

Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range

Tong Shen (✉ tdshen@ysu.edu.cn)

Yanshan University <https://orcid.org/0000-0002-0391-3361>

Kangkang Wen

<https://orcid.org/0009-0006-9687-4483>

Xuecheng Cai

The University of Hong Kong

B. Sun

Yanshan University

Rui Feng

University of Tennessee at Knoxville

Congcong Du

Yanshan University

Huihui Zhu

University of Science and Technology Beijing

Ke An

Oak Ridge National Laboratory <https://orcid.org/0000-0002-6093-429X>

Yuan Wu

University of Science and Technology Beijing <https://orcid.org/0000-0001-7857-0247>

Shuaijun Ding

Yanshan University

Fanxi Meng

Yanshan University

S. Xin

Yanshan University

Zhenhua Bai

Yanshan University

Peter Liaw

University of Tennessee at Knoxville <https://orcid.org/0000-0003-0185-3411>

Keywords:

Posted Date: July 6th, 2023

DOI: <https://doi.org/10.21203/rs.3.rs-3126646/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

1 *This manuscript has been authored by UT-Battelle, LLC under Contract No.*
2 *DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains*
3 *and the publisher, by accepting the article for publication, acknowledges that the United States*
4 *Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or*
5 *reproduce the published form of this manuscript, or allow others to do so, for United States*
6 *Government purposes. The Department of Energy will provide public access to these results of*
7 *federally sponsored research in accordance with the DOE Public Access Plan*
8 *(<http://energy.gov/downloads/doe-public-access-plan>).*

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 **Discovery of a novel low-cost medium-entropy stainless steel with**
24 **exceptional mechanical behavior over a wide temperature range**

25 Kangkang Wen^{1,7}, Xuecheng Cai^{2,7}, Baoru Sun^{1,*}, Rui Feng³, Congcong Du⁴, Huihui
26 Zhu⁵, Ke An³, Yuan Wu⁵, Shuaijun Ding¹, Fanxi Meng¹, Shengwei Xin¹, Zhenhua Bai¹,
27 Peter K. Liaw^{6,*}, & Tongde Shen^{1,*}

28 ¹Clean Nano Energy Center, State Key Laboratory of Metastable Materials Technology and Science, Yanshan

29 University, Qinhuangdao 066004, China. ²Department of Mechanical Engineering, The University of Hong Kong,

30 Hong Kong, 999077, China. ³Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,

31 USA. ⁴State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical

32 Engineering, Xiamen University, Xiamen 361005, China. ⁵State Key Laboratory for Advanced Metals and

33 Materials, University of Science and Technology Beijing, Beijing 100083, China. ⁶Department of Materials

34 Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA. ⁷These authors contributed

35 equally: Kangkang Wen and, Xuecheng Cai. Correspondence and requests for materials should be addressed to B.S.

36 (email: sunbaoru@ysu.edu.cn), P.L. (email: pliaw@utk.edu), or to T.S. (email: tdshen@ysu.edu.cn).

37

38 **Over 100 years, stainless steels have been extensively used as engineering**
39 **materials in many areas¹⁻⁴. However, the strength-ductility trade-off^{1,3} and**
40 **insufficient elevated-temperature strength largely hinder their processing and**
41 **applications. Here, we report a novel Co-free Fe₄₇Cr₁₆Ni₂₆Ti₆Al₅ medium-entropy**
42 **stainless steel (MESS) strengthened by high-density coherent L1₂**
43 **nanoprecipitates (NPs). We use a thermodynamic approach to pursuing a large**
44 **volume fraction of stable L1₂ NPs in the coarse-grained face-centered-cubic**
45 **(FCC)-structured matrix of the MESS, which is then readily fabricated through**

46 conventional casting and thermomechanical-treatment techniques. The MESS
47 exhibits a high ultimate tensile strength of 1.35 gigapascals (GPa) and a great
48 total elongation of 36% at room temperature (RT), evading the strength-ductility
49 trade-off dilemma in conventional stainless steels. The high strength is mainly
50 due to the chemical- ordering strengthening of high-density coherent L1₂ NPs.

51 **The ductile L1₂ NPs cooperative with the dynamic refinement of the deformation**
52 **substructures endow the MESS with an excellent work-hardening ability and a**
53 **large uniform ductility. Furthermore, the MESS maintains a high yield strength**
54 **of ~ 0.8 GPa at 700 °C, which is better than many Fe-based superalloys and**
55 **stainless steels, even comparable to some Ni-based superalloys. The steady-state**
56 **creep rates at 750 °C are at least two orders of magnitude lower than those of**
57 **conventional Ni-based superalloys and heat-resistant steels. The excellent creep**
58 **resistance is achieved via the strong interactions between sliding dislocations and**
59 **stable L1₂ NPs at elevated temperatures, which effectively impedes the**
60 **dislocation movement. The present study has huge potential for designing**
61 **cost-effective engineering MESSs with excellent mechanical performance for**
62 **practical applications.**

63 Although renewable energy is on the rise, fossil fuels are likely to remain as the
64 primary source of energy in the coming decades. Thus, it is important to use these
65 resources as efficiently as possible, for both economic reasons and minimization of
66 pollutants⁵. Stainless steels containing Fe, Cr, and Ni elements have been extensively
67 used as high-temperature materials, but they usually exhibit limited strengths at

68 ambient and elevated temperatures^{1,3}. Microstructure refinement is an effective
69 strengthening strategy for stainless steels, whereas it comes at the expense of ductility
70 because of the strength-ductility trade-off. Moreover, fine-grained alloys often suffer
71 from prominent grain growth and considerable reduction in strength (i.e., thermal
72 softening) at high-temperatures⁶. Superalloys comprising high concentrations of Ni,
73 Cr, Co, and Fe elements are used as engineering materials in many fields because they
74 can withstand the high operating temperatures and stresses of components. However,
75 they have a large number of expensive elements, such as Co, Ta, and Mo, resulting in
76 very high production costs^{2,4}. On the other hand, some elements (Re and Ru) have
77 been added to superalloys to improve creep strength. Nevertheless, these elemental
78 additions can render alloys to possess higher density and greater cost. Furthermore,
79 the compositions of cast superalloys have to exhibit good castability. However, the
80 addition of heavy elements (Re, W) tends to cause density inversion and results in the
81 formation of casting freckle defects^{2,4,7}. Therefore, the development of novel
82 high-performance materials for elevated-temperature applications is urgently needed
83 but is still a great challenge. Unfortunately, the conventional metallurgical-design
84 strategies based on single-principle-element systems, in most cases by adding small
85 amounts of alloying elements or fine-tuning the content of specific elements, have
86 approached their limits for a substantial performance improvement. The emergence of
87 high-entropy alloys (HEAs) and/or medium-entropy alloys (MEAs) presents an
88 unconventional concept and approach^{8,9}, which have been demonstrated to be one of
89 the most promising structural alloys with a strength-ductility synergy and/or superior

90 elevated-temperature performance. Nevertheless, these alloys still do not escape from
91 the dilemma of high contents of expensive elements, and it is still challenging to
92 develop cost-effective engineering HEAs/MEAs for wide and practical
93 applications¹⁰⁻¹⁹. The development of high-performance low-cost Co-free
94 HEAs/MEAs is of great significance and thereby attracts much attention in recent
95 years²⁰⁻²⁷.

96 In this study, we combine a thermodynamics approach that is employed for
97 developing compositionally complex alloys like HEAs/MEAs (see Method) with
98 experimental screening to determine an optimum alloy composition of our Co-free
99 MESS [Fe₄₇Cr₁₆Ni₂₆Ti₆Al₅ (atomic percent, at. %)], wherein the contents of Fe, Cr,
100 and Ni are close to those of conventional stainless steels (Fig. 1a) and Fe-based
101 superalloys. The high-resolution neutron-diffraction pattern of the MESS, as shown in
102 the Extended Data Fig. 2a, indicates that the alloy is composed of FCC and L₁₂
103 phases. An electron backscatter diffraction (EBSD) image (Fig. 1b) reveals a full
104 recrystallized microstructure, which exhibits a uniform distribution of equiaxed grains
105 with an average size of 70 ± 22 micrometre (μm) (Fig. 1d). Besides, annealing twins
106 are occasionally observed in the matrix (Fig. 1b). The crystallography and chemical
107 composition were further investigated, employing transmission electron microscopy
108 (TEM). The dark-field transmission electron microscopy (DF-TEM) image (Fig. 1c)
109 clearly reveals that a high number density of NPs is uniformly dispersed in the matrix.
110 The average particle size is measured to be $\sim 14.4 \pm 3.1$ nanometer (nm) (Fig. 1d).
111 The selected area electron diffraction (SAED) pattern in the inset of Fig. 1c confirms

112 the L1₂-type precipitates, wherein superlattice spots from ordered L1₂ NPs,
113 superimposed on the fundamental reflections from the FCC matrix along the [001]
114 direction, are clearly detected. Qualitative energy-dispersive X-ray spectroscopy
115 mapping in the scanning-TEM mode (STEM-EDS) results are presented in the
116 Extended Data Fig. 3a. The FCC matrix phase and the ordered L1₂ NPs have
117 distinctively different compositions. Cr is strongly partitioned to the matrix phase
118 forming a solid solution rather than being partitioned to Fe to form a Fe-Cr (σ) phase.
119 Meanwhile, the NPs are revealed to be enriched in Ni and Ti. From the high-angle
120 annular dark-field STEM (HAADF-STEM) (Fig. 1e and Extended Data Figs. 3b and
121 3c), we observe a coherent FCC/L1₂ interface with continuous crystal lattices, where
122 the interplanar spacing of the ordered L1₂ phase is very close to that of the FCC
123 matrix phase (the lattice mismatch of $\sim 0.19\%$). This trend agrees with the
124 neutron-diffraction results, which suggest that the lattice mismatch between the FCC
125 matrix and the L1₂ phase is only $\sim 0.124\%$ (Extended Data Fig. 2a). Such a low lattice
126 mismatch would effectively decrease the nucleation barrier, enabling NPs with an
127 extremely high number density (more than 10^{22} m^{-3}) and a small particle size (~ 14.4
128 $\pm 3.1 \text{ nm}$). Moreover, the HAADF-STEM image (Fig. 1e) confirms that the NP has an
129 L1₂-type ordering structure with a sublattice occupied by different elements. The
130 elements with higher atomic numbers (Ni, Fe, and Cr) take up face-centered locations
131 of the FCC crystal lattice, whereas elements with lower atomic numbers (Ti and Al)
132 occupy angular positions (Extended Data Fig. 3c). To further probe the L1₂ NPs, we
133 performed three-dimensional atom probe tomography (3D-APT). Atom maps (Fig. 1f)

134 show that Fe and Cr are enriched in the matrix whereas Ni, Al, and Ti are dominant in
135 the NPs. The three-dimensional morphologies of the ordered L₁₂ NPs, and the FCC
136 matrix were revealed by reconstructing 60 at. % Ni and 22 at. % Cr iso-concentration
137 surfaces, respectively (Fig. 1f). The stacked NPs can be observed more clearly,
138 wherein the interconnected FCC matrix serves as a frame for the ordered L₁₂ NPs.

139 The one-dimensional concentration profiles of the phase interface (Fig. 1g)
140 demonstrate that the contents of all alloying elements vary continuously from the FCC
141 matrix to the L₁₂ NP with a diffuse interface width of ~ 4 nm. The one-dimensional
142 concentration profiles across an individual L₁₂ NP also exhibit a long-range periodic
143 fluctuation without an abrupt composition change within the NP (Extended Data Fig.
144 4a). The chemical compositions of the FCC matrix and the L₁₂ NPs acquired from the
145 flat region of the profiles are Fe_{55.6}Ni_{16.9}Cr_{20.7}Al_{2.8}Ti_{4.0} and Ni_{66.0}Fe_{7.4}Cr_{1.3}Al_{8.8}Ti_{16.5}
146 (at. %), respectively, yielding a (Ni + Fe + Cr): (Al + Ti) ratio of ~ 3:1 (A₃B-type) for
147 L₁₂ NPs. Using the lever rule analysis¹⁶, the volume fraction of the L₁₂ phase is
148 determined to be ~ 15% (Extended Data Fig. 4b), which is consistent with the volume
149 fraction of ~17.3% determined by the Rietveld refinement from neutron-diffraction
150 patterns (Extended Data Fig. 2a).

151 Figure 2a and Extended Data Fig. 5 exhibit the tensile stress-strain curves of the
152 MESS performed from room temperature (RT) to 800 °C. A base alloy (Fe₄₇Cr₁₆Ni₂₆,
153 see Methods) was also tested for comparison. The MESS exhibits an extraordinary
154 combination of high strength and great ductility. The RT yield strength (σ_y) and
155 ultimate tensile strength (σ_u) of MESS are as high as 927 and 1,353 megapascals

156 (MPa), respectively. Note that the σ_y of MESS is five times that (165 MPa) of the
157 base alloy (Fig. 2a). Surprisingly, such a high strength comes with a high uniform
158 elongation of 30% and a great total elongation (ε) of 36%. At such a high σ_y , the
159 MESS still shows a strong strain-hardening ability ($\sigma_u - \sigma_y > 400$ MPa, $\sigma_y/\sigma_u < 0.7$).
160 According to the Considere's criterion, homogeneous deformation can be maintained
161 when the strain-hardening rate (SHR), $d\sigma/d\varepsilon$, is above the flow stress, σ ²⁸. Thus, the
162 higher the SHR, the greater the ductility. The higher SHR of the FeCrNiTiAl MESS -
163 when compared with the FeCrNi base alloy - (Fig. 2b) endows it with a satisfactory
164 homogeneous ductility (Fig. 2a). Moreover, the MESS presents a typical three-stage
165 feature of strain hardening, which has been commonly observed in
166 precipitation-strengthened alloys. The corresponding strain-distribution maps
167 obtained by digital image correlations (DIC) at various global strains and at ambient
168 temperature are exhibited in Fig. 2c. The sample shows a very diffuse strain
169 distribution throughout the gauge section when being strained below 30% [Figs. 2(c1)
170 - (c3)], indicating a homogenous deformation. As the deformation proceeds, necking
171 occurs at a $\sim 30\%$ strain [a red dashed frame in Fig. 2(c4)], and the sample quickly
172 fractures due to a significant strain localization [Fig. 2(c5)]. The MESS also exhibits
173 superior elevated-temperature mechanical performances. Not much drop in both the
174 yield strength and ductility but an obvious serrated response is observed between 300
175 and 500 °C (Extended Data Fig. 5). The σ_y values of the MESS at 600 °C and 700 °C
176 are still as high as 808 MPa and 802 MPa, respectively (Fig. 2a and Extended Data
177 Fig. 5). Noteworthy, the MESS maintains a high strain-hardening rate at 600 °C (Fig.

