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ABSTRACT

Naturalistic paradigms using movies or audiobooks have become increasingly popular in cognitive neuroscience, but
connecting them to findings from controlled experiments remains rare. Here, we aim to bridge this gap in the context
of semantic composition in language processing, which is typically examined using a “minimal” two-word paradigm.
Using magnetoencephalography (MEG), we investigated whether the neural signatures of semantic composition
observed in an auditory two-word paradigm can extend to naturalistic story listening, and vice versa. Our results
demonstrate consistent differentiation between phrases and single nouns in the left anterior and middle temporal
lobe, regardless of the context. Notably, this distinction emerged later during naturalistic listening. Yet this latency
difference disappeared when accounting for various factors in the naturalistic data, such as prosody, word rate, word
frequency, surprisal, and emotional content. These findings suggest the presence of a unified compositional process
underlying both isolated and connected speech comprehension.
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1. INTRODUCTION using word embedding models (Huth et al., 2016). Never-
theless, it is important to recognize that narrative com-
prehension involves a multitude of processes beyond the
domain of language, including attention, emotion, social-
cognitive functions, and memory encoding and retrieval
(Hasson & Egidi, 2015). Consequently, it is possible to
misattribute regions involved in these non-linguistic pro-
cesses as core language regions.

Controlled experiments, on the other hand, are
designed to isolate relevant cognitive processes by com-
paring conditions that differ solely in the component of
interest. Early neurolinguistic experiments typically com-
pared sentences with simple and complex syntactic

Naturalistic paradigms utilizing movies or audiobooks
have gained considerable popularity in the field of cogni-
tive neuroscience. Within the realm of language studies,
these approaches provide valuable insights into language
processing in real-world contexts, allowing for the
examination of a broader range of linguistic phenomena
(Alday, 2019; Brennan, 2016; Kandylaki & Bornkessel-
Schlesewsky, 2019). During the comprehension of narra-
tives, linguistic processes unfold naturally across multiple
levels, including words, phrases, sentences, and dis-
course, each operating on distinct timescales. Computa-
tional models have often been employed to isolate

these sub-processes and target specific linguistic levels
(Brennan & Pylkkanen, 2012; Brennan et al., 2016;
Goldstein et al., 2022; Huth et al., 2016; Schrimpf et al.,
2021; Wehbe et al., 2021). For instance, relevant neural
signals for semantic features of words were identified

structures, such as center-embedded and object-relative
clauses (Stromswold et al., 1996), garden-path sentences
(Bever, 1970), or implausible sentence completions
(Kutas & Hillyard, 1980). This work was later comple-
mented by research on basic meaning composition using
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a “minimal” two-word paradigm, where compositional
phrases such as “red boat” were contrasted with single
nouns such as “xkq boat” (Bemis & Pylkkanen, 2011,
2013a, b, c; reviewed in Pylkkanen, 2019). The underlying
rationale behind these experimental manipulations is
based on the concept of subtraction, although this
approach has faced criticism as the brain is unlikely to
behave like a linear system (Friston et al., 1996). More-
over, the experimental stimuli often diverge from every-
day language use (Brennan, 2016). Thus, while controlled
experiments have been widely embraced in neurolinguis-
tics, their applicability to language processing in real-
world contexts remains uncertain.

To compare the findings from experimental and natu-
ralistic paradigms, we conducted a study incorporating
both designs, with a specific focus on meaning composi-
tion, a fundamental function underlying human lan-
guage’s expressive capacity. The left anterior temporal
lobe (LATL) has been consistently implicated in the effects
of semantic composition, as demonstrated in studies
using a two-word design (e.g., Blanco-Elorrieta et al.,
2018; Li & Pylkké&nen, 2021; Westerlund & Pylkké&nen,
2014, reviewed in Pylkkanen, 2019). However, the gener-
alizability of these findings to naturalistic settings has
received limited exploration. Here, we trained feed-
forward neural network (FFNN) classifiers to differentiate
between MEG source estimates for adjective-noun
phrases and single nouns, in both the two-word (e.g.,
“green glass” vs. “glass”) and naturalistic settings (e.g.,
“...soft music...” vs. “...a bath...”). To examine the gen-
eralizability of the classifiers, we tested the classifiers
trained in the experimental setting on the naturalistic data
using the temporal generalization method (TGM; King &
Dehaene, 2014), and vice versa. Note that we included
both school-age children and adults in our sample to test
whether language proficiency and the development of
cognitive functions such as social and emotional pro-
cessing may affect language comprehension in experi-
mental and naturalistic contexts. We chose children in
the school-age range of 7-15 years because they can
more readily follow the experimenter’s instructions and
complete the tasks. Furthermore, research has shown
that children within this age bracket exhibit cognitive pro-
files that are distinct from adults on a range of neuropsy-
chological tests (Ardila & Rosselli, 1994). However, given
the minimal differences observed between the behavioral
and neural data of children and adults, and considering
the relatively small number of child participants due to
the pandemic, we merged the data from both demo-
graphics into a single group for analysis. Our results

revealed that the left anterior and middle temporal lobe
consistently differentiated between phrases and single
nouns in both the experimental and naturalistic contexts,
aligning with previous findings concerning semantic
composition (see Pylkkénen, 2019 for a review).

The combinatory effect occurred much later in the nat-
uralistic setting, which may be attributed to additional
processing demands imposed by other information pres-
ent in the naturalistic data, such as prosody, word rate,
word frequency, surprisal of incoming words, and emo-
tional content. To examine this possibility, we conducted
further analyses by regressing out these effects and re-
evaluating the classification results. The revised analyses
revealed an earlier composition effect in the naturalistic
setting, closely resembling the pattern observed in the
two-word setting. These findings provide compelling evi-
dence for a unified compositional process underlying
both the experimental and naturalistic contexts, once the
confounding effects are accounted for.

