
Polynomial-Time Pseudodeterministic Construction
of Primes

Lijie Chen
UC Berkeley

Berkeley, CA, USA

lijiechen@berkeley.edu

Zhenjian Lu
University of Oxford

Oxford, UK

zhenjian.lu@cs.ox.ac.uk

Igor C. Oliveira
University of Warwick

Coventry, UK

igor.oliveira@warwick.ac.uk

Hanlin Ren
University of Oxford

Oxford, UK

hanlin.ren@cs.ox.ac.uk

Rahul Santhanam
University of Oxford

Oxford, UK

rahul.santhanam@cs.ox.ac.uk

Abstract—A randomized algorithm for a search problem is
pseudodeterministic if it produces a fixed canonical solution to
the search problem with high probability. In their seminal work
on the topic, Gat and Goldwasser [1] posed as their main open
problem whether prime numbers can be pseudodeterministically
constructed in polynomial time.

We provide a positive solution to this question in the
infinitely-often regime. In more detail, we give an unconditional
polynomial-time randomized algorithm B such that, for infinitely
many values of n, B(1n) outputs a canonical n-bit prime pn
with high probability. More generally, we prove that for every
dense property Q of strings that can be decided in polynomial
time, there is an infinitely-often pseudodeterministic polynomial-
time construction of strings satisfying Q. This improves upon a
subexponential-time construction of Oliveira and Santhanam [2].

Our construction uses several new ideas, including a novel
bootstrapping technique for pseudodeterministic constructions,
and a quantitative optimization of the uniform hardness-
randomness framework of Chen and Tell [3], using a variant
of the Shaltiel–Umans generator [4].

Index Terms—explicit construction, pseudodeterministic con-
struction, hardness vs. randomness

I. INTRODUCTION

How hard is it to construct an n-bit prime1? This is a

fundamental problem in number theory and in complexity

theory. Under reasonable assumptions, the problem is solvable

in deterministic polynomial time. In more detail, Cramér’s

conjecture [5] in number theory asserts that the largest prime

gap in any consecutive sequence of n-bit numbers is O(n2).
Assuming this conjecture, we can solve the prime construction

problem efficiently by testing the first O(n2) integers greater

than 2n−1 for primality and outputting the first one, where

the primality tests are done efficiently using the algorithm

of Agrawal, Kayal and Saxena [6]. An independent source

of evidence for the efficiency of prime construction is the

complexity-theoretic conjecture that DTIME(2O(n)) requires

Boolean circuits of exponential size on almost all input

1Recall that a positive integer q is an n-bit prime if q is a prime number
and 2n−1 ≤ q ≤ 2n − 1.

lengths. Under this conjecture, we can use the Impagliazzo–

Wigderson pseudorandom generator [7] to derandomize the

simple randomized algorithm that outputs a random n-bit

number, using the facts that primality testing is in polynomial

time and that an Ω(1/n) fraction of n-bit numbers are prime.

However, we seem very far from either settling Cramér’s

conjecture or proving strong complexity lower bounds. The

best upper bound we can prove on the gap between consecutive

n-bit primes is 2(0.525+o(1))n [8], and no super-linear circuit

lower bounds are known for DTIME(2O(n)) [9]. Indeed, the

best unconditional result we have so far is that deterministic

prime construction can be done in time 2(0.5+o(1))n [10],

which is very far from the polynomial-time bound we seek.

The Polymath 4 project (see [11]) sought to improve this upper

bound using number-theoretic techniques but did not achieve

an unconditional improvement.

In contrast to the situation with deterministic prime con-

struction, it is easy to generate an n-bit prime randomly, as

mentioned above: simply generate a random n-bit number, test

it for primality in polynomial time, and output it if it is a prime.

This algorithm has success probability Ω(1/n) by the Prime

Number Theorem, and the success probability can be amplified

to be exponentially close to 1 by repeating the process poly(n)
times independently, and outputting the first of these poly(n)
numbers that is verified to be prime, assuming that there is at

least one.

Gat and Goldwasser [1] asked whether it is possible to

generate primes efficiently by a randomized process, such

that the output is essentially independent of the randomness

of the algorithm. In other words, is there a polynomial-

time randomized algorithm, which on input 1n, constructs

a canonical prime of length n with high probability? They

call such an algorithm a pseudodeterministic algorithm, since

the output of the algorithm is (almost) deterministic even

though the algorithm might use random bits in its operation.

Note that the randomized algorithm for prime generation we

described in the previous paragraph is very far from being

pseudodeterministic, as different runs of the algorithm are

1261

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00074

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

07
4

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

unlikely to produce the same prime. It is easy to see that

a pseudodeterministic construction serves as an intermediate

notion between a randomized construction (which is trivial for

primes) and a deterministic construction (where little progress

has been made so far).

[1] initiate a general theory of pseudodeterminism for search

problems, motivated by applications in cryptography and dis-

tributed computing. Since then, there have been a number of

papers on pseudodeterminism, in various contexts, such as

query complexity [12]–[14], streaming algorithms [15], [16],

parallel computation [17], [18], learning algorithms [19], Kol-

mogorov complexity [20], [21], space-bounded computation

[22], proof systems [23], [24], number theory and computa-

tional algebra [2], [25], approximation algorithms [26], and

many other settings (see, e.g., [27]–[32]).

Despite all this progress, the main problem about pseu-

dodeterminism posed in [1] has remained open: Is there a

pseudodeterministic polynomial-time algorithm for prime con-

struction? They describe this problem as “the most intriguing”

and “perhaps the most compelling challenge for finding a

unique output”.

Unlike in the case of deterministic construction, number-

theoretic techniques have so far not proven useful for the

pseudodeterministic construction problem for primes. Using

complexity-theoretic techniques, Oliveira and Santhanam [2]

(see also [21]) showed that for any ε > 0, there is an algorithm

that runs in time 2n
ε

and succeeds on infinitely many input

lengths.

II. OUR RESULTS

In this paper, we design a significantly faster algorithm and

provide an affirmative answer to the question posed by Gat and

Goldwasser in the infinitely-often regime. Our main result can

be stated in full generality as follows.

Theorem 1 (Infinitely-Often Polynomial-Time Pseudodeter-

ministic Constructions). Let Q ⊆ {0, 1}∗ be a language with
the following properties:
(Density.) there is a constant ρ ≥ 1 such that for every n ∈

N≥1, Qn � Q ∩ {0, 1}n satisfies |Qn| ≥ n−ρ · 2n; and
(Easiness.) there is a deterministic polynomial-time algorithm

AQ that decides whether an input x ∈ {0, 1}∗ belongs
to Q.

Then there exist a probabilistic polynomial-time algorithm B
and a sequence {xn}n∈N≥1

of n-bit strings in Q such that the
following conditions hold:

1) On every input length n ∈ N≥1, PrB [B(1n) /∈
{xn,⊥}] ≤ 2−n.

2) On infinitely many input lengths n ∈ N≥1, PrB [B(1n) =
xn] ≥ 1− 2−n.