178 2b), resulting in a high σ_u of 1,074 MPa (Fig. 2d and Extended Data Fig. 5). The
179 dimple morphology of the fracture surface confirms the intrinsic ductile feature of the
180 MESS at room and elevated temperatures (Extended Data Fig. 6). The fractographic
181 feature changes from a transgranular fracture mode (below 600 °C, Extended Data Fig.
182 6a) to a mixed mode of intergranular and transgranular fracture (600 °C, Extended
183 Data Fig. 6b) and then to intergranular fracture (700 °C, Extended Data Fig. 6c).
184 To reveal the underlying mechanisms for the three-stage hardening behavior, the
185 evolution of the microstructures of the MESS deformed to different strains (3%, 10%,
186 23%, and fracture) were examined. The sharp decline of the SHR (Fig. 2b) of MESS
187 at the early strain stage (< 3% strain, stage 1) after yielding can be attributed to the
188 prevalence of dislocations re-arrangement, such as the cross-slip and annihilation of
189 screw dislocations of opposite signs^{24,28}. At a strain of ~ 3% (Fig. 3a), dislocation slip
190 is preferentially activated at the grain boundary, and planar-arrayed slip bands lying
191 essentially on {111} planes of the matrix appear. With further straining, the SHR
192 drops slowly (Fig. 2b). It can be clearly observed that the dislocations operated
193 mainly in a planar way, wherein dense {111} plane slip bands are characterized at a
194 strain of 10% of the MESS (Fig. 3b). The deformation mode transits from a cross slip
195 to planar slip, indicating that the underlying deformation starts to be dominated by the
196 enhanced ordering effect²⁹. Meanwhile, more dislocations are further activated in
197 grain interiors (Fig. 3b). Figure 3c indicates that the coherent NPs have been fully
198 sheared by these cutting dislocations. The inverse fast Fourier transformation (IFFT)
199 pattern (Fig. 3c inset image) taken near the dislocation cutting point (the upper left

200 black circles of Fig. 3c) reveals a profuse multiplication of edge dislocations,
201 indicative of a remarkable strain-hardening capability of the material. With increasing
202 the strain to 23%, the dislocations continue operating in a planar way, forming a
203 substructure of Taylor lattices (yellow arrows), where the dislocation motion is
204 confined to the {111} primary slip systems (Fig. 3d). The averaged interspacing of
205 these deformation substructures decreases from about 1 μm (slip bands at a 10%
206 strain) to less than 200 nm (Taylor lattice at a 23% strain) as the plastic strain
207 progresses. Such a pronounced planar slip of dislocations can be attributed to the
208 existence of high-density coherent L1₂ ordered NPs, since it has been demonstrated
209 that the shearable precipitates as well as the short-range order can significantly
210 promote slip planarity³⁰. A similar observation has also been identified in a
211 Fe-Mn-Al-C steel with nano-sized carbides³¹. The continuous multiplication and
212 intersection of the planar slip bands result in a dynamic subdivision and refinement of
213 matrix grains during deformation. The refinement and intersection of these
214 deformation substructures can serve as an effective carrier for dislocation
215 accumulation, giving rise to an enhanced strain hardening, and being helpful to delay
216 the onset of plastic instability^{28,32,33}. Thus, the slip bands refinement is the dominant
217 mechanism for the high SHR (Fig. 2b) and high ductility of MESS, namely the
218 slip-bands-refinement-induced plasticity (SRIP) effect^{13,33}. Figures 3d and f shows the
219 deformation substructures of the fractured sample. To accommodate the large
220 macro-strain, the accumulated in-plane dislocations of the Taylor lattice further
221 transform into crystallographically aligned high-density dislocation walls (HDDWs)

222 and microbands (MBs). The diffraction vector shows that they are near parallel to the
223 trace of the {111} slip plane, demonstrating that they are the substructures induced by
224 a further refinement of slip bands^{13,33}, which dominate the late-stage deformation
225 process (nonuniform deformation) until the fracture failure occurs¹³. Note that the
226 fully coherent relationship among the FCC matrix, L₁₂ NPs, and the nanometer-scale
227 particle size of these NPs can also contribute to the ductility of the MESS. Hence, the
228 external force can be uniformly dispersed at coherent interfaces between the
229 precipitates and matrix³⁴, and the stress concentration can be largely alleviated,
230 effectively inhibiting the premature nucleation of cracks.

231 The strengthening and ductile nature of the L₁₂ NPs are well evidenced by in-situ
232 neutron-diffraction results (Fig. 4). The behavior of lattice strain under a true stress at
233 both RT and 600 °C (Figs. 4a and 4b) indicates that the L₁₂ NPs can not only
234 strengthen the matrix but also co-deform with it, as evidenced by the greatly increased
235 lattice strains of L₁₂’s unique {210} and {211} diffraction peaks after yielding, i.e.,
236 the increasing rate of lattice strains, compared to those fundamental L₁₂/FCC
237 diffraction peaks. Notably, the L₁₂’s unique {210} and {211} diffraction peaks deflect
238 together with the fundamental diffraction peak of {220} (indicated by the red arrow),
239 suggesting a co-deformation behavior between the L₁₂ NPs and the FCC matrix. In
240 addition, the plastic deformability of the precipitates can be assessed by examining
241 the ratio of the full width at half-maximum (FWHM) to the d-spacing³⁵. In this case,
242 the greatly increased FWHM/d values of the {210} and {211} diffraction peaks of L₁₂
243 NPs as a function of true strain (Figs. 4c and 4d) clearly demonstrate their ability to

244 undergo plastic deformation. Consequently, the high-density coherent and ductile L1₂
245 NPs working together with the dynamic refinement of the deformation substructures
246 during plastic deformation endow the MESS with an excellent strain-hardening ability
247 and a large uniform ductility.

248 The precipitation strengthening from high-density L1₂ NPs together with
249 solid-solution strengthening and dislocation hardening elevate the yield strength of the
250 MESS to near 1 GPa (see Methods), wherein the precipitation-strengthening offers the
251 greatest contribution (~ 60%) to the yield strength. Moreover, the
252 precipitation-strengthening effect remains active at elevated temperatures, which can
253 be evidenced by the plot of the lattice strain versus true stress at 600 °C (Fig. 4b). It is
254 observed that the lattice strains of L1₂'s unique {210} and {211} diffraction peaks
255 continue to increase beyond ~ 900 MPa, while the lattice strains of the fundamental
256 diffraction peaks of FCC/ L1₂, e.g., {111} and {200}, begin to deflect towards smaller
257 values. This behavior indicates that even at 600 °C, the L1₂ NPs continue to bear a
258 larger load and serve as a source of strengthening. Extended Data Fig. 7 shows the
259 deformation microstructure of the 10%-strained sample at 600 °C. Planar dislocation
260 slips on the {111} planes are prevalent (Extended Data Fig. 7a), exhibiting a similar
261 deformation mechanism to that at RT (Fig. 3b). The close-up view (Extended Data Fig.
262 7b) further reveals that the coherent L1₂ NPs within the planar slip bands are
263 intensively sheared by the planar dislocations. The ordering strengthening from the
264 densely coherent L1₂ NPs is supposed to remain effective at elevated temperatures,
265 endowing the MESS with a good combination of high yield strength and reasonable

266 work-hardening ability at elevated temperatures up to 600 °C (Fig. 2b). In addition,
267 previous work has indicated that L1₂ NPs can remain stable after aging at the elevated
268 temperatures (between 525 and 600 °C)³⁶. Particularly, the L1₂ NPs of our MESS grew
269 gradually from 14.4 ± 3.1 nm to 27.7 ± 5.2 nm and maintained a spherical
270 morphology after a high-temperature treatment at 700 °C for 200 hours (h) (Extended
271 Data Figs. 8a and b). The superior thermal and structure stability can be mainly
272 ascribed to the coherent FCC/L1₂ interface³⁷, which sustains a small lattice mismatch
273 (0.42%) at 700 °C (Extended Data Fig. 8c). However, the ductility remarkably
274 decreases at 700 °C. Such a degradation of ductility is generally attributed to the
275 precipitation of the brittle L2₁ phase at grain boundaries (Extended Data Fig. 9),
276 which can account mainly for the transition from the intragranular to intergranular
277 fracture (Extended Data Fig. 6). Nevertheless, the L2₁ phase was not well captured by
278 the neutron-diffraction measurements at both RT and 600 °C. Instead, only a very
279 minor L2₁’s 220 peak was observed (Extended Data Figs. 2a and 2b), indicating a
280 very low content, which may not seriously deteriorate the ductility of the MESS at
281 temperatures below 700 °C. Similar embrittling behaviors have also been frequently
282 observed in many commercial Ni-based superalloys, such as the U720Li, Waspaloy,
283 GH4033, etc.^{2,38}.

284 Figure 5a shows a comparison of RT-mechanical properties of the MESS with those
285 of commercial stainless steels, Fe-based superalloys, and Co-free Fe-, and Ni-based
286 HEAs/MEAs. The present MESS exhibits yield strength two to four times that of
287 austenitic-stainless steels and a higher product of σ_u and ε^3 . Besides, the product of

288 σ_u and ε of our MESS (~ 50 GPa · %) is four to five times those of
289 precipitation-hardening (PH) stainless steels with comparable strengths³. Moreover,
290 compared to the body-centered-cubic (BCC)-structured stainless steels [ferritic (F),
291 martensitic (M), and M-F duplex], our MESS displays a two to three times yield
292 strength and product of σ_u and ε ³. Even when compared with the Fe-based
293 superalloys² and recently reported Co-free Fe- and Ni-based HEAs/MEAs²⁰⁻²⁷, our
294 MESS also displays a higher strength-ductility combination. The exceptional
295 combination of the high strength and large ductility distinguishes our MESS from
296 other commercial stainless steels, Fe-based superalloys, and most Co-free Fe-, and
297 Ni-based HEAs/MEAs. We also compare the elevated-temperature strength of our
298 MESS with some conventional Fe-based superalloys and Co-free HEAs/MEAs (Fig.
299 5b)^{2,22,39-41}. Almost no decay in the high yield strength (~ 800 MPa) of the MESS can
300 be observed at temperatures below 700 °C. This high yield strength well exceeds
301 those of most Fe-based superalloys and Co-free HEAs/MEAs. Even at a high
302 temperature of 800 °C, our MESS still has a relatively high yield strength of ~ 600
303 MPa. The creep resistance of our MESS was also evaluated.
304 High creep resistance is required for materials used at high temperatures.
305 Conventional ferritic and austenitic heat-resistant stainless steels, however, do not
306 have sufficient creep resistance in harsh environments¹. The γ prime
307 phase-precipitation strengthened Ni-based superalloys exhibit good creep strength and
308 corrosion resistance at high temperatures of 700 °C and above. Nevertheless, these
309 Ni-based superalloys are excessively expensive due to the high content of Co (10 - 20

310 weight percent, wt. %) and/or Mo and W (6 - 8 wt. %)². We performed tensile creep
311 tests of our low-cost MESS at a high temperature of 750 °C. Figure 5c shows the
312 creep strain versus time curves at different applied stresses. The creep strain is
313 observed to increase with the applied stress, whereas the MESS crept at 100 MPa
314 shows a small creep strain of less than 4% after 300 h. This is a very demanding
315 creep-test condition, where conventional alloys, such as a type 347 stainless steel
316 ruptured within ~ 100 to 300 h⁴². We further calculated the steady-state creep rate at
317 different applied stresses, as displayed in Fig. 5d. At the higher stress level (750
318 °C/300 MPa), the steady-state creep rate of the MESS is $4.89 \times 10^{-7} \text{ s}^{-1}$, which is at
319 least 3 orders of magnitude lower than those of conventional Ni-based superalloys,
320 such as Haynes 282⁴³ ($6.4 \times 10^{-4} \text{ s}^{-1}$ at 760 °C/290 MPa), Inconel 740⁴⁴ ($4.1 \times 10^{-4} \text{ s}^{-1}$
321 at 750 °C/300 MPa), and Sanicro 25⁴⁵ ($1.46 \times 10^{-3} \text{ s}^{-1}$ at 750 °C/240 MPa).

322 The deformation-microstructure analysis was performed in creep-strained specimens
323 in order to explore the interactions between dislocations and L1₂ NPs. The bright-field
324 (BF) TEM image (Extend Data Fig. 10a) shows dislocation configurations of the alloy
325 crept at 750 °C/70 MPa for 300 h. Most of the dislocations are observed to be strongly
326 curved, revealing an effective impediment of NPs on dislocation movement. The inset
327 of Extend Data Fig. 10a presents the interaction details, where dislocation climbing up
328 the L1₂ NPs can be clearly identified. The dislocation climbing is principally
329 accommodated by the long-range diffusion of vacancies, retarding dislocations to
330 overcome obstacles. A low steady-state creep rate ($\sim 1.71 \times 10^{-8} \text{ s}^{-1}$) is thus obtained
331 during creep deformation under a relatively small, applied stress of 70 MPa.

