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ABSTRACT

High-entropy alloys (HEAs) with significant magnetocaloric effects (MCEs) have attracted widespread attention due to their potential
magnetic refrigeration applications over a much more comprehensive temperature range with large refrigerant capacity (RC). However, most
of them are metallic glasses (MGs) with problems of limited size, resulting in the difficulty of further applications. Therefore, research on
HEAs with crystalline structures and giant MCE is urgently needed. In this paper, GdErHoCoM (M¼Cr and Mn) rare-earth HEA ingots
with orthorhombic structures are developed, and their magnetic behavior and MCE are studied in detail. Phase investigations find that the
main phase of GdErHoCoM ingots is probably (GdErHo)Co with an orthorhombic Ho3Co-type structure of a space group of Pnma. The sec-
ondary phases in GdErHoCoCr and GdErHoCoMn are body-center-cubic Cr and Mn-rich HoCo2-type phases, respectively. Magnetic inves-
tigations reveal that both ingots undergo a first-order magnetic phase transition below their respective Neel temperatures. Above their
respective Neel temperatures, a second-order transition is observed. The Neel temperatures are 40 and 56K for GdErHoCoCr and
GdErHoCoMn, respectively. Additionally, the GdErHoCoCr and GdErHoCoMn ingots exhibit maximum magnetic entropy changes and RC
values of 12.29 J/kg/K and 746 J/kg and 10.13 J/kg/K and 606 J/kg, respectively, under a magnetic field of 5 T. The ingots GdErHoCoM
(M¼Cr and Mn) show excellent MEC properties and can be manufactured easily, making them promising for magnetic refrigerant
applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0196758

The magnetic refrigeration technology, using the magnetocaloric
effect (MCE) for refrigeration, has attracted widespread attention due
to its many extraordinary advantages, such as high efficiency, environ-
mental friendliness, and great silence.1–3 To achieve refrigeration, mag-
netic refrigeration materials go through periodic heat absorption and
release during demagnetization and magnetization processes; there-
fore, materials with a large MCE and refrigerant capacity (RC) are in
urgent demand for the development of magnetic refrigeration technol-
ogy.4,5 In recent years, high-entropy alloys (HEAs),6,7 which contain
five or more elements with equal or near-equal atomic percentages,

have exhibited outstanding magnetocaloric properties due to their
complicated structures,8 diverse components,9–11 MCE, and RC.12–15

Among them, the rare-earth-based (RE) HEAs, such as
GdTbHoErLaY,16 RErHoTb (R¼Gd and Dy),14 ScGdTbDyHo,17 and
HoErCoAlR (R¼Gd, Dy, and Tm),13 have drawn the attention due to
their large MCE over a much wide temperature range with large RC.
These RE-HEAs can be divided into metallic glasses18 and crystalline
according to their crystallization. Until now, most known large MCE-
HEAs are metallic glasses (MGs), including RErHoTb (R¼Gd and
Dy), ScGdTbDyHo, and HoErCoAlR (R¼Gd, Dy, and Tm). Among
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them, the HoErCoAlR (R¼Gd, Dy, and Tm) MG-HEA exhibits out-
standing comprehensive properties, including magnetic entropy
change (11.2 J/kgK), large RC (627 J/kg), and almost no magnetic hys-
teresis.13 However, MG-HEAs require rapid cooling during prepara-
tion, which limits their size and results in the difficulty of further
applications.14,17,18 The currently known crystalline HEAs with a large
MEC are very scarce, which are mainly GdTbHoErLaY16 series HEAs
and FeMnNiGeSi9 series HEAs with a hexagonal-close-packed (HCP)
structure, the FeNiGaMnSi10 HEA with a body-centered-cubic (BCC)
structure, and the Mn20Cr14Ni33Ge25Si8

19 HEA with an orthorhombic
structure. Therefore, the development of crystalline RE-HEAs and fur-
ther magnetic investigation are urgently demanded. In this study,
orthorhombic-structured GdErHoCoM (M¼Cr and Mn) RE-HEA
ingots were developed and analyzed for their magnetic behavior, crys-
talline structure, andMCE.

