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A B S T R A C T   

A novel demodulation method with a reference signal is developed for operational modal analysis 
and damage detection of a beam structure under random excitation. The novel demodulation 
method can process measurements of the beam by a continuously scanning laser Doppler vibr
ometer (CSLDV) system and measurements of a reference point on the beam by a single-point 
laser Doppler vibrometer to estimate its modal parameters, such as damped natural frequencies 
and undamped mode shapes. Damped natural frequencies of the beam are estimated from fast 
Fourier transforms of measurements of the CSLDV system. A cross-correlation function between a 
measurement of the CSLDV system and a measurement of a single-point laser Doppler vibrometer 
is calculated, and the cross-correlation function is multiplied by a sinusoidal signal whose fre
quency is an estimated damped natural frequency of the beam. The processed cross-correlation 
function is filtered by a low-pass filter to obtain the undamped mode shape of the beam that 
corresponds to the estimated damped natural frequency of the beam. Smooth polynomials are 
used to fit estimated undamped mode shapes, which can be considered as undamped mode shapes 
of an undamaged beam. Curvatures of estimated undamped mode shapes and polynomials are 
compared by curvature damage indices to determine the location of a damage in the beam. The 
novel demodulation method with a reference signal is investigated for baseline-free damage 
detection from both finite element simulation and experiment. Modal parameters of a finite 
element model of the damaged beam and a damaged beam specimen, which are under random 
excitation, are successfully estimated, and locations of damages in the beam model and beam 
specimen are accurately determined.   

Introduction 

The dynamic behavior of a structure can be affected by a damage in it, and one can detect the occurrence of a damage by studying 
the dynamic behavior of the structure.1 Modal parameters, such as damped natural frequencies and undamped mode shapes, of the 
structure are used to describe its dynamic behavior, which are useful for damage detection. Modal parameters of a structure can be 
estimated by modal analysis, which includes experimental modal analysis (EMA) and operational modal analysis (OMA).2 EMA re
quires excitation measurement while OMA does not; thus OMA is more appropriate for a structure under an operational condition or 
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under random excitation. Different damage detection methods were developed based on modal analysis.3-5 Valdes and Soutis3 studied 
the effect of delamination in a composite beam on its natural frequencies. Lestari et al.4 used piezoelectric sensors to estimate curvature 
mode shapes of intact and damaged beams, and detected different types of damage in beams by comparing estimated curvature mode 
shapes of intact and damaged beams. He et al.5 used curvature mode differences between intact and damaged beams to identify the 
number and degrees of damages. However, baseline information from undamaged test samples were needed in the above methods, and 
contact-type sensors were used in their tests, which can introduce mass loadings to test structures and affect their estimated modal 
parameters. 

A laser Doppler vibrometer, which can accurately measure the surface velocity of a point on a structure, provides an efficient and 
non-contact way for OMA of the structure.6 However, it is difficult to use the laser Doppler vibrometer to measure vibrations of 
multiple points on the structure, and a scanning laser Doppler vibrometer (SLDV) system was developed to provide measurements with 
a high spatial resolution.6-8 A scanner with a set of orthogonal mirrors was integrated into the SLDV system, and rotation angles of the 
mirrors could be controlled so that the laser spot of the SLDV system was moved to a desired position on the structure. The SLDV system 
measures the vibration of a point for a period of time and then moves its laser spot to the next point.9,10 To increase the efficiency for 
measuring a large number of points on the structure, a continuously scanning laser Doppler vibrometer (CSLDV) system was devel
oped.11-14 Mirrors of a scanner in the CSLDV system continuously rotate so that the laser spot of the CSLDV system is swept along a 
prescribed trajectory on a structure. Recently, novel CSLDV systems including a tracking CSLDV15,16 and a three-dimensional (3D) 
CSLDV17-21 were developed to accurately estimate transverse mode shapes of a rotating fan blade and 3D mode shapes, which include 
in-plane mode shapes,19 of stationary structures with flat17-19 and curved20,21 surfaces, respectively, which significantly extended 
application areas of CSLDV systems. 