332 Meanwhile, some discrete dislocation loops can also be observed, as indicated by the
333 yellow arrows in Extend Data Fig. 10a, indicating that the Orowan bypassing process
334 is activated. The size-dependent critical resolved shear stress (CRSS) for Orowan
335 looping can be estimated as⁴⁶: $\tau_c = Gb/l$ where τ_c is the CRSS, G is the shear modulus,
336 b is the Burgers vector, and l is the inter-particle spacing. Assuming that the volume
337 fraction of the particle remains constant, the average inter-particle spacing, l ,
338 increases with precipitates coarsening. It is noted that particle ripening would
339 inevitably occur to some extent in the later stage of the high-temperature creep,
340 leading to a decrease of the Orowan shear stress and dislocation looping around the
341 coarser precipitates. The BF-TEM image (Extend Data Fig. 10b) shows dislocation
342 configurations of the alloy crept at 750 °C/150 MPa for 128 h, where prevalent
343 dislocation shearing through L₁₂ NPs can be clearly observed. It can be inferred that
344 the increased applied stress (150 MPa) enables dislocations to overcome the shear
345 resistance of L₁₂ NPs, resulting in a slip-plastic deformation. The dislocation shearing
346 is identified as the dominant deformation mechanism during the creep process at 750
347 °C/150 MPa under the present circumstances. In either case, the interactions between
348 dislocations and L₁₂ NPs can impede the movement of dislocations, thus effectively
349 enhancing the creep resistance of MESS.

350 Extended Data Fig. 11a shows the comparison between the ultimate tensile strength
351 (UTS) and the raw material costs for typical 304 austenitic-stainless steels, Fe-based
352 superalloys^{2,4}, some recently reported HEAs/MEAs^{13,18,24,47-50}, and the present MESS.
353 As can be seen, our MESS not only produces impressive mechanical properties, but

354 also has a raw material cost lower than most of the counterparts. Moreover, we have
355 also used the parameter of the ratio of UTS to the raw material costs to further
356 manifest the strengthening efficiency of a promising material. As can be seen from the
357 Extended Data Fig. 11b, our MESS shows a great advantage in potential engineering
358 applications.

359 In conclusion, we have developed a novel MESS with an excellent strength-ductility
360 synergy over a wide temperature range, which can be fabricated readily through
361 conventional casting and thermomechanical treatment techniques. Our material design
362 principle has huge potential for fabricating cost-effective engineering MESS with
363 exceptional mechanical performance to replace, at least partially, both conventional
364 low-strength stainless steels and expensive nickel-based superalloys that are widely
365 utilized worldwide.

366

367 1. Lo, K. H., Shek, C. H. & Lai, J. K. L. Recent developments in stainless steels. *Mater. Sci. Eng.*
368 *R.* **65**, 39-104 (2009).

369 2. Geddes, B., Leon, H. & Huang, X. *Superalloys: alloying and performance*. (Asm International,
370 2010).

371 3. Outokumpu Stainless, A. *Handbook of stainless steel*. (Nova Science 2013).

372 4. Yvon, P. *Structural materials for generation IV nuclear reactors*. (Woodhead publishing,
373 2016).

374 5. Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 degrees C world.
375 *Nature* **597**, 230-234 (2021).

376 6. Olander, D. R. Structural Materials in Nuclear Power Systems. *Nucl. Sci. Eng.* **80**, 204-205
377 (1982).

378 7. Pollock, T. M. Alloy design for aircraft engines. *Nat. Mater.* **15**, 809-815 (2016).

379 8. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in
380 equiatomic multicomponent alloys. *Mater. Sci. Eng. A* **375-377**, 213-218 (2004).

381 9. Yeh, J. W. *et al.* Nanostructured high-entropy alloys with multiple principal elements: Novel
382 alloy design concepts and outcomes. *Adv. Eng. Mater.* **6**, 299-303 (2004).

383 10. Gludovatz, B. *et al.* A fracture-resistant high-entropy alloy for cryogenic applications. *Science*
384 **345**, 1153-1158 (2014).

385 11. Zhang, Y. *et al.* Microstructures and properties of high-entropy alloys. *Prog. Mater. Sci.* **61**,
386 1-93 (2014).

387 12. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase
388 alloys overcome the strength-ductility trade-off. *Nature* **534**, 227-230 (2016).

389 13. Yang, T. *et al.* Multicomponent intermetallic nanoparticles and superb mechanical behaviors
390 of complex alloys. *Science* **362**, 933-937 (2018).

391 14. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. *Nat. Rev. Mater.* **4**, 515-534
392 (2019).

393 15. Du, X. H. *et al.* Dual heterogeneous structures lead to ultrahigh strength and uniform ductility
394 in a Co-Cr-Ni medium-entropy alloy. *Nat. Commun.* **11**, 2390 (2020).

395 16. Fan, L. *et al.* Ultrahigh strength and ductility in newly developed materials with coherent
396 nanolamellar architectures. *Nat. Commun.* **11**, 6240 (2020).

397 17. Pan, Q. *et al.* Gradient cell-structured high-entropy alloy with exceptional strength and

398 ductility. *Science* **374**, 984-989 (2021).

399 18. Shi, P. *et al.* Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy

400 alloys. *Science* **373**, 912-918 (2021).

401 19. Liu, D. *et al.* Exceptional fracture toughness of CrCoNi-based medium-and high-entropy

402 alloys at 20 kelvin. *Science* **378**, 978-983 (2022).

403 20. Meng, F., Qiu, J. & Baker, I. The effects of chromium on the microstructure and tensile

404 behavior of Fe₃₀Ni₂₀Mn₃₅Al₁₅. *Mater. Sci. Eng. A* **586**, 45-52 (2013).

405 21. Ng, C. *et al.* Phase stability and tensile properties of Co-free Al_{0.5}CrCuFeNi₂ high-entropy

406 alloys. *J. Alloy. Compd.* **584**, 530-537 (2014).

407 22. Shaysultanov, D. G. *et al.* Novel Fe₃₆Mn₂₁Cr₁₈Ni₁₅Al₁₀ high entropy alloy with bcc/B2

408 dual-phase structure. *J. Alloy. Compd.* **705**, 756-763 (2017).

409 23. Wang, Z., Genc, A. & Baker, I. Direct versus indirect particle strengthening in a strong, ductile

410 FeNiMnAlTi high entropy alloy. *Mater. Charact.* **132**, 156-161 (2017).

411 24. Zhao, Y. L. *et al.* Development of high-strength Co-free high-entropy alloys hardened by

412 nanosized precipitates. *Scr. Mater.* **148**, 51-55 (2018).

413 25. Ji, Y. *et al.* Microstructure and tensile properties of Co-free Fe₄CrNi(AlTi) high-entropy alloys.

414 *Intermetallics* **138** (2021).

415 26. Yang, Y. *et al.* Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy.

416 *Nature* **595**, 245-249 (2021).

417 27. Fan, J. *et al.* Unveiling the precipitation behavior and mechanical properties of Co-free

418 Ni_{47-x}Fe₃₀Cr₁₂Mn₈Al_xTi₃ high-entropy alloys. *J. Mater. Sci. Technol.* **118**, 25-34 (2022).

419 28. Courtney, T. H. *Mechanical behavior of materials*. (Waveland Press, 2005).

420 29. Jiang, S. *et al.* Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.

421

422 30. Gerold, V. & Kärnthal, H. P. On the origin of planar slip in f.c.c. alloys. *Acta. Metall.* **37**,

423 2177-2183 (1989).

424 31. Gutierrez-Urrutia, I. & Raabe, D. Multistage strain hardening through dislocation substructure

425 and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. *Acta. Mater.* **60**,

426 5791-5802 (2012).

427 32. Yoo, J. D. & Park, K.-T. Microband-induced plasticity in a high Mn-Al-C light steel. *Mater.*

428 *Sci. Eng. A* **496**, 417-424 (2008).

429 33. Haase, C. *et al.* On the deformation behavior of κ -carbide-free and κ -carbide-containing

430 high-Mn light-weight steel. *Acta. Mater.* **122**, 332-343 (2017).

431 34. Gao, J. *et al.* Facile route to bulk ultrafine-grain steels for high strength and ductility. *Nature*

432 **590**, 262-267 (2021).

433 35. Feng, R. *et al.* Enhancing fatigue life by ductile-transformable multicomponent B2

434 precipitates in a high-entropy alloy. *Nat. Commun.* **12**, 3588 (2021).

435 36. Vittori, M. & Mignone, A. On the antiphase boundary energy of $\text{Ni}_3(\text{Al}, \text{Ti})$ particles. *Mater.*

436 *Sci. Eng.* **74**, 29-37 (1985).

437 37. Lu, W., Luo, X., Huang, B., Li, P. & Yang, Y. Excellent thermal stability and their origins in

438 γ' precipitation-strengthened medium-entropy alloys. *Scr. Mater.* **212** (2022).

439 38. Németh, A. A. N. *et al.* Environmentally-assisted grain boundary attack as a mechanism of

440 embrittlement in a nickel-based superalloy. *Acta. Mater.* **126**, 361-371 (2017).

441 39. Kuznetsov, A. V., Shaysultanov, D. G., Stepanov, N. D., Salishchev, G. A. & Senkov, O. N.

442 Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions.

443 *Mater. Sci. Eng. A* **533**, 107-118 (2012).

444 40. Daoud, H. M., Manzoni, A. M., Wanderka, N. & Glatzel, U. High-Temperature Tensile

445 Strength of Al₁₀Co₂₅Cr₈Fe₁₅Ni₃₆Ti₆ Compositionally Complex Alloy (High-Entropy Alloy).

446 *JOM* **67**, 2271-2277 (2015).

447 41. Jiang, W., Yuan, S., Cao, Y., Zhang, Y. & Zhao, Y. Mechanical properties and deformation

448 mechanisms of a Ni₂Co₁Fe₁V_{0.5}Mo_{0.2} medium-entropy alloy at elevated temperatures. *Acta.*

449 *Mater.* **213** (2021).

450 42. Yamamoto, Y. *et al.* Creep-resistant, Al₂O₃-forming austenitic stainless steels. *Science* **316**,

451 433-436 (2007).

452 43. Wang, L. *et al.* Effect of heterogeneous microstructure on the tensile and creep performances

453 of cast Haynes 282 alloy. *Mater. Sci. Eng. A* **828** (2021).

454 44. Evans, N. D., Maziasz, P. J., Swindeman, R. W. & Smith, G. D. Microstructure and phase

455 stability in INCONEL alloy 740 during creep. *Scripta Materialia* **51**, 503-507 (2004).

456 45. Zhang, Y. *et al.* High-temperature deformation and fracture mechanisms of an advanced heat

457 resistant Fe-Cr-Ni alloy. *Mater. Sci. Eng. A* **686**, 102-112 (2017).

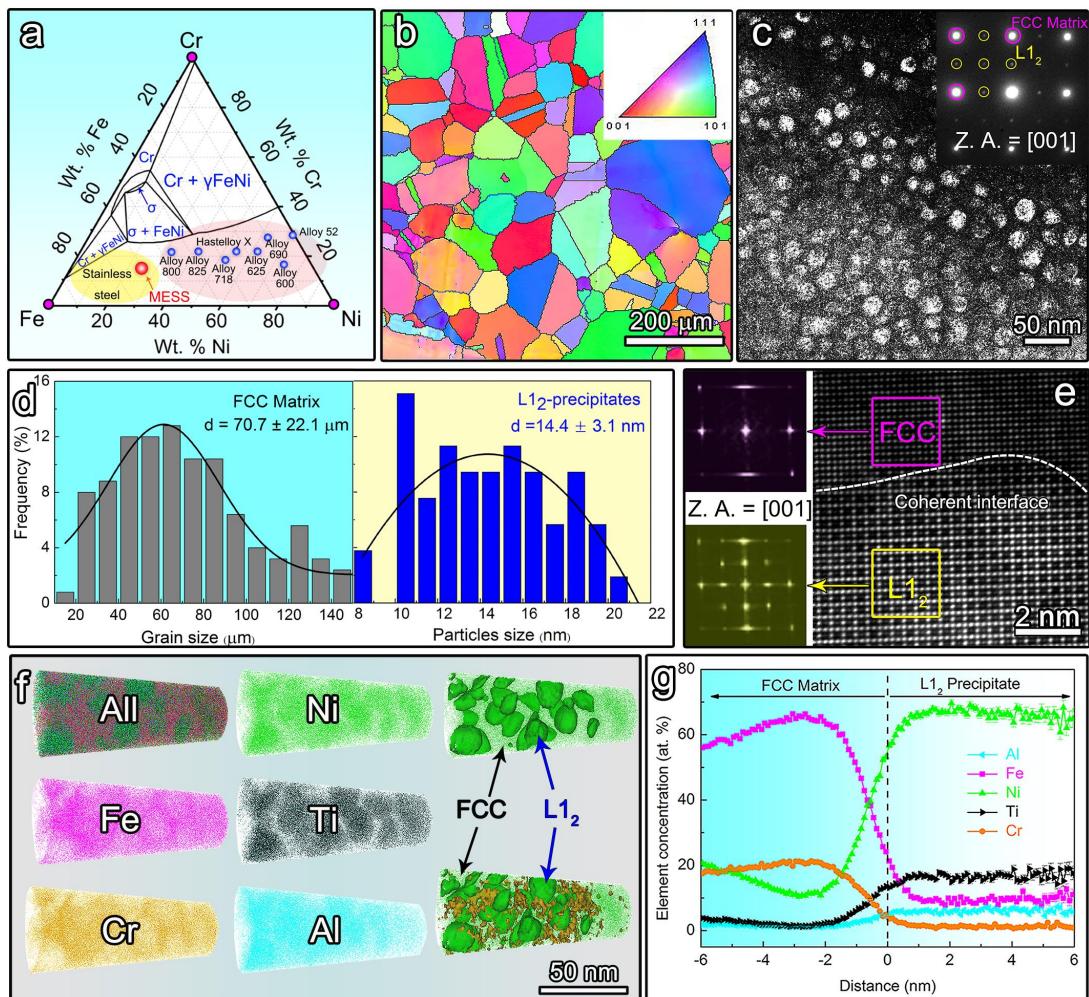
458 46. Sun, F., Gu, Y. F., Yan, J. B., Zhong, Z. H. & Yuyama, M. Phenomenological and

459 microstructural analysis of intermediate temperatures creep in a Ni-Fe-based alloy for

460 advanced ultra-supercritical fossil power plants. *Acta. Mater.* **102**, 70-78 (2016).