2. MATERIALS AND METHODS
2.1. Experimental design

The MEG experiment consists of a two-word session and
a naturalistic listening session and was presented within a
larger protocol that also included production tasks. Fitting
multiple tasks into a single recording session manageable
for children was a major design constraint. While most of
the prior comprehension literature has used reading, the
current study was auditory, as we wanted the paradigm to
be suitable even for children who cannot read yet. Read-
ing and listening were contrasted in Bemis and Pylkk&nen
(2013b) who did observe an LATL sensitivity to a compo-
sition effect for both reading and listening.

In the two-word session, participants listened to both
adjective-noun phrases (e.g., “green glass”) and single
nouns that were preceded by a non-lexical “mmm” sound,
chosen for naturalness in a speech context (“mmm
glass”). After the auditory stimulus, participants selected
a matching picture from a set of eight pictures. This task
differed from the prior minimal composition studies which
have only used one matching or mismatching task picture
(Bemis & Pylkkanen, 2011). The reason for our larger set
of pictures was that this decreased the chance of an
accurate response by chance, making the behavioral data
more informative if the task were to be used in, say, a
clinical setting. There were six unique color words (“red,
pink, blue, green, black, white”) and six unique nouns
(“glass, comb, door, sword, heart, house”), and they were
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randomly combined to form adjective-noun phrases.
Each participant received a unique randomisation. A total
of 50 phrases and 50 single nouns were presented. Some
adjective-noun combinations were presented more than
once, and each noun was repeated eight to nine times.

2.2. Participants

Participants were 20 healthy adults (15 females,
M = 27.8 years, SD = 13.2) and 11 school-age children (6
females, M = 9.4 years, SD = 2.3) with normal hearing
and normal or corrected-to-normal vision. We included
children in our sample to test whether language profi-
ciency and the development of cognitive functions such
as social and emotional functions may affect language
processing in natural and unnatural contexts. The sample
size of children is relatively small due to the pandemic.
The aggregate sample size of 31 for both groups aligns
with the norm for MEG studies of similar scope (e.g.,
Bemis & Pylkkanen, 2011; Blanco-Elorrieta et al., 2018;
Flick et al., 2018; Law & Pylkkénen, 2021; Li & Pylkk&nen,
2021; Zhang & Pylkk&nen, 2015). We also performed a
power analysis to determine whether our dataset of 31
participants was adequate to detect a medium-sized
effect (Cohen’s d = 0.6, as referenced by Cohen, 1988)
when contrasting adjective-noun phrases with single noun
MEG data. Our results suggest a power of 0.9, which
exceeds the conventionally acceptable minimum power of
0.8. We excluded data from two children who did not com-
plete the entire naturalistic listening task from the natural-
istic dataset; their data were retained in the two-word
dataset analysis. Consequently, the two-word dataset
comprises 31 participants (21 females, M = 21.3 years,
SD = 18.9), whereas the naturalistic dataset includes
data from 29 participants (21 females, M = 22.1 years,
SD = 13.9). All of the participants were strictly qualified
as right-handed on the Edinburgh handedness inventory
(Oldfield, 1971). They self-identified as native English
speakers and gave their written informed consent prior to
participation, in accordance with New York University.

2.3. Experiment procedures

Before recording, each subject’s head shape was digi-
tized using a Polhemus dual source handheld FastSCAN
laser scanner. Participants then completed the experi-
ment while lying supine in a dimly lit, magnetically
shielded room (MSR). MEG data were collected using a
whole-head 156-channel axial gradiometer system
(Kanazawa Institute of Technology, Kanazawa, Japan).

The two words were presented for 875 ms each, and an
image with eight objects appeared on screen 600 ms
after the second word. Subjects then selected the correct
object that matched the auditory stimuli. No feedback
was provided. The inter-stimulus interval was normally
distributed with a mean of 300 ms (SD = 100 ms). Order
of stimulus presentation was randomized, and each par-
ticipant received a unique randomisation. After the two-
word session, participants completed a naturalistic
listening session where they passively listened to an
audio excerpt consisted of four stories from the YouTube
channel “SciShow Kids.” The two-word session lasted
around 20 minutes, and the naturalistic listening session
lasted about 12 minutes. After the MEG recording, partic-
ipants completed four picture-matching questions on the
contents of the stories (See Fig. 1A for the experiment
procedure).

2.4. MEG data acquisition and pre-processing

MEG data were recorded continuously at a sampling rate
of 1000 Hz with an online 0.1 to 200 Hz band-pass filter.
The raw data were first noise reduced via the Continu-
ously Adjusted Least-Squares Method (Adachi et al.,
2001) and low-pass filtered at 40 Hz. Independent com-
ponent analysis (ICA) was then applied to remove arti-
facts such as eye blinks, heartbeats, movements, and
well-characterized external noise sources. MEG data
from the two-word task were segmented into epochs
spanning 100 ms pre-stimulus onset to 1750 ms post-
stimulus onset. MEG data from the naturalistic task were
segmented into epochs from the onset to 875 ms after
the target word. The target words include words at the
boundary of single nouns and adjective-noun phrases in
the naturalistic stimuli. Single nouns and adjective-noun
phrases were annotated based on the Stanford part-of-
speech tagger (Toutanova et al., 2003).

Epochs containing amplitudes greater than an abso-
lute threshold of 2000 fT were automatically removed.
Additional artifact rejection was performed through man-
ual inspection of the data, removing trials that were con-
taminated with movement artifacts or extraneous noise.
The whole epoch rejection procedure results in an aver-
age rejection rate of 7.6% (SD = 5.1%) for the adult par-
ticipants and an average rejection rate of 11.1% (SD = 5%)
for the child participants.

