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1.  INTRODUCTION

Naturalistic paradigms utilizing movies or audiobooks 
have gained considerable popularity in the field of cogni-
tive neuroscience. Within the realm of language studies, 
these approaches provide valuable insights into language 
processing in real-world contexts, allowing for the 
examination of a broader range of linguistic phenomena 
(Alday, 2019; Brennan, 2016; Kandylaki & Bornkessel- 
Schlesewsky, 2019). During the comprehension of narra-
tives, linguistic processes unfold naturally across multiple 
levels, including words, phrases, sentences, and dis-
course, each operating on distinct timescales. Computa-
tional models have often been employed to isolate 
these sub-processes and target specific linguistic levels 
(Brennan & Pylkkanen, 2012; Brennan et  al., 2016;  
Goldstein et al., 2022; Huth et al., 2016; Schrimpf et al., 
2021; Wehbe et al., 2021). For instance, relevant neural 
signals for semantic features of words were identified 

using word embedding models (Huth et al., 2016). Never-
theless, it is important to recognize that narrative com-
prehension involves a multitude of processes beyond the 
domain of language, including attention, emotion, social- 
cognitive functions, and memory encoding and retrieval 
(Hasson & Egidi, 2015). Consequently, it is possible to 
misattribute regions involved in these non-linguistic pro-
cesses as core language regions.

Controlled experiments, on the other hand, are 
designed to isolate relevant cognitive processes by com-
paring conditions that differ solely in the component of 
interest. Early neurolinguistic experiments typically com-
pared sentences with simple and complex syntactic 
structures, such as center-embedded and object-relative 
clauses (Stromswold et al., 1996), garden-path sentences 
(Bever, 1970), or implausible sentence completions 
(Kutas & Hillyard, 1980). This work was later comple-
mented by research on basic meaning composition using 
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a “minimal” two-word paradigm, where compositional 
phrases such as “red boat” were contrasted with single 
nouns such as “xkq boat” (Bemis & Pylkkanen, 2011, 
2013a, b, c; reviewed in Pylkkänen, 2019). The underlying 
rationale behind these experimental manipulations is 
based on the concept of subtraction, although this 
approach has faced criticism as the brain is unlikely to 
behave like a linear system (Friston et al., 1996). More-
over, the experimental stimuli often diverge from every-
day language use (Brennan, 2016). Thus, while controlled 
experiments have been widely embraced in neurolinguis-
tics, their applicability to language processing in real-
world contexts remains uncertain.

To compare the findings from experimental and natu-
ralistic paradigms, we conducted a study incorporating 
both designs, with a specific focus on meaning composi-
tion, a fundamental function underlying human lan-
guage’s expressive capacity. The left anterior temporal 
lobe (LATL) has been consistently implicated in the effects 
of semantic composition, as demonstrated in studies 
using a two-word design (e.g., Blanco-Elorrieta et  al., 
2018; Li & Pylkkänen, 2021; Westerlund & Pylkkänen, 
2014, reviewed in Pylkkänen, 2019). However, the gener-
alizability of these findings to naturalistic settings has 
received limited exploration. Here, we trained feed- 
forward neural network (FFNN) classifiers to differentiate 
between MEG source estimates for adjective-noun 
phrases and single nouns, in both the two-word (e.g., 
“green glass” vs. “glass”) and naturalistic settings (e.g., 
“…soft music…” vs. “…a bath…”). To examine the gen-
eralizability of the classifiers, we tested the classifiers 
trained in the experimental setting on the naturalistic data 
using the temporal generalization method (TGM; King & 
Dehaene, 2014), and vice versa. Note that we included 
both school-age children and adults in our sample to test 
whether language proficiency and the development of 
cognitive functions such as social and emotional pro-
cessing may affect language comprehension in experi-
mental and naturalistic contexts. We chose children in 
the school-age range of 7-15  years because they can 
more readily follow the experimenter’s instructions and 
complete the tasks. Furthermore, research has shown 
that children within this age bracket exhibit cognitive pro-
files that are distinct from adults on a range of neuropsy-
chological tests (Ardila & Rosselli, 1994). However, given 
the minimal differences observed between the behavioral 
and neural data of children and adults, and considering 
the relatively small number of child participants due to 
the pandemic, we merged the data from both demo-
graphics into a single group for analysis. Our results 

revealed that the left anterior and middle temporal lobe 
consistently differentiated between phrases and single 
nouns in both the experimental and naturalistic contexts, 
aligning with previous findings concerning semantic 
composition (see Pylkkänen, 2019 for a review).

The combinatory effect occurred much later in the nat-
uralistic setting, which may be attributed to additional 
processing demands imposed by other information pres-
ent in the naturalistic data, such as prosody, word rate, 
word frequency, surprisal of incoming words, and emo-
tional content. To examine this possibility, we conducted 
further analyses by regressing out these effects and re- 
evaluating the classification results. The revised analyses 
revealed an earlier composition effect in the naturalistic 
setting, closely resembling the pattern observed in the 
two-word setting. These findings provide compelling evi-
dence for a unified compositional process underlying 
both the experimental and naturalistic contexts, once the 
confounding effects are accounted for.

2.  MATERIALS AND METHODS

2.1.  Experimental design

The MEG experiment consists of a two-word session and 
a naturalistic listening session and was presented within a 
larger protocol that also included production tasks. Fitting 
multiple tasks into a single recording session manageable 
for children was a major design constraint. While most of 
the prior comprehension literature has used reading, the 
current study was auditory, as we wanted the paradigm to 
be suitable even for children who cannot read yet. Read-
ing and listening were contrasted in Bemis and Pylkkänen 
(2013b) who did observe an LATL sensitivity to a compo-
sition effect for both reading and listening.