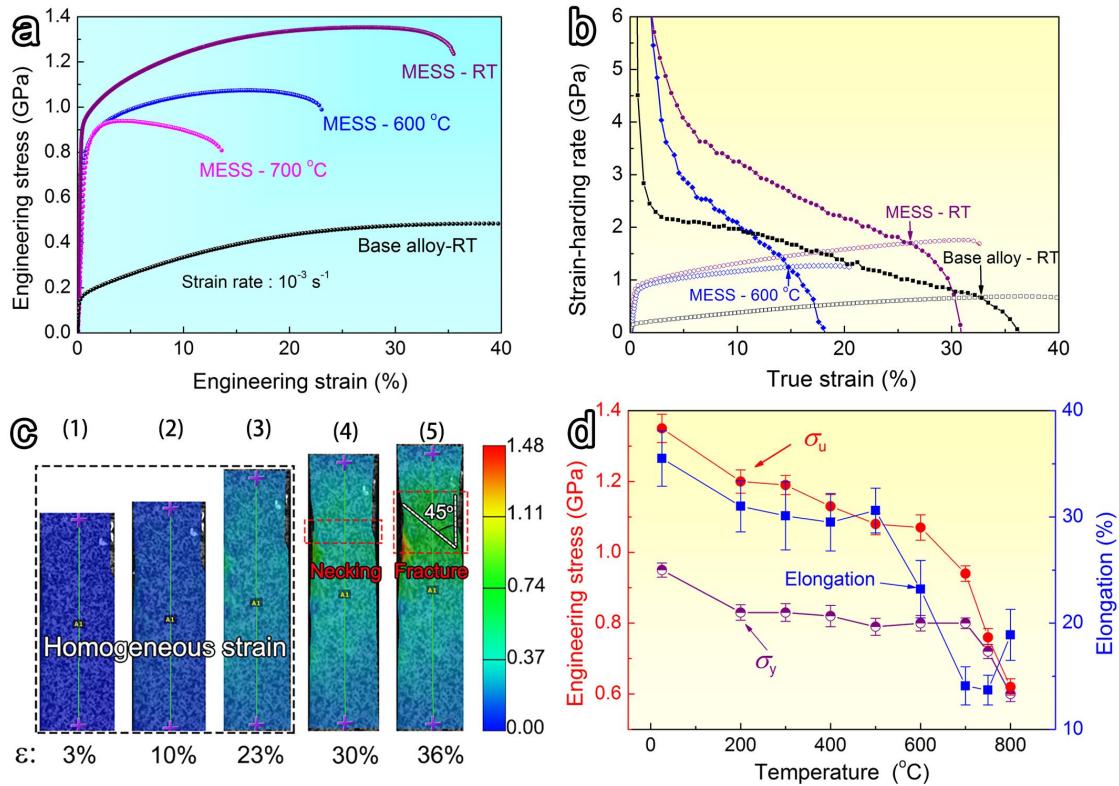
461 47. He, J. Y. *et al.* A precipitation-hardened high-entropy alloy with outstanding tensile properties.

462 *Acta. Mater.* **102**, 187-196 (2016).

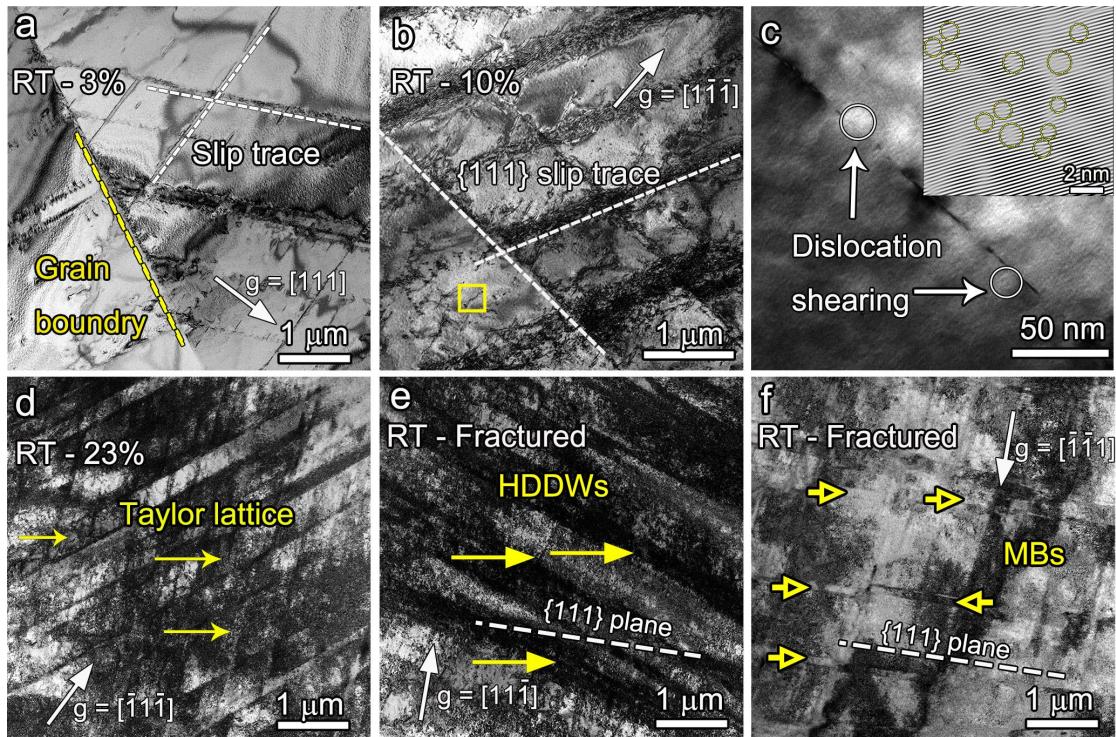

463 48. Liang, Y. J. *et al.* High-content ductile coherent nanoprecipitates achieve ultrastrong

464 high-entropy alloys. *Nat. Commun.* **9**, 4063 (2018).

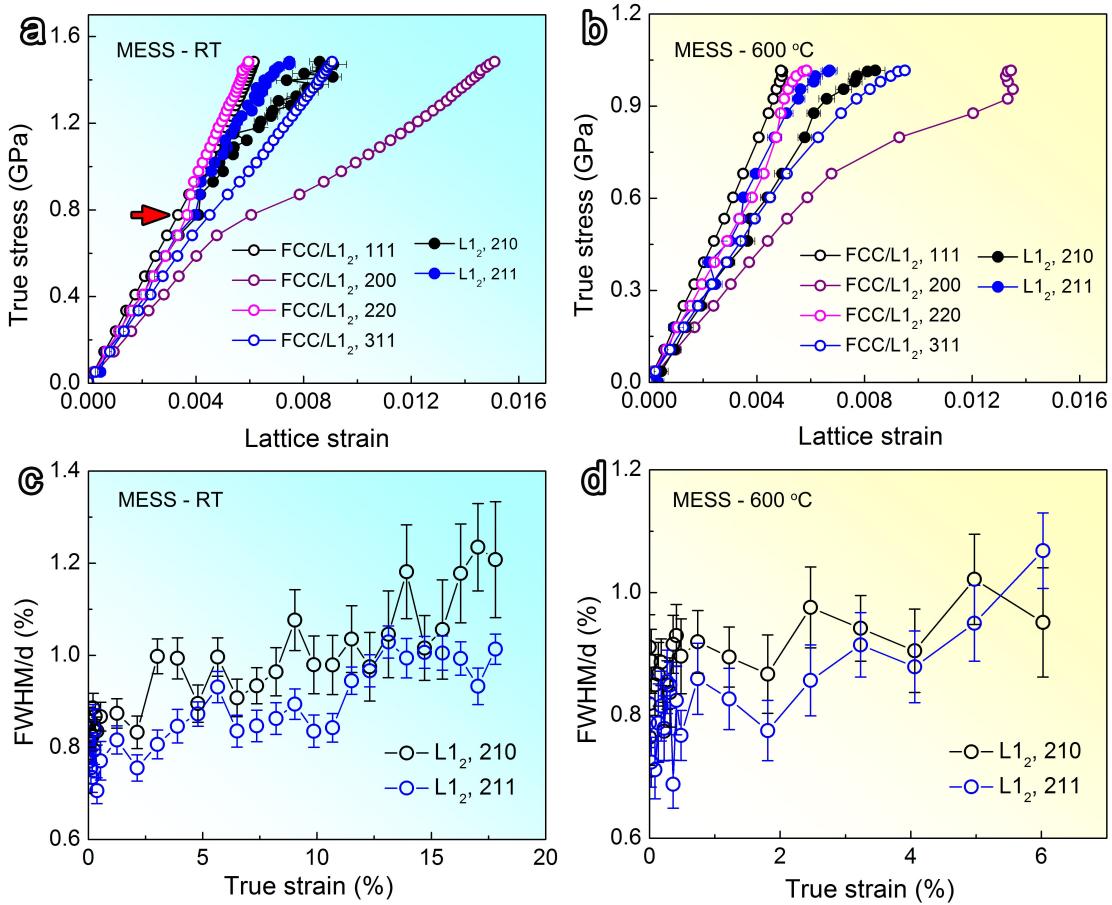
465 49. Shi, P. *et al.* Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy
466 alloys by inheriting microstructural lamellae. *Nat. Commun.* **10**, 489 (2019).


467 50. Lu, W. *et al.* Superb strength and ductility balance of a Co-free medium-entropy alloy with
468 dual heterogeneous structures. *J. Mater. Sci. Technol.* **98**, 197-204 (2022).

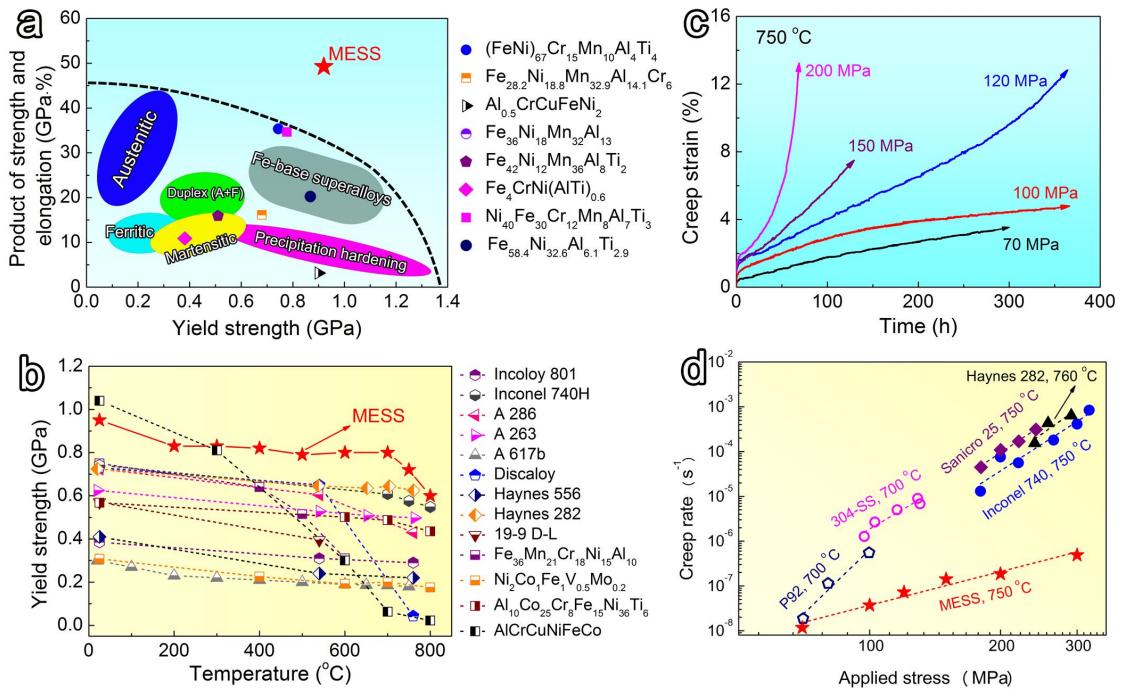
469



470 **Fig. 1 | Conceptual design and microstructural characterizations of the MESS.** **a**
471 Position of our alloy in the Fe-Cr-Ni phase diagram falling within the composition range of
472 stainless steels. **b** EBSD image of the MESS with equiaxed grains. **c** DF-TEM image of
473 the MESS showing the high-density NPs. The SAED pattern in the inset verifying the
474 L1₂-type of the NPs. **d** Statistical distributions for the average size of the FCC matrix
475 grains and L1₂ NPs (d denotes the average size). **e** High-resolution STEM image
476 illustrating the interfacial coherency of the FCC matrix/L1₂ NP (Z. A. denotes the zone
477 axis). **f** Representative atom maps collected from the MESS, using the 3D-APT showing
478 the distribution of each element. Fe and Cr are enriched in the matrix, whereas Ni, Al, and
479 Ti are enriched in the NPs, and three-dimensional reconstruction of 60 at. % Ni and 22
480 at. % Cr iso-concentration surfaces presenting the morphologies of the ordered L1₂ NPs
481 and the FCC matrix. **g** One-dimensional concentration profiles showing the elemental
482 distributions from the matrix to the NP.


