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Ontology-guided Data Sharing
and Federated Quality Control
with Differential Privacy in
Additive Manufacturing
The scarcity of measured data for defect identification often challenges the development
and certification of additive manufacturing processes. Knowledge transfer and sharing
have become emerging solutions to small-data challenges in quality control to improve
machine learning with limited data, but this strategy raises concerns regarding privacy
protection. Existing zero-shot learning and federated learning methods are insufficient to
represent, select, and mask data to share and control privacy loss quantification. This
study integrates differential privacy in cybersecurity with federated learning to investigate
sharing strategies of manufacturing defect ontology. The method first proposes using
multilevel attributes masked by noise in defect ontology as the sharing data structure to
characterize manufacturing defects. Information leaks due to sharing ontology branches
and data are estimated by epsilon differential privacy (DP). Under federated learning,
the proposed method optimizes sharing defect ontology and image data strategies to im-
prove zero-shot defect classification given privacy budget limits. The proposed framework
includes (1) developing a sharing strategy based on multilevel attributes in defect ontol-
ogy with controllable privacy leaks, (2) optimizing joint decisions in differential privacy,
zero-shot defect classification, and federated learning, and (3) developing a two-stage
algorithm to solve the joint optimization, combining stochastic gradient descent search for
classification models and an evolutionary algorithm for exploring data-sharing strategies.
A case study on zero-shot learning of additive manufacturing defects demonstrated the
effectiveness of the proposed method in data-sharing strategies, such as ontology sharing,
defect classification, and cloud information use.

Keywords: Cyber Physical Security for Factories, Cybermanufacturing, Industrial Internet
of Things, Engineering Informatics, Machine Learning for Engineering Applications

1 Introduction

During the development of additive manufacturing (AM) pro-
cesses, process data measurement is essential to understand print-
ing defects for process certification and quality control. However,
data measurement can be time-consuming and expensive, espe-
cially the microstructural characterization of defects, imposing la-
beled data scarcity challenges in the early stage of process devel-
opment.

Manufacturing researchers have begun to realize the capabil-
ity of zero-shot learning (ZSL) from computer vision to assist in
identifying unseen faults. ZSL methods typically involve trans-
ferring knowledge from known defect classes to unknown ones
by leveraging semantic relationships and feature similarities. For
example, Socher et al. [1] explored ZSL for image classification
using semantic embeddings to generalize to unseen classes, which
can be adapted for manufacturing defect detection. Elhoseiny et al.
[2] also presented ZSL approaches that utilize semantic attributes,
which are relevant for identifying manufacturing defects in novel
products.

These approaches rely on certain knowledge bases, such as dic-
tionaries, to accurately embed the anomaly information as vectors
to describe the characteristics of the anomalies and the associated
manufacturing conditions. Inaccurate embedding of anomalies
may sometimes lead to classification performance like a random
guess. With the advancement of cloud technology, we envision
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that sharing such a knowledge base among manufacturers and re-
searchers can be an effective strategy to improve defect embedding.
However, one major challenge is that manufacturers are concerned
with privacy loss, although they can benefit from data sharing.

With the advancement in cloud technology and machine learn-
ing, knowledge-sharing strategies provide new opportunities for
overcoming the labeled data scarcity challenge. Cloud platforms
can offer a shared space where manufacturers can disseminate and
derive insights from peer data. Manufacturers can significantly
accelerate process certification and improvement using advanced
techniques such as federated learning and transfer learning. In par-
ticular, data shared in such environments is typically masked with
noise to protect against revealing the entirety of a manufacturer’s
defects knowledge base.

1.1 Challenges and Privacy Concerns. The main issue is
that consistent sharing, even masked data, could inadvertently ex-
pose the complete knowledge of a manufacturer. Concerns about
intellectual property protection and trade secrets are raised, imped-
ing knowledge transfer across businesses. This possibility fosters
concerns regarding protecting intellectual property and trade se-
crets, thus potentially restricting knowledge transfer among firms.
Manufacturers are not necessarily opposed to data-sharing; in fact,
they see potential advantages for their process development. Their
primary reservation stems from the absence of tools to measure po-
tential data leaks that could offer competitors an undue advantage.
If manufacturers had tools to assess and set privacy exposure levels,
they could strategically weigh the benefits of data-sharing against
their privacy concerns. They can thereby determine a strategy to

Journal of Computing and Information
Science in Engineering

Copyright © 2024 by ASME PREPRINT FOR REVIEW / 1

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Computing and Information Science in Engineering. Received February 25, 2024;
Accepted manuscript posted October 26, 2024. doi:10.1115/1.4067086
Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/doi/10.1115/1.4067086/7400865/jcise-24-1108.pdf by Florida State U
niversity user on 20 N

ovem
ber 2024

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4067086&domain=pdf&date_stamp=2024-11-07


maximize the cost-effectiveness of data-sharing, i.e., achieving the
best learning accuracy based on the least privacy budget.

1.2 Research Objective and Scope. This paper explores key
questions central to the advancement of secure, cloud-based knowl-
edge sharing within the manufacturing sector. The focus is to in-
vestigate sharing strategies based on appropriate data structures
to optimize the efficacy of collaborative learning while simultane-
ously containing privacy exposures for individual manufacturers.
In the long run, the study will help identify data structures of defect
knowledge that facilitate knowledge sharing in the cloud.

2 Collaborative Machine Learning Considering
Privacy

Federated learning is an emerging extension of distributed ma-
chine learning, where data is utilized locally on each client [3].
A central server receives the updated machine learning parameters
and aggregates them to improve the model through parameter aver-
aging [4]. With this strategy, a central server acts as the coordinator
for a decentralized network of manufacturers. Manufacturers can
access local training data. They compute updates to the server’s
global model and send only the most recent updates back for model
aggregation.

Federated learning introduces various collaborative model train-
ing environments tailored to specific objectives. Federated Aver-
aging combines server-based model averaging and local stochastic
gradient descent (SGD) effectively [3]. FedProx addresses hetero-
geneity challenges through an innovative optimization algorithm
[5]. Personalized Federated Learning tailors shared models to in-
dividual client preferences for personalized adaptability [6]. Q-Fair
Federated Learning (q-FFL) promotes fairness using an objective
inspired by fair resource allocation [7]. Despite its benefits, fed-
erated learning poses challenges like private information leakage,
high communication costs, and device variability [5]. However, the
potential for collaborative and privacy-preserving model training
is promising.