The ingots of GdErHoCoM (M¼Cr and Mn) were prepared by
arc melting with high-purity argon using pure Gd, Er, Ho, Co, Cr, and
Mn with a purity over 99.9wt.%. Before melting, Ti was pre-melted to
reduce the oxygen content. The microstructures were studied by
Phenom XL scanning electron microscopy (SEM) at an accelerating
voltage of 15 keV, and energy-dispersive spectroscopy (EDS) was used
to test the compositions. X-ray diffractions (XRD) were measured by a
Rigaku Ultima IV diffractometer employing Co-Ka radiation at room
temperature, and the diffraction angle (2h) was collected from 20� to

80�. The magnetic properties were tested by a DynaCoolTM Quantum
Design physical property measurement system (PPMS). The thermo-
magnetic curves were tested at zero field cooling (ZFC) and then field
cooling (FC), during which the sample was first cooled without a mag-
netic field to 2K, and then the data were collected during heating to
300K with an applied field of 100Oe and cooling from 300 to 2K. The
isotherm magnetization curves were measured from 0 to 50 kOe at
preset temperatures.

Figure 1 shows the SEM-EDS micrographs and XRD patterns of
the GdErHoCoM (M¼Cr and Mn) ingots, and further spot analyses
on the phases based on 6–10 sites of each phase are summarized in
Table I. The SEM micrographs of Figs. 1(a) and 1(b) clearly show that
both ingots have two phases. Figure 1(c) presents that the main phase
of both ingots is an orthorhombic Ho3Co-type phase of a space group
of Pnma, the first orthorhombic RE-HEA system with a large MEC
that has ever been found. Combined with the results of Table I, which
exhibits that the percentages of Ho, Er, Gd, and Co are approximately
similar, the molecular formula of the main phase in both ingots can be
speculated to be (GdErHo)Co. Moreover, in GdErHoCoCr ingots, the
morphology of the secondary phase in Fig. 1(a) exhibits a dendritic
structure, where the content of Cr is over 94.6 at.%. In the XRD pat-
tern of Fig. 1(c), two diffraction peaks belonging to the (110) and (310)
planes of body-center-cubic (BCC) Cr with an Im-3m structure are
found at 2h¼ 52.074� and 76.699�, respectively. Therefore, the sec-
ondary phase of GdErHoCoCr ingots can be identified as pure Cr. In
GdErHoCoMn ingots, the secondary phase looks like a blocky struc-
ture with around 40 at.% of Mn, along with other elements. Three dif-
fraction peaks (2h¼ 23.627�, 39.210�, and 46.274�) were identified
from the HoCo2-type structure with a C15 cubic structure, in addition
to the main phase. It is evident from the SEM-EDS mapping micro-
graphs and XRD peaks that the GdErHoCoMn alloy contains a larger
quantity of HoCo2-type phase compared to the GdErHoCoCr alloy.
This is indicated by the higher XRD peaks and larger area contents of
the HoCo2-type phase in the micrographs. Additionally, the
GdErHoCoCr alloy contains BCC Cr.

Figure 2(a) shows the curves of magnetization with temperature
(MT) at zero field cooling (ZFC) and field cooling (FC) magnetization
of GdErHoCoM (M¼Cr and Mn) ingots under a 100Oe magnetic
field in the temperature range from 2 to 300K. Thermal hysteresis is
typically not observed in MT curves, which can prevent energy loss
and improve energy utilization during refrigeration cycles. Both ingots

FIG. 1. SEM-EDS micrographs of the GdErHoCoCr (a) and GdErHoCoMn (b)
ingots and their XRD patterns (c).

TABLE I. The compositions of different phases by spot analyses of EDS (at. %).

Elements

GdErHoCoCr GdErHoCoMn

Main phase Secondary phase Main phase Secondary phase

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Cr 0.3 0.2 94.6 3.4 � � � � � � � � � � � �
Mn � � � � � � � � � � � � 3.9 2.9 37.2 6.4
Co 19.1 3.5 1.4 0.6 15.5 1.4 11.1 0.5
Gd 24.0 2.9 0 0 25.6 1.3 6.8 2.8
Ho 28.1 1.9 2.5 1.7 28.2 0.8 21.8 0.6
Er 28.7 1.3 1.4 1.2 26.8 1.0 20.1 0.7
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exhibit a typical antiferromagnetic (AFM) to paramagnetic (PM) phase
transition, with Neel temperatures (TN) calculated at 40K for
GdErHoCoMn and 56K for GdErHoCoCr. Another transition near
200K in the GdErHoCoMn ingot is found. Although the crystal struc-
ture of the secondary phase could be identified as a HoCo2-phase by
XRD, the exact compositions are complex to confirm due to the severe
overlap of the spectral peaks of rare-earth elements in EDS.
Additionally, the Curie temperatures of RM2 (R¼Gd, Er, and Ho;
M¼Co and Mn) alloy range from about 32 to 406K (32.2K for
ErCo2,

20 35K for GdMn2,
21 75K for HoCo2,

22 and 406K for GdCo2
23)