483

484 **Fig. 2 | Exceptional strength-ductility combination of the MESS.** **a** Uniaxial
485 engineering tensile stress-strain curves at different temperatures. **b** Strain-hardening rate
486 versus true strain. The intersections with the true stress-strain curves are marked with
487 arrows to indicate the onset of necking instability. **C** Strain-field distribution of the MESS
488 during tensile testing at ambient temperature (field of view: 5.2 mm \times 2.2 mm). Evolution
489 of micro-strains along the loading direction at different macro-strains: 3% (**c1**), 10% (**c2**),
490 23% (**c3**), 30% (**c4**), and 36% (**c5**). **D** Variations of σ_y , σ_u , and elongation of the MESS
491 with testing temperature.
492



493 **Fig. 3 | Deformation microstructures of the MESS at RT.** **a** Deformation microstructure
494 of the 3%-strained sample. Grain boundary (yellow arrow) emits dislocations, and a small
495 amount of slip trace (white dashed line) occurs in the form of the planar dislocation slip. **b**
496 Activations of more {111} slip traces (white dashed line) at the 10% strain. **c** A close-up
497 view of the region marked by the yellow rectangle in **b** revealing that dislocations shear
498 through L₁₂ NPs. The IFFT image in the inset showing the profuse multiplication of edge
499 dislocations (in yellow dashed circles) near the dislocation cutting point (inside the upper
500 left white circle). **d** High-density {111} slip traces leading to the formation of Taylor lattices
501 (yellow arrow) at the 23% strain. **e**, **f** Deformation microstructures of the fractured MESS.
502 At high strains, HDDWs (**e**) and MBs (**f**) were formed. The slip trace shows that the MBs
503 are parallel to the trace of the {111} glide plane (white dashed line).
504

505 **Fig. 4 | In-situ neutron-diffraction results.** **a** and **b** Lattice strain as a function of true
 506 stress during tensile deformation at RT and 600 °C, respectively, showing the load transfer
 507 from the soft matrix to the hard L1₂ NPs, a reflection of the precipitation strengthening. **c**
 508 and **d** Evolution of FWHM/d as a function of true strain, indicating the ductile nature of the
 509 multicomponent L1₂ NPs.

510

511 **Fig. 5 | Mechanical properties of our MESS compared with other alloys. a** Yield
512 strength versus the product of the ultimate tensile strength and ductility of the MESS,
513 compared with those of stainless steels, Fe-based superalloys, and some Co-free
514 HEAs/MEAs. **b** Variation of yield strength with testing temperature of the MESS,
515 compared with those of conventional stainless steels, Fe-based superalloys, and some
516 HEAs/MEAs. There, of course, are a few advanced Ni-based superalloys and stainless
517 steels not shown for comparison, due to their difficulty to achieve mass industrial
518 production (for example, additive manufacturing, high-pressure torsion, and
519 liquid-nitrogen cold rolling). Some high Co and, Ni content (more than 50 at. %)
520 HEAs/MEAs are not shown for comparison because of expensive costs, as well. **c** Creep
521 strain versus time curves of the MESS at 750 °C under different applied stresses, the
522 arrows denote the that samples are not fractured during creep testing. **d** Creep rate
523 versus applied stress curves of the MESS and some other conventional Ni-based
524 superalloys and heat-resistant steels.

526 **Methods**

527 **Compositional design and phase calculation.** The ternary FeCrNi alloy with
528 an FCC structure was initially chosen as the base alloy, which was then alloyed with
529 Ti and Al to generate L1₂-type coherent NPs. Three main criteria were considered in
530 the alloy-design process. First, a high content of Cr (~ 16 at. %) - close to that of the
531 304 stainless steel - is selected in the base alloy. The high content of Cr can promote
532 the phase separation⁵¹ and reduce the difference in the lattice parameters between the
533 FCC matrix and L1₂ NPs⁵², thereby stabilizing the coherent interfaces⁵³ and lowering
534 the driving force for competitive coarsening²⁹. Additionally, a high content of Cr can
535 also render the MESS a superior corrosion and oxidation resistance¹. Second, a high
536 content of Ni is expected, which can facilitate the precipitation of L1₂ NPs as much as
537 possible. However, the Ni content should be kept as low as possible to promote the
538 wide applicability of our MESS. The Ni content in our MESS is thus ideally
539 controlled within 28 at. % - which is the maximum amount of Ni in stainless steels -
540 to ensure a comparable material cost to commercial stainless steels. Third, L1₂ NPs
541 should remain as stable as possible at high temperatures, while inhibiting the
542 formation of other brittle intermetallic compounds in MESS. Under the circumstances,
543 the addition of Al and Ti should be well controlled to ensure a stabilized matrix phase
544 without excess complex phases.

545 The empirical criteria, $\Omega = T_m \Delta S_{\text{mix}} / \Delta H_{\text{mix}} \geq 1.1$ and $\delta \leq 6.6\%$, - which have been
546 widely used to predict a stable solid-solution matrix in HEAs - are utilized to optimize
547 the contents of Al and Ti in our MESS. Meanwhile, Ω should approach the threshold

548 value of 1.1, where the formed secondary phases may be more beneficial for
 549 mechanical performance (i.e., coherent precipitates). Herein the parameters, ΔH_{mix}
 550 (enthalpy of mixing), ΔS_{mix} (entropy of mixing), δ (atomic size difference), and T_m are
 551 defined as follows^{11,54}

$$552 \quad \Delta H_{\text{mix}} = \sum_{i=1, i \neq j}^n Q_{ij} c_i c_j = \sum_{i=1, i \neq j}^n 4\Delta H_{ij}^{\text{mix}} c_i c_j \quad (1)$$

$$553 \quad \Delta S_{\text{mix}} = -R \sum_{i=1}^n c_i \ln c_i, = \sum_{i=1}^n c_i = 1 \quad (2)$$

$$554 \quad \delta = \sqrt{\sum_{i=1}^n c_i (1 - r_i/\bar{r})^2}, \bar{r} = \sum_{i=1}^n c_i r_i \quad (3)$$

$$555 \quad T_m = \sum_{i=1}^n c_i (T_m)_i \quad (4)$$

556 where $(T_m)_i$ is the melting point of the i th component and R represents the gas
 557 constant ($8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$); $\Delta H_{ij}^{\text{mix}}$ is the enthalpy of mixing of the i th and j th
 558 components based on the Miedema macroscopic model⁵⁵. In addition, c_i and c_i are the
 559 atomic percentages of the i th and j th constituent elements, respectively; and r_i
 560 indicates the atomic radius of the i th component¹¹. On this basis, we developed three
 561 MESSs with different Ti/Al contents, i.e., Ti_4Al_3 , Ti_6Al_5 , and Ti_7Al_7 . Then we first
 562 calculated equilibrium phases of the three MESSs above, as shown in Extended Data
 563 Figs. 1a, b, and c. The calculations of phase equilibria were performed with JMatPro
 564 (www.sentesoftware.co.uk), which can be used to guide the subsequent heat-treatment
 565 process.

566 Based on the calculation results, the homogenization and recrystallization
 567 temperatures should be controlled below 1,200 °C, above which the alloys start to
 568 melt. In addition, it is noted that the volume fraction of the harmful L_2 phase
 569 decreases with the temperature in the high-temperature range of ~ 800 - 1,200 °C, and

570 thus, the homogenization and recrystallization temperatures selected should be as
571 close to 1,200 °C as possible. Below 800 - 900 °C, the favorable L1₂ phase is in
572 equilibrium with the FCC matrix phase, and its volume fraction increases with
573 decreasing temperature, while the harmful L2₁ phase is found to decrease with
574 decreasing temperature. However, undesired NiAl or η phases also tend to form at
575 low temperatures, especially for the alloy with a high Ti/Al content (i.e., Ti₇Al₇)
576 wherein the volume fraction of the NiAl phase would increase with decreasing
577 temperature. By weighing the favorable L1₂ and other undesired phases, the aging
578 temperature was prudently selected around 600 °C. It is also worth noting that the
579 formation of the L1₂ phase is generally accompanied by the precipitation of σ and
580 BCC complex phases, whereas neither of them has been observed experimentally,
581 probably due to the incoherence of the precipitates/matrix interfaces and the
582 corresponding large nucleation barrier.

583 Through the above analysis, we selected a homogenization and recrystallization
584 temperature of 1,150 °C and a preliminary aging temperature range of 550 - 650 °C.
585 The optimal aging temperature was selected to be 600 °C, which was determined by
586 comparing the mechanical properties of alloys aged at different temperatures (550 -
587 650 °C). The tensile properties of the three alloys with different Ti/Al contents
588 prepared by the above optimized heat-treatment processes are shown in the Extended
589 Data Figure 1d. In order to avoid discrepancies between the actual and nominal
590 compositions, we simultaneously performed mechanical-performance tests on two
591 other alloys with a similar composition to Ti₆Al₅, i.e., Ti₆Al₆ and Ti₅Al₅, which are

592 produced by the same heat-treatment processes. As can be seen from the Extended
593 Data Fig. 1d, the Ti₆Al₅ alloy exhibits the best synergy of strength and ductility
594 among the five MESSs. Finally, combining the thermodynamics approach with the
595 experimental screening, we successfully determined an optimum chemical
596 composition of our Co-free MESS, i.e., Fe₄₇Cr₁₆Ni₂₆Ti₆Al₅ (at. %), which contains a
597 large number of ordered coherent L1₂-type Ni₃(Ti, Al) NPs in the FCC-structured
598 FeCrNi base alloy.

599 **Materials preparation.** Two alloys, Fe₄₇Cr₁₆Ni₂₆Ti₆Al₅ and Fe₄₇Cr₁₆Ni₂₆ (at. %),
600 were fabricated by arc melting pure elements under a Ti-gettered high-purity argon
601 atmosphere. The starting elemental materials were at least 99.99 wt. % pure. All the
602 alloy ingots were repeatedly melted for at least six times to ensure a chemical
603 homogeneity, and finally drop-cast into a 60 mm × 20 mm × 5 mm copper mold. The
604 ingots were homogenized at 1,150 °C for 2 h, water-quenched to RT, and cold rolled
605 with a total reduction of 70% at RT. The cold-rolled sheets were recrystallized at
606 1,150 °C for about 1 min., and then furnace-cooled to ambient temperature. Finally,
607 the sheets were aged at 600 °C for 1 h and then cooled to ambient temperature by
608 quenching into water. Some specimens were further heat treated at 700 °C for 200 h to
609 evaluate the microstructural stability. The heating rate of the above heat treatments is
610 2 °C min⁻¹, and all the above heat treatment processes were carried out under a
611 vacuum condition (less than 0.001 MPa). The specimens for subsequent tests were cut
612 by electrical discharge machining.

613 **Comparison of raw material cost.** The alloys' cost was estimated using the

614 price of a pure element, which is available at www.shfe.com.cn. Thus, the estimated
615 cost may be different from the market price.

616 **Microstructural characterization.** The matrix grains and fracture
617 morphologies of specimens were examined, using a scanning electron microscope
618 (SEM) and electron backscatter diffraction (EBSD, FEI helios G4 CX). The
619 microstructures of specimens were characterized by employing a transmission
620 electronic microscope (TEM, FEI Talos F200X), which was operated at 200 kV and
621 equipped with energy dispersive spectroscopy (EDS). The NPs were further
622 characterized by an aberration-corrected TEM (FEI Themis Z) operated at 300 kV.
623 Specimens for the EBSD and TEM observations were made by first mechanically
624 grinding to a thickness of $\sim 50 \mu\text{m}$ via SiC papers, then punching into discs with a
625 diameter of 3 mm, and finally electropolishing in an electrolytic solution containing
626 10 volume percent (vol. %) perchloric acid and 90 vol. % alcohol under a voltage of
627 26 V. X-ray diffraction (XRD) examination was carried out on a Rigaku
628 D/max-2500/PC X-ray diffractometer with Cu-K α radiation ($\lambda = 0.154 \text{ nm}$). The $\theta -$
629 2θ scanning was conducted in the range of $30^\circ - 100^\circ$ with a scanning speed of 2°
630 min^{-1} . Three-dimensional atom probe tomography (3D-APT) was performed in a
631 CAMECA Instruments LEAP 5000XR local electrode atom probe. The specimens
632 were analyzed in a voltage mode, at a specimen temperature of 50 K, a pulse
633 repetition rate of 200 kHz, a pulse fraction of 0.2, and an ion collection rate of 0.5%
634 ions per field-evaporation pulse. Needle-shaped specimens required for APT were
635 fabricated by lift-outs and annular milling in an FEI Scios focused ion beam/scanning

636 electron microscope (FIB/SEM). Imago Visualization and Analysis Software version
637 3.8.10 (www.atomprobe.com) was employed for three-dimensional reconstructions
638 and data analysis. The obtained compositions were used to evaluate the volume
639 fractions of the FCC and L₁₂ phases, using the level rule. The equation¹⁶ can be
640 described as: $f^{L_{12}} = (c_i^{\text{nominal}} - c_i^{\text{matrix}})/(c_i^{\text{precipitate}} - c_i^{\text{matrix}})$, where c_i^{nominal} , c_i^{matrix} , and
641 $c_i^{\text{precipitate}}$ refer to the atomic ratio of each element, *i*, in the nominal alloy composition,
642 FCC matrix, and L₁₂ phases, respectively. Bring the atomic ratio for each elemental to
643 the above equation, respectively, then fitting the all points to a linear relationship
644 yields a slope, which is equal to the volume fraction of the L₁₂ NPs.