Interestingly, our construction is non-black-box, in the sense

that changing the code of the algorithm AQ deciding property

Q affects the canonical output of the corresponding algorithm

B. We will revisit this point when we discuss our techniques

(see the remark at the end of Section IV-B).

Letting Q be the set of prime numbers and noticing that

Q is both dense (by the Prime Number Theorem) and easy

(by the AKS primality test [6]), we immediately obtain the

following corollary of Theorem 1.

Corollary 2 (Infinitely-Often Polynomial-Time Pseudodeter-

ministic Construction of Primes). There is a randomized
polynomial-time algorithm B such that, for infinitely many
values of n, B(1n) outputs a canonical n-bit prime pn with
high probability.

Corollary 2 improves upon the subexponential-time

infinitely-often pseudodeterministic construction of primes

from [2] mentioned above. Note that the result for prime

construction is a corollary of a far more general result about

properties that are dense and easy. This is evidence of the

surprising power of complexity theory when applied to a

problem which seems to be about number theory (but where

number-theoretic techniques have not so far been effective).

The famous efficient primality testing algorithm of [6] sim-

ilarly applied complexity-theoretic derandomization ideas to

solve a longstanding open problem in computational number

theory, though their argument does require more information

about primes.

For a string w ∈ {0, 1}∗ and t : N → N, we let rKt(w)
denote the length of the smallest randomized program that

runs for at most t(|w|) steps and outputs w with probability

at least 2/3. (We refer to [33] for a formal definition and

for an introduction to probabilistic notions of time-bounded

Kolmogorov complexity.) By encoding the (constant-size)

randomized polynomial-time algorithm B and each good input

length n using O(1) + log n bits in total, the following result

holds.

Corollary 3 (Infinitely Many Primes with Efficient Succinct

Descriptions). There is a constant c ≥ 1 such that, for t(n) =
nc, the following holds. For every m ≥ 1, there is n > m and
an n-bit prime pn such that rKt(pn) ≤ log(n) +O(1).

In other words, there are infinitely many primes that admit

very short efficient descriptions. The bound in Corollary 3

improves upon the sub-polynomial bound on rKpoly(pn) from

[21].

In the next section, we describe at a high level the ideas

in the proof of Theorem 1, and how they relate to previous

work.

III. PROOF IDEAS

The proof of Theorem 1 relies on uniform hardness-
randomness tradeoffs [34], [35]. For concreteness, assume that

Q = {Qn}n∈N≥1
, with each Qn ⊆ {0, 1}n consisting of

the set of n-bit prime numbers. Let AQ be a deterministic

polynomial-time algorithm that decides Q (e.g., AQ is the

AKS primality test algorithm [6]). Before we present our

algorithm and the main ideas underlying our result, it is

instructive to discuss the approach of [2], which provides

a subexponential-time pseudodeterministic construction that

succeeds on infinitely many input lengths.

1262

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

Subexponential-time constructions of [2]: We first recall

how uniform hardness-randomness tradeoffs work. Given a

presumed hard language L, a uniform hardness-randomness

tradeoff for L states that either L is easy for probabilistic

polynomial-time algorithms, or else we can build a pseudo-
random set Gn ⊆ {0, 1}n computable in subexponential time

(thus also has subexponential size), which fools probabilis-

tic polynomial-time algorithms on inputs of length n (for

infinitely many n). In particular, Trevisan and Vadhan [35]

give a uniform hardness-randomness tradeoff for a PSPACE-

complete language LTV they construct, which has certain

special properties tailored to uniform hardness-randomness

tradeoffs.2

The subexponential-time construction in [2] uses a win-
win argument to derive an unconditional pseudodeterministic

algorithm from the uniform hardness-randomness tradeoff of

[35]. There are two cases: either LTV ∈ BPP, or it is not. If

the former is the case, then PSPACE ⊆ BPP by the PSPACE-

completeness of LTV. Now, since we can in polynomial space
test all n-bit numbers using AQ until we find the lexicographic

first prime number, we can also do it in randomized polynomial
time, i.e., there is a randomized algorithm B(1n) that runs

in polynomial time and outputs the lexicographically first

n-bit prime with high probability. Thus, in this case, the

lexicographically first n-bit prime is the “canonical” output of

the pseudodeterministic algorithm, and the algorithm works

on every input length n.

Suppose, on the other hand, that LTV 	∈ BPP. Using the

uniform hardness-randomness tradeoff of [35], we have that

for each ε > 0, there is a pseudorandom set G = {Gn},

where each Gn ⊆ {0, 1}n is of size at most 2n
ε

, such that

for infinitely many n, Gn fools the algorithm AQ on inputs

of length n. Since AQ accepts an Ω(1/n) fraction of strings

of length n by the Prime Number Theorem, we have that the

fraction of strings in Gn that are prime is Ω(1/n) (by choos-

ing the error parameter of the uniform hardness-randomness

tradeoff to be small enough). In particular, there must exist

an element of Gn that is prime. Since Gn is computable

in subexponential time, we can define a subexponential time

deterministic algorithm that enumerates elements of Gn and

tests each one for primality until it finds and outputs one

that is prime. This algorithm is deterministic but it runs in

subexponential time, and is only guaranteed to be correct for

infinitely many n.

Thus, in either case, we have a pseudodeterministic al-

gorithm for constructing primes that runs in subexponential

time and works infinitely often. Note that we do not know a

priori which of the two cases above holds, and therefore the

argument is somewhat non-constructive. By exploiting further

properties of the uniform hardness-randomness tradeoff, [2]

manage to give an explicit construction algorithm that runs in

subexponential time infinitely often.

2For the pseudorandomness experts, these special properties are downward
self-reducibility and random self-reducibility.

Win-win arguments: The above argument gives a

subexponential-time construction, but the win-win structure

of the argument seems incapable of giving an optimal

polynomial-time construction. Indeed, this is the case for many

win-win arguments used in complexity theory:

• A win-win argument based on the Karp–Lipton theorem

[36] gives that Σ2EXP requires super-polynomial size

Boolean circuits [37], but seems incapable of giving truly

exponential (2Ω(n)) Boolean circuit lower bounds.

• A win-win argument based on uniform hardness-

randomness tradeoffs gives that either E ⊆ BPP or BPP
can be simulated infinitely often in deterministic subex-

ponential time on average [34], but it remains unknown if

such a tradeoff holds at the “high end”, i.e., whether it is

the case that either E is in probabilistic subexponential-

time or else BPP can be simulated infinitely often in

deterministic polynomial time on average.

• A win-win argument based on the Easy Witness Lemma

gives that if NEXP ⊆ SIZE(poly), then NEXP = MA
[38], but it is unknown if any interesting uniform collapse

follows from the simulation of NEXP by subexponential-

size Boolean circuits.