In the two-word session, participants listened to both 
adjective-noun phrases (e.g., “green glass”) and single 
nouns that were preceded by a non-lexical “mmm” sound, 
chosen for naturalness in a speech context (“mmm 
glass”). After the auditory stimulus, participants selected 
a matching picture from a set of eight pictures. This task 
differed from the prior minimal composition studies which 
have only used one matching or mismatching task picture 
(Bemis & Pylkkanen, 2011). The reason for our larger set 
of pictures was that this decreased the chance of an 
accurate response by chance, making the behavioral data 
more informative if the task were to be used in, say, a 
clinical setting. There were six unique color words (“red, 
pink, blue, green, black, white”) and six unique nouns 
(“glass, comb, door, sword, heart, house”), and they were 
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randomly combined to form adjective-noun phrases. 
Each participant received a unique randomisation. A total 
of 50 phrases and 50 single nouns were presented. Some 
adjective-noun combinations were presented more than 
once, and each noun was repeated eight to nine times.

2.2.  Participants

Participants were 20 healthy adults (15 females, 
M = 27.8 years, SD = 13.2) and 11 school-age children (6 
females, M  = 9.4  years, SD = 2.3) with normal hearing 
and normal or corrected-to-normal vision. We included 
children in our sample to test whether language profi-
ciency and the development of cognitive functions such 
as social and emotional functions may affect language 
processing in natural and unnatural contexts. The sample 
size of children is relatively small due to the pandemic. 
The aggregate sample size of 31 for both groups aligns 
with the norm for MEG studies of similar scope (e.g., 
Bemis & Pylkkanen, 2011; Blanco-Elorrieta et al., 2018; 
Flick et al., 2018; Law & Pylkkänen, 2021; Li & Pylkkänen, 
2021; Zhang & Pylkkänen, 2015). We also performed a 
power analysis to determine whether our dataset of 31 
participants was adequate to detect a medium-sized 
effect (Cohen’s d = 0.6, as referenced by Cohen, 1988) 
when contrasting adjective-noun phrases with single noun 
MEG data. Our results suggest a power of 0.9, which 
exceeds the conventionally acceptable minimum power of 
0.8. We excluded data from two children who did not com-
plete the entire naturalistic listening task from the natural-
istic dataset; their data were retained in the two-word 
dataset analysis. Consequently, the two-word dataset 
comprises 31 participants (21 females, M = 21.3 years, 
SD  =  13.9), whereas the naturalistic dataset includes 
data from 29 participants (21 females, M  =  22.1  years, 
SD = 13.9). All of the participants were strictly qualified 
as right-handed on the Edinburgh handedness inventory 
(Oldfield, 1971). They self-identified as native English 
speakers and gave their written informed consent prior to 
participation, in accordance with New York University.

2.3.  Experiment procedures

Before recording, each subject’s head shape was digi-
tized using a Polhemus dual source handheld FastSCAN 
laser scanner. Participants then completed the experi-
ment while lying supine in a dimly lit, magnetically 
shielded room (MSR). MEG data were collected using a 
whole-head 156-channel axial gradiometer system 
(Kanazawa Institute of Technology, Kanazawa, Japan). 

The two words were presented for 875 ms each, and an 
image with eight objects appeared on screen 600  ms 
after the second word. Subjects then selected the correct 
object that matched the auditory stimuli. No feedback 
was provided. The inter-stimulus interval was normally 
distributed with a mean of 300 ms (SD = 100 ms). Order 
of stimulus presentation was randomized, and each par-
ticipant received a unique randomisation. After the two-
word session, participants completed a naturalistic 
listening session where they passively listened to an 
audio excerpt consisted of four stories from the YouTube 
channel “SciShow Kids.” The two-word session lasted 
around 20 minutes, and the naturalistic listening session 
lasted about 12 minutes. After the MEG recording, partic-
ipants completed four picture-matching questions on the 
contents of the stories (See Fig. 1A for the experiment 
procedure).

2.4.  MEG data acquisition and pre-processing

MEG data were recorded continuously at a sampling rate  
of 1000 Hz with an online 0.1 to 200 Hz band-pass filter. 
The raw data were first noise reduced via the Continu-
ously Adjusted Least-Squares Method (Adachi et  al., 
2001) and low-pass filtered at 40 Hz. Independent com-
ponent analysis (ICA) was then applied to remove arti
facts such as eye blinks, heartbeats, movements, and 
well-characterized external noise sources. MEG data 
from the two-word task were segmented into epochs 
spanning 100  ms pre-stimulus onset to 1750  ms post- 
stimulus onset. MEG data from the naturalistic task were 
segmented into epochs from the onset to 875 ms after 
the target word. The target words include words at the 
boundary of single nouns and adjective-noun phrases in 
the naturalistic stimuli. Single nouns and adjective-noun 
phrases were annotated based on the Stanford part-of-
speech tagger (Toutanova et al., 2003).

Epochs containing amplitudes greater than an abso-
lute threshold of 2000 fT were automatically removed. 
Additional artifact rejection was performed through man-
ual inspection of the data, removing trials that were con-
taminated with movement artifacts or extraneous noise. 
The whole epoch rejection procedure results in an aver-
age rejection rate of 7.6% (SD = 5.1%) for the adult par-
ticipants and an average rejection rate of 11.1% (SD = 5%) 
for the child participants.

We then computed the cortically constrained minimum- 
norm estimates (Hämäläinen & Ilmoniemi, 1994) for each 
epoch for each participant. To perform source localization, 
the location of the participant’s head was first coregistered 
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with respect to the sensor array in the MEG helmet. We 
used the FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 
“fsaverage” brain with rotation and translation and then 
scaling the average brain to match the size of the head 
scan. A source space of 2562 source points per hemi-
sphere was generated on the cortical surface for each par-
ticipant. The Boundary Element Method (BEM) was 
employed to compute a forward solution, explaining the 
contribution of activity at each source to the magnetic flux 
at the sensors. We applied the BEM protocols as per MNE- 
Python’s default configurations, following previous publi-
cations (e.g., Bemis & Pylkkanen, 2011; Flick & Pylkkänen, 
2020; Law & Pylkkänen, 2021; Li & Pylkkänen, 2021). Spe-
cifically, we used the head surface triangulation computed 
by the watershed algorithm (Ségonne et al., 2004), which 
yielded the inner, outer skull triangulations and the head 
surface triangulation. We then set up the boundary- 
element model with a conductivity value of 0.3 S/m for the 
scalp and the brain compartments, and 0.006 S/m for the 
skull. These values were the default set in MNE and were 
corroborated by prior literature (Goncalves et  al., 2003; 
Lew et al., 2009; Oostendorp et al., 2000). We next aligned 
the head and the sensors in a common coordinate system 
by identifying the fiducial landmark locations. Following 
coregistration, we computed the forward solution using 