645 **Mechanical tests.** Flat dog bone-shaped tensile and creep specimens with a gauge
646 length of 5 mm and a cross-section area of 1.8 mm × 1.5 mm were cut by electrical
647 discharge machining and polished with 2,000-grit SiC papers. A computer-controlled
648 WDW-50S MTS testing machine was employed to investigate the tensile properties.
649 All tensile tests were conducted at a nominal strain rate of 0.001 s⁻¹. For
650 high-temperature tensile tests, specimens were first heated to the desired testing
651 temperatures at a rate of 40 °C min⁻¹ and then remained at the testing temperatures for
652 5 min. before tensile tests. Each sample was tested three times to ensure repeatability.
653 The tensile-loading direction was parallel to the rolling direction. A contactless strain
654 gauge based on a digital image correlation (DIC) technique with a high accuracy of 6
655 μm was designed to instantaneously capture and analyze the strain images. The DIC
656 technique, which correlates the speckle pattern between images, can numerically
657 evaluate the strain distribution and calculate the axial strain of the tensile specimens.

658 The strain field was analyzed, employing a MERCURY software
659 (www.testingequipmentie.com). The necking point and the uniform elongation were
660 determined by the point of a maximum load. The work-hardening rate, θ , was derived
661 by differentiating the true stress, σ_t , over the true strain, ε_t , using the equation, $\theta =$
662 $d\sigma_t/d\varepsilon_t$. Tensile creep tests were performed in a uniaxial tensile mode on an RDL-50
663 testing machine at 750 °C under different applied stresses ranging from 70 to 300
664 MPa in air. The creep strain was measured continuously, using a grating transducer
665 extensometer with a displacement resolution of $\pm 1 \mu\text{m}$. The steady-state creep rate
666 was determined by linearly fitting the creep strain versus time curve in the
667 steady-state creep stage.

668 **Neutron diffraction.** Neutron diffraction was performed on the engineering
669 materials diffractometer, VULCAN, at the Spallation Neutron Source, Oak Ridge
670 National Laboratory. A high-resolution neutron-diffraction mode with a d-spacing
671 coverage of 0.5 - 3.5 Å was used to measure the undeformed MESS sample. Rietveld
672 refinement was performed, using GSAS with EXPGUI. The MESS samples
673 underwent tensile tests at RT and 600 °C were subjected to in-situ neutron diffraction
674 with a high-intensity mode. The FCC and L1₂ structures were used to refine the lattice
675 parameters ($a_{\text{FCC}} = 0.3606 \text{ nm}$, and $a_{\text{L1}_2} = 0.3611 \text{ nm}$), phase fraction ($f_{\text{L1}_2} = 17.3\%$),
676 and lattice mismatch (0.124%) by Rietveld refinement. The full width at
677 half-maximum (FWHM) for L1₂'s {210} and {211} diffraction peaks was used for
678 quantifying deformability, which was obtained through correcting the instrumental
679 broadening with a near-perfect (broadening-free) Si sample.

680 **Estimation of strengthening by various mechanisms.** The RT yield
681 strength (σ_y) of our MESS is estimated based on the individual strengthening
682 contribution, expressed as⁴⁷

683
$$\sigma_y = \sigma_0 + \sigma_s + \sigma_g + \sigma_d + \sigma_p \quad (5)$$

684 where σ_0 is the intrinsic strength, or the so-called lattice-friction strength, σ_s is the
685 solid-solution strengthening, σ_g is the grain-boundary strengthening, σ_d is the
686 dislocation strengthening, and σ_p is the precipitation strengthening. Here, the intrinsic
687 lattice friction stress (165 ± 5 MPa) of the base Fe₄₇Cr₁₆Ni₂₆ alloy is used.

688 The present MESS can be simply treated as a FeCrNi-solvent matrix containing
689 Ti and Al solutes, and a standard model for substitutional solid-solution strengthening,
690 based on dislocation-solute elastic interactions, can be directly applied to evaluate the
691 solution strengthening term, σ_s , caused by Ti and Al^{47,56}

692
$$\sigma_s = MG\epsilon_s^{1.5}c^{0.5}/700 \quad (6)$$

693 where G is the shear modulus for the MESS (81 GPa)², c is the total molar ratio of Ti
694 + Al in the simple FCC matrix (Extended Data Table 1), and $M = 3.06$ is the Taylor
695 factor. The strength increment caused by solid-solution hardening, σ_s , is calculated to
696 be = 22 ± 2 MPa.

697 The grain-boundary strengthening contribution, σ_g , is estimated on the basis of
698 the Hall-Petch relation^{16,47}:

699
$$\sigma_g = k_y (d_a^{0.5} - d_c^{0.5}) \quad (7)$$

700 where d_a and d_c represent the grain size of the aged and as-cast MESS, respectively.
701 Using the value of k_y (966 ± 25 MPa $\mu\text{m}^{0.5}$) derived from the FeCrNi system⁵⁷ and the

702 grain sizes ($d_a = 70 \mu\text{m}$ and $d_c = 249 \mu\text{m}$) measured by EBSD. One obtains $\sigma_g = 54 \pm$
703 1 MPa.

704 The strengthening contribution from dislocations (σ_d) is calculated according to
705 the Taylor-hardening law²⁸

706
$$\sigma_d = MaGb\rho^{0.5} \quad (8)$$

707 where α is a constant (0.2), b is the magnitude of the Burgers' vector, and ρ is the
708 dislocation density. Here, $b = \sqrt{2}/2a_{\text{MESS}}$, and the lattice parameter, a_{MESS} , is 0.3607
709 nm (measured from neutron diffraction). The dislocation density (ρ) is calculated by
710 the expression of $\rho = \sqrt{2}\varepsilon/(2db)$, where ε (0.104%) is the microstrain estimated from
711 the XRD result, using the well-known Williamson-Hall method⁵⁸, d is the average
712 grain size. Hence, $\rho = 1.88 \times 10^{13} \text{ m}^{-2}$. Therefore, σ_d is $57 \pm 33 \text{ MPa}$.

713 For an alloy containing high-density NPs, the precipitation hardening, σ_p , is
714 primarily responsible for the pronounced increase in the yield strength^{52, 53}. In the
715 present MESS, the coherent NPs are significantly sheared by dislocations after
716 yielding (Fig. 4d). In this case, three contributing factors are considered for the yield
717 strength, i.e., the particle-matrix coherency strengthening (σ_{cs}), modulus-mismatch
718 strengthening (σ_{ms}), and atomic-ordering strengthening (σ_{os})^{28,47,59}, which can be,
719 respectively, estimated by

720
$$\sigma_{\text{cs}} = M\alpha_{\varepsilon} (G\varepsilon)^{1.5} [rf/(0.5Gb)]^{0.5} \quad (9)$$

721
$$\sigma_{\text{ms}} = 0.0055M (\Delta G)^{1.5} (2f/G)^{0.5} (r/b)^{3m/2 - 1} \quad (10)$$

722
$$\sigma_{\text{os}} = 0.81M [\gamma_{\text{APB}}/(2b)] (3\pi f/8)^{0.5} \quad (11)$$

723 where $\alpha_{\varepsilon} = 2.6$ for the FCC structure, $m = 0.85$, $\varepsilon \approx 3 \Delta a/a$ is the constrained

724 lattice-parameter mismatch, with $\Delta a/a = 0.0014$ in the present work, where Δa is the
725 difference of lattice constants between the NPs and the FCC matrix calculated from
726 the neutron-diffraction results; ΔG is the shear-modulus mismatch between the NP's
727 and matrix, $\Delta G = 4 \text{ GPa}^{47}$, r is the radius (7.2 nm), and f is the volume fraction (~ 0.17)
728 of the NPs. γ_{APB} is the antiphase boundary (APB) energy of the NPs, which is strongly
729 dependent on the Ti/Al ratio of the NPs and can be estimated to be about $0.206 \text{ J}\cdot\text{m}^{-2}$
730 ³⁶. The estimated strengthening contributions from the order strengthening, coherency
731 strengthening, and modulus-mismatch strengthening are 444, 106, and 21 MPa,
732 respectively. The first two (σ_{cs} and σ_{ms}) occur before dislocations shear precipitates,
733 while the latter (σ_{os}) takes place during shearing. In this case, the larger one between
734 $(\sigma_{\text{cs}} + \sigma_{\text{ms}})$ and σ_{os} determines the total strength increment of the shear mechanism⁴⁷.
735 Thus, the overall precipitation strengthening from the NPs is $\sim 444 \pm 32 \text{ MPa}$ [σ_{cs}
736 $(106 \text{ MPa}) + \sigma_{\text{ms}} (21 \text{ MPa}) = 127 \text{ MPa}$; and $\sigma_{\text{os}} = 444 \text{ MPa}$].

737 The estimated σ_y of the MESS is $742 \pm 66 \text{ MPa}$. It is apparent that the
738 precipitation strengthening from the NPs offers the largest contribution ($\sim 60\%$) to the
739 yield strength of the MESS. Note that further increasing the Ti/Al addition (the
740 Extended Data Fig. 1) - which may increase the number density of NPs - would
741 continue to increase the strength of the MESS, but inevitably at the cost of ductility.
742 Thus, the content of Ti/Al should be tailored to achieve the best combination of
743 strength and ductility. In addition, it is noted that the estimated σ_y differs from the
744 experimental value (927 MPa) to some extent. First, several intrinsic parameters (e.g.,
745 ΔG , k_y , and G) are taken from other alloys in our calculations. Second, the strength

746 contribution from the L2₁ phase at the grain boundaries is neglected. In addition, there
747 may be some errors in data fittings, statistical values, and elemental content
748 determinations. Nonetheless, in any case, the precipitation strengthening from the
749 high-density coherent L1₂ NPs dominates the overall strength of the MESS.

750 **Data availability**

751 The data that support the findings of this study are available from the corresponding
752 authors upon reasonable request.

753 51. Viswanathan, G. B. *et al.* Precipitation of ordered phases in metallic solid solutions: A
754 synergistic clustering and ordering process. *Scr. Mater.* **65**, 485-488 (2011).

755 52. Booth-Morrison, C. *et al.* Effects of solute concentrations on kinetic pathways in Ni-Al-Cr
756 alloys. *Acta. Mater.* **56**, 3422-3438 (2008).

757 53. Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. *Nat. Rev. Mater.* **1** (2016).

759 54. Fu, Z. *et al.* A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. *Sci. Adv.* **4**, eaat8712 (2018).

761 55. Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat
762 of mixing and period of constituent elements and its application to characterization of the main
763 alloying element. *Mater. Trans.* **46**, 2817-2829 (2005).

764 56. Schuh, C. A., Nieh, T. G. & Iwasaki, H. The effect of solid solution W additions on the
765 mechanical properties of nanocrystalline Ni. *Acta. Mater.* **51**, 431-443 (2003).

766 57. Zhang, C. *et al.* Effect of aging temperature on the precipitation behavior and mechanical
767 properties of Fe-Cr-Ni maraging stainless steel. *Mater. Sci. Eng. A* **806** (2021).

768 58. Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram.

769 *Acta. Metall.* **1**, 22-31 (1953).

770 59. Ardell, A. J. Precipitation hardening. *Metall. Trans. A* **16**, 2131-2165 (1985).

771

772 **Acknowledgements**

773 The present work was financially supported by the National Natural Science
774 Foundation of China (Nos. 51971195 and 11935004), the Natural Science Foundation
775 of Hebei Province (No. B2020203037), the Youth Fund Project of Science and
776 Technology Research of Hebei Province (No. QN2020210). P.K.L. appreciates the
777 supports from (1) the National Science Foundation (DMR-1611180, 1809640, and
778 2226508) and (2) the US Army Research Office (W911NF-13-1-0438 and
779 W911NF-19-2-0049). R.F. thanks for the support from the Materials and Engineering
780 Initiative at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory
781 (ORNL). A portion of the current research used resources at SNS, a U.S. Department
782 of Energy (DOE) Office of Science User Facility operated by the ORNL. The authors
783 would like to thank Dr. Dunji Yu for his assistance in neutron diffraction experiments,
784 and Dr. Zuohua Wang and Dr. Tingting Yang for their assistance in the TEM
785 characterization.

786

787 **Author contributions**

788 T.S., K.W., and X.C. designed the study. B.S., S.X., Z.B., and T.S. supervised K.W.,
789 F.M., C.D., and S.D. for the synthesis of specimens and the characterization of
790 microstructures and mechanical properties. K.W. and F.M. conducted XRD, EBSD,
791 and mechanical-property tests. K.W., C.D., and S.D. performed TEM observations and

792 analyses. H.Z., and Y.W. conducted correlative 3D-ATP. K.W., X.C., T.S., and P.L.
793 analyzed the data and discussed the results. R.F. and K.A. performed the in situ
794 neutron-diffraction experiments and analyzed the resultant data. K.W., X.C., R.F., P.L.,
795 and T.S. wrote the manuscript. All authors discussed the results and commented on
796 the manuscript.