Different OMA methods have been developed to process responses from CSLDV measurements of structures to estimate their modal 
parameters, including natural frequencies, damping ratios, and mode shapes, and operational deflection shapes (ODSs).22-27 A 
demodulation method and a polynomial method were developed to estimate ODSs of a structure subject to sinusoidal excitation.22,23 

Estimated ODSs and their curvatures (CODSs) of a beam under sinusoidal excitation can be used for identifying a damage in it via a 
novel damage detection method with a curvature damage index (CDI).28 The method is baseline-free since a polynomial with a proper 
order to fit ODSs of the structure from the demodulation method is used to simulate an associated undamaged structure. By designing a 
two-dimensional (2D) scan scheme on a plate with a thickness reduction damage, its full-field ODSs under sinusoidal excitation were 
estimated via CSLDV measurements, and the location of the damage was determined via the baseline-free damage detection method 
that was extended from one dimension to two dimensions.29 The method was also used to accurately locate delaminations in composite 
plates.30,31 A damage detection method using modal rotational ODSs of a plate obtained from its CSLDV measurements was developed 
to locate cracks near its edge.32 However, the above methods are not suitable for structures under random excitation, which is the most 
practical excitation in real-world applications, since the demodulation method can only be used to process responses from CSLDV 
measurements of structures under sinusoidal excitation. 

A lifting method was developed to estimate undamped modes shapes of a structure under random excitation.27 Estimated un
damped mode shapes from the lifting method can be used for baseline-free damage detection. However, the Nyquist frequency of the 
CSLDV system when using the lifting method depends on the scan frequency, which is the number of times the CSLDV system com
pletes a back-and-forth scan in one second. It is difficult to use the lifting method for OMA of a structure with high natural frequencies. 
Recently, a new OMA method for CSLDV measurements was developed to improve the traditional demodulation method to estimate 
undamped mode shapes of structures under random excitation, where a high scan frequency of the CSLDV system was not 
needed.18,33,34 However, estimated undamped mode shapes of structures using the improved demodulation method are not suitable for 
their baseline-free damage detection since bandpass filters are used to pre-process and smooth their measured responses. 

In this work, a new OMA method based on a novel demodulation method with a reference signal is developed for estimating 
undamped mode shapes of a structure under random excitation. The novel demodulation method processes correlation functions 
between measurements of the CSLDV system and measurements of a reference sensor. Estimated 1D undamped mode shapes can be 
processed by the baseline-free damage detection method to identify locations of damages in the structure. Both finite element method 
(FEM) simulations and experimental tests are conducted to validate the new OMA method and baseline-free damage detection method, 
and locations of damages in structures are successfully identified. 

Remaining sections of this work are listed below. A correlation function between a CSLDV measurement and a measured reference 
signal is introduced in Section ’Correlation function between a CSLDV measurement and a measured reference signal’, a demodulation 
method for the correlation function is introduced in Section ’Demodulation method for the correlation function’, and a baseline-free 
damage detection method is introduced in Section ’Baseline-free damage detection method’. A finite element model of a damaged 
beam is introduced in Section ’Finite element model’, and simulation results of the finite element model are presented in Section ’Finite 
element simulation results’. An experimental setup is introduced in Section ’Experimental setup’, modal parameter estimation and 
damage detection results are presented in Section ’Experimental results of modal parameter estimation and damage detection’. Some 
conclusions are presented in Section ’Conclusion’. 

Methodology 

Correlation function between a CSLDV measurement and a measured reference signal 

When white-noise excitation is applied at point q of a linear time-invariant structure, its response at time t can be expressed by (Xu 
et al.27) 
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u(t) =
∑N

i=1
ϕi

∫t

−∞

ϕi,qfq(t)gi(t − τ)dτ (1)  

where ϕi,q and fq denote the entry of the i th undamped mode shape of the structure ϕi corresponding to q and white-noise excitation at 
q, respectively, and gi(t) = 1

ωi,d
e−ζiωi tsin(ωi,dt) in which ωi,d is the i th damped natural frequency, ζi is the i th modal damping ratio, and ωi 

is the i th undamped natural frequency. The response of the structure at point p can be expressed by 

up(t) =
∑N

i=1
ϕi,p

∫t

−∞

ϕi,qfq(t)gi(t − τ)dτ (2)  

where ϕi,p denotes the entry of ϕi corresponding to p. When a CSLDV system measures the response of the structure along an arbitrary 
scan path s assigned on a surface of the structure, the laser spot of the system sweeps along s, and the measured response can be 
expressed by 

us(t) =
∑N

i=1
ϕ̃i,s(t)

