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ABSTRACT

High-entropy alloys (HEAs) with significant magnetocaloric effects (MCEs) have attracted widespread attention due to their potential
magnetic refrigeration applications over a much more comprehensive temperature range with large refrigerant capacity (RC). However, most
of them are metallic glasses (MGs) with problems of limited size, resulting in the difficulty of further applications. Therefore, research on
HEAs with crystalline structures and giant MCE is urgently needed. In this paper, GdErHoCoM (M = Cr and Mn) rare-earth HEA ingots
with orthorhombic structures are developed, and their magnetic behavior and MCE are studied in detail. Phase investigations find that the
main phase of GdErHoCoM ingots is probably (GdErHo)Co with an orthorhombic Ho;Co-type structure of a space group of Pnma. The sec-
ondary phases in GdErHoCoCr and GdErHoCoMn are body-center-cubic Cr and Mn-rich HoCo,-type phases, respectively. Magnetic inves-
tigations reveal that both ingots undergo a first-order magnetic phase transition below their respective Neel temperatures. Above their
respective Neel temperatures, a second-order transition is observed. The Neel temperatures are 40 and 56K for GdErHoCoCr and
GdErHoCoMn, respectively. Additionally, the GdErHoCoCr and GdErHoCoMn ingots exhibit maximum magnetic entropy changes and RC
values of 12.29]/kg/K and 746]/kg and 10.13J/kg/K and 606 J/kg, respectively, under a magnetic field of 5T. The ingots GdErHoCoM
(M=Cr and Mn) show excellent MEC properties and can be manufactured easily, making them promising for magnetic refrigerant
applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0196758
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The magnetic refrigeration technology, using the magnetocaloric
effect (MCE) for refrigeration, has attracted widespread attention due
to its many extraordinary advantages, such as high efficiency, environ-
mental friendliness, and great silence.' * To achieve refrigeration, mag-
netic refrigeration materials go through periodic heat absorption and
release during demagnetization and magnetization processes; there-
fore, materials with a large MCE and refrigerant capacity (RC) are in
urgent demand for the development of magnetic refrigeration technol-
ogy.”” In recent years, high-entropy alloys (HEAs),”” which contain
five or more elements with equal or near-equal atomic percentages,

have exhibited outstanding magnetocaloric properties due to their
complicated structures,” diverse components,k)’11 MCE, and RC."”"*
Among them, the rare-earth-based (RE) HEAs, such as
GdTbHoErLaY,'® RErHoTb (R = Gd and Dy),"* ScGdTbDyHo,'” and
HoErCoAIR (R = Gd, Dy, and Tm),13 have drawn the attention due to
their large MCE over a much wide temperature range with large RC.
These RE-HEAs can be divided into metallic glasses'® and crystalline
according to their crystallization. Until now, most known large MCE-
HEAs are metallic glasses (MGs), including RErHoTb (R=Gd and
Dy), ScGdTbDyHo, and HoErCoAIR (R = Gd, Dy, and Tm). Among

Appl. Phys. Lett. 124, 122412 (2024); doi: 10.1063/5.0196758
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GdErHoCoCr v Ho,Co-type
® BCCCr
+ HoCo,-type
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FIG. 1. SEM-EDS micrographs of the GdErHoCoCr (a) and GdErHoCoMn (b)
ingots and their XRD patterns (c).

them, the HoErCoAIR (R = Gd, Dy, and Tm) MG-HEA exhibits out-
standing comprehensive properties, including magnetic entropy
change (11.2]/kgK), large RC (627 ]/kg), and almost no magnetic hys-
teresis.”” However, MG-HEAs require rapid cooling during prepara-
tion, which limits their size and results in the difficulty of further
applications.'*'”'® The currently known crystalline HEAs with a large
MEC are very scarce, which are mainly GATbHoErLaY'® series HEAs
and FeMnNiGeSi’ series HEAs with a hexagonal-close-packed (HCP)
structure, the FeNiGaMnSi'’ HEA with a body-centered-cubic (BCC)
structure, and the Mn,,Cr;4Niz3Ge,sSig'” HEA with an orthorhombic
structure. Therefore, the development of crystalline RE-HEAs and fur-
ther magnetic investigation are urgently demanded. In this study,
orthorhombic-structured GdErHoCoM (M = Cr and Mn) RE-HEA
ingots were developed and analyzed for their magnetic behavior, crys-
talline structure, and MCE.

