stacking faults below the indenter are different.
Specifically, directly below the indenter, the formation of new dislocations interacts with
those initially formed near the interface, resulting in a change in dislocation density [6,20,42].
To clarify this process, the types of dislocation lines are presented in Figure 9c. As previously
speculated, a large number of new dislocations have indeed formed below the indenter.
When the thickness reaches a critical value, the amorphous layer can almost completely
isolate the transfer of stress or strain to the crystalline layer. In other words, more stress can
be absorbed by the amorphous layer, reducing the plastic deformation of the crystalline
layer. Therefore, if the thickness of the amorphous layer exceeds a critical value, only elastic
deformation occurs in the crystalline layer. More detailed discussions would remain in the
future work. The critical thickness not only depends on the thickness of the amorphous
material, but also on the elements of the amorphous material.
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the crystalline layer. Therefore, if the thickness of the amorphous layer exceeds a critical
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upper atoms are stacked in different configurations of the lower layer, and the difference
in local mechanical properties of the lower layer will inevitably change the position of
each atom in the upper layer [20,43]. This effect gradually decays with increasing inden-
tation depth. The differences in local shear bands further validate this observation. The
most obvious area is still the contact area around the indenter, which ultimately dffe¢s

the change in indenter pressure. 1he increase i amorphous layer thickness SUppIesses
the extension of shear bands towards the lower part of the substrate. Instead, it releases
khdasheiid siithiardsethederixethpetiodf theadulispratsiomstdae mbreletisesthigh sfrainrevthin
tion wlaghxstheaghl daealedisphesionor Phoun arel dispstailivek digarsexethtiaptothhe dtirass
etk reveatsvidi] atefiphatisransbeharihiredayaisr P ety tha lihe IR Av eslngras ieweal
defarsmtioscaechantimsiafdaishp et krgstating it Arcempdsitessasitheatamislicate,
Ramie shinvakes onnidselehp st pasuiltssHavdatinghivd end togh defarmationdatesdensd
e RIRAC tederesil tsrhave egrtabe d aviabiphsrin derserainesmadehant hiereforse dhsre igan
trgsntahead o sxpiup dgtormation mechanisms based on multiscale simulation methods.
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should be considered. The previous studles prove that the interaction between crystalline
and amorphous phases not only activates the dislocations motion in the crystalline region,
but also activates the shear transition region, resulting in a softening effect related to the
thickness of the amorphous zone [44,45]. This is a means to achieving the synergy of
strength and ductility [44]. Thus, the strength influenced by the amorphous alloys can be

expressed as:
oA =\/0a0® + % )

where 0, is the strength of the amorphous bulk, and is obtained from the MD tension
simulation of the amorphous FeCoCrNi HEA [6]. ¢ is an empirical constant. f is the
thickness of the amorphous layer.

For the HEA crystalline phase, the solid solution strengthening caused by the mismatch
of atomic size and shear modulus is the notable strengthening mechanism [46,47]. Due
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to the fact that the elements of HEA are solutes to each other, the overall solid solution
strengthening effect is attributed to the individual contributions of each element.

n .
Oss = Z CiOgs 2)
i=1

where ¢/ is the mismatch strengthening effect caused by the element i, which can be further
expressed as:

ol = Apuc}25° 3)

n
where A is the material parameter and the value is 0.04. u = }_¢;p; is the shear modulus

1
obtained by the mixing rule [48]. J; is the mismatch parameter, which can be written as:

o= ¢ (o2 + por?) @

where the value of ¢ is related to the lattice type of the metal, and ¢ = 1 for FCC metals,

¢ = 4 for BCC metals. f is a parameter related to the type of dislocation; for screw

dislocation 2 < B < 4, for the edge dislocation > 16 [47]. ér; and Ju;, respectively, are the
atomic size mismatch and the modulus mismatch caused by the solute atom i.

orees — oral’

Sr: = ijkl jki 5

ri= ©)

 ougs — o

Sit:
Hi c

(6)
Here, the ijkl HEA is considered to be formed by introducing solute atom i into the ijk
HEA. (51’?]?,’(‘; and ¢ yfﬁﬁ are the average atomic size mismatch and the average shear modulus

mismatch of the ijkl HEA, which can be calculated as:

orin Orip e O\ [a
or't = iiciq’&nj = (c1,¢2,+++ ,Cn) &:21 " | 5712” sz 7
C 5r'n1 (SIr-n-z . ér.rm C‘n
o1 01 - Ouin\ [c
ot = iicicjfs%j = (c1,€2,++ ,n) 5?21 e | 5]1'2;1 ; ®)
L Sty Stts -+ ) \cn

where 0rj; and y;; are the atomic size mismatch and the modulus mismatch between the
atom i and the atom j.
(51’1']' = 2(1’1‘ — 1’]) / (1’1' + 1’]) 9)

opij = 2(pi — pj) / (wi + 1) (10)

where r; and r; are the atom size of element i and j, respectively. y; and y; are the shear
modulus of element i and j, respectively.