Based on the available evidence, it is likely that the phase transition
occurring around 200K is related to the HoCo2-type transition.
Moreover, an apparent splitting between the ZFC and FC curves is
found below their Neel temperatures, indicating that the spin state is
sensitive to the external magnetic field. This suggests that the magnetic
states differ with or without an external magnetic field. This phenome-
non is also observed in the TbDyHoEr alloy.24

Figures 2(b)–2(d) show the fitting of the temperature dependence
of the magnetic susceptibility (v�1–T) curves of GdErHoCoM (M¼Cr
andMn) ingots under a field of 100Oe by the Curie–Weiss law16

v�1 ¼ T � hP
C

; (1)

where v�1 is the reciprocal of magnetic susceptibility, T is the tempera-
ture, hP is the paramagnetic Curie temperature, and C is the Curie con-
stant. The paramagnetic Curie temperature in the high-temperature
range near TN for the GdErHoCoM (M¼Cr and Mn) is found
hP ¼ 46.4 and hP ¼ 39.1K, respectively. In the GdErHoCoMn ingot
near 200K, the v�1–T curve has another positive hP , that is, 196.9K.
Typically, the value of hP of the antiferromagnet is negative,25–28 and
the positive value of hP is rarely reported.

29,30 The positive values of hP
of the GdErHoCoM (M¼Cr and Mn) ingots may be ascribed to the
instability of AFM under a large magnetic field, resulting in the ferro-
magnetic (FM) interaction in the two ingots.24

Figures 3(a) and 3(b) present the magnetization (MH) curves of
the GdErHoCoM (M¼Cr and Mn) ingots at the applied magnetic
field of 5T with a wide temperature range from 5 to 200K and from 5
to 250K for GdErHoCoCr and GdErHoCoMn, respectively. It could
be found that with the increased magnetic field, the saturation mag-
netic moment decreases in both ingots. Yet generally, the saturation
magnetic moment of the GdErHoCoCr ingot is larger than that of the
GdErHoCoMn ingot at the same temperature. Moreover, the magneti-
zation of the two ingots gradually approaches saturation, showing a
ferromagnetic feature at low temperatures below TN. While at high
temperatures above TN, the MH curves gradually turn to straight lines
with the increase in temperature, indicating a transition from a mag-
netic order to disorder,31 showing a paramagnetic feature. Figures
3(c)–3(d) show the enlarged curves of Figs. 3(a) and 3(b) from 0 to 2T
below TN. It could be seen that the initial magnetization curves experi-
ence a nonlinearly sharp increase at the initial stage and then reach

FIG. 2. The MT curves at ZFC and FC magnetization (a) and the fitting of v�1–T by
the Curie–Weiss law at 100 Oe of GdErHoCoM (M¼Cr and Mn) ingots (b)–(d).

FIG. 3. Isothermal magnetization (MH) curves of GdErHoCoM (M¼Cr and Mn)
ingots at different temperatures from 0–5 T (a) and (b) and their enlarged images
from 0–2 T (c) and (d); Arrott curves above (e) and (f) and below (g) and (h) TN.
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their saturation, indicating that the metamagnetic transition below TN
is from AFM to FM induced by the external magnetic field, which
leads to the split in Fig. 2(a) below TN. The Arrott curves above TN, as
shown in Figs. 3(e) and 3(f) present positive slopes, and there is a
second-order magnetic phase transition (SOMT) from AFM to PM in
both ingots. The Arrott curves below TN are presented in Figs. 3(g)
and 3(h). The S-shape curves or negative slopes indicate that the phase
transition from AFM to PM below TN is the first-order magnetic phase
transition (FOMT)32 induced by the magnetic field.

The isothermal magnetic entropy change (DSM), a key parameter
to judge the magnetic cooling capacity, is calculated from the isother-
mal magnetization curves by the Maxwell equation of the two ingots,
as follows:33

DSM T;Hð Þ ¼
ðHmax

H0

@M
@T

� �
H
dH; (2)

whereM is the magnetization, T is the temperature,H is the magnetic
field, and H0 and Hmax are the initial and final values of the magnetic
field, respectively. Here, H0 ¼ 0 and Hmax ¼ 5 T. To obtain the values
of DSM , the numerical approximation is used34

DSM Ti;Hkð Þ ¼
Xj¼k�1

j¼0

M Tiþ1;Hjð Þ �M Ti;Hjð Þ
Tiþ1 � Ti

Hjþ1 � Hjð Þ; (3)

where M Ti;Hjð Þ is the magnetization at a temperature, Ti, under a
magnetic field, Hj. The error of the values of DSM is less than 7% by
numerical approximation.35