∫t

−∞

ϕi,qfq(t)gi(t − τ)dτ (3)  

where ̃ϕi,s is a function of t and denotes the entry of ϕi corresponding to a point on the structure, at which the laser spot arrives at time t. 
A cross-correlation function between up(t) and us(t) can be calculated as the expected value of their product. The cross-correlation 

function with up(t) and us(t) serving as reference and measurement data, respectively, can be expressed by 

Rpsq
[
up(t1), us(t2)

]
= E

[
up(t1)us(t2)

]
(4)  

where E[⋅] is the expectation operator, and t1 and t2 are two time variables corresponding to up(t) and us(t), respectively. Let T be a 
time-delay variable; one has t2 = t1 + T, and Eq. (4) becomes 

Rpsq(t1, T) = E
[
up(t1)us(t1 + T)

]
(5)  

Substituting Eqs. (2) and (3) into Eq. (5) yields 

Rpsq(t1, T) = E

⎡

⎣
∑N

i=1

∑N

j=1
ϕi,qϕi,pϕj,qϕ̃j,s(t1+T)

∫t1

−∞

∫t1+T

−∞

gi(t1 − σ)gj(t1 + T − τ)fq(σ)fq(τ)dσdτ

⎤

⎦ (6)  

Since only f is random in Eq. (6), it can be rewritten as 

Rpsq(t1, T) =
∑N

i=1

∑N

j=1
ϕi,qϕi,pϕj,qϕ̃j,s(t1+T)

∫t1

−∞

∫t1+T

−∞

gi(t1 − σ)gj(t1 + T − τ)E
[
fq(σ)fq(τ)

]
dσdτ (7)  

The expected value of fq(σ)fq(τ) can be expressed by 

E
[
fq(σ)fq(τ)

]
= αqδ(τ − σ) (8)  

where αq is a constant associated with fq and δ is the Dirac delta function. Substituting Eq. (8) into Eq. (7) yields 

Rpsq(t1, T) =
∑N

i=1

∑N

j=1
αqϕi,qϕi,pϕj,qϕ̃j,s(t1+T)

∫t1

−∞

gi(t1 − σ)gj(t1 + T − σ)dσ (9)  

Let λ = t1 − σ; one has 

Rpsq(t1, T) =
∑N

i=1

∑N

j=1
αqϕi,qϕi,pϕj,qϕ̃j,s(t1+T)

∫+∞

0

gi(λ)gj(T + λ)dλ (10)  

Substituting gi(t) = 1
ωi,d

e−ζiωi tsin(ωi,dt) into Eq. (10) yields 

Rpsq(t1, T) =
∑N

j=1
Ajϕ̃j,s(t1+T)e−ζiωiT cos

(
ωj,dT − θj

)
(11)  

where Aj is an amplitude constant, and θj is a phase constant. 
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The cross-correlation function Rpsq in Eq. (11) is different from that between responses of two fixed points, e.g., p and r, of the 
structure in that the former has two independent time variables, i.e., t1 and T, and the latter has only one time-delay variable, i.e., T. 
The reason is that both up and ur are wide-sense stationary, as both E[up] and E[uq] are constants and independent of t. However, us(t) is 
not wide-sense stationary, as E[uq] is not a constant and depends on t due to continuous scanning of the CSLDV system. 

This completes the theoretical derivation of a cross-correlation function between the response measured by a CSLDV system and 
that of a fixed point of a linear, time-invariant structure under white-noise excitation applied at a fixed point. Since the structure is 
linear, the superposition principle can be applied. The response of the structure under white-noise excitation applied at multiple points 
on it can be expressed as a sum of multiple responses under white-noise excitation applied at all the points. The resulting summed 
cross-correlation function has the same expression as that in Eq. (11), with the same mode shape ϕ̃ and different Aj and θj. 

Demodulation method for the correlation function 

The correlation function Rpsq can be written as 

Rpsq(t1, T) =
∑N

j=1
Cj(T)ϕ̃

i
j,s(t1+T)cos

(
ωj,dT

)
+ Dj(T)ϕ̃

q
j,s(t1+T)sin

(
ωj,dT

)
(12)  

where Cj(T) and Dj(T) are two coefficients, and ϕ̃
i
j,s(t1+T) and ϕ̃

q
j,s(t1+T) are in-phase and quadrature components of ϕ̃j,s(t1+T), respectively. 