In each of these cases, the win-win argument seems to have

inherent limitations that prevent us from getting optimal lower

bounds or tradeoffs. Indeed, a paper by Miltersen, Vinodchan-

dran and Watanabe [39] studies the “fractional exponential”

lower bounds that seem to be the best provable using win-win

arguments in the context of Boolean circuit lower bounds for

exponential-time classes.3

Thus, in order to obtain a polynomial-time pseudodeter-

ministic algorithm for primality, it seems that we need to

go beyond win-win arguments. One natural idea is to apply

uniform hardness-randomness tradeoffs recursively. However,

this seems hard to do with the uniform hardness-randomness

tradeoff of [35]. Their tradeoff applies only to the special

language LTV. If we argue based on the hardness or other

properties of LTV, then in the case where LTV ∈ BPP,

we get a pseudodeterministic polynomial-time algorithm for

constructing primes, but in the case where LTV 	∈ BPP, we

get a subexponential-time constructible pseudorandom set, and

it is unclear how to apply the uniform hardness-randomness

tradeoff to the algorithm for constructing this set.

Recursive application of uniform hardness-randomness
tradeoffs: One of our main ideas is to exploit very recent

work on uniform hardness-randomness tradeoffs [3] which

applies to generic computations, as long as they satisfy cer-

tain mild properties. These tradeoffs yield hitting sets rather

than pseudorandom sets based on hardness — a hitting set

H ⊆ {0, 1}M is a set that has non-empty intersection with

3For example, a function f : N → N is sub-half-exponential if
f(f(n)c)c ≤ O(2n) for every constant c. (The exact definition of sub-half-
exponential functions may be different in different papers.) Functions such

as nk and 2log
k n are sub-half-exponential, while 2εn and 2n

ε
are not. It

is known that Σ2EXP cannot be computed by f(n)-size circuits for every
sub-half-exponential f , but it remains open to show that Σ2EXP requires
circuit complexity 2n

ε
for any constant ε > 0.

1263

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

every QM ⊆ {0, 1}M that is dense (i.e., accepts at least a

1/poly(M) fraction of strings) and is efficiently computable.

It turns out that for our application to pseudodeterministic

algorithms, uniform hardness-randomness tradeoffs that yield

hitting sets are sufficient.

Specifically, Chen and Tell [3] show that for any multi-

output function f : {1n} → {0, 1}n computed by uniform

Boolean circuits of size T = T (n) and depth d = d(n),
either there is a hitting set H ⊆ {0, 1}M computable in time

poly(T), or f(1n) can be computed with high probability in

time (d+n)·poly(M) (which could be much less than T). Note

that this tradeoff is applicable to any multi-output function f
given bounds on its uniform circuit complexity.

Our key idea is that this more generic uniform hardness-

randomness tradeoff can be applied recursively. Indeed, we

apply it to multi-output functions which capture the very task

we are trying to solve, i.e., constructing a prime! In our base

case, we use the function f which does a brute-force search

over n-bit numbers and outputs the lexicographically first one

which is prime. This function can be computed by uniform

Boolean circuits of size 2O(n) and depth poly(n), and hence

we can apply the Chen–Tell tradeoff to it. We set M = nβ

for some large enough constant β > 1 in the tradeoff. If

we have that f(1n) is computable with high probability in

time (d + n) · poly(M), then we are done, since this gives

us a pseudodeterministic algorithm for primes at length n.

If not, we have that there is a hitting set H ⊆ {0, 1}nβ

computable in time 2O(n). In particular, by iterating over the

elements of H and outputting the first one that is prime,

we gain over the naı̈ve brute-force search algorithm, since

we are now outputting a prime of length nβ in time 2O(n).

Now this new algorithm can be captured by a multi-output

function with output length nβ to which we apply the Chen–

Tell tradeoff again. In each recursive step, we either obtain a

pseudodeterministic polynomial-time construction of primes,

or we obtain a significantly faster deterministic construction

of primes (of a larger input length). Intuitively, analyzing this

process after O(log n) steps of recursion, we can hope to

show that at least one of the steps leads to a polynomial-time

pseudodeterministic algorithm at the input length considered

at that step.

This doesn’t quite work as stated because the Chen–Tell

tradeoff uses the Nisan–Wigderson generator [40], which is not

known to have optimal parameters for all levels of hardness.4

Our recursive process explores essentially all possible levels

of hardness for the uniform hardness-randomness tradeoff,

since each recursive step corresponds to a different level of

hardness. Using the original Chen–Tell tradeoff gives a quasi-
polynomial-time pseudodeterministic construction, but in order

to get a polynomial-time pseudodeterministic construction, we

need to work harder.

Another crucial idea for us is to optimize the Chen–Tell

4Informally speaking, given a “hard truth table” of length T , we want to
construct a hitting set H ⊆ {0, 1}M in poly(T) time; however, the Nisan–

Wigderson generator requires 2Θ(log2 T/ logM) time to construct.

tradeoff by using the Shaltiel–Umans generator [4] rather

than the Nisan–Wigderson generator. This idea comes with

its own implementation challenges, since the Shaltiel–Umans

generator is not known to have a crucial learnability property

that is required for the uniform hardness-randomness trade-

off. We sidestep this issue using a further win-win analy-

sis, together with some other tricks; see Section IV-C for

details. This enables us to achieve an optimal polynomial-

time pseudodeterministic construction on infinitely many input

lengths, and thereby establish Theorem 1.5 We note that the

subexponential-time construction of [2] also only works for

infinitely many input lengths, and it is still open even to get

a subexponential-time construction that works on all input

lengths.

The intuitive description here does not address several

subtleties that arise in the proof, such as maintaining the right

uniformity and depth conditions when recursively applying the

uniform hardness-randomness tradeoff. We refer to Section IV

for a more detailed discussion of such matters.

IV. TECHNICAL OVERVIEW

As explained above, we consider a chain of t = O(log n) re-

cursively defined (candidate) HSGs H0,H1, . . . ,Ht operating

over different input lengths. These HSGs are obtained from the

recent construction of Chen and Tell [3], which we informally

describe next. Recall that we use QM to denote the easy and

dense property over inputs of length M .

The Chen–Tell [3] targeted HSG (“ideal version”): Let

c ≥ 1 be a large enough constant, and let f : {1n} → {0, 1}n
be a family of unary functions computed by (uniform) Boolean

circuits of size T = T (n) and depth d = d(n). Then, for every

log T ≤ M ≤ T there is a set H ⊆ {0, 1}M computable in

time T̃ � T c and depth d̃ � d · log(T) +M c

such that, if QM ⊆ {0, 1}M avoids H, (i.e., QM is dense

but QM ∩ H = ∅), then we can compute f(1n) with high

probability in time (d+ n) ·M c.

In other words, if f admits low-depth circuits, we can

construct a candidate HSG H over length-M inputs such that

breaking the generator H allows us to compute f(1n) in time

poly(n, d,M). For d,M
 T , this can be much faster than

the original time T required to compute f .

The statement above differs from the results in [3] (stated

for unary functions) in two important ways. First, the claimed

upper bound on T̃ (the running time of the HSG) is not

obtained by [3] for all choices of M . Secondly, we have

not formally specified the uniformity of the family of circuits

computing f . While these are crucial points in [3] and when

proving our result, for simplicity we will assume for now that

this upper bound can be achieved and omit the discussion on

uniformity.

5While we do not explore this direction in the current work, we believe
that our improvement on the Chen-Tell tradeoff can be used to improve
the tradeoff from [41, Theorem 5.2 and Theorem 5.3], thus getting a better
uniform hardness vs randomness connection in the low-end regime.