For the present MD simulation model, the HEA crystalline phase is considered to be a
nanolayer, and the strengthening effect derived from the interface can be written as [49,50]:

L mbpsin® (4 —v od
=M <1—v | by sino an
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where M is the Taylor constant, d is the thickness of the nanocrystalline layer, b}, is the
magnitude of the Burger vector of partial dislocation, 6 is the angle between the slip plane
and the interface, v is Poisson’s ratio, and « is the core cut-off parameter.

The contribution of activated dislocation in the HEA crystalline phase to strength
cannot be ignored. The dislocation resistance is expressed as [50]:

04 = MZub/p (12)

where ¢ is the Taylor constant, b is the magnitude of the Burger vector of dislocation, and p
is the dislocation density originating from MD simulation.

Thus, considering the above microstructure strengthening effect, the overall HEA
crystalline phase strengthening is written as:

Considering the characteristics of A/C HEA composite, the overall strength depends
on the proportion of each structure [6,44]:

oy = fioa+ faoc (14)

where f1 and f; are the volume fractions of the amorphous phase and crystalline phase,
respectively. The physical parameters of elements are listed in Table 2, and the material
parameters are listed in Table 3.

Table 2. Physical parameters of the constituent elements [47,51].

Parameter Fe Co Cr Ni
Atomic radius (pm) 124 126 125 125
Young’s modulus (GPa) 211 209 279 200
Shear modulus (GPa) 82 75 115 76
Atomic fraction (at%) 25% 25% 25% 25%

Table 3. The material parameters of strength models [44,46,47,50].

Parameter Symbol Magnitude
Taylor constant M 3
Shear modulus (GPa) U 87
Poisson’s ratio v 0.3
Burger vector of partial dislocation (nm) by 0.1476
Burger vector of full dislocation (nm) b 0.256
Thickness of amorphous (nm) t 2,5,8,12
Thickness of crystalline phase (nm) d 44,41, 38, 34
Average density of dislocation (m~?2) 1Y 5 x 1015~1 x 1015
Empirical constant ¢ 0.33
Empirical constant P 1.15

For the A/C HEA composite with different amorphous layer thicknesses of 2 nm,
5 nm, 8§ nm, and 12 nm, the contribution of the amorphous phase strengthening, solid
solution strengthening, interface strengthening, and dislocation strengthening to strength
is calculated, as shown in Figure 11. The specific contribution values of each strengthening
mechanism are listed in Table 4. The results indicate that when the thin amorphous layers
thickness is 2 nm, at this time the volume fraction of the amorphous phase is only 4.3%, the
contribution of amorphous phase strengthening is weak. The strength is determined by
the microstructure in the crystalline phase, and dislocation strengthening is the dominant
strengthening mechanism. As the thickness of the amorphous layer increases, the overall
strength gradually decreases, which is consistent with the previous study [44]. The increase
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in the volume fraction of the amorphous phase leads to an increase in the proportion of its

strengthening mechanism. The solid solution strengthening is an inherent characteristic

of HEA, which is less affected by changes in amorphous thickness. In addition, due to

the proportion of crystalline phase decreases, the deformation mechanism dominated by

the dislocation movement in the crystalline phase transforms to amorphous deformation.

The activated dislocation density decreases, resulting in a decrease in the dislocation

strengthening effect, thereby reducing the overall strength of the material. The calculation

results are consistent with the patterns presented in previous nanoindentation experiments

of the A/C structure [52]. The thicker amorphous layer effectively hinders dislocation

movement, and the activated dislocation density inside the crystal is low, resulting in

softening [52-54]. The above analysis quantitatively reveals that the fundamental reason
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in the traditional sense. The presence of surrounding dislocations restricts the free slip of
dislocations below the indenter, while the amorphous layer restricts the possibility of dislo-
cation movement or disappearance towards the substrate. The high-strain region will lead
to a composite sound effect on material properties under the coupling effect of the strain
gradient and stress gradient. The smaller the thickness of the amorphous layer, the greater
the indentation force. At the macroscopic level, it can cause inconsistent stacking and
movement trends of surface atoms, resulting in local bulges and depressions. The increase
in amorphous layer thickness suppresses the extension of shear bands towards the lower
part of the substrate. These results provide a theoretical basis and early guidance for the
development of high-performance HEA composite. In the light of the limitations of atomic
simulation, there is an urgent need to explore the macroscale deformation mechanisms
based on multiscale simulation methods.
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