Federated learning has been applied in manufacturing to im-
prove predictive maintenance, quality control, and defect detection.
McMahan et al. [3] introduced Federated Averaging, aggregating
local model updates into a global model, significantly enhancing
privacy preservation. Kairouz et al. [8] provided a comprehen-
sive overview of federated learning techniques, emphasizing their
applications in various industries, including manufacturing. The
federated learning approaches provide a certain level of protection
by sharing the model instead of raw data. However, from a cyber-
security perspective, some knowledge reflected in the data can still
be partially reconstructed from the model shared over the cloud.
Manufacturers may not be confident with this level of privacy pro-
tection.

Differential privacy (DP) emerged to address data security and
prevent model exposure [9]. Geyer et al. [10] propose a com-
prehensive DP-preserving federated learning approach protecting
against model exposure and safeguarding a client’s entire dataset
from differential attacks by other manufacturers. Other notable
DP-based learning methods include local DP (LDP) [11] and dis-
tributed DP-based SGD [12]. LDP allows clients to locally perturb
information before transmitting it, preserving privacy for clients
and the server against data leakage. These advancements address
privacy challenges in federated learning, enabling safer and more
collaborative model training.

Understanding and implementing differential privacy [13] is
important in federated learning settings, where data privacy is
paramount [14]. Differential privacy ensures that specific individ-
ual data presence or absence does not significantly impact analysis
outcomes [15]. Central to differential privacy are mechanisms such
as Laplace and Gaussian noise, vital for data perturbation as they
introduce calibrated noise to mask individual contributions while
preserving overall analysis outcomes [16]. This controlled noise

addition balances data utility and privacy protection, a cornerstone
of privacy-enhancing techniques. This principle is indispensable
in collaborative environments for maintaining data confidentiality
and enabling valuable insights extraction [17].

Differential privacy, crucial for privacy-preserving data analysis,
preserves individual privacy [18] when obtaining insights from a
dataset. The Advanced Composition Theorem [19] improves the
previous composition Theorem, enhancing the privacy guarantees.
This development halves the anticipated privacy loss bound for
(𝜖, 0)-differentially private techniques. Additionally, the Compo-
sition Theorem of [20] advances differential privacy with innova-
tive data processing inequalities and an operational interpretation
that involves hypothesis testing, surpassing previous benchmarks.
[21] expands this field with Composition Theorems for Interac-
tive Differential Privacy, generalizing optimal parallel composition
properties across fundamental differential privacy notions, ensur-
ing adversaries cannot gain an advantage by combining queries.

Recent studies have significantly advanced the fields of privacy
preservation and cybersecurity in AM. Yue and Kontar [22] devel-
oped a Federated Gaussian Process Regression (FGPR) framework
that enhances privacy and personalization in federated learning.
Sturm et al. [23] exposed cyber-physical vulnerabilities in AM,
underscoring the need for robust security measures. Blockchain
and camouflage encryption was introduced in [24] to protect sen-
sor data against cyber-physical threats, while [25] demonstrated
its application in protecting AM systems from cyber-physical at-
tacks in a critical healthcare context. These advancements address
key challenges in data sharing and privacy leaks in AM. However,
the preservation of sharing structured knowledge, such as the on-
tology for defect classification via federated learning, is notably
unexplored.

3 Research Gaps
Although state-of-the-art research exists addressing data pri-

vacy and sharing issues under collaborative manufacturing envi-
ronments, significant research gaps have been identified concerning
data-sharing strategies with controlled privacy leaks:

• Lack of Methods for Data Sharing to Improve Defect Em-
bedding for ZSL: Existing ZSL approaches in manufacturing
have not adequately addressed knowledge sharing to enhance
defect embedding. This paper proposes a novel method to
utilize knowledge sharing to overcome this limitation.

• Insufficient Addressing of Privacy Issues During Data Sharing
by Existing Federated Learning Methods: Current federated
learning approaches do not sufficiently address privacy con-
cerns, particularly regarding joint decisions and quantitative
metrics to evaluate privacy loss. This includes the following
sub-gaps:

– Lack of Strategies for Sharing Ontology Structures to
Improve the Utility of Shared Data in Defect Clas-
sification with Controlled Privacy: Existing machine
learning techniques using knowledge transfer, such as
transfer learning and federated learning, lack guidelines
on strategies for sharing structured manufacturing data,
such as manufacturing defect ontology, with controlled
privacy.

– Lack of Metrics to Quantify Privacy Expenditure for
Data Sharing Between Manufacturers: Accurately
quantifying privacy expenditure is crucial for guiding
data sharing among manufacturers to improve learning
performance for defect identification. It helps determine
the amount of privacy information that can be safely
shared.

This paper proposes a DP-attribute learning framework under
federated learning to address research gaps. proposed method in-
tegrates a differential privacy model with federated learning to
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improve knowledge sharing with privacy protection, thereby using
the knowledge-sharing strategy to improve ZSL. The research ad-
dresses three questions for each manufacturer on the cloud: (1)
How to represent the information in the knowledge base to be
shared to help other manufacturers improve their ZSL; (2) How to
select and mask the shared knowledge while balancing the trade-off
between privacy protection and ZSL performance; and (3) How to
quantitatively control privacy loss during knowledge sharing. A
DP-Attribute Learning framework is developed to apply to vari-
ous contexts of federated learning and can also be implemented
independently without federated learning.

The methodology focuses on the following three aspects:

• Utilization of multi-level attribute embeddings of defect on-
tology masked by noise, characterizing defects to facilitate
data sharing during federated learning;

• Development of a mechanism to quantify privacy expenditure
based on DP to control privacy leaks;

• Formulation of DP-attribute learning framework under the
context of federated learning to determine the selective shar-
ing strategy of ontology structure on the cloud and leverage
of cloud data with controlled privacy leaks. The proposed
method is not tied to federated learning since it can be imple-
mented without federated learning

4 DP-attribute learning under the context of federated
learning for zero-shot learning

Background problem: zero-shot defect classification. Zero-shot
learning addresses the challenge of classifying instances from
classes that are not observed during the training phase but ap-
pear only in the testing phase. Specifically, in manufacturing defect
classification, ZSL is essential for identifying new defect types that
emerge over time without having labeled training data for these new
classes. ZSL is particularly relevant in scenarios of labeled data
scarcity, where obtaining labeled data is difficult and expensive.
For instance, acquiring samples and generating microscopy im-
ages in manufacturing processes can be time-consuming and costly,
making it impractical to have comprehensive labeled datasets for
every possible defect type. ZSL leverages shared attributes between
seen and unseen classes to overcome this limitation, enabling ef-
fective classification even with limited training data. This ZSL was
improved by ontology-attribute learning in our prior research [26]
based on [27].