1264

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

Bootstrapping the win-win argument: We now review

the idea discussed in Section III, using notations that will be

more convenient for the remainder of this technical overview.

Fix an arbitrary n ∈ N≥1, and consider the corresponding

property Qn ⊆ {0, 1}n decided by AQ(x) on inputs of length

n. Our initial H0 is trivial and set to {0, 1}n. (Intuitively, this

corresponds to the first case of the argument in [2] sketched

above where LTV ∈ BPP.) Consider now a “brute-force”

algorithm BF(1n) that computes the first x ∈ H0 such that

AQ(x) = 1. We let f(1n) � BF(1n) in the Chen–Tell HSG.

Note that f(1n) can be uniformly computed in time T = 2O(n)

and depth d = poly(n), since AQ(x) runs in polynomial

time and all elements of H0 can be tested in parallel. We

set M(n) � nβ , where β > 1 is a large enough constant. Let

H1 ⊆ {0, 1}M be the candidate HSG provided by Chen–Tell.

Note that H1 can be computed in time T̃ = 2O(n) and depth

d̃ = poly(n).

Next, we consider a win-win argument based on whether

QM avoids H1. If this is the case, then Chen–Tell guarantees

that we can compute f(1n) = BF(1n) ∈ Qn with high

probability in time (d + n) ·M c = poly(n). In other words,

we can pseudodeterministically produce a string in Qn in

polynomial time. On the other hand, if H1 ∩ QM 	= ∅, we

now have a set H1 of strings of length M = nβ that contains

a string in QM and that can be deterministically computed in

time 2O(n). That is, we are back to the former case, except

that we can compute H1 (a set containing at least one M -bit

prime) in time much faster than 2O(M). Crucially, in contrast

to the approach of [2], the Chen–Tell HSG does not limit us

to the use of the special language LTV, effectively allowing

us to reapply the same argument (with a speedup) over a

larger input length.

In the next subsection, we discuss the “bootstrapping” and

its parameters in more detail and explain how it gives a

polynomial-time pseudodeterministic construction, assuming

we have the ideal version of [3] described above.

A. Infinitely-Often Pseudodeterministic Polynomial-Time Con-
structions

Let n0 ∈ N be an “initial” input length, and t = O(log n0)
be a parameter. For each 1 ≤ i ≤ t, we define the i-th input

length to be ni � nβ
i−1, for a large enough constant β > 1. Our

goal is to design a pseudodeterministic algorithm for finding

elements in Q that will be correct on at least one of the input
lengths n0, n1, . . . , nt. On each input length ni we will have:

1) the property Qni
that we want to hit;

2) a candidate hitting set generator Hi ⊆ {0, 1}ni ; and

3) the brute-force algorithm BFi : {1ni} → {0, 1}ni , which

iterates through all elements in Hi and outputs the first

element that is in Qni .

Note that BFi is completely defined by Hi. Suppose that

Hi can be computed (deterministically) in time Ti and depth

di, then BFi can also be computed (deterministically) in

time T ′
i � Ti · poly(ni) and depth d′i � di · poly(ni). As

discussed above, initially, H0 � {0, 1}n0 is the trivial hitting

set generator, T0 � 2O(n0), and d0 � poly(n0).
For each 0 ≤ i < t, we let f(1ni) � BFi,M � ni+1,

and invoke the Chen–Tell HSG to obtain the HSG Hi+1 ⊆
{0, 1}ni+1 . Recall that Chen–Tell guarantees the following:

Suppose that QM = Qni+1
avoids the HSG Hi+1, then one

can use Qni+1 to compute f(1ni) with high probability in time

poly(d′i, ni,M) ≤ poly(di, ni), by our choice of parameters.

Recall that if Hi indeed hits Qni
, then f(1ni) implements

the brute-force algorithm and outputs the first element in Hi∩
Qni

(i.e., a canonical element in Qni
). To reiterate, Chen–Tell

gives us the following win-win condition:

• either Qni+1
avoids Hi+1, in which case we obtain

a probabilistic algorithm that outputs a canonical ele-

ment in Qni (thus a pseudodeterministic algorithm) in

poly(di, ni) time;

• or Hi+1 hits Qni+1
, in which case we obtain a hitting set

Hi+1 that hits Qni+1
, thereby making progress on input

length ni+1.

The HSG Hi+1 can be computed in time Ti+1 � (T ′
i)

c

and depth di+1 � d′i · log T ′
i + nc

i+1. Crucially, although T0

is exponential in n0, it is possible to show by picking a large

enough β > 1 that the sequence {ni}i∈N grows faster than the

sequence {Ti}i∈N, and eventually when i = t = O(log n0),
it will be the case that Tt ≤ poly(nt) and we can apply the

brute-force algorithm to find the first element in Ht that is in

Qnt
in time polynomial in nt.

A more precise treatment of the growth of the two sequences

{ni} and {Ti} are as follows. There is some absolute constant

α ≥ 1 such that T0 ≤ 2αn0 and

Ti+1 ≤ Tα
i (for each 0 ≤ i < t).

We set β � 2α (recall that each ni+1 = nβ
i). It follows from

induction that for each 0 ≤ i ≤ t,

Ti+1 ≤ Tαi

0 = 2α
i+1n0 and ni+1 = nβ

i = nβi+1

0 = n
(2α)i+1

0 .

Since
log Tt

log nt
≤ αtn0

(2α)t log n0
=

n0

2t log n0
,

it follows that when t ≈ log(n0/ log n0), Tt will be com-

parable to nt (rather than 2nt). Similarly, one can show that

di ≤ poly(ni) for every i ≤ t.
Informal description of the algorithm and correctness:

To wrap up, we arrive at the following pseudodeterministic

algorithm that is correct on at least one of the input lengths

n0, n1, . . . , nt. On input length ni, if i = t, then we use

poly(Tt) ≤ poly(nt) time to find the first string in Hi that

is also in Qni
(i.e., simulate BFi); otherwise, use Qni+1

as

a distinguisher for the Chen–Tell hitting set Hi and print the

output of BFi in poly(ni, di) ≤ poly(ni) time. To see that our

algorithm succeeds on at least one ni, consider the following

two cases:

1) Suppose that Ht indeed hits Qnt . Then clearly, our

algorithm succeeds on input length nt.

1265

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

2) On the other hand, suppose that Ht does not hit Qnt
.

Since our trivial HSG H0 hits Qn0 , there exists an index

0 ≤ i < t such that Hi hits Qni but Qni+1 avoids Hi+1.

Since Qni+1
avoids Hi+1, Chen–Tell guarantees that we

can speed up the computation of BFi using Qni+1
as an

oracle. Since Hi hits Qni
, the output of BFi is indeed a

canonical element in Qni
. It follows that our algorithm

succeeds on input length ni.

This completes the sketch of the algorithm and its correctness.