The correlation function is multiplied by a sinusoidal signal cos(ωk,dT) where ωk,d is the k-th damped natural frequency of the structure: 

∑N

j=1
Cj(T)ϕ̃

i
j,s(t1+T)cos

(
ωj,dT

)
cos

(
ωk,dT

)
+ Dj(T)ϕ̃

q
j,s(t1+T)sin

(
ωj,dT

)
cos

(
ωk,dT

)

= Ck(T)ϕ̃
i
j,s(t1+T)cos2(

ωk,dT
)

+ Dk(T)ϕ̃
q
j,s(t1+T)sin

(
ωk,dT

)
cos

(
ωk,dT

)

+
∑k−1

j=1
Cj(T)ϕ̃

i
j,s(t1+T)cos

(
ωj,dT

)
cos

(
ωk,dT

)
+ Dj(T)ϕ̃

q
j,s(t1+T)sin

(
ωj,dT

)
cos

(
ωk,dT

)

+
∑N

j=k+1
Cj(T)ϕ̃

i
j,s(t1+T)cos

(
ωj,dT

)
cos

(
ωk,dT

)
+ Dj(T)ϕ̃

q
j,s(t1+T)sin

(
ωj,dT

)
cos

(
ωk,dT

)

(13)  

The k-th damped natural frequency of the structure can be determined by applying the fast Fourier transform to Rpsq. By using the 
double-angle formula, one has 

Ck(T)ϕ̃
i
j,s(t1+T)cos2(

ωk,dT
)

=
1
2

Ck(T)ϕ̃
i
j,s(t1+T) +

1
2
Ck(T)ϕ̃

i
j,s(t1+T)cos

(
2ωk,dT

)
(14)  

By applying a low-pass filter to Eq. (13), the term ϕ̃
i
j,s(t1+T) can be extracted based on Eq. (14). Similarly, one can multiply Eq. (12) by a 

sinusoidal signal sin(ωk,dT) to extract ϕ̃
q
j,s(t1+T). Once ϕ̃

i
j,s(t1+T) and ϕ̃

q
j,s(t1+T) are obtained, one can estimate ϕ̃j,s(t1+T), which is the un

damped mode shape of the structure on the scan path s. 

Baseline-free damage detection method 

The curvature of ϕ̃j,s(t1+T) can be calculated by 

ϕ̃
″
j,s(t1+T) =

d2ϕ̃j,s(t1+T)

dx2 (15)  

where x denotes a spatial position along the scan path s. The polynomial fit of ϕ̃j,s(t1+T) can be calculated as a baseline27: 

ϕ̃
p
j,s(t1+T) =

∑r

h=0
βhxh (16)  

where h is a natural number, βh is a constant coefficient corresponding to xh, and r is the degree of the polynomial fit. The methods for 
determining a proper r and calculating βh have been discussed in Ref. [27]. Differences between curvatures of ϕ̃j,s(t1+T) and the 
polynomial fit can be obtained by 

δ =

[

ϕ̃
″
j,s(t1+T) −

(
∑r

h=0
βhh2xh−2

) ]2

(17)  

where δ is a CDI. Locations of damages in the structure can be identified in neighborhoods with high values in CDIs that correspond to 
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different ϕ̃j,s(t1+T). Note that signal-to-noise ratios of the measured response of a structure under random excitation can be low, and the 
neighborhoods with high values in estimated CDIs can be caused by noise. To remove noise in estimated CDIs and increase the ac
curacy of damage location identification, multiple estimated CDIs can be averaged by 

δa =
1
m

∑m

l=1

δl

δl,max
(18)  

where l = 1,2,…,m, with m being the number of estimated CDIs, δa is an averaged and normalized CDI, δl is the l-th estimated CDI, and 
δl,max is the maximum value of δl. 