The ingots of GdErHoCoM (M = Cr and Mn) were prepared by
arc melting with high-purity argon using pure Gd, Er, Ho, Co, Cr, and
Mn with a purity over 99.9 wt. %. Before melting, Ti was pre-melted to
reduce the oxygen content. The microstructures were studied by
Phenom XL scanning electron microscopy (SEM) at an accelerating
voltage of 15keV, and energy-dispersive spectroscopy (EDS) was used
to test the compositions. X-ray diffractions (XRD) were measured by a
Rigaku Ultima IV diffractometer employing Co-Ko radiation at room
temperature, and the diffraction angle (20) was collected from 20° to

TABLE 1. The compositions of different phases by spot analyses of EDS (at. %).
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80°. The magnetic properties were tested by a DynaCoolTM Quantum
Design physical property measurement system (PPMS). The thermo-
magnetic curves were tested at zero field cooling (ZFC) and then field
cooling (FC), during which the sample was first cooled without a mag-
netic field to 2K, and then the data were collected during heating to
300 K with an applied field of 100 Oe and cooling from 300 to 2 K. The
isotherm magnetization curves were measured from 0 to 50kOe at
preset temperatures.

Figure 1 shows the SEM-EDS micrographs and XRD patterns of
the GdErHoCoM (M = Cr and Mn) ingots, and further spot analyses
on the phases based on 6-10 sites of each phase are summarized in
Table I. The SEM micrographs of Figs. 1(a) and 1(b) clearly show that
both ingots have two phases. Figure 1(c) presents that the main phase
of both ingots is an orthorhombic Hos;Co-type phase of a space group
of Pnma, the first orthorhombic RE-HEA system with a large MEC
that has ever been found. Combined with the results of Table I, which
exhibits that the percentages of Ho, Er, Gd, and Co are approximately
similar, the molecular formula of the main phase in both ingots can be
speculated to be (GdErHo)Co. Moreover, in GdErHoCoCr ingots, the
morphology of the secondary phase in Fig. 1(a) exhibits a dendritic
structure, where the content of Cr is over 94.6 at. %. In the XRD pat-
tern of Fig. 1(c), two diffraction peaks belonging to the (110) and (310)
planes of body-center-cubic (BCC) Cr with an Im-3m structure are
found at 20 =52.074° and 76.699°, respectively. Therefore, the sec-
ondary phase of GdErHoCoCr ingots can be identified as pure Cr. In
GdErHoCoMn ingots, the secondary phase looks like a blocky struc-
ture with around 40 at. % of Mn, along with other elements. Three dif-
fraction peaks (20 =23.627°, 39.210°, and 46.274°) were identified
from the HoCo,-type structure with a C15 cubic structure, in addition
to the main phase. It is evident from the SEM-EDS mapping micro-
graphs and XRD peaks that the GdErHoCoMn alloy contains a larger
quantity of HoCo,-type phase compared to the GdErHoCoCr alloy.
This is indicated by the higher XRD peaks and larger area contents of
the HoCo,-type phase in the micrographs. Additionally, the
GdErHoCoCr alloy contains BCC Cr.

Figure 2(a) shows the curves of magnetization with temperature
(MT) at zero field cooling (ZFC) and field cooling (FC) magnetization
of GdErHoCoM (M = Cr and Mn) ingots under a 100 Oe magnetic
field in the temperature range from 2 to 300 K. Thermal hysteresis is
typically not observed in MT curves, which can prevent energy loss
and improve energy utilization during refrigeration cycles. Both ingots

GdErHoCoCr GdErHoCoMn

Main phase Secondary phase Main phase Secondary phase

Mean Standard Mean Standard Mean Standard Mean Standard

Elements value deviation value deviation value deviation value deviation
Cr 0.3 0.2 94.6 3.4 cee e cee e
Mn s cee cee cee 39 29 37.2 6.4
Co 19.1 3.5 1.4 0.6 15.5 14 11.1 0.5
Gd 24.0 2.9 0 0 25.6 1.3 6.8 2.8
Ho 28.1 19 2.5 1.7 28.2 0.8 21.8 0.6
Er 28.7 1.3 14 1.2 26.8 1.0 20.1 0.7
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FIG. 2. The MT curves at ZFC and FC magnetization (a) and the fitting of 5 ~'-T by
the Curie-Weiss law at 100 Oe of GdErHoCoM (M = Cr and Mn) ingots (b)—(d).