MNE’s mne.make_forward_solution() function, which cal-
culates the magnetic fields and electric potentials that  
sensors and electrodes detect from cortical dipole sources 
in each subject. For the two-word data, channel-noise 
covariance was estimated based on the 100 ms intervals  
prior to each artifact-free trial, aligning with previous litera-
ture on phrasal composition in a two-word setting (Bemis & 
Pylkkanen, 2011; Li & Pylkkänen, 2021). The naturalistic 
data were baseline-corrected using the mean of the whole 
epoch. We acknowledge that this may lead to different 
SNRs for the noise covariance estimates for the two-word 
and the naturalistic data. However, since the main goal of 
our study is to examine whether phrase processing in con-
trolled laboratory settings can be generalized to naturalis
tic settings, we would like to maintain consistency with 
prior analytical methods. We have also reprocessed the 
two-word data, based-lined corrected using the whole 
epoch. The results are very similar to our initial findings  
(see Supplementary Fig. 1). The inverse solution was com-
puted from the forward solution and the grand average 
activity across conditions with “free” orientation, meaning 
that the inverse operator places three orthogonal dipoles  
at each location defined by the source space. However, 
when computing the source estimate, only activity from  
the dipoles perpendicular to the cortex was included. This 

Fig. 1.  Experimental design and behavioral results. (A) Experimental design and trial structure. In the two-word session, 
participants selected a picture from eight pictures that matched the preceding words in each trial. Half of the target 
pictures matched and half did not. Activities recorded from the onset of the second word to 875 ms after the second word 
were analyzed. In the naturalistic listening session, participants passively listened to a 12-minute audio excerpt from the 
YouTube channel “SciShow Kids.” Participants completed a picture-matching task after the listening session to ensure 
comprehension. (B) Behavioral results on the two-word task. Mean predicted accuracy and reaction time for the phrase 
and noun conditions across the adults and children group. A two-way mixed ANOVA revealed significant differences 
between the groups in both accuracy (p = 0.002) and reaction time (p < 0.001). Composition was not significant for either 
accuracy or reaction time for either group. Error bars indicate 1 standard error. *** indicates p < 0.001.

http://surfer.nmr.mgh.harvard.edu/
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approach is equivalent to estimating the inverse solution 
with fixed orientation dipoles, however, it affords greater 
flexibility by allowing us to evaluate results under both  
fixed and loose orientations. For each trial, the same  
inverse operator was applied to yield dynamic statistical 
parameter maps (dSPM) units (Dale et al., 1999). This was 

done using a regularization parameter computed as 
1

SNR2 , 

with the SNR value set at 3. The final source estimates 
were downsampled to 200 Hz to save computing time. All 
data preprocessing steps were performed using MNE- 
python (v.0.24.0; Gramfort et al., 2014).

2.5.  Behavioral data analyses

Accuracies were analyzed using a generalized linear 
mixed-effects model (GLMM) with binomial error distribu-
tion, and the log-transformed RTs were analyzed using a 
linear mixed-effects model. Our fixed effects include the 
binary variables Composition (single nouns vs. phrases) 
and Age (adults vs. children). Subject-level variability was 
included as random intercepts. The GLMM analyses 
were conducted via the “lme4” package (Bates et  al., 
2015) in R (v4.2.1) and RStudio (v022.12.0+353). The sta-
tistical significance of fixed effects was estimated using 
the “lmerTest” package (Kuznetsova et  al., 2017), in 
which Satterthwaite’s approximation was applied to esti-
mate degrees of freedom (see Fig. 1B for the results).

2.6.  Phrasal and noun representations in LLMs

To gain insights into the neural representations of phrases 
and single nouns in the two-word and naturalistic con-
texts, we first examined phrasal and noun representa-
tions in isolated two words and narratives in a large 
language model (LLM). Recent LLMs have achieved 
extraordinary performance in language comprehension 
tasks and have been suggested to share some computa-
tional principles with the human brain (e.g., Caucheteux 
& King, 2022; Goldstein et  al., 2022; Schrimpf et  al., 
2021). Here, we first extracted each layer’s embeddings 
from the pre-trained GPT2-large model (Radford et  al., 
2019) for the nouns in single nouns and adjective-noun 
phrases in the two-word (e.g., “green glass” vs. “glass”) 
and narrative contexts (e.g., “…soft music…” vs. “…a 
bath…”). We then applied multidimensional scaling 
(MDS), a dimensionality reduction technique to visualize 
the last layer’s embedding of each adjective-noun phrase 
and single noun in the two-word and naturalistic contexts 
to two dimensions (see Fig. 2A). We also computed the 

cosine distance between each layer’s embeddings for 
single nouns and adjective-noun embeddings (see 
Fig. 2B). The pretrained GPT2-large model was obtained 
from the transformers (v4.10.2) package in python.

2.7.  Classification on LLM embeddings for phrases and nouns

We trained a feed-forward neural network (FFNN) classifier 
to distinguish the nouns in single nouns and adjective-noun 
phrases using the two-word stimuli and tested the classifier 
on the nouns in single nouns and adjective-noun phrases in 
the naturalistic text. Adjective-noun phrases were anno-
tated using the Stanford part-of-speech tagger (Toutanova 
et al., 2003) and were manually checked. Conversely, we 
also trained an FFNN classifier on the naturalistic data and 
tested it on the two-word data. The FFNN contains one 
hidden layer with two units (see Fig. 2C). To control for the 
confounding factor that the nouns in single nouns were the 
initial token whereas the nouns in adjective-noun phrases 
were not, we performed a linear regression model using 
the binary variable “word position” to predict each layer’s 
embeddings. We took the residuals of the model for the 
classification analyses. The classification analyses were 
performed using the python package scikit-learn (v0.22.1).