We note that while this exposition explains how the second

bullet of Theorem 1 is achieved, it does not address the

behavior of the algorithm on other input lengths (i.e., the first

bullet in the same statement). For simplicity, we omit this

here and refer to the formal presentation in Section 3 of the

full version.6

While the aforementioned construction conveys the gist

of our approach, there are two important issues with our

presentation. Firstly, as explained before, the results of [3]

do not achieve the ideal parameters of the HSG stated

above. Secondly, we have only vaguely discussed the circuit
uniformity of the function f(1n). The uniformity of f is

critical for the reconstruction procedure of [3] to run in time

comparable to the circuit depth of f . On the other hand, since

our HSGs and functions f (corresponding to the algorithm

BF) are recursively defined, the circuit uniformity of the [3]

generator itself becomes another critical complexity measure

in the proof.

In the next subsection, we discuss the Chen–Tell generator

in more detail and explain how to obtain an improved gener-

ator construction satisfying our requirements.

B. Improving the Chen–Tell Targeted Hitting Set Generator

The uniform hardness-to-randomness framework of Chen–

Tell builds on two important ingredients:7

1) A layered-polynomial representation of a shallow uni-

form circuit.

2) A hitting set generator with a uniform learning recon-
struction algorithm.

Layered-polynomial representation: We now discuss the

first ingredient. Let f : {0, 1}n → {0, 1}n be a logspace-

uniform circuit family of size T (n) and depth d(n).8 Let

M : N → N be the parameter for output length. Building on

the doubly efficient interactive proof system by [42] (and its

subsequent simplification by [43]), for any z ∈ {0, 1}n, [3]

showed that there is a sequence of polynomials {P z
i }i∈[d′] for

d′ = d · polylog(T) with the following nice properties:

6Alternatively, the guarantee from the first bullet of Theorem 1 can always
be achieved via a general argument. We refer to [2, Proposition 2] for the
details.

7Below we will focus on the high-level picture of the Chen–Tell framework
without diving into too many details. Our presentation is also somewhat
different from the original presentation in [3].

8Intuitively, a circuit family is logspace-uniform if each circuit in the family
can be printed by a fixed machine that runs in space that is of logarithmic
order in the size of the circuits. See Section 2.3 of the full version for the
precise definition of logspace-uniform circuits.

• (Arithmetic setting.) Let F be a finite field of size M c

for a large universal constant c > 1, and let m be of order
log T
logM . All the P z

i map F
m to F and have total degree at

most M .

• (Base case.) There is an algorithm Base such that, given

the input z ∈ {0, 1}n and �w ∈ F
m, computes P z

1 (�w) in

poly(M) time.

• (Downward self-reducibility.) There is an oracle algo-

rithm DSR that, given input i ∈ {2, . . . , d′} and �w ∈ F
m,

together with the oracle access to P z
i−1(·), computes

P z
i (�w) in poly(M) time.

• (Faithful representation.) There is an oracle algorithm

OUT that, given input i ∈ [n] and oracle access to P z
d′ ,

outputs f(z)i in poly(M) time.

Intuitively, these polynomials form an encoded version of

the computation of f in the sense that they admit both down-
ward self-reducibility and random self-reducibility: every P z

i

has low degree and hence admits error correction properties;

downward self-reducibility follows from definition.

We note that the proof of this result depends in a crucial way

on the logspace-uniformity of the circuit family computing f .

(This allows one to arithmetize a formula of bounded size

that computes the direct connection language of the circuit,

while also controlling the circuit uniformity of the resulting

polynomials.)

Hitting set generators with a uniform learning recon-
struction algorithm: The second ingredient of [3] is the Nisan-

Wigderson generator combined with Reed-Muller codes [40],

[44]. The most important property of this generator is that

it supports a uniform learning reconstruction algorithm. In

more detail, for a polynomial P : Fm → F, the generator

NWP takes s = O
(

log2 T
logM

)
bits as seed, such that there is

a uniform oracle algorithm R (for “reconstruction”) where the

following holds. Given oracle access to both P and an oracle

D : {0, 1}M → {0, 1} that distinguishes NWP (Us) from the

uniform distribution, RP,D runs in poly(M) time and with

high probability outputs a polynomial-size D-oracle circuit

that computes P .

Now, the hitting set Hf (z) is defined as

Hf (z) �
⋃

i∈[d′]

NWP z
i .

The uniform reconstruction algorithm: One key observa-

tion here is that if a distinguisher D : {0, 1}M → {0, 1} avoids

Hf (z), meaning that D accepts a large fraction of inputs from

{0, 1}M but rejects all strings in Hf (z), then clearly D also

distinguishes all NWP z
i (Us) from the uniform distribution.

Following [34], [3] then shows that there is a uniform oracle

algorithm Rf that takes input z ∈ {0, 1}n and any “avoider”

D of Hf (z) as oracle, and outputs f(z) with high probability.

In more detail, Rf works as follows:

1) It is given input z ∈ {0, 1}n and oracle access to an

avoider D : {0, 1}M → {0, 1} of Hf (z).
2) For every i ∈ {2, . . . , d′}:

1266

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

a) The goal of the i-th step is to construct a poly(M)-
size D-oracle circuit Ci that computes P z

i .

b) It runs the learning reconstruction algorithm RP z
i ,D

to obtain a poly(M)-size D-oracle circuit. To answer

queries to P z
i , we first run the algorithm DSR to

convert them into queries to P z
i−1. Next, when i = 2,

we answer these queries by calling Base directly, and

when i > 2 we answer these queries by evaluating our

D-oracle circuit Ci−1.

3) For every i ∈ [n], output OUTCD
d′ (i).

Issue with the original Chen–Tell construction: Super-
logarithmic seed length of NW: The main issue with the

construction above is that NWP z
i has seed length O

(
log2 T
logM

)
.

In particular, this means that when logM ≤ o(log T), the

hitting set Hf (z) has super-polynomial size, and therefore

cannot be computed in poly(T) time as in the “ideal version”

of [3] stated above.9 Hence, to improve the computation time

of Hf (z) to poly(T), we need an HSG with seed length

O(log T) for all possible values of M , together with a uniform

learning reconstruction, when it is instantiated with polynomi-

als. Jumping ahead, we will replace NW with the Shaltiel–

Umans Hitting Set Generator [4], obtaining an optimized

version of the Chen–Tell generator with better parameters.

However, the original generator from [4] does not provide a

uniform learning reconstruction procedure. By a clever use of

the classical construction of a cryptographic pseudorandom
generator from a one-way permutation and of another idea,

we managed to modify their construction to allow a uniform

learning reconstruction. See the next subsection for more

details.