The (�DSM)�T curves of GdErHoCoM ingots are presented in
Fig. 4. It is an abnormal phenomenon that the value of �DSM of the
two ingots is negative at low temperatures under the applied field of
1T, which originates from the metamagnetic transitions, as shown in
Figs. 3(c) and 3(d). The negative value of�DSM indicates that the sam-
ple cools when a magnetic field is applied and heats up when the mag-
netic field is removed. In contrast, a positive �DSM value results in a
sample being heated in the presence of a magnetic field and cooled in
its absence. As the increase in temperature, the value of �DSM
increases, reaching a maximum around the Curie temperature, and
then decreases. The maximum values of the magnetic entropy change
of GdErHoCoM (M¼Cr and Mn) ingots are 12.29 and 10.13 J/kg/K
at 57.5K under 5T, respectively. Moreover, the larger maximum of
�DSM of the GdErHoCoCr originates from a larger saturation mag-
netic moment of the GdErHoCoCr ingot, as shown in Figs. 3(a) and
3(b). In addition, the maximum of �DSM values of the GdErHoCoCr

ingots is higher than most known crystalline HEAs,10,14,16,17,24,36–38

MG-HEAs,13,15,24,33,39–55 and only 22.8% lower than 15.91 J/kg/K of
the known highest Er50Co20Al24Y6 MG-HEA,56 indicating its great
potential for the magnetic refrigeration applications.

The RC is another critical parameter to evaluate the magnetic
refrigeration capacity and can be calculated by57

RC ¼ �DSmax
M � dTFWHW ; (4)

where �DSmax
M is the maximum value of the magnetic entropy change

and dTFWHW is the width at half maximum of �DSM in (�DSM)–T
curve. The RC values of GdErHoCoM (M¼Cr and Mn) ingots could
be calculated to reach 746 and 606 J/kg, respectively.

Figure 5 presents the RC vs jDSMjmax of the most knownMEC-HEAs
under a field of 5T that have ever been reported.10,13–17,24,33,36–56,58–79 To
be suitable for magnetic refrigeration applications, materials must
have large RC and jDSMjmax values and, thus, be located closer to the
upper right corner of the relevant graph. It can be observed that the
GdErHoCoM ingots, and particularly the GdErHoCoCr ingots, have
great RC and jDSMjmax synergy when compared to most crystalline
HEAs and MG-HEAs. Based on the composition in the present
work, further optimization in the chemical composition, phase

FIG. 4. The curves of the dependence of
magnetic entropy change on temperature
[(�DSM)�T] of GdErHoCoCr (a) and
GdErHoCoMn ingots (b).

FIG. 5. MCE performance of RC vs jDSMjmax of the most known HEAs and typical
crystal alloys [an fcc structure of La(Fe, Ni)11.5Si1.5 and monoclinic structure of
Ge5Si2Ge2] under a field of 5 T. Literature data were collected from Refs. 10,
13–17, 24, 33, 36–56, and 58–79.
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composition, and heat treatment can still be taken for further prop-
erty elevation. Moreover, the manufacturing process of the
GdErHoCoM ingot is more straightforward than that of the melted
ribbons in many crystalline HEAs and rapid cooling in MG-HEAs.
The large MCE values, as well as the simple ingot manufacturing
process, make GdErHoCoM (M¼Cr and Mn) ingots potential can-
didates for magnetic refrigeration applications.

In summary, orthorhombic GdErHoCoM (M¼Cr and Mn) RE-
HEAs with the giant MCE were developed, and their magnetic behav-
ior, as well as the magnetocaloric effect of GdErHoCoM (M¼Cr and
Mn) HEA ingots, was studied in detail. The main findings include

1. The main phases of both ingots are orthorhombic Ho3Co-type
structures of a space group of Pnma, and their formula probably
is (GdErHo)Co. The secondary phases of GdErHoCoCr and
GdErHoCoMn are pure Cr- and Mn-rich HoCo2-type structures,
respectively.

2. GdErHoCoCr and GdErHoCoMn ingots undergo a first-order
magnetic phase transition below their respective Neel tempera-
tures and a second-order magnetic transition above them, with
no thermal hysteresis. The Neel temperature is 40 K for
GdErHoCoCr and 56K for GdErHoCoMn.

3. The ingots of GdErHoCoCr and GdErHoCoMn exhibit �DSM
and RC values of 12.29 J/kg/K and 746 J/kg and 10.13 J/kg/K and
606 J/kg, respectively, under 5 T. Due to their excellent RC and
jDSMjmax synergy, coupled with a simple manufacturing process,
the GdErHoCoM (M¼Cr and Mn) ingots hold potential as
strong candidates for use in magnetic refrigeration applications.
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