Finite element simulation 

Finite element model 

To validate the demodulation method with a reference signal, a finite element model of a damaged cantilever beam was developed 
in ABAQUS. The model was an Aluminum Euler-Bernoulli cantilever beam with a rectangular section of 13 mm × 3 mm and a length of 
1 m (Fig. 1). The Young’s modulus of the beam was set to 70 × 109 Pa, the density of the beam was set to 2700 kg/m3, and the Poisson’s 
ratio of the beam was set to 0.35. There was a thickness reduction region with a depth of 1 mm and a length of 20 mm along the length 
of the beam (Fig. 1(a)). The distance between the clamped end of the beam and the left end of the thickness reduction region was 0.59 
m (Fig. 1(a)). 

Beam elements were used for modeling the beam, and 500 elements with the same size were assigned to the finite element model. A 
concentrated random force excitation with a maximum value of 0.2 N and a standard deviation of 0.0558 was applied to a node of an 
element of the finite element model. The distance between the node and the fixed end of the finite element model is xq. Nodes of the 
finite element model are considered as measurement points of a CSLDV system. The distance between a measurement point on the scan 
line and its start point was x and the total length of the scan line was L. A non-dimensional parameter η = x /L, whose scale was from 
0 to 1, was used to describe the location of a measurement point on the scan line. Simulated velocity responses of the beam were 
preprocessed to simulate measured responses of the CSLDV system when scanning back and forth along a straight line. A sample of 
preprocessing simulated responses is shown in Fig. 2. Simulated responses of 5 nodes at 13 instants form a matrix, where t1, t2, …, t13 

Fig. 1. (a) Schematic of the beam, and (b) the intact section of the beam.  

Fig. 2. Preprocess of simulated responses from the finite element model.  
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Fig. 3. Simulated CSLDV measurements when the distance between the random force excitation and the fixed end of the beam is (a) xq = 0.37 m, (b) xq = 0.7 m, and (c) xq = 1 m.  
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denote 13 instants and integer numbers from 1 to 65 denote simulated responses (Fig. 2). Responses 1, 7, 13, 19, and 25 are chosen as 
measured responses when the laser spot of the CSLDV system sweep from node 1 to node 5 at instants t1, t2, t3, t4, and t5 (see the 
dashed line in Fig. 2). Similarly, responses 25, 29, 33, 37, and 41 are chosen as measured responses when the laser spot sweeps from 
node 5 to node 1 at instants t5, t6, t7, t8, and t9. The above preprocess scheme can be applied to any simulated responses with certain 
nodes and instants to simulate measured responses of a CSLDV system. The response of a node can be used as a reference signal to 
calculate a correlation function. Note that for estimating a mode shape of the beam, one needs to apply a random excitation on a node 
that is not at a nodal point of the mode shape, and choose the response of a node that is not at a nodal point of the mode shape as a 
reference signal. 

Finite element simulation results 

Simulated CSLDV measurements of the finite element model had a sampling frequency of 1000 Hz. Different excitation positions 
were used for estimating the first three bending modes of the beam, and simulated CSLDV measurements are shown in Fig. 3. Based on 
the preprocess scheme in Fig. 2 and the sampling frequency being fsa = 1, 000 Hz, the scan frequency, which is the number of 
completed scans in one second, is fsc = 1 Hz. Note that the Nyquist frequency of a CSLDV measurement is half of the sampling fre
quency of the laser in the CSLDV system, but the number of measurement points n in a complete scan depends on both the sampling 
frequency and the scan frequency: n = fsa/fsc, which means that increasing fsa and decreasing fsc can both increase n. Once n is 
increased, the spatial resolution of an undamped mode shape that is estimated from the CSLDV measurement is increased, and one can 
obtain more accurate OMA results and damage detection results. 

Responses at nodes of the finite element model were used as reference signals for calculating correlation functions. The method for 
calculation of correlation functions that is used in this work is an accurate and efficient calculation method of discrete correlation 
functions that was developed in Ref. [35]. Proper nodes are needed for estimating an undamped mode shape. Responses at nodes 

Fig. 4. (a) Correlation function between simulated CSLDV measurements with xq = 0.37 m and the response of the node with η=0.5 and its fre
quency spectrum in (b), (c) the correlation function between simulated CSLDV measurements with xq = 0.7 m and the response of the node with η =
0.7 and its frequency spectrum in (d), and (e) the correlation function between simulated CSLDV measurements with xq = 1 m and the response of 
the node with η=0.9 and its frequency spectrum in (f). 
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where the undamped mode shape has a large amplitude while other undamped mode shapes have smaller amplitudes are suitable for 
estimating the undamped mode shape. Correlation functions between simulated CSLDV measurements in Fig. 3 and responses at 
nodes, and their frequency spectra are shown in Fig. 4. The correlation function in Fig. 4(a) can be used for estimating the second 
undamped mode shape since it has a large amplitude at the node with xq = 0.5 m. Similarly, the correlation function in Fig. 4(c) can be 
used for estimating the third undamped mode shape, and the correlation function in Fig. 4(e) can be used for estimating the first 
undamped mode shape. 