We then computed the cortically constrained minimum-
norm estimates (Hamaldinen & limoniemi, 1994) for each
epoch for each participant. To perform source localization,
the location of the participant’s head was first coregistered
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Experimental design and behavioral results. (A) Experimental design and trial structure. In the two-word session,

participants selected a picture from eight pictures that matched the preceding words in each trial. Half of the target
pictures matched and half did not. Activities recorded from the onset of the second word to 875 ms after the second word
were analyzed. In the naturalistic listening session, participants passively listened to a 12-minute audio excerpt from the
YouTube channel “SciShow Kids.” Participants completed a picture-matching task after the listening session to ensure
comprehension. (B) Behavioral results on the two-word task. Mean predicted accuracy and reaction time for the phrase
and noun conditions across the adults and children group. A two-way mixed ANOVA revealed significant differences
between the groups in both accuracy (p = 0.002) and reaction time (p < 0.001). Composition was not significant for either
accuracy or reaction time for either group. Error bars indicate 1 standard error. *** indicates p < 0.001.

with respect to the sensor array in the MEG helmet. We
used the FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)
“fsaverage” brain with rotation and translation and then
scaling the average brain to match the size of the head
scan. A source space of 2562 source points per hemi-
sphere was generated on the cortical surface for each par-
ticipant. The Boundary Element Method (BEM) was
employed to compute a forward solution, explaining the
contribution of activity at each source to the magnetic flux
at the sensors. We applied the BEM protocols as per MNE-
Python’s default configurations, following previous publi-
cations (e.g., Bemis & Pylkkanen, 2011; Flick & Pylkkanen,
2020; Law & Pylkk&nen, 2021; Li & Pylkk&nen, 2021). Spe-
cifically, we used the head surface triangulation computed
by the watershed algorithm (Ségonne et al., 2004), which
yielded the inner, outer skull triangulations and the head
surface triangulation. We then set up the boundary-
element model with a conductivity value of 0.3 S/m for the
scalp and the brain compartments, and 0.006 S/m for the
skull. These values were the default set in MNE and were
corroborated by prior literature (Goncalves et al., 2003;
Lew et al., 2009; Oostendorp et al., 2000). We next aligned
the head and the sensors in a common coordinate system
by identifying the fiducial landmark locations. Following
coregistration, we computed the forward solution using

MNE’s mne.make_forward_solution() function, which cal-
culates the magnetic fields and electric potentials that
sensors and electrodes detect from cortical dipole sources
in each subject. For the two-word data, channel-noise
covariance was estimated based on the 100 ms intervals
prior to each artifact-free trial, aligning with previous litera-
ture on phrasal composition in a two-word setting (Bemis &
Pylkkanen, 2011; Li & Pylkk&nen, 2021). The naturalistic
data were baseline-corrected using the mean of the whole
epoch. We acknowledge that this may lead to different
SNRs for the noise covariance estimates for the two-word
and the naturalistic data. However, since the main goal of
our study is to examine whether phrase processing in con-
trolled laboratory settings can be generalized to naturalis-
tic settings, we would like to maintain consistency with
prior analytical methods. We have also reprocessed the
two-word data, based-lined corrected using the whole
epoch. The results are very similar to our initial findings
(see Supplementary Fig. 1). The inverse solution was com-
puted from the forward solution and the grand average
activity across conditions with “free” orientation, meaning
that the inverse operator places three orthogonal dipoles
at each location defined by the source space. However,
when computing the source estimate, only activity from
the dipoles perpendicular to the cortex was included. This
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approach is equivalent to estimating the inverse solution
with fixed orientation dipoles, however, it affords greater
flexibility by allowing us to evaluate results under both
fixed and loose orientations. For each trial, the same
inverse operator was applied to yield dynamic statistical
parameter maps (dSPM) units (Dale et al., 1999). This was

done using a regularization parameter computed as Vo

with the SNR value set at 3. The final source estimates
were downsampled to 200 Hz to save computing time. All
data preprocessing steps were performed using MNE-
python (v.0.24.0; Gramfort et al., 2014).

2.5. Behavioral data analyses

Accuracies were analyzed using a generalized linear
mixed-effects model (GLMM) with binomial error distribu-
tion, and the log-transformed RTs were analyzed using a
linear mixed-effects model. Our fixed effects include the
binary variables Composition (single nouns vs. phrases)
and Age (adults vs. children). Subject-level variability was
included as random intercepts. The GLMM analyses
were conducted via the “Ime4” package (Bates et al.,
2015) in R (v4.2.1) and RStudio (v022.12.0+353). The sta-
tistical significance of fixed effects was estimated using
the “ImerTest” package (Kuznetsova et al., 2017), in
which Satterthwaite’s approximation was applied to esti-
mate degrees of freedom (see Fig. 1B for the results).

2.6. Phrasal and noun representations in LLMs

To gain insights into the neural representations of phrases
and single nouns in the two-word and naturalistic con-
texts, we first examined phrasal and noun representa-
tions in isolated two words and narratives in a large
language model (LLM). Recent LLMs have achieved
extraordinary performance in language comprehension
tasks and have been suggested to share some computa-
tional principles with the human brain (e.g., Caucheteux
& King, 2022; Goldstein et al., 2022; Schrimpf et al.,
2021). Here, we first extracted each layer’'s embeddings
from the pre-trained GPT2-large model (Radford et al.,
2019) for the nouns in single nouns and adjective-noun
phrases in the two-word (e.g., “green glass” vs. “glass”)
and narrative contexts (e.g., “...soft music...” vs. “...a
bath...”). We then applied multidimensional scaling
(MDS), a dimensionality reduction technique to visualize
the last layer’s embedding of each adjective-noun phrase
and single noun in the two-word and naturalistic contexts
to two dimensions (see Fig. 2A). We also computed the

cosine distance between each layer's embeddings for
single nouns and adjective-noun embeddings (see
Fig. 2B). The pretrained GPT2-large model was obtained
from the transformers (v4.10.2) package in python.

2.7. Classification on LLM embeddings for phrases and nouns

We trained a feed-forward neural network (FFNN) classifier
to distinguish the nouns in single nouns and adjective-noun
phrases using the two-word stimuli and tested the classifier
on the nouns in single nouns and adjective-noun phrases in
the naturalistic text. Adjective-noun phrases were anno-
tated using the Stanford part-of-speech tagger (Toutanova
et al., 2003) and were manually checked. Conversely, we
also trained an FFNN classifier on the naturalistic data and
tested it on the two-word data. The FFNN contains one
hidden layer with two units (see Fig. 2C). To control for the
confounding factor that the nouns in single nouns were the
initial token whereas the nouns in adjective-noun phrases
were not, we performed a linear regression model using
the binary variable “word position” to predict each layer’s
embeddings. We took the residuals of the model for the
classification analyses. The classification analyses were
performed using the python package scikit-learn (v0.22.1).