2.8.  Searchlight multivariate pattern classification on MEG data

We conducted searchlight multivariate pattern classifica-
tion analyses on the source-localized MEG data within a 
left-lateralized language mask for each subject. The lan-
guage mask (see the pink region in Fig.  3A) covered 
regions including the whole left temporal lobe, the left 
inferior frontal gyrus (LIFG; defined as the combination of 
BAs 44 and 45), the left ventromedial prefrontal cortex 
(LvmPFC; defined as BA11), the left angular gyrus (LAG; 
defined as BA39), and the left supramarginal gyrus 
(LSMA; defined as BA 40). The left AG and vmPFC have 
also been implicated in previous literature on conceptual 
combination (Bemis & Pylkkanen, 2011; Price et al., 2015) 
and the LIFG and the LMTG have been suggested to 
underlie syntactic combination (Flick & Pylkkänen, 2020; 
Hagoort, 2005; Lyu et al., 2019; Matchin & Hickok, 2020; 
Matchin et al., 2019).

We trained feedforward neural network (FFNN) classi-
fiers to pairwise combinations of the MEG data for single 
nouns and phrases in the two-word and naturalistic 
experiments (see Fig. 3A). The FFNN contains one hid-
den layer with two units. The binary classifiers were sep-
arately applied to all spatiotemporal timepoints, with a 
radius of 20 sources. The same analysis pipeline was 
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Fig. 2.  Phrasal and noun representations in two-word and naturalistic contexts in an LLM. (A) Multidimensional scaling 
(MDS) of the last layer’s embeddings of adjective-noun phrases and single nouns in two-word and naturalistic contexts 
in GPT-2. (B) Cosine distance of each layer’s embeddings of adjective-noun phrases and single nouns in two-word and 
naturalistic contexts in GPT-2. (C) A feed-forward neural network classifier was trained to distinguish the last layer’s 
embeddings of nouns in single nouns and adjective-noun phrases in the two-word context, and tested on the last layers 
of nouns in single nouns and adjective-noun phrases in the naturalistic context. Conversely, a classifier was trained on the 
naturalistic context and tested on the two-word context. (D) Classification results on the LLM’s embeddings. The classifier 
trained in the two-word context achieved an accuracy of 80% in distinguishing phrases from nouns and an accuracy of 
60.8% when applied to the naturalistic context. The classifier trained in the naturalistic context achieved an accuracy of 
83.3% and an accuracy of 64.3% when tested in the experimental context.

Fig. 3.  Classification analyses procedure and results on the MEG data. (A) Following the classification analysis of 
phrases versus nouns in LLMs, we trained feed-forward neural network (FFNN) classifiers to distinguish phrases 
from nouns in one context and tested in another context. The same classification was applied independently with 
a searchlight radius of 20 sources within a language mask and at every timepoint. Classification accuracies for the 
training data were averaged over subjects at source and time point minus the chance level of 50% was submitted to a 
one-sample t-test and the statistical significance was determined by a TFCE correction with 10,000 permutations. At 
the testing time, we applied the temporal generalization method and tested the classifiers’ performance at each time 
point on every timepoint in the testing data. (B) Classification results of adults’ and children’s MEG data. For adults, 
the classifiers trained on the experimental data can distinguish phrases from single nouns in the left anterior and 
middle temporal lobe from 240-320 ms (N sources = 214, t = 5.58, Cohen’s d = 1.28, p = 0.025) after the onset of the 
target word. The classifiers trained on the naturalistic data can distinguish phrases from single nouns in the similar left 
anterior and middle temporal regions from 560-680 ms (N sources = 222, t = 3.59, Cohen’s d = 0.82, p = 0.03) after 
the onset of the target word. For children, the classifiers trained on the experimental data can distinguish phrases from 
single nouns in the left middle temporal lobe from 300-420 ms (N sources = 43, t = 2.24, Cohen’s d = 0.71, p = 0.014) 
after the onset of the target word. The classifiers trained on the naturalistic data can distinguish phrases from single 
nouns in the left anterior and middle temporal regions from 560-640 ms (N sources = 112, t = 3.55, Cohen’s d = 1.12, 
p = 0.001) after the onset of the target word. (C) Classification results of all MEG data. When trained on experimental 
data, the classifiers can distinguish phrases from single nouns in the left anterior and middle temporal lobe from  
200-340 ms (N sources = 136, t = 5.08, Cohen’s d = 0.93, p = 0.005) after the onset of the word. When trained on  
the naturalistic data, the classifiers can distinguish phrases from single nouns in the whole left temporal lobe from  
520-680 ms (N sources = 532, t = 4.54, Cohen’s d = 0.83, p = 0.001) after the onset of the word. The grey lines 
represented shuffled classification results. * indicates p < 0.05; ** indicates p < 0.01.
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Fig. 4.  The temporal generalization results. (A) The classifiers trained on the two-word data from 200-220 ms can 
significantly distinguish phrases from nouns from 700-760 ms in the testing data. (B) The classifiers trained on the 
naturalistic data from 620-640 ms can significantly distinguish phrases from nouns from 220-340 ms in the testing data.

applied to each subject. At the group level, the classifica-
tion accuracy averaged over subjects at each timepoint 
minus the chance level of 50% was submitted to a one- 
sample one-tailed t-test with threshold-free cluster 
enhancement (TFCE) correction (Smith & Nichols, 2009) 
for 10,000 permutations (see the first two columns of 
Fig.  3B for the results). The analysis time window was 
between 0-875 ms after the onset of the second word.

2.9.  Testing the classifiers using the temporal  
generalization method (TGM)

The classifiers trained to distinguish the MEG data for 
single nouns and phrases in the two-word task were 
tested on the MEG data for single nouns and phrases in 
the naturalistic task using TGM. TGM allows us to probe 
compositional processing in the brain over time by train-
ing the classifier using data from one time period and 
testing the classifier on data from all time periods. This 
method is particularly useful for neuroimaging data with 
high temporal resolution (e.g., EEG, MEG), and it has 
been successfully applied in other domains of cognitive 
neuroscience such as memory (Meyers, 2018), vision 
(Dobs et al., 2019), audition (King et al., 2014), etc. The 
results of TGM is a 2D matrix, where the color at point i, j 
indicated prediction accuracy when the model is trained 
using data at time i and tested with data at time j (see 
Fig. 3A for the classification procedure).