Controlling the circuit uniformity of the optimized Chen–
Tell generator: As stressed above, in order to construct a

layered-polynomial representation for f with the aforemen-

tioned parameters, it is crucial that f admits a logspace-

uniform circuit family. Since we will rely on multiple appli-

cations of the generator, and each new function BF on which

the result is invoked contains as a subroutine the code of the

previous generator, we must upper bound the circuit uniformity
of our optimized Chen–Tell generator. This turns out to require

a delicate manipulation of all circuits involved in the proof

and of the Turing machines that produce them, including the

components of the Shaltiel–Umans generator. For this reason,

whenever we talk about a Boolean circuit in the actual proof,

we also bound the description length and space complexity

of its corresponding machine. Additionally, as we manipulate

a super-constant number of circuits (and their corresponding

machines) in our construction, we will also consider the

complexity of producing the code of a machine M2 encoding

a circuit C2 from the code of a machine M1 encoding a

circuit C1 (see, e.g., the “Moreover” part in the statement

of Theorem 3.1 in the full version). The details are quite

9Indeed, if we rely on the original Chen–Tell construction to implement
the bootstrapping method described above, we would only obtain a quasi-
polynomial-time pseudodeterministic construction, instead of a polynomial-
time one.

tedious, but they are necessary for verifying the correctness

and running time of our algorithm. In order to provide some

intuition for it, we notice that as we move from the HSG

Hi to Hi+1, we also increase the corresponding input length

parameter from ni to ni+1 = nβ
i . While there is an increase

in the uniformity complexity, it remains bounded relative to

the new input length. (Think of a truncated geometric series

whose value is dominated by the complexity over the current

input length.) We omit the details in this proof overview.

Non-black-box behavior: We note that the recursive

application of the Chen–Tell generator is responsible for

the fully non-black-box behavior of our pseudodeterministic

construction. Indeed, since we invoke the Chen–Tell generator

on each function BF (which contains the code of the algorithm

AQ deciding property Q as a subroutine), the collection of

strings in the hitting set generator depends on the layered-

polynomial representation that is obtained from the code
of BF. As a consequence, our construction has the unusual

feature that the canonical outputs of the algorithm B in

Theorem 1 are affected by the code of AQ. In other words,

by using a different primality test algorithm (or by making

changes to the code implementing the AKS routine), one

might get a different n-bit prime!

The parameters of our hitting set generator appear in Section

3 of the full version. The proof of the result is given in Section

5 of the full version.

C. Modified Shaltiel–Umans Generator with Uniform Learn-
ing Reconstruction

As explained above, in order to complete the proof of

Theorem 1 we need to design a variant of the Shaltiel–

Umans generator [4] with a uniform learning reconstruction
procedure.

The Shaltiel–Umans generator takes as input a low-degree

polynomial P : Fm
p → Fp (in our case p will be a power of

2) and produces a set of binary strings (which is supposed to

be a hitting set). The construction of this generator also relies

on “generator matrices”. A matrix A ∈ F
m×m
p is a generator

matrix if it satisfies {Ai ·�1}1≤i<pm = F
m
p \{�0}. Roughly put,

the matrix A can be thought of as performing multiplication

with a generator of the multiplicative group of Fpm .

Recall that a generator has a uniform learning reconstruction

algorithm if the following holds. Given an algorithm D that

avoids the output of the generator constructed using P , as well

as P itself, we can uniformly and efficiently generate (with high

probability) a D-oracle circuit that computes the polynomial

P . (In other words, we can query P while producing the

circuit, but the circuit itself does not have access to P .)

However, the reconstruction procedure provided by the orig-

inal Shaltiel–Umans generator only guarantees the following:

If the generator is constructed using P and some generator

matrix A, then using an algorithm D that avoids the output

of the generator, and given the matrix A and oracle access to

P , one can obtain a (D-oracle) circuit C : [pm − 1] → F
m
p

1267

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

such that C(i) = P (Ai · �1).10 (For the precise statement, see

Theorem 4.9 of the full version.) That is, this reconstruction

is not a uniform learning algorithm in the following sense:

1) It needs to know the matrix A (which can be viewed as

non-uniform advice).

2) Given oracle access to P , it only learns a circuit that

computes the mapping i �→ P (Ai ·�1), instead of a circuit

that computes P (�x) on a given �x ∈ F
m
p .

We now describe how to modify the Shaltiel–Umans generator

to make its reconstruction a uniform learning algorithm.

For the first issue, our idea is that, instead of using a

generator matrix that is obtained by brute-force search as

in the original construction (we note that the reconstruction

cannot afford to perform the brute-force search due to its

time constraints), we will use a generator matrix that is from

a small set of matrices that can be constructed efficiently.

More specifically, using results about finding primitive roots of

finite fields (e.g., [45]), we show that one can efficiently and

deterministically construct a set S of matrices that contains

at least one generator matrix. The advantage is that the

reconstruction algorithm can still afford to compute this set

S. Note that although we don’t know which matrix in S is

a valid generator matrix (as verifying whether a matrix is a

generator matrix requires too much time), we can try all the

matrices from S, and one of them will be the correct one. This

allows us to obtain a list of candidate circuits, one of which

computes P (provided that we can also handle the second

issue, which will be discussed next). Then by selecting from

the list a circuit that is sufficiently close to P (note that given

oracle access to P , we can easily test whether a circuit is close

to P by sampling) and by using the self-correction property of

low-degree polynomials, we can obtain a circuit that computes

P exactly.

With the above idea, we may now assume that in the

reconstruction we know the generator matrix A used by the

Shaltiel–Umans generator. Next, we describe how to handle

the second issue. Recall that the reconstruction algorithm of

the Shaltiel–Umans generator gives a circuit C such that

C(i) = P (Ai · �1), for i ∈ [pm − 1], and we want instead

a circuit that given �x ∈ F
m
p computes P (�x). Now suppose

given �x ∈ F
m
p \{�0}, we can also efficiently compute the value

i ∈ [pm − 1] such that Ai ·�1 = �x. Then we would be able to

combine this with C to get a circuit E that computes P , i.e.,

if �x = �0 then E outputs P (�0) (where the value P (�0) can be

hardcoded); otherwise, E computes i for �x as described above

and then outputs C(i). However, the task of finding such i
given A and �x is essentially the discrete logarithm problem,

for which no efficient algorithm is known!

A classical result in cryptography is that one can construct a

pseudorandom generator based on the hardness of the discrete

logarithm problem (see, e.g., [46], [47]). More generally,

given a permutation f whose inverse admits random self-

10In fact, the circuit only computes P (Ai · �v) for some �v output by the

reconstruction algorithm. We assume �v = �1 here for simplicity.

reducibility11, one can construct a generator G based on f
so that if there is a distinguisher D that breaks G, then it can

be used to invert f via a uniform reduction. Our idea is to

consider the bijection f : [pm − 1] → F
m
p \ {�0} such that for

each i ∈ [pm − 1], f(i) = Ai · �1 (where the random self-

reducibility of f−1 follows easily from that of the discrete

logarithm problem), and try to construct a pseudorandom

generator G based on f . We then combine the output of G
with that of the Shaltiel–Umans generator constructed with the

polynomial P and the generator matrix A. Now if there is an

algorithm D that avoids this combined generator, which means

D simultaneously avoids both the Shaltiel–Umans generator

and the generator G, then D can be used to obtain

• a circuit C such that C(i) = P (Ai · �1) for every i ∈
[pm − 1], and

• a circuit C ′ that inverts f , i.e., C ′(�x) outputs i such that

Ai ·�1 = �x for every �x ∈ F
m
p \ {�0}.