Let 𝑋 be the space of input data (e.g., microscopic images of
defects), and 𝑌 tr and 𝑌 ts be the sets of seen and unseen class
labels, respectively, such that 𝑌 tr ∩ 𝑌 ts = ∅. During training, the
model has access to pairs (x, 𝑦), where x ∈ 𝑋 and 𝑦 ∈ 𝑌 tr. In
the testing phase, the goal is to correctly classify instances x from
the unseen classes 𝑌 ts. This approach leverages shared attributes
between seen and unseen classes, represented by an attribute space
A. Each class 𝑦 (seen or unseen) is associated with an attribute
vector 𝝓(𝑦) ∈ A. The learning task involves mapping input data x
to its corresponding class 𝑦 through a compatibility function 𝐶𝑝 .
The methodology formulates mapping function 𝑓 as:

𝑓 (x; W) = arg max
𝑦∈𝑌

𝐶𝑝 (x, 𝑦; W), (1)

where W represents the model parameters, x is the input data
vector, and 𝑌 is the set of class labels for manufacturing defects.
The goal is to accurately map the input data to their corresponding
defect classes, enhancing the classification accuracy for both seen
and unseen classes. The compatibility function 𝐶𝑝 is defined by
the features of the input data 𝜽 (x) and the attributes of the class
𝝓(𝑦) and can be represented as:

𝐶𝑝 (x, 𝑦; W) = 𝑚𝑎𝑥(𝜽′ (x)W𝝓(𝑦)) (2)
The parameter 𝑾 is defined as compatibility-based learning pa-
rameter. Its dimension depends on the extracted image dimensions
and the class embedding vector dimensions. Let: 𝜽 (x) represent

the features extracted from images, where x is the image data.
𝝓(𝑦) represent the attributes of the class 𝑦 in the embedding vec-
tor. The dimensions of 𝑊 can be described as: If 𝜽 (x) ∈ R𝑑1 and
𝝓(𝑦) ∈ R𝑑2 , then 𝑊 ∈ R𝑑1×𝑑2 . This way ensures that 𝑊 maps the
feature vectors to the class embeddings, facilitating compatibility-
based classification during the testing phase.

Since image processing has been well developed to extract fea-
tures from images, the key challenge in implementing the ZSL is
to find an appropriate embedding vector 𝝓(𝑦) to characterize the
class. Our prior work developed an attribute learning framework
using a structured knowledge representation, known as an ontol-
ogy, to capture and organize information about various entities
and their relationships within a specific domain with applications
to classify manufacturing defects [26]. The proposed ontology-
guided ZSL leverages rich, hierarchical knowledge about defects,
including their morphology, underlying causes, and associated ma-
terials (Fig.1).

The proposed ontology-guided ZSL consists of the following
steps: (1) Ontology Construction: Identify relevant concepts,
relationships, and constraints associated with manufacturing de-
fects; (2) Ontology Exploration: A walking algorithm explores the
branches of the defect ontology to extract descriptive sentences;
(3) Natural Language Processing (NLP): Transform the descrip-
tive sentences obtained from ontology exploration into contextual-
ized embedding vectors using NLP models, such as transformers;
and (4) Class Embeddings: Collect the embedding vectors for all
classes in a matrix with dimensions corresponding to the number
of classes and the embedding vector dimension. The ontology con-
struction is the most essential step that organizes the relationships
among attributes associated with each class under a hierarchical
structure. The selection of the ontology branches and depth can
significantly affect ZSL performance.

In real-world scenarios, training on vector embeddings of de-
fects through ontology ensures consistent representation, mitigating
variations in data quality and heterogeneity across different manu-
facturing units. Federated learning and cloud-based collaboration
address class imbalances by enabling manufacturers to comple-
ment each other’s data, resulting in an enriched ontology structure
that comprehensively covers various attributes for defects. The
ontology-based data structure also supports continuous learning,
allowing real-time updates with new information and ensuring that
all manufacturers benefit from the latest defect detection capabili-
ties.

Fig. 1 Example multi-level attributes in a defect ontol-
ogy characterizing two defects: layer misalignment and
crack

Reivew of federated learning. In ZSL, data sharing based on di-
verse datasets is important in providing features and attributes
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about manufacturing defects. However, it also raises significant
concerns about data security and privacy leaks. Federated learn-
ing addresses these concerns by facilitating collaboration without
sharing raw data among manufacturers. A federating strategy 𝑭
should be sequentially developed to determine what parameters in
the model are updated by the global model on the server. In this
phase, multiple manufacturers participate by training local mod-
els and sending their parameters W(𝑡 )

𝑖
to a central server. The

server computes the global parameter as the average of this local
parameters:

W =
1
𝐾

𝐾∑︂
𝑖=1

W𝑖 , (3)

which is then redistributed to each of 𝐾 manufacturers for further
training iterations. While federated learning can preserve raw data
privacy, it does not inherently quantify the level of information
leakage nor provides a mechanism to control the balance between
privacy protection and information sharing. When manufacturers
participate in federating learning, they are subject to unmeasured
privacy concerns when benefiting from data sharing.
Reivew of differential privacy. To enhance the security framework
in federated learning, this paper proposes to integrate DP with at-
tribute learning in a federated manner. DP-attribute learning frame-
work under federated learning becomes crucial for quantifying and
controlling the level of privacy and information shared in the sys-
tem. Differential privacy, as proposed by Dwork et al. [28], and ex-
tensively discussed by Dwork, Roth, and Vadhan [13], establishes a
mathematical framework for protecting sensitive data. DP-attribute
learning under federated learning setting, each manufacturer in the
set of 𝐾 manufacturers, denoted as 𝑆 = 𝑆1, 𝑆2, . . . , 𝑆𝐾 , trains a lo-
cal model using its data while ensuring privacy protection utilizing
DP.