2.8. Searchlight multivariate pattern classification on MEG data

We conducted searchlight multivariate pattern classifica-
tion analyses on the source-localized MEG data within a
left-lateralized language mask for each subject. The lan-
guage mask (see the pink region in Fig. 3A) covered
regions including the whole left temporal lobe, the left
inferior frontal gyrus (LIFG; defined as the combination of
BAs 44 and 45), the left ventromedial prefrontal cortex
(LvmPFC; defined as BA11), the left angular gyrus (LAG;
defined as BA39), and the left supramarginal gyrus
(LSMA,; defined as BA 40). The left AG and vmPFC have
also been implicated in previous literature on conceptual
combination (Bemis & Pylkkanen, 2011; Price et al., 2015)
and the LIFG and the LMTG have been suggested to
underlie syntactic combination (Flick & Pylkk&nen, 2020;
Hagoort, 2005; Lyu et al., 2019; Matchin & Hickok, 2020;
Matchin et al., 2019).

We trained feedforward neural network (FFNN) classi-
fiers to pairwise combinations of the MEG data for single
nouns and phrases in the two-word and naturalistic
experiments (see Fig. 3A). The FFNN contains one hid-
den layer with two units. The binary classifiers were sep-
arately applied to all spatiotemporal timepoints, with a
radius of 20 sources. The same analysis pipeline was
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Fig. 2. Phrasal and noun representations in two-word and naturalistic contexts in an LLM. (A) Multidimensional scaling
(MDS) of the last layer’s embeddings of adjective-noun phrases and single nouns in two-word and naturalistic contexts

in GPT-2. (B) Cosine distance of each layer’s embeddings of adjective-noun phrases and single nouns in two-word and
naturalistic contexts in GPT-2. (C) A feed-forward neural network classifier was trained to distinguish the last layer’s
embeddings of nouns in single nouns and adjective-noun phrases in the two-word context, and tested on the last layers
of nouns in single nouns and adjective-noun phrases in the naturalistic context. Conversely, a classifier was trained on the
naturalistic context and tested on the two-word context. (D) Classification results on the LLM’s embeddings. The classifier
trained in the two-word context achieved an accuracy of 80% in distinguishing phrases from nouns and an accuracy of
60.8% when applied to the naturalistic context. The classifier trained in the naturalistic context achieved an accuracy of
83.3% and an accuracy of 64.3% when tested in the experimental context.

\/

Fig. 3. Classification analyses procedure and results on the MEG data. (A) Following the classification analysis of
phrases versus nouns in LLMs, we trained feed-forward neural network (FFNN) classifiers to distinguish phrases

from nouns in one context and tested in another context. The same classification was applied independently with

a searchlight radius of 20 sources within a language mask and at every timepoint. Classification accuracies for the
training data were averaged over subjects at source and time point minus the chance level of 50% was submitted to a
one-sample t-test and the statistical significance was determined by a TFCE correction with 10,000 permutations. At
the testing time, we applied the temporal generalization method and tested the classifiers’ performance at each time
point on every timepoint in the testing data. (B) Classification results of adults’ and children’s MEG data. For adults,
the classifiers trained on the experimental data can distinguish phrases from single nouns in the left anterior and
middle temporal lobe from 240-320 ms (N sources = 214, t = 5.58, Cohen’s d = 1.28, p = 0.025) after the onset of the
target word. The classifiers trained on the naturalistic data can distinguish phrases from single nouns in the similar left
anterior and middle temporal regions from 560-680 ms (N sources = 222, t = 3.59, Cohen’s d = 0.82, p = 0.03) after
the onset of the target word. For children, the classifiers trained on the experimental data can distinguish phrases from
single nouns in the left middle temporal lobe from 300-420 ms (N sources = 43, t = 2.24, Cohen’s d = 0.71, p = 0.014)
after the onset of the target word. The classifiers trained on the naturalistic data can distinguish phrases from single
nouns in the left anterior and middle temporal regions from 560-640 ms (N sources = 112, t = 3.55, Cohen’s d = 1.12,
p = 0.001) after the onset of the target word. (C) Classification results of all MEG data. When trained on experimental
data, the classifiers can distinguish phrases from single nouns in the left anterior and middle temporal lobe from
200-340 ms (N sources = 136, t = 5.08, Cohen’s d = 0.93, p = 0.005) after the onset of the word. When trained on

the naturalistic data, the classifiers can distinguish phrases from single nouns in the whole left temporal lobe from
520-680 ms (N sources = 532, t = 4.54, Cohen’s d = 0.83, p = 0.001) after the onset of the word. The grey lines
represented shuffled classification results. * indicates p < 0.05; ** indicates p < 0.01.
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applied to each subject. At the group level, the classifica-
tion accuracy averaged over subjects at each timepoint
minus the chance level of 50% was submitted to a one-
sample one-tailed t-test with threshold-free cluster
enhancement (TFCE) correction (Smith & Nichols, 2009)
for 10,000 permutations (see the first two columns of
Fig. 3B for the results). The analysis time window was
between 0-875 ms after the onset of the second word.

2.9. Testing the classifiers using the temporal
generalization method (TGM)

The classifiers trained to distinguish the MEG data for
single nouns and phrases in the two-word task were
tested on the MEG data for single nouns and phrases in
the naturalistic task using TGM. TGM allows us to probe
compositional processing in the brain over time by train-
ing the classifier using data from one time period and
testing the classifier on data from all time periods. This
method is particularly useful for neuroimaging data with
high temporal resolution (e.g., EEG, MEG), and it has
been successfully applied in other domains of cognitive
neuroscience such as memory (Meyers, 2018), vision
(Dobs et al., 2019), audition (King et al., 2014), etc. The
results of TGM is a 2D matrix, where the color at point j, j
indicated prediction accuracy when the model is trained
using data at time i and tested with data at time j (see
Fig. 3A for the classification procedure).