FFTs of obtained CSLDV measurements were used to determine damped natural frequencies of the beam (Table 1), and obtained 
correlation functions were processed by the demodulation method to estimate undamped mode shapes of the beam. To validate 

Table 1 
Estimated damped natural frequencies of the beam.   

First damped natural frequency (Hz) Second damped natural frequency (Hz) Third damped natural frequency (Hz) 

FFT 2.50 14.67 42.50 
FEM 2.46 14.89 42.56 
Difference 1.63 % 1.48 % 0.14 %  

Fig. 5. Estimated (a) first, (b) second, and (c) third undamped mode shapes of the beam using the demodulation method and FEM.  
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estimated damped natural frequencies and undamped mode shapes, modal analysis of the finite element model in ABAQUS was used to 
estimate damped natural frequencies and undamped mode shapes of the beam. Estimated first three undamped mode shapes of the 
beam using the demodulation method and FEM are compared in Fig. 5. 

Modal assurance criterion (MAC) values between estimated first, second, and third undamped mode shapes of the beam using the 
demodulation method with a reference signal and FEM are 99.92 %, 99.57 %, and 98.79 %, respectively. The demodulation method 
with a reference signal can accurately estimate modal parameters of the beam based on differences in Table 1 and MAC values. The 
baseline-free damage detection method was applied to estimated undamped mode shapes using the demodulation method with a 
reference signal, and averaged and normalized CDIs are shown in Fig. 6. CDIs in ranges [0, 0.1] and [0.9, 1] were disregarded to 
eliminate effects of spurious boundary anomalies.36 The highest peak in CDI plots in Fig. 6 are at the location of the damage in the 
beam; the location the damage in the beam was accurately estimated using the demodulation method with a reference signal and 
baseline-free damage detection method. 

Experimental investigation 

Experimental setup 

A CSLDV system extended from a Polytec PSV-500–3D SLDV system was used to conduct experimental investigation on OMA and 

Fig. 6. Estimated averaged and normalized CDIs from (a) first, (b) second, and (c) third undamped mode shapes of the beam.  
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damage detection methods proposed in this work. An aluminum beam with a thickness reduction on its backside was used as the test 
structure in the experiment. The CSLDV system consisted of an external controller and three laser heads, which were referred to as the 
scanning head and reference heads I and II based on their roles during the test, as shown in Fig. 7(a). Mirrors of the scanning head were 
controlled by the external controller dSPACE MicroLabBox to continuously rotate, so that its laser spot can continuously scan along a 
pre-designed scan line on the surface of the damaged beam. Laser spots of reference heads were fixed on the surface of the damaged 
beam to capture vibrations of reference points. 

The experimental setup of the CSLDV measurement of the damaged beam is shown in Fig. 7(b). One end of the beam was clamped 
by a bench vice and the other end was connected to a stinger of a MB Dynamics modal-50 shaker. A white-noise signal was input into 
the shaker to provide excitation. The thickness reduction damage on the backside of the beam was zoomed in and shown on the right 
bottom part of Fig. 7(b). The reduced thickness is about 21.8 % of the full thickness of the beam. One can see from Fig. 7 that L =

86.8 cm, and the damaged area started at η = 0.584 and ended at η = 0.598, meaning that its length is about 1.4 % of the full length of 
the scan line. The scanning frequency of CSLDV measurements was fsc = 1 Hz, and its sampling frequency was fsa = 1,000 Hz, which 

Fig. 7. (a) Schematic of experimental investigation on OMA and damage detection methods proposed in this work, (b) the experimental setup of the 
beam with a thickness reduction damage, and (c) the algorithmic diagram of the demodulation method with a reference signal for OMA and 
damage detection. 
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provided a total number of N = fsa /2fsc = 500 measurement points on the scan line. A modal test using the SLDV system was con
ducted in a step-wise way on the damaged beam with the same experimental setup as that shown in Fig. 7(b) to obtain its first three 
damped natural frequencies and mode shapes, which were compared with corresponding results from CSLDV measurements to 
validate the proposed OMA method. An algorithmic diagram of the demodulation method with a reference signal for OMA and damage 
detection is shown in Fig. 7(c). 