Consider 𝐷𝑖 as a local dataset belonging to manufacturer 𝑆𝑖
with an algorithm 𝐴𝑖 that processes 𝐷𝑖 to yield an output 𝐴𝑖 (𝐷𝑖).
The algorithm 𝐴𝑖 satisfies 𝜖𝑖-differential privacy if, for all datasets
𝐷𝑖 and 𝐷′

𝑖
differing by a single record, the subsequent inequality

is:
Pr[𝐴𝑖 (𝐷𝑖)] ≤ 𝑒𝜖𝑖 · Pr[𝐴𝑖 (𝐷′𝑖)] + 𝛿𝑖 (4)

This inequality is a privacy assurance that limits how much any
individual data point in 𝐷𝑖 can influence the output of 𝐴𝑖 . Here,
𝛿𝑖 denotes the probability of any data point being singled out by an
adversary, while 𝜖𝑖 serves as a control knob to balance the trade-off
between data utility and privacy. Smaller 𝜖𝑖 values correspond to
stronger privacy. It directly influences the noise characteristics in
the algorithm’s output, a pivotal aspect of the differential privacy
mechanism.

Introducing noise, parameterized by 𝜎𝑖 , is fundamental in
achieving (𝜖𝑖 , 𝛿𝑖)-differential privacy in a dataset. The noise level
is crucial for masking individual contributions while maintaining
the utility of the aggregated data. The value of 𝜎𝑖 is determined
based on the privacy parameters 𝜖𝑖 and 𝛿𝑖 as follows:

𝜎𝑖 =

√︁
2 log (1/𝛿𝑖)

𝜖𝑖
, (5)

where 𝜎𝑖 scales the Laplacian noise added to the data. This noise
scaling is essential to ensure that each computational step within
the algorithm maintains the prescribed differential privacy level,
effectively striking a balance between privacy and utility.

To further illustrate the application of DP, consider a func-
tion 𝑓 (𝐷𝑖) on a dataset 𝐷𝑖 and its differentially private response
𝐴𝑖 (𝐷𝑖). When employing the Laplace mechanism, the process is
defined as:

𝐴𝑖 (𝐷𝑖) = 𝑓𝑖 (𝐷𝑖) + Laplace(0, 𝜎𝑖)
In this equation, the term 𝜎 denotes the scale of the Laplace distri-
bution, directly influenced by the privacy parameter 𝜖𝑖 . The selec-
tion of 𝜖𝑖 is crucial as it regulates the level of privacy protection,
with smaller values of 𝜖𝑖 indicating stronger privacy guarantees.
A careful calibration of noise added not only safeguards individ-

ual data points but also preserves the overall utility of the data,
demonstrating the intricate balancing in DP mechanisms.

In DP, Laplace noise is preferred over Gaussian noise for several
reasons: it directly achieves 𝜖-differential privacy by adding noise
scaled to the sensitivity of the function, ensuring robust privacy
without an additional delta parameter [13,29]. The heavier tails of
the Laplace distribution add significant noise to outliers, enhanc-
ing privacy protection. Additionally, Laplace noise aligns with
𝐿1-norm sensitivity, making it straightforward to implement and
computationally efficient, crucial for large-scale federated learn-
ing scenarios [30]. In contrast, the Gaussian mechanism, aligned
with 𝐿2-norm sensitivity, involves more complex analysis and cal-
ibration of noise for (𝜖, 𝛿)-differential privacy [31,32]. Extensive
research has shown Laplace noise to be effective in differential
privacy applications, balancing privacy and utility [9,10].

4.1 Two-stage formulation of DP-attribute learning frame-
work under the context of federated learning. This formulation
concerns the decision sharing of ontologies on the cloud instead
of raw data since ontology can offer significant advantages in gen-
erating class embedding vectors to characterize manufacturing de-
fects, thereby improving the ZSL performance for each manufac-
turer. Thus, a direct sharing of ontologies can best facilitate ZSL
tasks for each manufacturer with limited data or knowledge base.
Traditional data sharing based on information theory that focuses
on optimizing the transmission and encoding of information lacks
the structured representation that ontologies provide to help ZSL.
Ontology-based data sharing offers several advantages: it provides
enhanced interpretability with clear and structured data that both
humans and machines easily understand; it ensures consistency and
standardization across different datasets and systems; it supports
scalability and flexibility, allowing for the easy addition of new
data types and the expansion of existing datasets without disrupt-
ing the existing data structure; and it enables advanced reasoning
and inference, allowing systems to infer new knowledge from ex-
isting data in ZSL, which is not typically possible with information
theory-based methods.

As illustrated in Fig. 2, the decisions involved in DP-attribute
learning framework under the context of federated learning include
(1) the selection of the ontology branches (red arrows on the left),
represented by a class embedding vector extracted from the shared
ontology 𝝋𝑖 , (2) local model parameters W𝑖 to classify defects with
each manufacturer, and (3) whether or not to use global model on
the server (red arrows on the right) to update parameters in the local
model according to a sequence of federating strategies 𝑭𝑖 (𝑛) over
iterations 𝑛 in the (𝑛)th round, given noises determined by (𝜖𝑖 , 𝛿𝑖)
to be added by each manufacturer 𝑖 to mask the class embedding
as extracted from the ontology and local model parameters (See
distribution additions in Fig. 2),

The overall objective in this formulation is to minimize a loss
function associated with the average error in defect classification
between all manufacturers while learning a mapping function 𝑓

(Eq. (1)). Constraints are imposed on the optimization problem
to ensure data privacy for each manufacturer by limiting the loss
incurred during attribute learning and data embedding to a prede-
fined privacy budget. The proposed formulation can be represented
as

min

{︄
1

Number of manufacturers

Number of manufacturers∑︂
𝑖=1

Overall error

}︄
S.T.