exhibit a typical antiferromagnetic (AFM) to paramagnetic (PM) phase
transition, with Neel temperatures (TN) calculated at 40K for
GdErHoCoMn and 56K for GdErHoCoCr. Another transition near
200K in the GdErHoCoMn ingot is found. Although the crystal struc-
ture of the secondary phase could be identified as a HoCo,-phase by
XRD, the exact compositions are complex to confirm due to the severe
overlap of the spectral peaks of rare-earth elements in EDS.
Additionally, the Curie temperatures of RM, (R=Gd, Er, and Ho;
M=Co and Mn) alloy range from about 32 to 406 K (32.2K for
ErCo,,”" 35K for GdMn,,”' 75K for HoCo,,”” and 406 K for GdCo,”")
Based on the available evidence, it is likely that the phase transition
occurring around 200K is related to the HoCo,-type transition.
Moreover, an apparent splitting between the ZFC and FC curves is
found below their Neel temperatures, indicating that the spin state is
sensitive to the external magnetic field. This suggests that the magnetic
states differ with or without an external magnetic field. This phenome-
non is also observed in the TbDyHoEr alloy.”*

Figures 2(b)-2(d) show the fitting of the temperature dependence
of the magnetic susceptibility (; '~T) curves of GdErHoCoM (M = Cr
and Mn) ingots under a field of 100 Oe by the Curie-Weiss law'®

-1 _ T — 0P

=
where 5! is the reciprocal of magnetic susceptibility, T'is the tempera-
ture, 0p is the paramagnetic Curie temperature, and C is the Curie con-
stant. The paramagnetic Curie temperature in the high-temperature
range near Ty for the GdErHoCoM (M =Cr and Mn) is found
0p =46.4 and 0p =39.1K, respectively. In the GdErHoCoMn ingot
near 200 K, the ;(1—T curve has another positive 0p, that is, 196.9 K.
Typically, the value of 0p of the antiferromagnet is negative,”” ** and
the positive value of 0p is rarely reported.””"’ The positive values of 0p
of the GdErHoCoM (M = Cr and Mn) ingots may be ascribed to the
instability of AFM under a large magnetic field, resulting in the ferro-
magnetic (FM) interaction in the two ingots.”*

b (1)

ARTICLE pubs.aip.org/aip/apl

Figures 3(a) and 3(b) present the magnetization (MH) curves of
the GdErHoCoM (M = Cr and Mn) ingots at the applied magnetic
field of 5 T with a wide temperature range from 5 to 200K and from 5
to 250K for GAErHoCoCr and GdErHoCoMn, respectively. It could
be found that with the increased magnetic field, the saturation mag-
netic moment decreases in both ingots. Yet generally, the saturation
magnetic moment of the GdErHoCoCr ingot is larger than that of the
GdErHoCoMn ingot at the same temperature. Moreover, the magneti-
zation of the two ingots gradually approaches saturation, showing a
ferromagnetic feature at low temperatures below Ty. While at high
temperatures above Ty, the MH curves gradually turn to straight lines
with the increase in temperature, indicating a transition from a mag-
netic order to disorder,”’ showing a paramagnetic feature. Figures
3(c)-3(d) show the enlarged curves of Figs. 3(a) and 3(b) from 0 to 2T
below Ty. It could be seen that the initial magnetization curves experi-
ence a nonlinearly sharp increase at the initial stage and then reach
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FIG. 3. Isothermal magnetization (MH) curves of GdErHoCoM (M =_Cr and Mn)
ingots at different temperatures from 0-5T (a) and (b) and their enlarged images
from 0-2T (c) and (d); Arrott curves above (e) and (f) and below (g) and (h) Ty.
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their saturation, indicating that the metamagnetic transition below T
is from AFM to FM induced by the external magnetic field, which
leads to the split in Fig. 2(a) below Ty. The Arrott curves above Ty, as
shown in Figs. 3(e) and 3(f) present positive slopes, and there is a
second-order magnetic phase transition (SOMT) from AFM to PM in
both ingots. The Arrott curves below Ty are presented in Figs. 3(g)
and 3(h). The S-shape curves or negative slopes indicate that the phase
transition from AFM to PM below Ty is the first-order magnetic phase
transition (FOMT)"” induced by the magnetic field.

The isothermal magnetic entropy change (ASyy), a key parameter
to judge the magnetic cooling capacity, is calculated from the isother-
mal magnetization curves by the Maxwell equation of the two ingots,

as follows:™”
Hinax OM
ASy(T,H) = JHO <8_T> HdH, (2)

where M is the magnetization, T is the temperature, H is the magnetic
field, and Hy and H,,,, are the initial and final values of the magnetic
field, respectively. Here, Hy = 0 and H,,,x = 5 T. To obtain the values
of ASy, the numerical approximation is used”*

j=k—1

ASAM(T,'7 Hk) —
j=0

M(Ti11, Hy) — M(Ti, Hy)
T — T;