Then it is easy to combine C and C ′ to obtain a circuit that

computes P .
A careful implementation of these ideas allows us to ob-

tain a variant of the Shaltiel–Umans generator with uniform

learning reconstruction, as needed in our optimized Chen–Tell

generator. We refer to Theorem 4.1 in the full version for more

details.
This completes the sketch of the proof of Theorem 1.

Further remarks about the proof: We note that in our

proof the gap between two good input lengths on which

the algorithm outputs a canonical prime can be exponentially

large. It would be interesting to develop techniques to reduce

this gap.
Additionally, the proof assumes the existence of a deter-

ministic polynomial-time algorithm that decides the dense

property. In contrast, the sub-exponential time algorithm from

[2] also works with a dense property that is decidable by

a randomized polynomial-time algorithm. This is caused by

the non-black-box nature of our approach via the Chen-Tell

generator, which employs the code of the algorithm A deciding

the property as part of the description of the generator. Con-

sequently, as alluded to above, changing the code of A could

result in a different canonical output on a given input length.

If A is randomized, fixing the randomness of A is similar

to the consideration of a different algorithm that decides the

property, and it is not immediately clear how to maintain the

pseudodeterministic behaviour in this case.
Finally, we note that the most important guarantee on the

output of the algorithm obtained in Theorem 1 comes from

Item 2. It is possible to achieve the guarantee from Item 1 in

a generic way through a simple argument (see Proposition 2.2

in [2]).
ACKNOWLEDGMENT

Lijie Chen is supported by a Miller Research Fellowship.

Zhenjian Lu is partly supported by an NSERC postdoctoral

11Roughly speaking, a function has random self-reducibility if computing
the function on a given instance can be efficiently reduced to computing the
function for uniformly random instances.

1268

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

fellowship. Igor C. Oliveira received support from the EPSRC

New Horizons Grant EP/V048201/1, the Royal Society Uni-

versity Research Fellowship URF\R1\191059, and the Centre

for Discrete Mathematics and its Applications (DIMAP) at the

University of Warwick. Hanlin Ren received support from DI-

MACS through grant number CCF-1836666 from the National

Science Foundation. Rahul Santhanam received support from

the EPSRC New Horizons Grant EP/V048201/1. This work

was done in part while the authors were visiting the Simons

Institute for the Theory of Computing.

REFERENCES

[1] E. Gat and S. Goldwasser, “Probabilistic search algorithms with unique
answers and their cryptographic applications,” Electronic Colloquium
on Computational Complexity (ECCC), vol. 18, p. 136, 2011. [Online].
Available: https://eccc.weizmann.ac.il/report/2011/136/

[2] I. C. Oliveira and R. Santhanam, “Pseudodeterministic constructions
in subexponential time,” in Symposium on Theory of
Computing (STOC), 2017, pp. 665–677. [Online]. Available:
https://doi.org/10.1145/3055399.3055500

[3] L. Chen and R. Tell, “Hardness vs randomness, revised: Uniform,
non-black-box, and instance-wise,” in IEEE Symposium on Foundations
of Computer Science (FOCS), 2021, pp. 125–136. [Online]. Available:
https://doi.org/10.1109/FOCS52979.2021.00021

[4] R. Shaltiel and C. Umans, “Simple extractors for all min-entropies and
a new pseudorandom generator,” J. ACM, vol. 52, no. 2, pp. 172–216,
2005. [Online]. Available: https://doi.org/10.1145/1059513.1059516

[5] H. Cramér, “On the order of magnitude of the difference between
consecutive prime numbers,” Acta Arithmetica, vol. 2, pp. 23–46, 1936.

[6] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of
Mathematics, vol. 160, no. 2, pp. 781–793, 2004. [Online]. Available:
https://doi.org/10.4007/annals.2004.160.781

[7] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma,” in ACM Symposium on
Theory of Computing (STOC). ACM, 1997, pp. 220–229. [Online].
Available: https://doi.org/10.1145/258533.258590

[8] R. C. Baker, G. Harman, and J. Pintz, “The difference
between consecutive primes. II,” Proc. London Math. Soc.
(3), vol. 83, no. 3, pp. 532–562, 2001. [Online]. Available:
https://doi.org/10.1112/plms/83.3.532

[9] J. Li and T. Yang, “3.1n − o(n) circuit lower bounds for explicit
functions,” in STOC. ACM, 2022, pp. 1180–1193. [Online]. Available:
https://doi.org/10.1145/3519935.3519976

[10] J. C. Lagarias and A. M. Odlyzko, “Computing π(x): An analytic
method,” J. Algorithms, vol. 8, no. 2, pp. 173–191, 1987. [Online].
Available: https://doi.org/10.1016/0196-6774(87)90037-X

[11] T. Tao, E. Croot, III, and H. Helfgott, “Deterministic methods to
find primes,” Math. Comp., vol. 81, no. 278, pp. 1233–1246, 2012.
[Online]. Available: https://doi.org/10.1090/S0025-5718-2011-02542-1

[12] O. Goldreich, S. Goldwasser, and D. Ron, “On the possibilities
and limitations of pseudodeterministic algorithms,” in Innovations in
Theoretical Computer Science (ITCS), 2013, pp. 127–138. [Online].
Available: https://doi.org/10.1145/2422436.2422453

[13] S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam, “On
the pseudo-deterministic query complexity of NP search problems,” in
Computational Complexity Conference (CCC), 2021, pp. 36:1–36:22.
[Online]. Available: https://doi.org/10.4230/LIPIcs.CCC.2021.36

[14] A. Chattopadhyay, Y. Dahiya, and M. Mahajan, “Query
complexity of search problems,” Electronic Colloquium on
Computational Complexity (ECCC), 2023. [Online]. Available:
https://eccc.weizmann.ac.il/report/2023/039/

[15] S. Goldwasser, O. Grossman, S. Mohanty, and D. P. Woodruff,
“Pseudo-deterministic streaming,” in Innovations in Theoretical
Computer Science (ITCS), 2020, pp. 79:1–79:25. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2020.79

[16] V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir,
“Lower bounds for pseudo-deterministic counting in a
stream,” CoRR, vol. abs/2303.16287, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.16287

[17] S. Goldwasser and O. Grossman, “Bipartite perfect matching in
pseudo-deterministic NC,” in International Colloquium on Automata,
Languages, and Programming (ICALP), 2017, pp. 87:1–87:13. [Online].
Available: https://doi.org/10.4230/LIPIcs.ICALP.2017.87

[18] S. Ghosh and R. Gurjar, “Matroid intersection: A pseudo-deterministic
parallel reduction from search to weighted-decision,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), 2021, pp. 41:1–41:16. [Online].
Available: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.41

[19] I. C. Oliveira and R. Santhanam, “Pseudo-derandomizing learning and
approximation,” in International Conference on Randomization and
Computation (RANDOM), 2018, pp. 55:1–55:19. [Online]. Available:
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.55

[20] I. C. Oliveira, “Randomness and intractability in Kolmogorov
complexity,” in International Colloquium on Automata, Languages,
and Programming (ICALP), 2019, pp. 32:1–32:14. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ICALP.2019.32