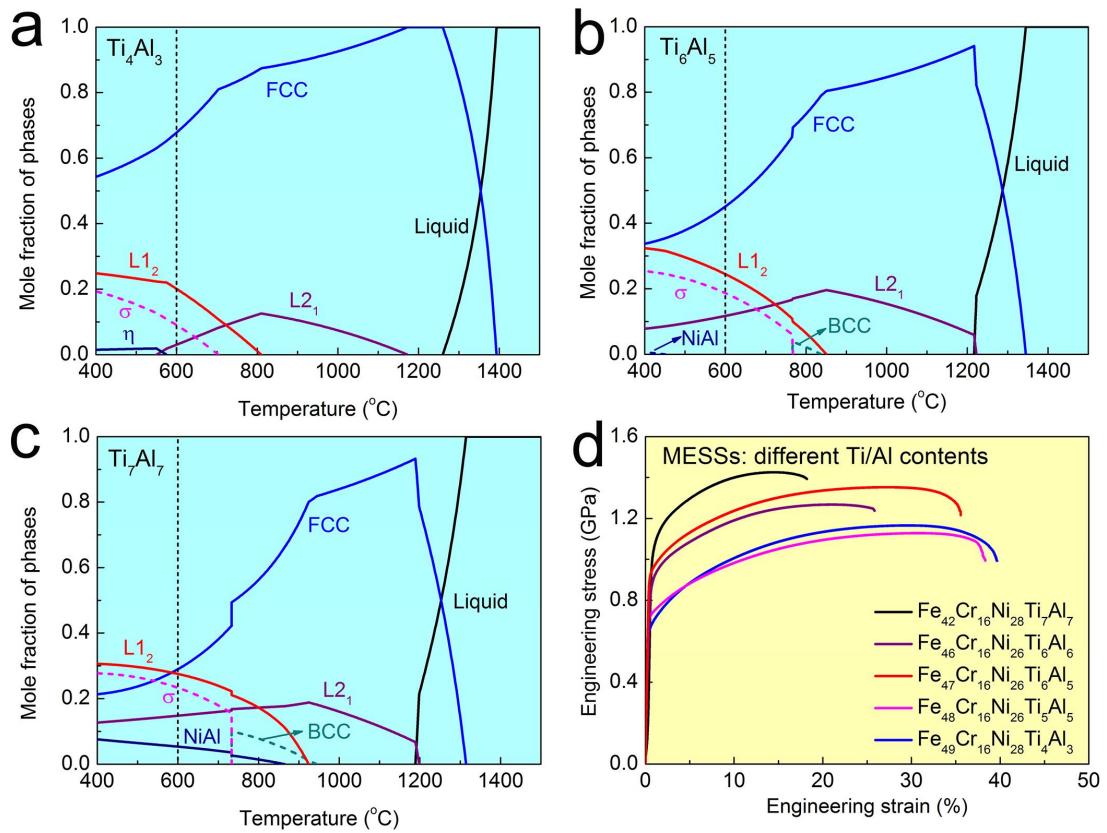
797

798 **Competing interests:** The authors declare no competing interests.

799

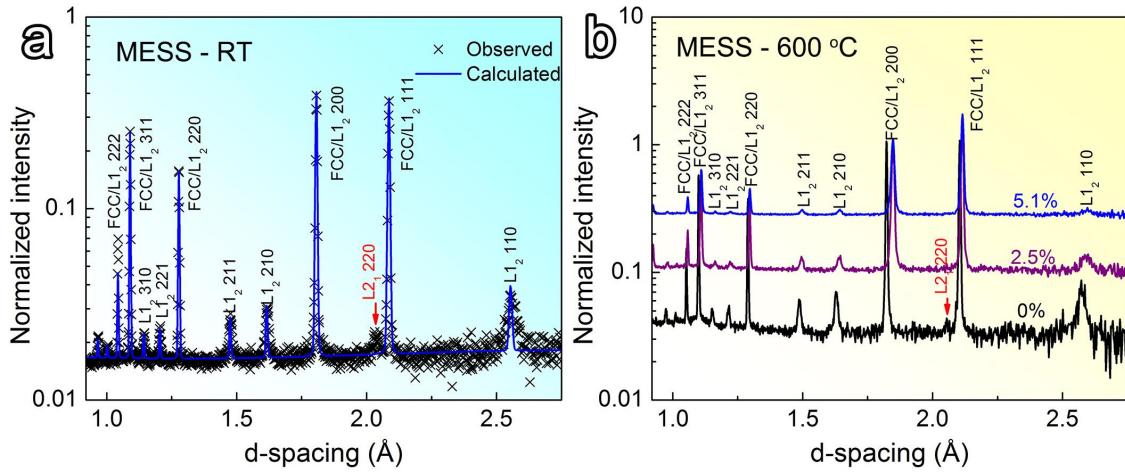
800 **Additional information**

801

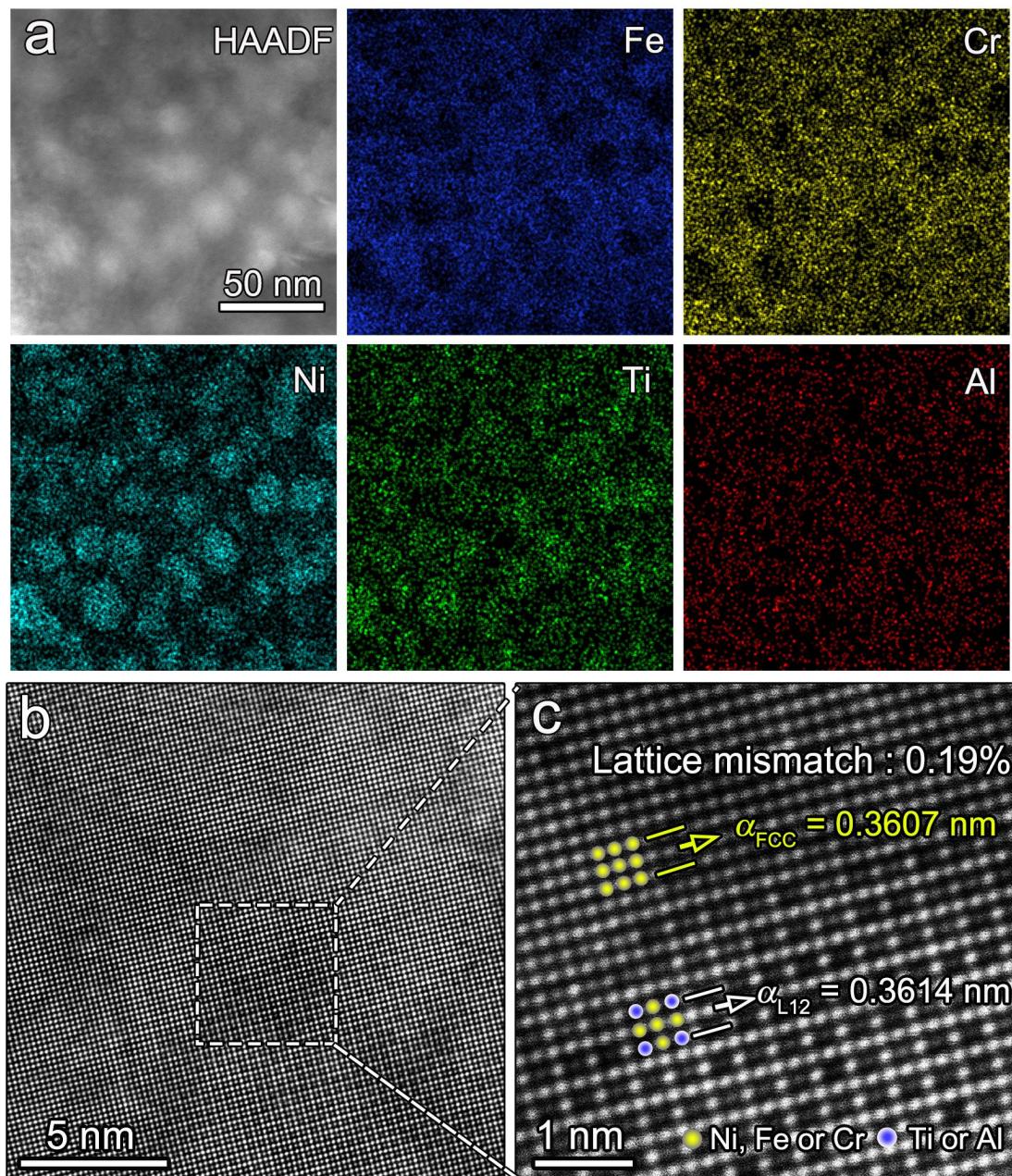

802 **Supplementary information** is available for this paper.

803 **Correspondence and requests for materials** should be addressed to Baoru Sun,
804 Peter K. Liaw, or Tongde Shen.

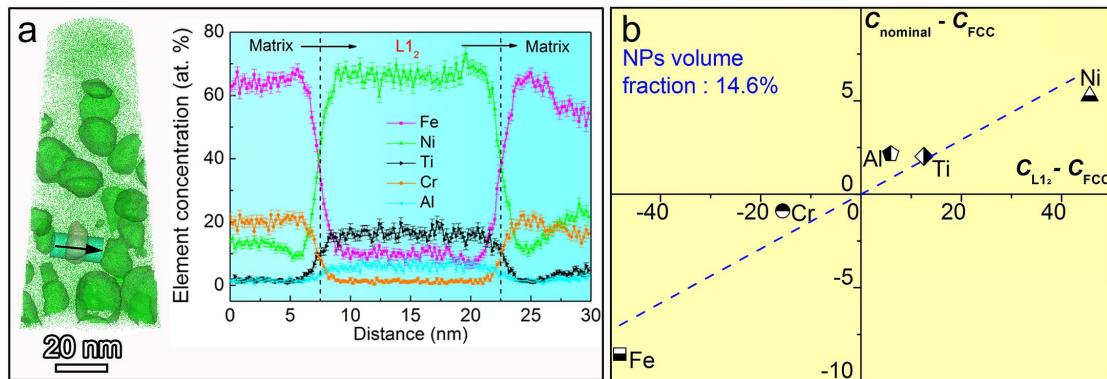
805 **Reprints and permissions information** is available at www.nature.com/reprints.


806

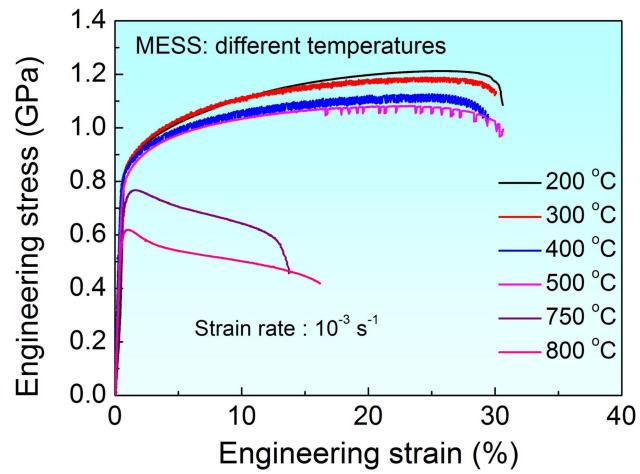
807


808 **Extended Data Fig. 1 | a - c** Equilibrium phase diagrams calculated by the JMatPro software for
 809 MESSs with different compositions, Ti_4Al_3 (a), Ti_6Al_5 (b), and Ti_7Al_7 (c). **d** Tensile curves of
 810 alloys with different Ti/Al contents.

811

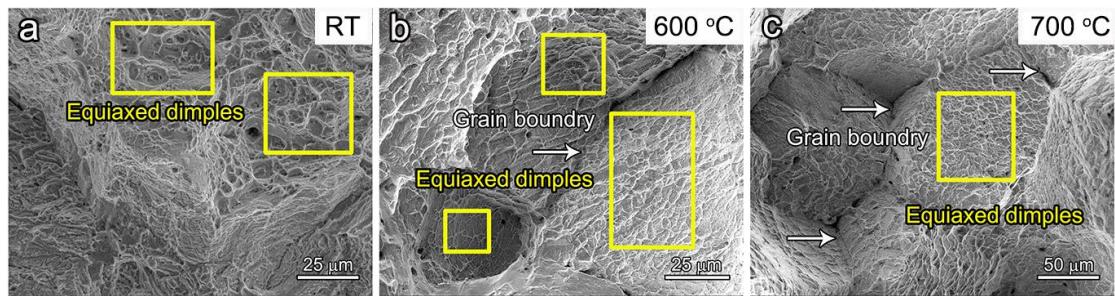

812 **Extended Data Fig. 2 | a** High-resolution neutron-diffraction pattern of the undeformed MESS at
 813 RT, showing the co-existence of the FCC matrix ($\alpha_{\text{FCC}} = 0.3606$ nm) and L1₂ phase ($\alpha_{\text{L1}_2} = 0.3611$
 814 nm) with a lattice mismatch of 0.124%. Black crosses indicating experimental observations, red
 815 lines representing the calculated fit by Rietveld refinement. **b** Neutron-diffraction patterns at
 816 selected tensile strains and at 600 °C, suggesting that no other phases form during tensile
 817 deformation.