Overall privacy loss ≤ Privacy budget limit
Mathematically, the formulation is to find the optimal W𝑖 , 𝝋𝑖 , a
sequence of 𝑭𝑖 = {𝑭𝑖 (1) , 𝑭𝑖 (2) ...𝑭𝑖 (𝑛) }, and (𝜖𝑖 , 𝛿𝑖) that mini-
mize the average loss 𝐿𝑖 across 𝐾 manufacturers over federating
iterations (1), (2), ... (𝑛) (Eqn. (6)). It includes two stages of
decisions: learning of local model parameters given the federated
ontology-sharing strategy on each manufacturer in Stage 1 and the
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Fig. 2 Decisions involved in the proposed DP-attribute learning framework under the context of federated learning.
Four decisions are outlined: selection of ontology branch depth to share (thick red arrows on the left) and federating
strategy (thick red arrows on the right), local model parameter (Model matrix in the middle), and levels of noises
added to ontology and models (dark distribution curves))

exploration of federated ontology-sharing strategies in Stage 2.

min
𝑭𝑖

{︄
min

W𝑖 ,𝝋𝑖 | (𝜖𝑖 , 𝛿𝑖 )
1
𝐾

𝐾∑︂
𝑖=1

𝐿𝑖 (𝑦𝑛, 𝑓𝑖 (x𝑛; W𝑖 , 𝝋𝑖)
}︄

(6)

S.T.
Cemb (𝜖𝑖 , 𝛿𝑖) + Cattr (𝜖𝑖 , 𝛿𝑖) ≤ B𝑖 ,∀𝑖 = 1, 2, ...𝐾 (7)

where each variable is defined as follows:(1) 𝜖𝑖 : The privacy budget
parameter typically ranges from 0.01 to 10, (2) 𝛿𝑖 : Our formulation
sets the probability of privacy loss parameter to zero, (3) Ontology
privacy parameters, which measure the depth or branch of the
ontology to be shared, typically ranges from 1 to 3, and (4) 𝑊𝑖 :
Local model parameters for each manufacturer, depending on the
specific model architecture and learning rates.

The objective function is subject to the privacy budget con-
straints (Equation (7)). The federating strategy 𝐹𝑖 in the outer loop
(2nd optimization stage) is responsible for coordinating the sharing
and updating of local models among the manufacturers. It deter-
mines the sequence of federating steps 𝐹𝑖 (𝑛) that guide the selec-
tion and aggregation of local model updates. This strategy ensures
effective communication and synchronization of model parameters
across different manufacturers, optimizing the collaborative learn-
ing process and minimizing the overall loss. The overall privacy
budget 𝐵𝑖 is evaluated within these parameter ranges to ensure a
balance between privacy preservation and model accuracy. The
tested study ranges from 1000 to 106.

The constraints in Eqn. (7) are strictly satisfied through careful
allocation of the privacy budget, the differential privacy mecha-
nism, and iterative recalibration. Each manufacturer is assigned
a specific privacy budget 𝐵𝑖 based on data sensitivity, controlled
noise is added to the embeddings to ensure cumulative privacy loss
does not exceed 𝐵𝑖 , and continuous calibration manages privacy
expenditure to maintain compliance with the constraints. These
constraints are critical in sharing defect ontology and attribute
learning models under the federated learning framework. The ad-
vanced composition theorem [19,21] offers a way to evaluate this
cumulative privacy loss, ensuring that both the class embedding
and attribute learning processes privacy requirements.

• Sharing of ontology through DP-embedding with privacy ex-
penditure Cemb (𝜖𝑖 , 𝛿𝑖): This component estimates the extent
to which the defect ontology can be shared during the class

embedding phase. It reflects the frequency of sharing the
noise-masked defect ontology and attributes extracted. By
regulating the exposure of defect knowledge, this constraint
minimizes the probability of external entities gaining access
to privacy information. It is estimated by:

Cemb (𝜖𝑖 , 𝛿𝑖) = 𝑞𝑖, 𝑗 × 𝜖𝑖

√︄
𝑇 log

(︃
1
𝛿𝑖

)︃
, (8)

In Equation (8), the parameter 𝑞𝑖, 𝑗 represents the degree to
which a manufacturer 𝑖 shares information 𝑗 in the ontology,
and 𝑇 indicates the number of iterations in the learning pro-
cess. This equation quantifies the privacy loss of class embed-
ding extracted from the ontology and demonstrates how the
cumulative privacy loss is calculated when applying multiple
DP mechanisms.

• Sharing of models for attribute learning with privacy expen-
diture Cattr (𝜖𝑖 , 𝛿𝑖): This measure estimates the permissible
level of information sharing through attribute learning clas-
sifiers trained on local images and the extracted ontology.
It effectively controls the potential privacy data leakage by
masking model parameters before their distribution through
federated learning. It is estimated by:

Cattr (𝜖𝑖 , 𝛿𝑖) = 𝜖𝑖

√︄
𝑇 log

(︃
1
𝛿𝑖

)︃
, (9)

which calculates the privacy loss in proportion to the square
root of the number of iterations 𝑇 . This formulation is integral
to the advanced composition theorem, allowing for a compre-
hensive assessment of cumulative privacy loss in scenarios
involving multiple private mechanisms.

In the DP-attribute learning framework in the context of feder-
ated learning, both the embedded attributes of the ontology and the
attribute learning models 𝑾𝑖 are shared. The proposed constraints
offer manufacturers a method to control privacy leaks caused by
sharing defect ontology. By setting an upper limit 𝐵𝑖 in the privacy
budget, manufacturers can regulate how frequently the algorithm
explores and shares the ontology and attribute learning models.

The privacy budget 𝐵𝑖 is a pivotal metric for navigating the
trade-off between data utility and privacy protection. Setting a pri-
vacy budget is an iterative methodology that requires continuous
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re-assessment and re-calibration of 𝐵𝑖 to achieve a delicate equi-
librium between securing privacy and utilizing data. Central to
this process are determining data sensitivity and the needed pri-
vacy safeguards, adhering to regulatory frameworks, and making
timely adjustments to 𝐵𝑖 as data utilization, legal obligations, and
stakeholder demands evolve.

The privacy budget spending given the privacy parameters 𝜖𝑖
can be illustrated as follows. Consider a federated learning sce-
nario involving two manufacturers, each starting with an initial
privacy budget of 1 and other parameters held constant, the impact
of varying 𝜖𝑖 values on the privacy budget is illustrated through em-
bedding privacy loss per Equation (8). Assuming Manufacturer A
has a significantly higher 𝜖𝑖 value of 0.7, leading to an embedding
privacy loss (Cemb) of 0.08, and Manufacturer B has a much lower
𝜖𝑖 value of 0.1, with an embedding privacy loss (Cemb) of 0.02, the
adjustments to their privacy budgets post one federation round are
notable. Manufacturer A’s budget decreases to 0.92, demonstrating
a greater reduction due to the higher 𝜖𝑖 , while Manufacturer B’s
budget is reduced to 0.98, indicating less impact from a smaller 𝜖𝑖 .