(Hio —Hy). ()

where M (T;, Hj) is the magnetization at a temperature, T;, under a
magnetic field, H;. The error of the values of ASy; is less than 7% by
numerical approx1mat10n

The (—AS\)—T curves of GdErHoCoM ingots are presented in
Fig. 4. It is an abnormal phenomenon that the value of —ASy of the
two ingots is negative at low temperatures under the applied field of
1 T, which originates from the metamagnetic transitions, as shown in
Figs. 3(c) and 3(d). The negative value of —AS,, indicates that the sam-
ple cools when a magnetic field is applied and heats up when the mag-
netic field is removed. In contrast, a positive —ASy value results in a
sample being heated in the presence of a magnetic field and cooled in
its absence. As the increase in temperature, the value of —ASy
increases, reaching a maximum around the Curie temperature, and
then decreases. The maximum values of the magnetic entropy change
of GdErHoCoM (M = Cr and Mn) ingots are 12.29 and 10.13 J/kg/K
at 57.5K under 5T, respectively. Moreover, the larger maximum of
—ASy of the GdErHoCoCr originates from a larger saturation mag-
netic moment of the GdErHoCoCr ingot, as shown in Figs. 3(a) and
3(b). In addition, the maximum of —ASy; values of the GdErHoCoCr

150 200 250

Temperature(K)

10,14,16,17,24,36-38

ingots is higher than most known crystalline HEAs,
MG-HEAs, '>**"**>> and only 22.8% lower than 15.91]/kg/K of
the known highest ErsqCoyAl;Ys MG-HEA,” indicating its great
potential for the magnetic refrigeration applications.

The RC is another critical parameter to evaluate the magnetic
refrigeration capacity and can be calculated by’

RC = —AS}\W/‘[ax X 5TFWHW: (4)

where —AS}™ is the maximum value of the magnetic entropy change
and 0Trwyw is the width at half maximum of —ASy; in (—ASy)-T
curve. The RC values of GdErHoCoM (M = Cr and Mn) ingots could
be calculated to reach 746 and 606 J/kg, respectively.

Figure 5 presents the RC s | ASy| max Of the most known MEC-HEAs
under a field of 5T that have ever been reported.'”” 737020557 g
be suitable for magnetic refrigeration applications, materials must
have large RC and |ASy;|may values and, thus, be located closer to the
upper right corner of the relevant graph. It can be observed that the
GdErHoCoM ingots, and particularly the GdErHoCoCr ingots, have
great RC and |ASy|max Synergy when compared to most crystalline
HEAs and MG-HEAs. Based on the composition in the present
work, further optimization in the chemical composition, phase
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FIG. 5. MCE performance of RC vs |ASy|max Of the most known HEAs and typical
crystal alloys [an fcc structure of La(Fe, Ni)15Sij5 and monoclinic structure of
GesSioGe,] under a field of 5T. Literature data were collected from Refs. 10,
13-17, 24, 33, 36-56, and 58-79.
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composition, and heat treatment can still be taken for further prop-
erty elevation. Moreover, the manufacturing process of the
GdErHoCoM ingot is more straightforward than that of the melted
ribbons in many crystalline HEAs and rapid cooling in MG-HEAs.
The large MCE values, as well as the simple ingot manufacturing
process, make GdErHoCoM (M = Cr and Mn) ingots potential can-
didates for magnetic refrigeration applications.

In summary, orthorhombic GdErHoCoM (M = Cr and Mn) RE-
HEAs with the giant MCE were developed, and their magnetic behav-
ior, as well as the magnetocaloric effect of GdErHoCoM (M = Cr and
Mn) HEA ingots, was studied in detail. The main findings include

1. The main phases of both ingots are orthorhombic Ho;Co-type
structures of a space group of Pnma, and their formula probably
is (GdErHo)Co. The secondary phases of GdErHoCoCr and
GdErHoCoMn are pure Cr- and Mn-rich HoCo,-type structures,
respectively.

2. GdErHoCoCr and GdErHoCoMn ingots undergo a first-order
magnetic phase transition below their respective Neel tempera-
tures and a second-order magnetic transition above them, with
no thermal hysteresis. The Neel temperature is 40K for
GdErHoCoCr and 56 K for GdErHoCoMn.

3. The ingots of GdErHoCoCr and GdErHoCoMn exhibit —ASy
and RC values of 12.29 J/kg/K and 746 J/kg and 10.13 J/kg/K and
606 J/kg, respectively, under 5 T. Due to their excellent RC and
|ASy|max synergy, coupled with a simple manufacturing process,
the GdErHoCoM (M =Cr and Mn) ingots hold potential as
strong candidates for use in magnetic refrigeration applications.
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