Similarly, the classifiers trained on the naturalistic data 
were tested on the experimental data using TGM. During 
testing, each classifier trained from training data at a 
timepoint was applied to testing data at all timepoints. 
This procedure led to two TGM matrices of classification 
performance, one for training on experimental data and 
testing on naturalistic data, and one for training on natu-
ralistic data and testing on experimental data. Statistical 
significance is decided based on a cluster-based one- 
sample one-tailed t-test with 10,000 permutations (Maris 
& Oostenveld, 2007), comparing the 2D matrix to a 
chance level of 0.5 (see the last column of Fig. 3B for the 
results). The classification analyses were performed 
using the python package scikit-learn (v0.22.1), and the 
statistical analyses were performed using the python 
package eelbrain (v0.38).

2.10.  MDS of MEG data of phrases and nouns

We extracted the MEG data from the significant clusters 
derived from the classification analyses (see the first 
column in Fig. 3B). We then applied MDS to the MEG 
source estimates of each target word in the two-word 
and naturalistic contexts. We also plotted the temporal 
dynamics of the 2D representations of the single-nouns 
and adjective-noun phrases in the “experimental” and 
“naturalistic” state space (see Fig. 4).
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2.11.  Multiple regression on the naturalistic MEG data

Naturalistic stimuli differ from two-word stimuli in many 
dimensions. For example, the stimuli in the two-word 
task had lower surprisal as they were repeatedly pre-
sented during the experiment. Surprisal evoked by an 
incoming word indicates the amount of information that 
was not predictable from the context (Hale, 2001; Levy, 
2008), and is calculated as the negative logarithm of the 
probability assigned to the actual next word. A slower 
presentation rate of words (875 ms) in the two-word task 
may also facilitate faster composition compared to words 
that are much faster during naturalistic speaking. Other 
linguistic factors such as richer prosodic information and 
different word frequency may also induce additional pro-
cesses that delayed the composition effect. In addition, 
processes beyond the language domain may be involved 
during narrative understanding. Emotional arousal and 
valence, for example, have been shown to also evoke 
activity in the language network (Wallentin et al., 2011).

To understand whether these factors that are underlying 
the “naturalness” of the narrative stimuli contributed to the 
late composition effect, we conducted a multiple regres-
sion model to regress out these factors (see Fig. 6A). Our 
dependent variable is the source estimates of each sub-
ject’s naturalistic data. Our regressors included the peak 

intensity and f0 of the target words, word rate, word fre-
quency, word surprisal based on the GPT-2 language 
model (Radford et al., 2019), emotional valence and arousal 
indicated by human judgment on Amazon Mechanical Turk 
(see details of the regressors below). Both the dependent 
and independent variables were z-scored. Pearson’s r cor-
relations among the regressors were examined to ensure 
no collinearity among the regressors (see Fig. 6C).

2.12.  Intensity and pitch

Root mean square (RMS) intensity and the fundamental 
frequency (f0) for every 10 ms of the audio were extracted 
using the Voicebox toolbox (http://www.ee.ic.ac.uk/hp 
/staff/dmb/voicebox/voicebox.html). Peak RMS intensity 
and peak f0 within the during of each word in the natural-
istic stimuli were used to represent the intensity and pitch 
information for each word.

2.13.  Word rate

Since word duration is largely determined by the length 
of the word, we computed the presentation rate of each 
word as the duration of each word in milliseconds divided 
by the number of letters in the word. A slow presentation 

Fig. 5.  MDS of the neural representations for phrases and nouns in the experimental and naturalistic contexts. The MEG 
source estimates from the significant spatiotemporal clusters in the classification analyses were extracted and reduced 
to two dimensions using MDS. The timecourses of the MDS representations of phrases and nouns in the experimental 
state space suggested larger distance in an earlier time window. For the naturalistic data, the timecourses of the MDS 
representations diverted from the middle to the end of the whole epoch.

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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rate indicates words with longer duration and fewer let-
ters, while a fast presentation rate suggests a shorter 
presentation of long words.

2.14.  Word frequency

Log-transformed unigram frequency of each word in the 
naturalistic stimuli was estimated using Google Books 

Ngram Viewer, Version 2012070129 (http://storage 
.googleapis.com/books/ngrams/books/datasetsv2.html).

2.15.  Surprisal

The predictability of each word in the naturalistic stimuli 
given the previous context was indexed by the surprisal 
of all the words in the naturalistic stimuli. Surprisal evoked 

Fig. 6.  Regression analyses procedure and the classification results of the naturalistic data after regressing out control 
variables. (A) We applied a linear regression model to predict the source estimates of the target words in the naturalistic 
data for each subject. (B) Distribution of the regressors. Our regressors include intensity and pitch for the audio, word 
frequency, presentation rate, surprisal of the word given previous context, and emotional arousal and emotional valence of 
the text. (C) Correlations among the regressors. The correlation matrix suggested low correlation among the predictors. (D) 
Classification results after controlling for the regressors. We performed the same classification analyses on the residuals 
of the source estimates after regression. When trained on the naturalistic data, the classifiers can distinguish phrases from 
single nouns in a large cluster in the left temporal lobe from 280-400 ms (N sources = 449, t = 5.63, Cohen’s d = 1.06, 
p = 0.002) after the onset of the word. (E) When tested on the experimental data using TGM, the classifiers from 320-
340 ms in the training data can significantly distinguish phrases from nouns from 220-360 ms in the testing data. The grey 
lines represented shuffled classification results. ** indicates p < 0.01.