4.2 DP-Embedding of Ontology. In DP-based class embed-
ding, the process begins by generating vector embeddings for sen-
tences describing defects with each the manufacturer’s knowledge
base. This step uses the natural language processing model, such as
Bidirectional Encoder Representations from Transformers (BERT).
Each sentence is denoted as 𝑠𝑖, 𝑗 , implying the 𝑗 th sentence in the
dataset of the 𝑖th manufacturer. Controlled noise is added to these
embeddings 𝐸 (), as shown in Eq. (10).

𝐸𝑑𝑝 (𝑠𝑖, 𝑗 ) = 𝐸 (𝑠𝑖, 𝑗 ) + Δ𝑖, 𝑗 (10)
where Δ𝑖, 𝑗 is a random noise drawn from the Laplace distribu-

tion with mean 0 and scale parameter 𝜎 =

√
2 log(1/𝛿𝑖 )

𝜖𝑖
, i.e.,

Δ𝑖, 𝑗 ∼ Lap(0, 𝜎𝑞𝑖, 𝑗 ), where 𝑞𝑖, 𝑗 is ontology privacy parameters,
measuring the depth or branch of ontology to be shared. To gen-
erate each embedding 𝐸 (𝑠𝑖, 𝑗 ), the algorithm selects 𝑞𝑖, 𝑗 (Fig. 3).
Figure 3 illustrates the process of ontology exploration and DP-
embedding for attribute learning. The figure shows two potential
paths for ontology exploration (Path A and B). Each path involves
hierarchical levels of attributes related to defects. Path A follows
ontology exploration with a hierarchical depth of 𝑞𝑖, 𝑗 = 2, while
Path B follows ontology exploration with a hierarchical depth of
𝑞𝑖, 𝑗 = 3. For each path, the algorithm selects 𝑞𝑖, 𝑗 values corre-
sponding to the depth of the ontology branches. These selections
determine the amount of controlled noise Δ𝑖, 𝑗 added to the class
embeddings 𝐸 (𝑠𝑖, 𝑗 ), ensuring differential privacy. The embed-
dings are then used for attribute learning in defect classification.
In other words, when a specific part of hierarchical branches is
selected from the ontology, the algorithm responds by scaling the
noise to prevent privacy leaks. Deeper branches are rich in infor-
mation, which costs more in terms of the privacy budget.. The
calculated DP-embedding vector 𝐸𝑑𝑝 (𝑠𝑖, 𝑗 ) is then incorporated
into the class embedding matrix 𝝓𝑖 (𝑦). To guarantee (𝜖𝑖 , 𝛿𝑖)-DP,
an advanced composition theorem is implemented (Equation (8))
to quantify and control the embedding privacy loss (Cemb (𝜖𝑖 , 𝛿𝑖))
within the set overall privacy budget 𝐵𝑖 .

The loss incurred in each embedding is subtracted from the
privacy budget to calculate the remaining privacy budget. Then,
Eq. (11) updates the privacy budget as follows:

𝐵𝑖 ← 𝐵𝑖 − Cemb (𝜖𝑖 , 𝛿𝑖) (11)
If the remaining privacy budget is non-positive, training terminates
and discards the last calculated embedding to guarantee differential
privacy. Otherwise, the computed embedding 𝐸𝑑𝑝 (𝑠𝑖, 𝑗 ) is used
for training the classifier.

4.3 Stage 1 Optimization: DP-Attribute Learning. Once
the DP-embedding 𝐸𝑑𝑝 (𝑠𝑖, 𝑗 ) is calculated and stacked into class
embedding matrix 𝝓

(𝑡 )
𝑖
(𝑦), multiple manufacturers participate in

the attribute learning process over iterations indexed by (𝑡). Each

Fig. 3 DP-Embedding for attribute learning

manufacturer 𝑆𝑖 has access to its dataset 𝐷𝑖 (image features 𝜽𝑖 (x)
and DP attribute embeddings 𝝓

(𝑡 )
𝑖
(𝑦)). Manufacturers train an

attribute learning classifier locally to obtain the feature-to-attribute
mapping matrix 𝑾

(𝑡 )
𝑖

that minimizes the local loss function. As
such, Equation (2) for the attribute learning objective becomes
𝐶
(𝑡 )
𝑝𝑖
(x, 𝑦; W(𝑡 )

𝑖
) = 𝑚𝑎𝑥(𝜽′ (x)W(𝑡 )

𝑖
𝝓
(𝑡 )
𝑖
(𝑦)). Each manufacturer

needs to solve the constrained two-stage optimization problem (6)
and (7). Stage 1 learns 𝑾

(𝑡 )
𝑖

given attribute stacking matrix 𝝋
(𝑡 )
𝑖

and Stage 2 sequentially searches for ontology to be shared with
federated learning by an evolutionary algorithm (EA). This section
focuses on the DP formulation of the optimization for stage 1. Its
objective function is

min
𝝋𝑖

min
W𝑖 |𝝋𝑖

1
𝐾𝑖

𝐾∑︂
𝑖=1

𝐿
(𝑡 )
𝑖
(𝑦𝑛, 𝑓 (𝑡 )𝑖 (x𝑛; W(𝑡 )

𝑖
, 𝝋
(𝑡 )
𝑖
)) (12)

where 𝐿 (𝑡 )
𝑖

is the loss function that defines a ranking-based loss
function 𝐿 (𝑡 )

𝑖
as in Equation (13):

𝐿
(𝑡 )
𝑖

=∑︂
𝑦∈𝑌 𝑡𝑟

𝑚𝑎𝑥

{︂
0,Δ(𝑦𝑛, 𝑦) + 𝐶 (𝑡 )𝑝,𝑖 (x𝑛, 𝑦; W(𝑡 )

𝑖
) − 𝐶 (𝑡 )

𝑝,𝑖
(x𝑛, 𝑦𝑛; W(𝑡 )

𝑖
)
}︂
(13)

where Δ(𝑦𝑛, 𝑦) = 1 if 𝑦 ≠ 𝑦𝑛 and 0 otherwise. This loss function
forces the model to produce higher compatibility between the defect
image and the true label than between the image and the incorrect
labels.