Experimental results of modal parameter estimation and damage detection 

Vibrations of points at η = 0.3 and η = 0.8 were selected as two references in the experiment to avoid nodal points of the first three 
modes of the damaged beam, and correlation functions Rpsq between them and vibrations from the scanning head were obtained. In one 
set of measurements, vibrations with a duration of 10 s were captured by reference and scanning heads. The first step of modal 
parameter estimation of the damaged beam is to identify its damped natural frequencies. The vibration of the damaged beam under 
white-noise excitation from CSLDV measurements is shown in Fig. 8(a) and its frequency spectrum is shown in Fig. 8(b). One can see 
that it is difficult to directly identify damped natural frequencies of the beam from its frequency spectrum due to the low signal-to-noise 
ratio of the response of the beam under white-noise excitation. Correlation functions using references at η = 0.3 and η = 0.8 are shown 
in Fig. 8(c) and (e), respectively, and their frequency spectra are shown in Fig. 8(d) and (f), respectively. The first three damped natural 
frequencies of the damaged beam can be identified from frequency spectra of correlation functions in the two cases. As listed in 
Table 2, the maximum absolute error between the first three damped natural frequencies of the beam from SLDV measurements and 
those from CSLDV measurements with the reference at η = 0.3 is 1.3 %, and that for η = 0.8 is 0.9 %. 

Based on Eq. (12) in Section ’Demodulation method for the correlation function’, undamped mode shapes of the damaged beam can 
be estimated from correlation functions shown in Fig. 8 using its identified natural frequencies and the demodulation method with a 
reference signal. In this work, the first three undamped mode shapes of the beam were estimated from CSLDV measurements with 

Fig. 8. (a) Vibration of the damaged beam under random excitation from CSLDV measurements and (b) its frequency spectrum, (c) the correlation 
function between the response in (a) and the reference response at  η=0.3 and (d) its frequency spectrum, and (e) the correlation function between 
the response in (a) and the reference response at  η=0.8 and (f) its frequency spectrum. 

Table 2 
Comparison between damped natural frequencies of the damaged beam from SLDV measurements and those from CSLDV measurements with ref
erences at η = 0.3 and η = 0.8.  

Mode No. SLDV measurement CSLDV measurement with reference 

η=0.3 Error η=0.8 Error 

1 15.6 Hz 15.5 Hz −0.6 % 15.7 Hz 0.6 % 
2 45.0 Hz 45.2 Hz 0.4 % 44.6 Hz 0.9 % 
3 91.3 Hz 90.1 Hz −1.3 % 91.7 Hz 0.4 %  
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references at η = 0.3 and η = 0.8 and compared with those from SLDV measurements, as shown in Fig. 9, where red solid lines denote 
mode shapes from SLDV measurements, and black dotted lines and blue dashed lines denote mode shapes from CSLDV measurements 
with references at η = 0.3 and η = 0.8, respectively. One can see that MAC values between the first three mode shapes of the beam from 
SLDV and CSLDV measurements are larger than 95.7 % when η = 0.3, and larger than 96.7 % when η = 0.8. 

In order to reduce the noise of damage detection results, the set of vibration data with a duration of 10 s captured in CSLDV 
measurements with a reference signal was split in ten sets with durations of 1 s. Ten CDIs were calculated using Eq. (17) for each mode, 
and normalization and averaging were conducted on them to obtain final CDI results using Eq. (18) where m = 10 in the experiment. As 
shown in Fig. 10, the location of damage can be identified from peaks of CDI results from CSLDV measurements with references at η 
= 0.3 and η = 0.8. Note that the noise of CDI results for η = 0.8 was slightly smaller than that for η = 0.3. 