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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by an incoming word indicates the amount of information 
that was not predictable from the context (Hale, 2001; 
Levy, 2008), and is calculated as the negative logarithm 
of the probability assigned to the actual next word. The 
probability of each word in the naturalistic stimuli given 
the previous words within the same sentence was derived 
from the pretrained GPT2-large model. This model uses a 
transformer architecture and has been shown to suc-
cessfully capture human performance on next-word  
prediction (e.g., Goldstein et  al., 2022; Schrimpf et  al., 
2021). The analyses was performed using the python 
package transformers (v4.10.2).

2.16.  Emotion arousal and emotional valence

Emotional arousal and emotional valence of each sen-
tence in the naturalistic stimuli were rated by participants 
on Amazon Mechanical Turk (MTurk). Following a prior 
study (Wallentin et al., 2011), arousal was rated on a scale 
from 0 to 10 indicating extreme boredom to extreme 
arousal. Emotional valence was rated on a scale from -5 to 
5, where -5 indicates strong negative emotions and 5 indi-
cates strong positive emotions. A total of 30 participants 
completed the survey. The mean valence and arousal rat-
ings for each sentence were computed, and words in the 
same sentence have the same emotional arousal and 
emotional valence. Inter-subject correlations (ISC) among 
each subject’s ratings for arousal and valence were com-
puted as the mean of the Pearson’s r coefficients between 
each subject’s ratings and the overall mean ratings. The 
statistical significance of subjects’ ISC coefficients was 
determined by comparing the observed values with ran-
domly generated ratings using paired two-sample t-tests.

3.  RESULTS

3.1.  Behavioral results for the two-word task

Overall, participants achieved an accuracy of 94.4% 
(SD  =  23%) with a mean reaction time (RT) of 2.6  s 
(SD = 2.07 s). The mean accuracy for adults was 96.9% 
(SD = 17.3%), and the mean accuracy for children was 
89.9% (SD  =  30.1%). The mean RT for adults was 2  s 
(SD  =  1.1  s), and the mean RT for children was 3.67  s 
(SD = 2.83 s; see Fig. 1B). Compared to prior studies (e.g., 
Bemis & Pylkkanen, 2011), these RTs seem longer. This is 
because the task was more difficult as the participants 
needed to use two buttons to select from eight pictures. 
The reason for the more complex task was to reduce the 
possibility of correct responses by chance, which makes 
the task more applicable for possible clinical uses.

The binary variable Accuracy was analyzed using a 
generalized linear mixed-effects model (GLMM) with bino-
mial error distribution, and RTs were log-transformed and 
analyzed using a linear mixed-effects model (LMM). Com-
position (single nouns vs. phrases) and Age (adults vs. 
children) were included as fixed effects and subjects as 
random intercepts. The results revealed a significant effect 
of Age on both accuracy (p < 0.001) and RT (p < 0.001). 
Composition was significant for RT (p = 0.0003) but not 
accuracy (p = 0.94).

3.2.  Phrasal and noun representation in LLMs

To gain insights into the neural representations of phrases 
and single nouns in the two-word and naturalistic con-
texts, we first examined the pretrained GPT2-large mod-
el’s embeddings of adjective-noun phrases and single 
nouns in a two-word setting (e.g., “green glass” vs. 
“glass”) and a naturalistic setting (e.g., “…soft music…” 
vs. “…a bath…”). The MDS results showed that in the 
two-word context, there is a clear separation of noun and 
phrasal representations in the LLM. In the naturalistic set-
ting, however, the last layer’s representations of nouns 
and phrases were both highly distributed (see Fig. 2A). 
The cosine distances between each layer’s embeddings 
of adjective-noun phrases and single nouns in the two 
contexts were shown in Figure 2B. We can see a larger 
distance in the middle and final layers of the LLM.

3.3.  Classification results on LLM embeddings

To understand whether the LLM has learned the con-
trast between single nouns and adjective-noun phrases, 
we trained two feed-forward neural network classifiers 
to distinguish phrases from nouns in the two-word con-
text and tested the trained classifiers in the naturalistic 
context, and vice versa (see Fig.  2C). The classifier 
trained in the two-word context achieved an accuracy of 
80% in distinguishing phrases from nouns and an accu-
racy of 60.8% when applied to the naturalistic context. 
The classifier trained in the naturalistic context achieved 
an accuracy of 83.3% and an accuracy of 64.3% when 
tested in the experimental context (see Fig. 2D). Although 
the testing accuracies were much lower than the training 
accuracy, the results in the two-word and naturalistic 
settings were comparable and were well above the 
chance level of 50%, suggesting that the LLM has 
learned different representations for single nouns and 
adjective-noun phrases and can be generalized across 
contexts.
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3.4.  Classification results on MEG data

We applied the same classification methods to the MEG 
data to examine the generalizability of the neural reflec-
tions of semantic composition. Figure 3B shows the clas-
sification results of adults’ and children’s MEG data. For 
adults, the classifiers trained on the experimental data 
can distinguish phrases from single nouns in the left 
anterior and middle temporal lobe from 240-320  ms  
(N sources = 214, t = 5.58, Cohen’s d = 1.28, p = 0.025) 
after the onset of the target word. The classifiers trained 
on the naturalistic data can distinguish phrases from sin-
gle nouns in the similar left anterior and middle temporal 
regions from 520-680  ms (N sources  =  222, t  =  3.59, 
Cohen’s d = 0.82, p = 0.03) after the onset of the target 
word. For children, the classifiers trained on the experi-
mental data can distinguish phrases from single nouns in 
the left middle temporal lobe from 300-420  ms (N 
sources = 43, t = 2.24, Cohen’s d = 0.71, p = 0.014) after 
the onset of the target word. The classifiers trained on the 
naturalistic data can distinguish phrases from single 
nouns in the left anterior and middle temporal regions 
from 560-640  ms (N sources  =  112, t  =  3.55, Cohen’s 
d = 1.12, p = 0.001) after the onset of the target word. 
Since the adults’ children’s results exhibited similar spa-
tiotemporal patterns, we collapsed their data together for 
future analyses.