Similarly, the classifiers trained on the naturalistic data
were tested on the experimental data using TGM. During
testing, each classifier trained from training data at a
timepoint was applied to testing data at all timepoints.
This procedure led to two TGM matrices of classification
performance, one for training on experimental data and
testing on naturalistic data, and one for training on natu-
ralistic data and testing on experimental data. Statistical
significance is decided based on a cluster-based one-
sample one-tailed t-test with 10,000 permutations (Maris
& Oostenveld, 2007), comparing the 2D matrix to a
chance level of 0.5 (see the last column of Fig. 3B for the
results). The classification analyses were performed
using the python package scikit-learn (v0.22.1), and the
statistical analyses were performed using the python
package eelbrain (v0.38).

2.10. MDS of MEG data of phrases and nouns

We extracted the MEG data from the significant clusters
derived from the classification analyses (see the first
column in Fig. 3B). We then applied MDS to the MEG
source estimates of each target word in the two-word
and naturalistic contexts. We also plotted the temporal
dynamics of the 2D representations of the single-nouns
and adjective-noun phrases in the “experimental” and
“naturalistic” state space (see Fig. 4).

A Significant classifiers from 200-340 ms of the two-word data and tested on all timepoints

of the naturalistic data
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naturalistic

B Significant classifiers from 520-680 ms of the naturalistic data and tested on all timepoints

of the two-word data
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g3 n -~ " 3
& . “ 8
T2 N - 3
- © 5 Q

< 500 L ™ e, W - - ‘s ! <3
0 200 400 600 800 ms
experimental

Fig. 4. The temporal generalization results. (A) The classifiers trained on the two-word data from 200-220 ms can
significantly distinguish phrases from nouns from 700-760 ms in the testing data. (B) The classifiers trained on the
naturalistic data from 620-640 ms can significantly distinguish phrases from nouns from 220-340 ms in the testing data.
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MDS of MEG data in state space
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Fig. 5. MDS of the neural representations for phrases and nouns in the experimental and naturalistic contexts. The MEG
source estimates from the significant spatiotemporal clusters in the classification analyses were extracted and reduced
to two dimensions using MDS. The timecourses of the MDS representations of phrases and nouns in the experimental
state space suggested larger distance in an earlier time window. For the naturalistic data, the timecourses of the MDS
representations diverted from the middle to the end of the whole epoch.

2.11. Multiple regression on the naturalistic MEG data

Naturalistic stimuli differ from two-word stimuli in many
dimensions. For example, the stimuli in the two-word
task had lower surprisal as they were repeatedly pre-
sented during the experiment. Surprisal evoked by an
incoming word indicates the amount of information that
was not predictable from the context (Hale, 2001; Levy,
2008), and is calculated as the negative logarithm of the
probability assigned to the actual next word. A slower
presentation rate of words (875 ms) in the two-word task
may also facilitate faster composition compared to words
that are much faster during naturalistic speaking. Other
linguistic factors such as richer prosodic information and
different word frequency may also induce additional pro-
cesses that delayed the composition effect. In addition,
processes beyond the language domain may be involved
during narrative understanding. Emotional arousal and
valence, for example, have been shown to also evoke
activity in the language network (Wallentin et al., 2011).
To understand whether these factors that are underlying
the “naturalness” of the narrative stimuli contributed to the
late composition effect, we conducted a multiple regres-
sion model to regress out these factors (see Fig. 6A). Our
dependent variable is the source estimates of each sub-
ject’s naturalistic data. Our regressors included the peak

intensity and fO of the target words, word rate, word fre-
quency, word surprisal based on the GPT-2 language
model (Radford et al., 2019), emotional valence and arousal
indicated by human judgment on Amazon Mechanical Turk
(see details of the regressors below). Both the dependent
and independent variables were z-scored. Pearson’s r cor-
relations among the regressors were examined to ensure
no collinearity among the regressors (see Fig. 6C).

2.12. Intensity and pitch

Root mean square (RMS) intensity and the fundamental
frequency (f0) for every 10 ms of the audio were extracted
using the Voicebox toolbox (http://www.ee.ic.ac.uk/hp
/staff/dmb/voicebox/voicebox.html). Peak RMS intensity
and peak fO within the during of each word in the natural-
istic stimuli were used to represent the intensity and pitch
information for each word.

2.13. Word rate

Since word duration is largely determined by the length
of the word, we computed the presentation rate of each
word as the duration of each word in milliseconds divided
by the number of letters in the word. A slow presentation
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D Classification results of naturalistic MEG data after regressing out control variables
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Fig. 6. Regression analyses procedure and the classification results of the naturalistic data after regressing out control
variables. (A) We applied a linear regression model to predict the source estimates of the target words in the naturalistic
data for each subject. (B) Distribution of the regressors. Our regressors include intensity and pitch for the audio, word
frequency, presentation rate, surprisal of the word given previous context, and emotional arousal and emotional valence of
the text. (C) Correlations among the regressors. The correlation matrix suggested low correlation among the predictors. (D)
Classification results after controlling for the regressors. We performed the same classification analyses on the residuals
of the source estimates after regression. When trained on the naturalistic data, the classifiers can distinguish phrases from
single nouns in a large cluster in the left temporal lobe from 280-400 ms (N sources = 449, t = 5.63, Cohen’s d = 1.06,

p = 0.002) after the onset of the word. (E) When tested on the experimental data using TGM, the classifiers from 320-

340 ms in the training data can significantly distinguish phrases from nouns from 220-360 ms in the testing data. The grey
lines represented shuffled classification results. ** indicates p < 0.01.

rate indicates words with longer duration and fewer let-
ters, while a fast presentation rate suggests a shorter
presentation of long words.