Based on experiment results, the demodulation method with a reference signal and the baseline-free damage detection method can 
be used for high-accuracy damage location identification of a beam structure under random excitation, while the traditional 
demodulation method cannot. However, the demodulation method with a reference signal requires both a CSLDV system and a sensor 
for measuring responses of the structure. Moreover, to estimate multiple modes of a structure, reference signals measured from 
multiple positions on the structure are needed to increase signal-to-noise ratios of measured reference signals. If only one position is 
used for a reference signal, the position may be close to a nodal point of a measured mode shape of the structure so that the signal-to- 
noise ratio of the measured reference signal is too low for estimating the mode shape. The frequency spectrum in Fig. 4(b) can only be 
used for identifying the second damped natural frequency of the finite element model since the amplitude of the second undamped 
mode shape is large at the reference node while amplitudes of the other two undamped mode shapes are small. The frequency spectrum 
of the correlation function between the response from the scanning head and the reference response at η=0.5 is shown in Fig. 11. One 
can see that the second natural frequency of the beam cannot be identified from the frequency spectrum, since η=0.5 is close to the 
nodal point of the second mode shape of the beam. The demodulation method with a reference signal is more complicated than the 
traditional demodulation method. 

The lifting method can also be used for damage location identification of a beam structure under random excitation, but it has some 
more limitation than the demodulation method with a reference signal. The lifting method requires the laser spot of the CSLDV system 
to sweep along prescribed scan paths with a sufficiently high speed. The Nyquist frequency of the CSLDV system when using the lifting 

Fig. 9. Comparisons between estimated mode shapes of the damaged beam from SLDV measurements and those from CSLDV measurements with 
references at  η=0.3  and  η=0.8  for its (a) first mode, (b) second mode, and (c) third mode. 
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method is equal to its scanning frequency, which means that it is difficult to use the CSLDV system to estimate modal parameters of a 
structure with high natural frequencies. It is also difficult to use the lifting method for a 2D scan since scanning along a 2D path takes 
much more time than scanning along a 1D path, which greatly reduces the scanning frequency of the CSLDV system. Moreover, 
measured responses of the lifting method are reconstructed to measured responses at multiple measurement points as if there were 

Fig. 10. Estimated averaged and normalized CDIs from CSLDV measurements with references at η = 0.3 and η = 0.8 for the (a) first mode, (b) 
second mode, and (c) third mode of the damaged beam. 

Fig. 11. Frequency spectrum of the correlation function between the response from the scanning head and the reference response at η=0.5.  
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sensors attached to these points. The spatial resolution of the lifting method depends on the number of measurement points. Measured 
responses at measurement points need to be separately processed, which can take much time for processing if the spatial resolution of 
the lifting method is high. The demodulation method with a reference signal can estimate modal parameters of a structure with high 
natural frequencies since the Nyquist frequency of the CSLDV system when using the demodulation method with a reference signal 
depends on the sampling frequency of the system. The demodulation method with a reference signal can be extended to a 2D scan, 
which will be studied in the future. 

Conclusion 

A novel demodulation method with a reference signal is developed for processing measured responses of a damaged structure under 
random excitation by a CSLDV system. Correlation functions between CSLDV measurements and measured responses at a reference 
point are calculated and multiplied by sinusoidal signals whose frequencies are damped natural frequencies of the structure. Multiplied 
correlation functions are filtered by low pass filters to obtain undamped mode shapes of the structure. A baseline-free damage 
detection method is used to calculate curvatures of estimated undamped mode shapes and compare obtained curvatures with cur
vatures of polynomial-fitted undamped mode shapes. CDIs are calculated, which can show the location of a damage in the structure. 
Both numerical and experimental investigations are conducted to validate the novel demodulation method with a reference signal and 
baseline-free damage detection method. Locations of damages in beams are accurately estimated in numerical and experimental in
vestigations. Some limitations of the damage detection method are that damages at the boundary of the structure cannot be detected by 
the damage detection method since CDIs in ranges [0, 0.1] and [0.9, 1] were disregarded to eliminate effects of spurious boundary 
anomalies, and extents of damages are not explicitly provided in estimated CDIs. The novel demodulation method with a reference 
signal can be used for structural health monitoring of a beam structure under random excitation by processing measurements from a 
CSLDV system with a low scan frequency and a reference sensor, while the previous demodulation method and lifting method cannot. 
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