For all subjects’ data, we found that when trained on 
the two-word data, the classifiers can distinguish phrases 
from single nouns in the left anterior and middle temporal 
lobe from 200-340 ms (N sources = 136, t = 5.08, Cohen’s 
d = 0.93, p = 0.005) after the onset of the second word. 
When tested on the naturalistic data, the TGM results 
suggest that the classifiers from 200-220 ms in the train-
ing data can significantly distinguish phrases from nouns 
from 700-760 ms in the testing data. When trained on the 
naturalistic data, the classifiers can distinguish phrases 
from single nouns in the whole left temporal lobe from 
520-680 ms (N sources = 532, t = 4.54, Cohen’s d = 0.83, 
p = 0.001) after the onset of the word. When tested on the 
experimental data using TGM, the classifiers from 620-
640 ms in the training data can significantly distinguish 
phrases from nouns from 220-340 ms in the testing data 
(see Figs. 3C and 4). The generalization effects observed 
in the training data are indeed brief, with only a 20 ms 
segment generalizing to the testing data. This is likely 
due to our methodology of only selecting the classifiers 
within significant spatiotemporal clusters from our classi-
fication analyses, resulting in relatively short analysis win-
dows for the training data—140 ms for the two-word data 

and 160 ms for the naturalistic data. This 20 ms window 
constitutes approximately 14% of the training data time-
frame. Moreover, the classification analysis identified dis-
tinct spatial clusters for the two-word and naturalistic 
data. Such differences might influence the TGM out-
comes, considering we applied classifiers from signifi-
cant clusters in the training data to the testing data.

3.5.  Neural dynamics of phrasal and noun representations

We used MDS to visualize the neural codes associated 
with each adjective-noun phrase and single nouns in the 
two-word and naturalistic contexts. Within the significant 
spatiotemporal clusters derived from the classification 
analyses, we plotted the averaged MEG data of each 
phrase and noun in a two-dimensional space. We also 
plotted the temporal dynamics of the mean 2D neural 
codes for all phrases and nouns in the two contexts. The 
results suggested reliable segregation of multivariate 
neural signals associated with adjective-noun phrases 
and single nouns in both experimental and naturalistic 
contexts. However, the temporal dynamics of the MDS 
representations also showed different patterns in the two 
contexts: In the two-word setting, the neural distance 
between phrases and nouns was larger in an earlier time 
window at around 100-400 ms and converged near the 
end of 800 ms. In the naturalistic setting, the neural codes 
for phrases and nouns remained distant from around 
400 ms to the end of the epoch (see Fig. 5). This is con-
sistent with the classification results where the composi-
tion effect occurred later in the naturalistic context.

3.6.  Regression model of the naturalistic MEG data

Figure 6B shows the distributions of these regressors for 
the naturalistic stimuli. The mean root-mean-squared 
(RMS) intensity and mean f0 for all target words in the 
naturalistic stimuli were 0.21 A (SD = 0.08 A) and 317.9 Hz 
(SD = 40.02 Hz), respectively. The mean presentation rate 
of the target words in the naturalistic stimuli, calculated 
as the duration of the word divided by the number of let-
ters in the word, was 72.8 ms (SD = 23.5 ms). The mean 
log frequency and surprisal of the target words based on 
GPT2 in the naturalistic stimuli were 18.04 (SD = 1.83) 
and 14.04 (SD = 2.66). The mean emotional valence and 
arousal indicated whether the sentences containing the 
target words induced positive or negative emotion (-5 is 
very negative and 5 is very positive), and how strong the 
emotion was (on a scale of 0-10). Their mean values were 
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1.83 (SD = 2.65) and 6.48 (SD = 2.66). The mean inter-
subject correlations (ISC) among the participants’ ratings 
on valence and arousal were 0.74 (SD = 0.13) and 0.57 
(SD = 0.2) and were both significantly greater than ran-
domly generated ratings (t  =  20.24, p  <  0.0001 and 
t  =  13.66, p  <  0.0001, respectively), suggesting high 
agreement among the subjects on the two emotional 
dimensions associated with sentences in the naturalistic 
stimuli. We also examined the correlation coefficients 
among the regressors, and the results suggested no col-
linearity among the regressors. The correlation coefficient 
between emotional valence and emotional arousal is 
-0.3, which is the highest absolute r value among all the 
regressor pairs (see Fig. 6C).

3.7.  Classification results of the naturalistic data after regressing 
out other factors

We took the residuals of the source estimates for the tar-
get words in the naturalistic stimuli for each subject, and 
re-conducted the same classification analyses on the 
residuals. Our results confirmed that the late composition 
effect observed in the naturalistic data was due to addi-
tional processing efforts of these factors: The classifiers 
trained on the naturalistic data distinguished phrases 
from single nouns in a large cluster in the left temporal 
lobe from 280-400 ms (N sources = 449, t = 5.63, Cohen’s 
d = 1.06, p = 0.002) after the onset of the word. When 
tested on the experimental data using TGM, the classifi-
ers from 320-340 ms in the training data significantly dis-
tinguished phrases from nouns from 220-360 ms in the 
testing data (see Fig. 6D).

4.  DISCUSSION

Traditional experimental paradigms in cognitive neurosci-
ence of language aim to isolate specific cognitive pro-
cesses by comparing conditions that differ in the 
component of interest. In contrast, recent naturalistic 
paradigms use audiobooks or movies to mimic everyday 
language experiences. However, both paradigms have 
limitations. Controlled experimental stimuli may deviate 
from natural language use, and subtraction methods 
assume linearity in a brain that is likely non-linear (Friston 
et al., 1996). Naturalistic stimuli contain diverse linguistic 
and non-linguistic information, making it challenging to 
isolate specific subprocesses (Hasson & Egidi, 2015). 
Direct comparisons of neural signals for linguistic pro-
cesses between the two paradigms are rare, leaving it 
unclear if results from traditional experiments generalize 

to naturalistic settings and vice versa. According to exist-
ing neurolinguistic models (e.g., Hickok & Poeppel, 2000), 
brain areas associated with specific functions should 
not vary with the research context. For example, the left 
anterior temporal regions’ involvement in semantic com-
position should be consistent during phrasal process-
ing, regardless of the paradigm or modality of stimuli 
presentation.