2.14. Word frequency

Log-transformed unigram frequency of each word in the
naturalistic stimuli was estimated using Google Books
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Ngram Viewer, Version 2012070129 (http://storage
.googleapis.com/books/ngrams/books/datasetsv2.html).

2.15.  Surprisal

The predictability of each word in the naturalistic stimuli
given the previous context was indexed by the surprisal
of all the words in the naturalistic stimuli. Surprisal evoked
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by an incoming word indicates the amount of information
that was not predictable from the context (Hale, 2001;
Levy, 2008), and is calculated as the negative logarithm
of the probability assigned to the actual next word. The
probability of each word in the naturalistic stimuli given
the previous words within the same sentence was derived
from the pretrained GPT2-large model. This model uses a
transformer architecture and has been shown to suc-
cessfully capture human performance on next-word
prediction (e.g., Goldstein et al., 2022; Schrimpf et al.,
2021). The analyses was performed using the python
package transformers (v4.10.2).

2.16. Emotion arousal and emotional valence

Emotional arousal and emotional valence of each sen-
tence in the naturalistic stimuli were rated by participants
on Amazon Mechanical Turk (MTurk). Following a prior
study (Wallentin et al., 2011), arousal was rated on a scale
from 0 to 10 indicating extreme boredom to extreme
arousal. Emotional valence was rated on a scale from -5 to
5, where -5 indicates strong negative emotions and 5 indi-
cates strong positive emotions. A total of 30 participants
completed the survey. The mean valence and arousal rat-
ings for each sentence were computed, and words in the
same sentence have the same emotional arousal and
emotional valence. Inter-subject correlations (ISC) among
each subject’s ratings for arousal and valence were com-
puted as the mean of the Pearson’s r coefficients between
each subject’s ratings and the overall mean ratings. The
statistical significance of subjects’ ISC coefficients was
determined by comparing the observed values with ran-
domly generated ratings using paired two-sample t-tests.

3. RESULTS

3.1. Behavioral results for the two-word task

Overall, participants achieved an accuracy of 94.4%
(SD = 23%) with a mean reaction time (RT) of 2.6 s
(SD = 2.07 s). The mean accuracy for adults was 96.9%
(SD = 17.3%), and the mean accuracy for children was
89.9% (SD = 30.1%). The mean RT for adults was 2 s
(SD = 1.1 s), and the mean RT for children was 3.67 s
(SD =2.83 s; see Fig. 1B). Compared to prior studies (e.g.,
Bemis & Pylkkanen, 2011), these RTs seem longer. This is
because the task was more difficult as the participants
needed to use two buttons to select from eight pictures.
The reason for the more complex task was to reduce the
possibility of correct responses by chance, which makes
the task more applicable for possible clinical uses.
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The binary variable Accuracy was analyzed using a
generalized linear mixed-effects model (GLMM) with bino-
mial error distribution, and RTs were log-transformed and
analyzed using a linear mixed-effects model (LMM). Com-
position (single nouns vs. phrases) and Age (adults vs.
children) were included as fixed effects and subjects as
random intercepts. The results revealed a significant effect
of Age on both accuracy (p < 0.001) and RT (p < 0.001).
Composition was significant for RT (p = 0.0003) but not
accuracy (p = 0.94).

3.2. Phrasal and noun representation in LLMs

To gain insights into the neural representations of phrases
and single nouns in the two-word and naturalistic con-
texts, we first examined the pretrained GPT2-large mod-
el’'s embeddings of adjective-noun phrases and single
nouns in a two-word setting (e.g., “green glass” vs.
“glass”) and a naturalistic setting (e.g., “...soft music...”
vs. “...a bath...”). The MDS results showed that in the
two-word context, there is a clear separation of noun and
phrasal representations in the LLM. In the naturalistic set-
ting, however, the last layer’s representations of nouns
and phrases were both highly distributed (see Fig. 2A).
The cosine distances between each layer’s embeddings
of adjective-noun phrases and single nouns in the two
contexts were shown in Figure 2B. We can see a larger
distance in the middle and final layers of the LLM.

3.3. Classification results on LLM embeddings

To understand whether the LLM has learned the con-
trast between single nouns and adjective-noun phrases,
we trained two feed-forward neural network classifiers
to distinguish phrases from nouns in the two-word con-
text and tested the trained classifiers in the naturalistic
context, and vice versa (see Fig. 2C). The classifier
trained in the two-word context achieved an accuracy of
80% in distinguishing phrases from nouns and an accu-
racy of 60.8% when applied to the naturalistic context.
The classifier trained in the naturalistic context achieved
an accuracy of 83.3% and an accuracy of 64.3% when
tested in the experimental context (see Fig. 2D). Although
the testing accuracies were much lower than the training
accuracy, the results in the two-word and naturalistic
settings were comparable and were well above the
chance level of 50%, suggesting that the LLM has
learned different representations for single nouns and
adjective-noun phrases and can be generalized across
contexts.
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3.4. Classification results on MEG data

We applied the same classification methods to the MEG
data to examine the generalizability of the neural reflec-
tions of semantic composition. Figure 3B shows the clas-
sification results of adults’ and children’s MEG data. For
adults, the classifiers trained on the experimental data
can distinguish phrases from single nouns in the left
anterior and middle temporal lobe from 240-320 ms
(N sources = 214, t = 5.58, Cohen’s d = 1.28, p = 0.025)
after the onset of the target word. The classifiers trained
on the naturalistic data can distinguish phrases from sin-
gle nouns in the similar left anterior and middle temporal
regions from 520-680 ms (N sources = 222, t = 3.59,
Cohen’s d = 0.82, p = 0.03) after the onset of the target
word. For children, the classifiers trained on the experi-
mental data can distinguish phrases from single nouns in
the left middle temporal lobe from 300-420 ms (N
sources = 43, t = 2.24, Cohen’s d = 0.71, p = 0.014) after
the onset of the target word. The classifiers trained on the
naturalistic data can distinguish phrases from single
nouns in the left anterior and middle temporal regions
from 560-640 ms (N sources = 112, t = 3.55, Cohen’s
d = 1.12, p = 0.001) after the onset of the target word.
Since the adults’ children’s results exhibited similar spa-
tiotemporal patterns, we collapsed their data together for
future analyses.