This problem consists of inner and outer optimizations. In the
inner optimization, DP is integrated into the solution algorithm for
optimization in (12), such as SGD. This step utilizes the Laplace
mechanism to add noise to the gradient at each iteration (Fig. 4
upper left panel). Noise N sampled from a Laplace distribution

( N(𝑡 )
𝑖
∼ Laplace(0, 𝜎)) with scale 𝜎 =

√
2 log(1/𝛿𝑖 )

𝜖𝑖
is added to

the gradient ∇̃𝑾 𝐿
(𝑡 )
𝑖

(Eq. (14)).

∇̃W𝐿
(𝑡 )
𝑖

= ∇W𝐿
(𝑡 )
𝑖
+ N(𝑡 )

𝑖
(14)

DP-SGD (Eq. (15)) then updates the weights of the model using
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Fig. 4 Federated DP-SGD for attribute learning

the noisy gradient:
W(𝑡 )
𝑖
←W(𝑡−1)

𝑖
− 𝜂∇̃W𝐿

(𝑡 )
𝑖

(15)
where 𝜂 is the learning rate, a hyperparameter.

The outer optimization follows our prior research [26], which
minimizes the ZSL loss function in (12) and finds the optimal on-
tology structure 𝝋𝑖 through stochastic exploration and exploitation
in an evolutionary algorithm. This layer of optimization searches
for ontology structure 𝝋𝑖 , given mapping W in the compatibility
function and privacy parameters (𝜖, 𝛿) which restricts the amount
of information to be shared with other manufacturers.

During the testing phase, manufacturer 𝑆𝑖 computes classifica-
tion accuracy (𝛼 (𝑡 )

𝑖
) in finding the label 𝑘 for manufacturing de-

fects. The label is identified as one that maximizes the compatibil-
ity between the input features 𝜽𝑖 (𝑥𝑡 ) and the 𝑘th class embedding
𝝓
(𝑡 )
𝑖
(𝑦𝑘) as formulated in Eq. (16).

𝑘̂ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝜽′𝑖 (𝑥𝑡 )Ŵ
(𝑡 )
𝑖 𝝓

(𝑡 )
𝑖
(𝑦𝑘)} (16)

The advanced composition theorem (Eq. (9)) is used to calcu-
late the loss of attribute learning privacy Cattr (𝜖𝑖 , 𝛿𝑖). Finally, the
privacy budget (𝐵𝑖) is updated (Eq. (17)) to ensure that the total
privacy loss stays within the desired bound:

𝐵𝑖 ← 𝐵𝑖 − Cattr (𝜖𝑖 , 𝛿𝑖) (17)
If the privacy budget is exhausted (i.e., 𝐵𝑖 ≤ 0), training stops and
return the final weight matrix W(𝑡−1)

𝑖
.

4.4 Stage 2 Optimization: DP-attribute learning frame-
work under the context of federated learning. This section fo-
cuses on the Stage 2 solution algorithm. Considering the com-
binatorial nature of ontology exploration in this stage, this paper
proposes to solve it by integrating the evolutionary algorithm (EA)
with federated learning based on manufacturer collaboration. After
completing the iterations of attribute learning in Stage 1, the algo-
rithm enters into the (𝑛)𝑡ℎ federating round, each manufacturer 𝑆𝑖
sends the noise-masked model parameters 𝑾𝑖 (𝑛) from local clients
to the central server. The central server computes the average of
the received parameters (Eq. (18)):

𝑾(𝑛) =
1
𝐾

𝐾∑︂
𝑖=1

𝑾𝑖 (𝑛) (18)

Subsequently, the server sends the updated global parameter 𝑾(𝑛)
back to each manufacturer.

Each manufacturer needs to decide on whether or not to incor-
porate the model results from the server at each federating round.
The decision can be driven by the learning accuracy 𝛼𝑖 of each
manufacturer. If the accuracy is insufficient, the manufacturer will
leverage the model parameters from the server. Otherwise, the
manufacturer can rely on its local model for optimization without
sharing their ontology and image data. This decision is captured by
a binary federating matrix 𝑭(𝛼)𝑖 (𝑛) , which is affected by accuracy
𝛼𝑖 and has the same dimension as the attribute learning model 𝑾𝑖 .
This matrix determines what parameters in the model should be
updated by the global model on the server.

An evolutionary strategy is developed to direct the search for fed-
erating matrices 𝑭(𝛼)𝑖 (𝑛) . This method leverages a fitness func-
tion based on 𝛼𝑖 to fine-tune the trade-off between local knowledge
and aggregated global information. The fitness function serves as
a dynamic guide, iteratively refining the search for optimal solu-
tions by evaluating and minimizing the objective function across
successive iterations. Although not optimal in initial iterations, it
drives the EA progressively towards better solutions, reducing the
objective function over time. The search strategy should balance
exploration and exploitation by adjusting the contribution of local
and global information within the federated learning framework.

4.4.1 Federating Crossover. The exploration phase of feder-
ated learning is dominated by the crossover operation. This paper
proposes to govern this process by a federating matrix 𝑭(𝛼)𝑖 (𝑛)
based on the local model accuracy 𝛼𝑖 . The federating matrix is
defined as follows:

𝑭(𝛼)𝑖 (𝑛) =
{︃
1, with probability of the same value as 𝛼𝑖
0, with probability (1 − 𝛼𝑖)

(19)

During crossover, a random subset of genes (parameters) from
the local parameter matrix 𝑾𝑖 (𝑛) is selected, proportional in size
to the local accuracy 𝛼𝑖 . These genes are then merged with com-
plementary genes from the global parameter matrix 𝑾𝑖 (𝑛) , under
the direction of the federating matrix 𝑭(𝛼)𝑖 (𝑛) . This process can
be depicted as:

𝑾𝑖 (𝑛+1) = Fed-Crossover(𝑾𝑖 (𝑛) ,𝑾(𝑛) , 𝑭(𝛼)𝑖 (𝑛) ) (20)
This crossover operation under the federating context (Fed-
Crossover) encourages the exploration of new configurations in the
parameter matrix, thereby enhancing the adaptability and potential
for improved performance in the learning model.