This study investigates the generalizability of meaning 
composition across traditional experimental and naturalis-
tic paradigms, focusing on the core function of human lan-
guage. We examined whether semantic composition 
observed in experimental paradigms extends to a natural-
istic setting, and vice versa. Our classification results 
revealed similar neural activity for meaning composition in 
the left anterior and middle temporal regions in both 
experimental and naturalistic contexts. Notably, the spa-
tial distribution of the combinatory activity reported here is 
wider than the LATL, which has been the focus of most 
prior literature on basic composition using the red-boat 
paradigm (Bemis & Pylkkanen, 2011). To understand the 
wider distribution, it is relevant to keep in mind that most 
prior basic composition studies have been conducted in 
the visual modality, with the exception of Bemis and  
Pylkkänen (2013a), which used both auditory and visual 
modalities. That study identified both an LATL effect and a 
posterior temporo-parietal effect, with the latter being 
more robust in the auditory modality. This finding broadly 
conforms with the current, auditory results. Further, a 
recent replication by Flick and Pylkkänen (2020) of the 
original visual red-boat study (Bemis & Pylkkanen, 2011) 
also revealed wider left temporo-parietal sensitivity to 
basic composition. Thus it is likely that the LATL is the 
most consistent locus of such effects, with the highest 
rate of replication, but there are now several indications of 
the participatory role of surrounding temporal cortex as 
well. Studies probing the functional details of the LATL 
have revealed a conceptual, non-syntactic role for it 
(Bemis & Pylkkänen, 2013c; Li & Pylkkänen, 2021; Parrish 
& Pylkkänen, 2022; Zhang & Pylkkänen, 2015). For exam-
ple, LATL can combine concepts like “boat red” even 
when the two words do not syntactically combine (Bemis 
& Pylkkänen, 2013c; Parrish & Pylkkänen, 2022). Con-
versely, the posterior temporal cortex is more syntactically 
sensitive (Flick & Pylkkänen, 2020; Hagoort, 2005; Li & 
Pylkkänen, 2021; Lyu et al., 2019; Matchin & Hickok, 2020; 
Matchin et al., 2019). As discussed in Pylkkänen, (2019), 
composition may involve syntactic, logico-semantic, and 
conceptual subroutines. In the present study, we most 
likely are observing the contributions of both conceptual 
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and syntactic composition. Overall, the various aspects of 
combinatory processing are thought to engage multiple 
areas of temporal, parietal and frontal cortex beyond the 
LATL (see Pylkkänen, 2019 for a review). For the naturalis-
tic data, the classification performance extended beyond 
the significant clusters observed in the two-word data (as 
depicted in Fig. 3C), indicating the involvement of a larger 
network during the naturalistic task.

One line of research suggests that there is a hierarchy 
of increasing temporal receptive windows from lower 
sensory to higher perceptual and cognitive brain areas, 
and different levels of linguistic units are encoded at dif-
ferent cortical regions (e.g., Blank & Fedorenko, 2020; 
Hasson et al., 2008; Lerner et al., 2011; Schmitt et al., 
2021). It is possible that phrasal processing in the natu-
ralistic context encompasses longer temporal receptive 
windows, considering the richer contextual information, 
thus engaging more anterior or posterior temporal regions 
compared to isolated phrases.

Consistent with the hypothesis of longer temporal 
receptive windows, our findings revealed a delayed dis-
tinction between single nouns and adjective-noun 
phrases in the naturalistic MEG data, occurring from 
520-680 ms after the onset of the target word, compared 
to the effect observed in the two-word task from 200-
340  ms. Both our Temporal Generalization Mapping 
(TGM) and Multidimensional Scaling (MDS) analyses on 
the MEG data supported this latency contrast for com-
position in both paradigms. As naturalistic stimuli 
encompass richer information, including diverse pro-
sodic cues, word rate, word frequency, and surprisal 
evoked by incoming words (Hale, 2001; Levy, 2008), as 
well as non-linguistic factors like emotional arousal and 
valence (Wallentin et  al., 2011), prior neurolinguistic 
studies employing a naturalistic design have commonly 
controlled for these factors using regression models 
(e.g., Brennan et  al., 2016; Caucheteux & King, 2022; 
Huth et al., 2016; Nelson et al., 2017). In our study, we 
accounted for these factors by regressing them out and 
then conducted the classification analyses using the 
residuals. Interestingly, after controlling for these fac-
tors, we observed an earlier composition effect that 
closely resembled the effect observed in the two-word 
data. This suggests that the composition effect observed 
in both experimental and naturalistic approaches reflects 
the same underlying processes, rather than being dis-
tinct processes.

Similarly, the classification results on the embeddings 
of single nouns and adjective-noun phrases in both the 
two-word and narrative contexts of the large language 

models (LLMs) indicate the presence of generalized pat-
terns for these word types. While the question of whether 
these patterns reflect composed meaning in LLMs 
remains open, the results demonstrate the existence of 
specific features that differentiate single nouns from 
adjective-noun phrases and can be generalized across 
different contexts. It is important to note that the two-
word stimuli introduce a confounding factor, as the 
nouns in the single-nouns condition are the initial tokens, 
while the nouns in the adjective-noun phrases condition 
are the second tokens. To mitigate this factor, we delib-
erately removed the word position effect from each lay-
er's embeddings, ensuring that the classifier cannot rely 
solely on word position to distinguish between the two 
conditions.

To sum up, we observed the composition effect in 
both the experimental and naturalistic designs in similar 
brain regions and similar temporal windows when con-
trolled for additional factors in the naturalistic stimuli, 
suggesting a single compositional process during both 
isolated and connected speech comprehension. One lim-
itation of our study is that we only focused on a specific 
linguistic subprocess, and further research is needed to 
examine whether other subprocesses, such as morpho-
logical or syntactic processing, can be replicated across 
different research paradigms. Conducting meta-analyses 
using existing experimental and naturalistic fMRI data-
sets from open data platforms could serve as a valuable 
starting point for future investigations in this direction.
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