For all subjects’ data, we found that when trained on
the two-word data, the classifiers can distinguish phrases
from single nouns in the left anterior and middle temporal
lobe from 200-340 ms (N sources = 136, t = 5.08, Cohen’s
d = 0.93, p = 0.005) after the onset of the second word.
When tested on the naturalistic data, the TGM results
suggest that the classifiers from 200-220 ms in the train-
ing data can significantly distinguish phrases from nouns
from 700-760 ms in the testing data. When trained on the
naturalistic data, the classifiers can distinguish phrases
from single nouns in the whole left temporal lobe from
520-680 ms (N sources = 532, t = 4.54, Cohen’s d = 0.83,
p =0.001) after the onset of the word. When tested on the
experimental data using TGM, the classifiers from 620-
640 ms in the training data can significantly distinguish
phrases from nouns from 220-340 ms in the testing data
(see Figs. 3C and 4). The generalization effects observed
in the training data are indeed brief, with only a 20 ms
segment generalizing to the testing data. This is likely
due to our methodology of only selecting the classifiers
within significant spatiotemporal clusters from our classi-
fication analyses, resulting in relatively short analysis win-
dows for the training data— 140 ms for the two-word data
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and 160 ms for the naturalistic data. This 20 ms window
constitutes approximately 14% of the training data time-
frame. Moreover, the classification analysis identified dis-
tinct spatial clusters for the two-word and naturalistic
data. Such differences might influence the TGM out-
comes, considering we applied classifiers from signifi-
cant clusters in the training data to the testing data.

3.5. Neural dynamics of phrasal and noun representations

We used MDS to visualize the neural codes associated
with each adjective-noun phrase and single nouns in the
two-word and naturalistic contexts. Within the significant
spatiotemporal clusters derived from the classification
analyses, we plotted the averaged MEG data of each
phrase and noun in a two-dimensional space. We also
plotted the temporal dynamics of the mean 2D neural
codes for all phrases and nouns in the two contexts. The
results suggested reliable segregation of multivariate
neural signals associated with adjective-noun phrases
and single nouns in both experimental and naturalistic
contexts. However, the temporal dynamics of the MDS
representations also showed different patterns in the two
contexts: In the two-word setting, the neural distance
between phrases and nouns was larger in an earlier time
window at around 100-400 ms and converged near the
end of 800 ms. In the naturalistic setting, the neural codes
for phrases and nouns remained distant from around
400 ms to the end of the epoch (see Fig. 5). This is con-
sistent with the classification results where the composi-
tion effect occurred later in the naturalistic context.

3.6. Regression model of the naturalistic MEG data

Figure 6B shows the distributions of these regressors for
the naturalistic stimuli. The mean root-mean-squared
(RMS) intensity and mean f0O for all target words in the
naturalistic stimuli were 0.21 A (SD = 0.08 A) and 317.9 Hz
(SD = 40.02 Hz), respectively. The mean presentation rate
of the target words in the naturalistic stimuli, calculated
as the duration of the word divided by the number of let-
ters in the word, was 72.8 ms (SD = 23.5 ms). The mean
log frequency and surprisal of the target words based on
GPT2 in the naturalistic stimuli were 18.04 (SD = 1.83)
and 14.04 (SD = 2.66). The mean emotional valence and
arousal indicated whether the sentences containing the
target words induced positive or negative emotion (-5 is
very negative and 5 is very positive), and how strong the
emotion was (on a scale of 0-10). Their mean values were
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1.83 (SD = 2.65) and 6.48 (SD = 2.66). The mean inter-
subject correlations (ISC) among the participants’ ratings
on valence and arousal were 0.74 (SD = 0.13) and 0.57
(SD = 0.2) and were both significantly greater than ran-
domly generated ratings (t = 20.24, p < 0.0001 and
t = 13.66, p < 0.0001, respectively), suggesting high
agreement among the subjects on the two emotional
dimensions associated with sentences in the naturalistic
stimuli. We also examined the correlation coefficients
among the regressors, and the results suggested no col-
linearity among the regressors. The correlation coefficient
between emotional valence and emotional arousal is
-0.3, which is the highest absolute r value among all the
regressor pairs (see Fig. 6C).

3.7. Classification results of the naturalistic data after regressing
out other factors

We took the residuals of the source estimates for the tar-
get words in the naturalistic stimuli for each subject, and
re-conducted the same classification analyses on the
residuals. Our results confirmed that the late composition
effect observed in the naturalistic data was due to addi-
tional processing efforts of these factors: The classifiers
trained on the naturalistic data distinguished phrases
from single nouns in a large cluster in the left temporal
lobe from 280-400 ms (N sources = 449, t = 5.63, Cohen’s
d = 1.06, p = 0.002) after the onset of the word. When
tested on the experimental data using TGM, the classifi-
ers from 320-340 ms in the training data significantly dis-
tinguished phrases from nouns from 220-360 ms in the
testing data (see Fig. 6D).

4. DISCUSSION

Traditional experimental paradigms in cognitive neurosci-
ence of language aim to isolate specific cognitive pro-
cesses by comparing conditions that differ in the
component of interest. In contrast, recent naturalistic
paradigms use audiobooks or movies to mimic everyday
language experiences. However, both paradigms have
limitations. Controlled experimental stimuli may deviate
from natural language use, and subtraction methods
assume linearity in a brain that is likely non-linear (Friston
et al., 1996). Naturalistic stimuli contain diverse linguistic
and non-linguistic information, making it challenging to
isolate specific subprocesses (Hasson & Egidi, 2015).
Direct comparisons of neural signals for linguistic pro-
cesses between the two paradigms are rare, leaving it
unclear if results from traditional experiments generalize
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to naturalistic settings and vice versa. According to exist-
ing neurolinguistic models (e.g., Hickok & Poeppel, 2000),
brain areas associated with specific functions should
not vary with the research context. For example, the left
anterior temporal regions’ involvement in semantic com-
position should be consistent during phrasal process-
ing, regardless of the paradigm or modality of stimuli
presentation.