818

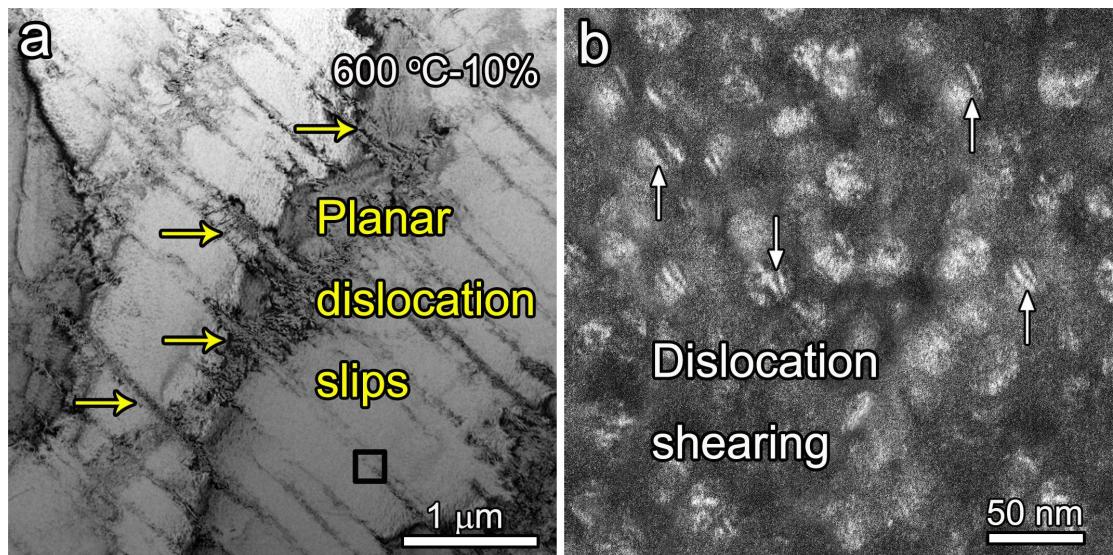


819 **Extended Data Fig. 3 | a** HAADF image and STEM-EDS mappings of the MESS. The elemental
 820 mappings illustrating that Fe and Cr partition to the FCC matrix, and Ni and Ti partition to the L1₂
 821 phase. **b** Atomic-resolution HAADF-STEM image taken from the [001] zone axis exhibiting a
 822 coherent interface between the L1₂ NP and FCC matrix. **c** A close-up view of the region marked
 823 by the white dashed rectangle in **b** revealing the sublattice occupations of different elements in the
 824 L1₂ NP and FCC matrix.

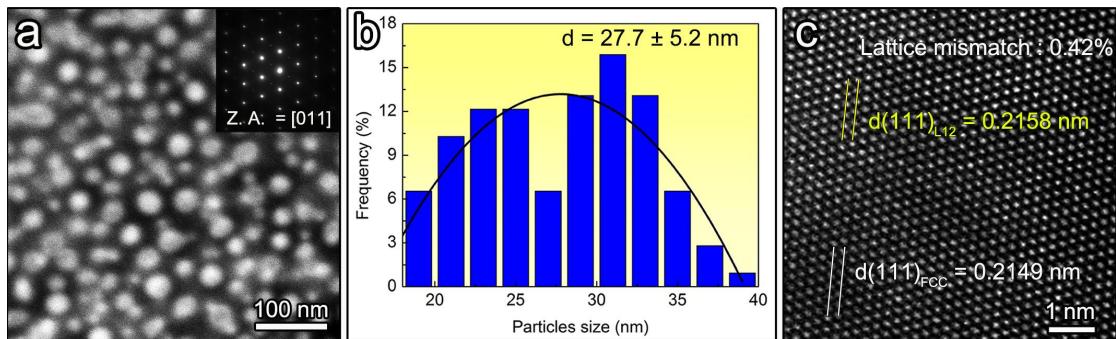
825


826 **Extended Data Fig. 4 | a** One-dimensional concentration profiles from the APT results showing
 827 the elemental distributions. **b** Lever-rule diagram of the chemical composition of the MESS
 828 obtained from Fig. 2b indicating the volume fraction of the L1₂ NPs in the MESS through the
 829 slope of the line.
 830

831 **Extended Data Fig. 5** | Uniaxial tensile stress-strain curves of the MESS at elevated


832 temperatures.

833

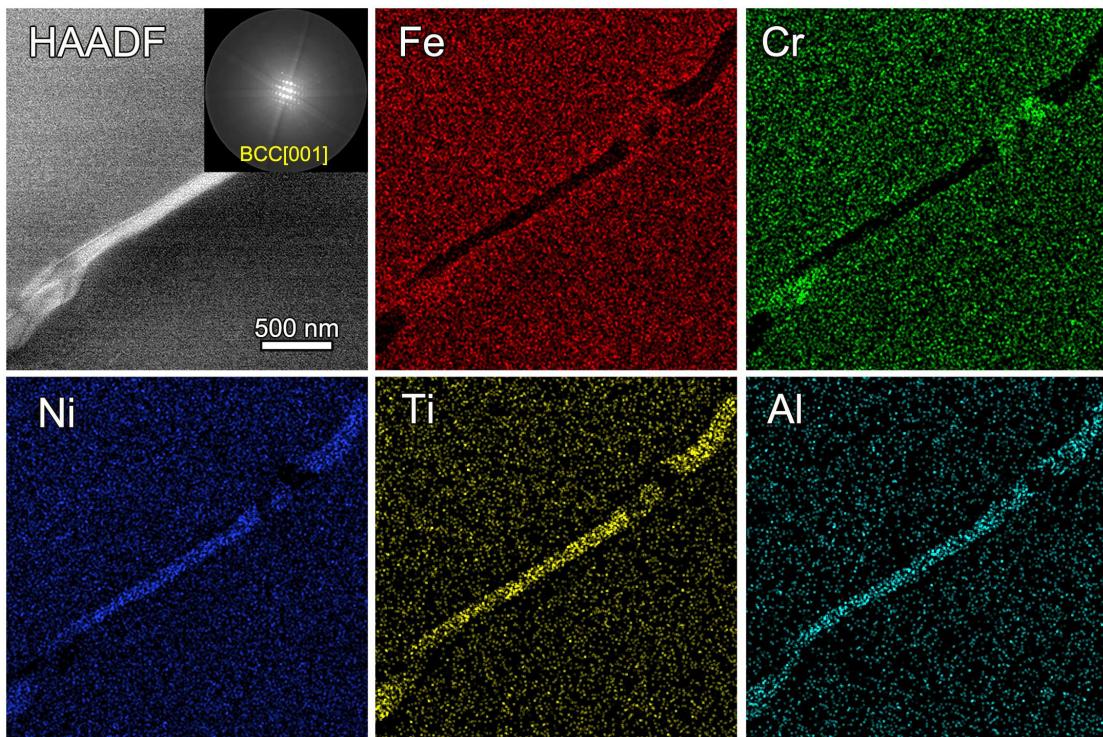


834 **Extended Data Fig. 6** | SEM micrographs of the fracture surface of the MESS deformed at RT (a),
835 600 °C (b), and 700 °C (c). Jagged lines on the fracture surfaces of 600 °C and 700 °C (especially
836 700 °C) clearly indicating that the sample fractured in an intergranular manner, i.e., along the grain
837 boundaries.

838

839 **Extended Data Fig. 7 | a** Deformation microstructures of the 10%-strained sample at 600 °C
840 showing prevalent planar-dislocation slips on the {111} planes. **b** A close-up view of the region
841 marked by the black rectangle in **a** revealing dislocations shearing through L₁₂ NPs.
842

843 **Extended Data Fig. 8** | NPs of the MESS annealed at 700 °C for 200 h. **a** HAADF-TEM image.

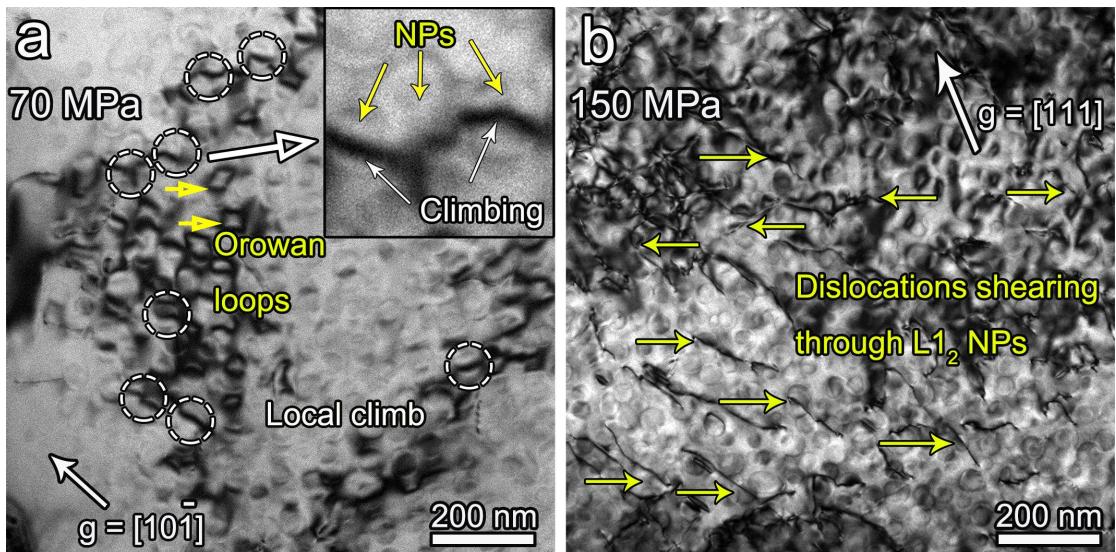

844 Inset showing the corresponding SAED pattern. **b** Statistical distributions of the particle sizes. **c**

845 High-resolution-TEM (HRTEM) image illustrating the interfacial coherency of the FCC

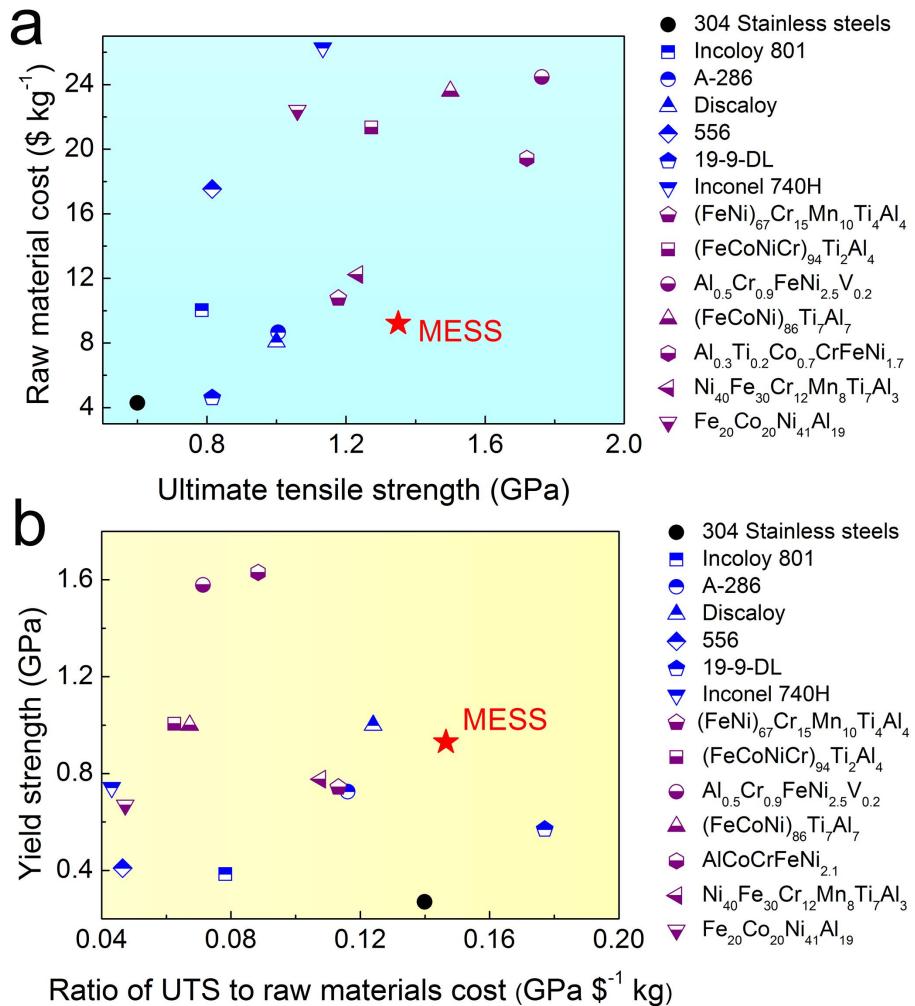
846 matrix/L₁₂ NP after ageing at 700 °C for 200 h, $d(111)_{L12} = 0.2158 \text{ nm}$, and $d(111)_{FCC} = 0.2149 \text{ nm}$,

847 resulting in a small lattice mismatch of 0.42%.

848


849 **Extended Data Fig. 9** | Microstructural characterization of the grain-boundary $L2_1$ phase.

850 Elemental mappings illustrating that Ni, Al, and Ti partition to the $L2_1$ phase. Inset in the HAADF


851 image showing the indexed convergent beam electron-diffraction pattern of the $L2_1$ phase with a

852 BCC structure.

853

854 **Extended Data Fig. 10** | TEM characterization of the deformation microstructures of the
 855 creep-strained specimens. **a** BF-TEM image of the alloy crept at 750 °C/70 MPa for 300 h, most
 856 of dislocations being strongly curved. Inset showing the detailed interactions where a sliding
 857 dislocation is climbing up the encountered L1₂ NPs. **b** BF-TEM image of the alloy crept at 750
 858 °C/150 MPa for 128 h, prevalent dislocations shearing through L1₂ NPs (yellow arrows).
 859

860 **Extended Data Fig. 11** | **a** Comparison between the ultimate tensile strength and raw material cost

861 for typical 304 austenitic stainless steels, Fe-based superalloys, some recently reported
 862 HEAs/MEAs, and the present MESS. **b** Comparison between the yield strength and ratio of the
 863 ultimate tensile strength (UTS) to raw material cost for typical 304 austenitic-stainless steels,
 864 Fe-based superalloys, some recently reported HEAs/MEAs, and the present MESS.

865

866 **Extended Data Table 1** | Chemical compositions of the FCC matrix and L1₂ phase in the MESS
867 characterized by the 3D-APT measurement.

Phase	Chemical composition (atomic percent, at. %)				
	Fe	Cr	Ni	Ti	Al
Matrix	55.6 ± 0.5	16.9 ± 0.4	20.7 ± 0.4	4.0 ± 0.2	2.6 ± 0.2
L1 ₂	7.4 ± 0.8	1.3 ± 0.3	66.0 ± 2.2	16.5 ± 1.6	8.8 ± 0.9

868