[21] Z. Lu, I. C. Oliveira, and R. Santhanam, “Pseudodeterministic
algorithms and the structure of probabilistic time,” in ACM Symposium
on Theory of Computing (STOC), 2021, pp. 303–316. [Online].
Available: https://doi.org/10.1145/3406325.3451085

[22] O. Grossman and Y. P. Liu, “Reproducibility and pseudo-
determinism in Log-Space,” in Symposium on Discrete
Algorithms (SODA), 2019, pp. 606–620. [Online]. Available:
https://doi.org/10.1137/1.9781611975482.38

[23] S. Goldwasser, O. Grossman, and D. Holden, “Pseudo-
deterministic proofs,” in Innovations in Theoretical Computer
Science, (ITCS), 2018, pp. 17:1–17:18. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2018.17

[24] M. X. Goemans, S. Goldwasser, and D. Holden, “Doubly-efficient
pseudo-deterministic proofs,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 26, p. 135, 2019. [Online]. Available:
https://eccc.weizmann.ac.il/report/2019/135

[25] O. Grossman, “Finding primitive roots pseudo-deterministically,”
Electronic Colloquium on Computational Complexity
(ECCC), vol. 22, p. 207, 2015. [Online]. Available:
https://eccc.weizmann.ac.il/report/2015/207

[26] P. Dixon, A. Pavan, and N. V. Vinodchandran, “On pseudodeterministic
approximation algorithms,” in Symposium on Mathematical Foundations
of Computer Science (MFCS), 2018, pp. 61:1–61:11. [Online].
Available: https://doi.org/10.4230/LIPIcs.MFCS.2018.61

[27] B. Berger and Z. Brakerski, “Zero-knowledge protocols for search
problems,” in International Conference on Security and Cryptography
for Networks (SCN), 2018, pp. 292–309. [Online]. Available:
https://doi.org/10.1007/978-3-319-98113-0 16

[28] O. Goldreich, “Multi-pseudodeterministic algorithms,” Electronic
Colloquium on Computational Complexity (ECCC), vol. 26, p. 12,
2019. [Online]. Available: https://eccc.weizmann.ac.il/report/2019/012

[29] P. Dixon, A. Pavan, and N. V. Vinodchandran, “Complete problems
for multi-pseudodeterministic computations,” in Innovations in
Theoretical Computer Science (ITCS), 2021. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2021.66

[30] P. Dixon, A. Pavan, J. V. Woude, and N. V. Vinodchandran,
“Pseudodeterminism: promises and lowerbounds,” in ACM Symposium
on Theory of Computing (STOC), 2022, pp. 1552–1565. [Online].
Available: https://doi.org/10.1145/3519935.3520043

[31] J. V. Woude, P. Dixon, A. Pavan, J. Radcliffe, and N. V.
Vinodchandran, “The geometry of rounding,” Electronic Colloquium
on Computational Complexity (ECCC), vol. TR22-160, 2022. [Online].
Available: https://eccc.weizmann.ac.il/report/2022/160

[32] S. Chakraborty, M. Prabhakaran, and D. Wichs, “A map of witness maps:
New definitions and connections,” Cryptology ePrint Archive, Paper
2023/343, 2023. [Online]. Available: https://eprint.iacr.org/2023/343

[33] Z. Lu and I. C. Oliveira, “Theory and applications of probabilistic
Kolmogorov complexity,” Bull. EATCS, vol. 137, 2022. [Online].
Available: http://bulletin.eatcs.org/index.php/beatcs/article/view/700

[34] R. Impagliazzo and A. Wigderson, “Randomness vs time:
Derandomization under a uniform assumption,” Journal of Computer
and System Sciences, vol. 63, no. 4, pp. 672–688, 2001. [Online].
Available: https://doi.org/10.1006/jcss.2001.1780

[35] L. Trevisan and S. P. Vadhan, “Pseudorandomness and average-case
complexity via uniform reductions,” Computational Complexity,
vol. 16, no. 4, pp. 331–364, 2007. [Online]. Available:
https://doi.org/10.1007/s00037-007-0233-x

1269

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

[36] R. M. Karp and R. J. Lipton, “Some connections between nonuniform
and uniform complexity classes,” in ACM Symposium on Theory
of Computing (STOC), 1980, pp. 302–309. [Online]. Available:
https://doi.org/10.1145/800141.804678

[37] R. Kannan, “Circuit-size lower bounds and non-reducibility to sparse
sets,” Inf. Control., vol. 55, no. 1-3, pp. 40–56, 1982. [Online].
Available: https://doi.org/10.1016/S0019-9958(82)90382-5

[38] R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search of an easy
witness: exponential time vs. probabilistic polynomial time,” J. Comput.
Syst. Sci., vol. 65, no. 4, pp. 672–694, 2002. [Online]. Available:
https://doi.org/10.1016/S0022-0000(02)00024-7

[39] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe,
“Super-polynomial versus half-exponential circuit size in the
exponential hierarchy,” in International Computing and Combinatorics
Conference (COCOON), ser. Lecture Notes in Computer Science,
vol. 1627. Springer, 1999, pp. 210–220. [Online]. Available:
https://doi.org/10.1007/3-540-48686-0 21

[40] N. Nisan and A. Wigderson, “Hardness vs randomness,” Journal of
Computer and System Sciences, vol. 49, no. 2, pp. 149–167, 1994.
[Online]. Available: https://doi.org/10.1016/S0022-0000(05)80043-1

[41] L. Chen, R. D. Rothblum, and R. Tell, “Unstructured hardness
to average-case randomness,” in 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022. IEEE, 2022, pp. 429–437. [Online].
Available: https://doi.org/10.1109/FOCS54457.2022.00048

[42] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” Journal of the
ACM, vol. 62, no. 4, pp. 27:1–27:64, 2015. [Online]. Available:
https://doi.org/10.1145/2699436

[43] O. Goldreich, “On the doubly-efficient interactive proof
systems of GKR,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 24, p. 101, 2017. [Online]. Available:
https://eccc.weizmann.ac.il/report/2017/101

[44] M. Sudan, L. Trevisan, and S. P. Vadhan, “Pseudorandom generators
without the XOR lemma,” J. Comput. Syst. Sci., vol. 62, no. 2, pp. 236–
266, 2001. [Online]. Available: https://doi.org/10.1006/jcss.2000.1730

[45] V. Shoup, “Searching for primitive roots in finite fields,” Mathematics
of Computation, vol. 58, no. 197, pp. 369–380, Jan. 1992.

[46] M. Blum and S. Micali, “How to generate cryptographically strong
sequences of pseudo-random bits,” SIAM J. Comput., vol. 13, no. 4, pp.
850–864, 1984. [Online]. Available: https://doi.org/10.1137/0213053

[47] A. C. Yao, “Theory and applications of trapdoor functions
(extended abstract),” in IEEE Symposium on Foundations of
Computer Science (FOCS), 1982, pp. 80–91. [Online]. Available:
https://doi.org/10.1109/SFCS.1982.45

1270

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 19,2024 at 22:11:23 UTC from IEEE Xplore. Restrictions apply.