This study investigates the generalizability of meaning
composition across traditional experimental and naturalis-
tic paradigms, focusing on the core function of human lan-
guage. We examined whether semantic composition
observed in experimental paradigms extends to a natural-
istic setting, and vice versa. Our classification results
revealed similar neural activity for meaning composition in
the left anterior and middle temporal regions in both
experimental and naturalistic contexts. Notably, the spa-
tial distribution of the combinatory activity reported here is
wider than the LATL, which has been the focus of most
prior literature on basic composition using the red-boat
paradigm (Bemis & Pylkkanen, 2011). To understand the
wider distribution, it is relevant to keep in mind that most
prior basic composition studies have been conducted in
the visual modality, with the exception of Bemis and
Pylkkanen (2013a), which used both auditory and visual
modalities. That study identified both an LATL effect and a
posterior temporo-parietal effect, with the latter being
more robust in the auditory modality. This finding broadly
conforms with the current, auditory results. Further, a
recent replication by Flick and Pylkkanen (2020) of the
original visual red-boat study (Bemis & Pylkkanen, 2011)
also revealed wider left temporo-parietal sensitivity to
basic composition. Thus it is likely that the LATL is the
most consistent locus of such effects, with the highest
rate of replication, but there are now several indications of
the participatory role of surrounding temporal cortex as
well. Studies probing the functional details of the LATL
have revealed a conceptual, non-syntactic role for it
(Bemis & Pylkkanen, 2013c; Li & Pylkkanen, 2021; Parrish
& Pylkkanen, 2022; Zhang & Pylkkanen, 2015). For exam-
ple, LATL can combine concepts like “boat red” even
when the two words do not syntactically combine (Bemis
& Pylkkanen, 2013c; Parrish & Pylkkanen, 2022). Con-
versely, the posterior temporal cortex is more syntactically
sensitive (Flick & Pylkkénen, 2020; Hagoort, 2005; Li &
Pylkkanen, 2021; Lyu et al., 2019; Matchin & Hickok, 2020;
Matchin et al., 2019). As discussed in Pylkkanen, (2019),
composition may involve syntactic, logico-semantic, and
conceptual subroutines. In the present study, we most
likely are observing the contributions of both conceptual
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and syntactic composition. Overall, the various aspects of
combinatory processing are thought to engage multiple
areas of temporal, parietal and frontal cortex beyond the
LATL (see Pylkkénen, 2019 for a review). For the naturalis-
tic data, the classification performance extended beyond
the significant clusters observed in the two-word data (as
depicted in Fig. 3C), indicating the involvement of a larger
network during the naturalistic task.

One line of research suggests that there is a hierarchy
of increasing temporal receptive windows from lower
sensory to higher perceptual and cognitive brain areas,
and different levels of linguistic units are encoded at dif-
ferent cortical regions (e.g., Blank & Fedorenko, 2020;
Hasson et al., 2008; Lerner et al., 2011; Schmitt et al.,
2021). It is possible that phrasal processing in the natu-
ralistic context encompasses longer temporal receptive
windows, considering the richer contextual information,
thus engaging more anterior or posterior temporal regions
compared to isolated phrases.

Consistent with the hypothesis of longer temporal
receptive windows, our findings revealed a delayed dis-
tinction between single nouns and adjective-noun
phrases in the naturalistic MEG data, occurring from
520-680 ms after the onset of the target word, compared
to the effect observed in the two-word task from 200-
340 ms. Both our Temporal Generalization Mapping
(TGM) and Multidimensional Scaling (MDS) analyses on
the MEG data supported this latency contrast for com-
position in both paradigms. As naturalistic stimuli
encompass richer information, including diverse pro-
sodic cues, word rate, word frequency, and surprisal
evoked by incoming words (Hale, 2001; Levy, 2008), as
well as non-linguistic factors like emotional arousal and
valence (Wallentin et al., 2011), prior neurolinguistic
studies employing a naturalistic design have commonly
controlled for these factors using regression models
(e.g., Brennan et al., 2016; Caucheteux & King, 2022;
Huth et al., 2016; Nelson et al., 2017). In our study, we
accounted for these factors by regressing them out and
then conducted the classification analyses using the
residuals. Interestingly, after controlling for these fac-
tors, we observed an earlier composition effect that
closely resembled the effect observed in the two-word
data. This suggests that the composition effect observed
in both experimental and naturalistic approaches reflects
the same underlying processes, rather than being dis-
tinct processes.

Similarly, the classification results on the embeddings
of single nouns and adjective-noun phrases in both the
two-word and narrative contexts of the large language
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models (LLMs) indicate the presence of generalized pat-
terns for these word types. While the question of whether
these patterns reflect composed meaning in LLMs
remains open, the results demonstrate the existence of
specific features that differentiate single nouns from
adjective-noun phrases and can be generalized across
different contexts. It is important to note that the two-
word stimuli introduce a confounding factor, as the
nouns in the single-nouns condition are the initial tokens,
while the nouns in the adjective-noun phrases condition
are the second tokens. To mitigate this factor, we delib-
erately removed the word position effect from each lay-
er's embeddings, ensuring that the classifier cannot rely
solely on word position to distinguish between the two
conditions.

To sum up, we observed the composition effect in
both the experimental and naturalistic designs in similar
brain regions and similar temporal windows when con-
trolled for additional factors in the naturalistic stimuli,
suggesting a single compositional process during both
isolated and connected speech comprehension. One lim-
itation of our study is that we only focused on a specific
linguistic subprocess, and further research is needed to
examine whether other subprocesses, such as morpho-
logical or syntactic processing, can be replicated across
different research paradigms. Conducting meta-analyses
using existing experimental and naturalistic fMRI data-
sets from open data platforms could serve as a valuable
starting point for future investigations in this direction.
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