4.4.2 Federating Mutation. In the exploitation phase, partic-
ularly when the local model accuracy 𝛼𝑖 is high, the federat-
ing matrix 𝑭(𝛼)𝑖 (𝑛) undergoes local adjustments. This adjust-
ment process originates from the previous iteration of the matrix,
𝑭(𝛼)𝑖 (𝑛−1) . The updated matrix 𝑭(𝛼)𝑖 (𝑛) is formed through a
probabilistic modification based on the current local accuracy 𝛼𝑖 :

𝑭(𝛼)𝑖 (𝑛) = Adjust(𝑭(𝛼)𝑖 (𝑛−1) , 𝛼𝑖) (21)
In this adjustment, each entry in 𝑭(𝛼)𝑖 (𝑛) is changed from the orig-
inal value with a probability proportional to 𝛼𝑖 . This probabilistic
approach ensures that the matrix accurately reflects the latest state
of local model accuracy. This adjusted matrix then guides the
mutation process for the local parameter matrix 𝑾𝑖 (𝑛) . This step
involves row swapping in 𝑾𝑖 (𝑛) to enhance the local model. The
mutation operation is represented as follows:

𝑾𝑖 (𝑛+1) = Fed-Mutation(𝑾𝑖 (𝑛) , 𝑭(𝛼)𝑖 (𝑛) ), (22)
where mutation under the federating context (Fed-Mutation) ap-
plies specific alterations to 𝑾𝑖 (𝑛) based on the directives of
𝑭(𝛼)𝑖 (𝑛) . This mutation allows for fine-tuning of the local model
in response to its performance.

In both the crossover and mutation phases, the federating matri-
ces 𝑭(𝛼)𝑖 (𝑛) play a vital role in balancing local and global-scale
searches during the learning process. The local parameter update
can be expressed as:

𝑾𝑖 (𝑛+1) = 𝑭(𝛼)𝑖 (𝑛) ⊙𝑾𝑖 (𝑛) + (1 − 𝑭(𝛼)𝑖 (𝑛) ) ⊙𝑾(𝑛) (23)
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The operation 𝑭(𝛼)𝑖 (𝑛) ⊙ 𝑾𝑖 (𝑛) multiplies each element of the
federating matrix 𝑭(𝛼)𝑖 (𝑛) with the corresponding element of the
local parameter matrix 𝑾𝑖 (𝑛) . Similarly, (1−𝑭(𝛼)𝑖 (𝑛) ) ⊙𝑾(𝑛) in-
volves element-wise multiplication of the global parameter matrix
𝑾(𝑛) with the result of 1 minus each element in the federating ma-
trix. This equation encapsulates the essence of the adaptive learn-
ing process, highlighting the importance of local model accuracy
𝛼𝑖 in guiding the learning direction, whether through crossover or
mutation. The entire methodology is summarized in Algorithm 1.

The DP-attribute learning framework under the context of a
federated learning algorithm operates under two stopping criteria:
(1)Federating Rounds: The algorithm is regulated by a predeter-
mined number of federating rounds (𝑁), which dictate the duration
of the collaborative learning process, and (2) Privacy Budget: The
participation of each manufacturer in updating the model parame-
ters is limited by its allocated privacy budget. Once depleted, the
manufacturer ceases to contribute new data. All genes generated
at each generation are inspected to ensure a feasible solution.

Overall, the proposed DP-attribute learning framework under
federated learning provides solutions to joint decision-making
problems while balancing accuracy and privacy. Given noise added
to mask shared information, decisions involve the selection of the
depth of the ontology branch for sharing and whether to integrate
the global model shared in the cloud. Furthermore, the framework
develops a two-stage solution algorithm. The first stage refines
the solutions using SGD for better accuracy, while the second
stage employs metaheuristics (EA) to explore the solution space
efficiently. This dual-stage optimization effectively balances com-
putational demands with the need for accurate model training.
Remark: Although it is not common in the early stage of devel-
oping new manufacturing processes if a larger dataset is available,
the proposed algorithm may encounter challenges in the combina-
torial search for appropriate mapping 𝑾 between the images and
attributes extracted from the ontology and selection of ontology
branches to be shared to the cloud.

5 Case study
This case study considers a scenario where two manufacturers

leverage information from each other to improve defect identifica-
tion accuracies in their direct-ink-writing processes. Each manu-
facturer possesses defect image data along with the ontology char-
acterizing the defects and attempts to perform zero-shot learning of
unseen classes measured in each process. Information sharing can
benefit each other; however, manufacturers want to limit informa-
tion disclosure. This study makes decisions for each manufacturer
regarding which parts of the defect ontology and defect images to
be shared through attribute learning models. Since existing feder-
ated learning and ZSL cannot address the decision-making outlined
in Section 3, there is a lack of benchmark methods for comparison.

5.1 Manufacturers data and privacy budget.

5.1.1 Data source and pre-processing. The case study focuses on
a printing process for creating a new nanowire-polymer compos-
ite structure as photoactive coatings that detect visible light [33].
This research addresses ten defect types captured by microscopic
images, including cracks and pores in different morphologies. Fig-
ure 5 illustrates examples of these defects.

The dataset includes various cracks and pores, each with a
unique shape, texture, or color properties. The dataset is divided
into seen and unseen classes for zero-shot learning (ZSL). The ZSL
classifier in Figure 5 is trained on 70% (7 seen classes) and tested
on 30% (3 unseen classes). Some examples of shared features be-
tween seen and unseen classes are Irregular pore-1, which shares
the attribute “grey colored surface” with Large pore-2, and “irreg-
ularly shaped pores” with Irregular pore-2. Large pore-1 shares the
attribute “reddish surface with small red dots” with Tiny crack-1
and “large circular pores” with Large pore-2.

Fig. 5 Examples of training data (seen classes) and test-
ing data (unseen classes) in the dataset

This study addresses the challenge of recognizing and classi-
fying novel defect types of a new manufacturing process without
extensive labeled training data. The case study focuses on utilizing
ontology sharing among manufacturers to enhance zero-shot learn-
ing of printing defects in a direct ink writing process. As this is a
new process, the dataset has a sample size of 50. There is a lack
of historical samples, and generating microscopy images is time-
consuming and expensive. Consequently, this case study targets
machine learning in resource-limited settings, with each manu-
facturer having limited samples. To mitigate the limitations of a
small test dataset, we implemented cross-validation by swapping
the roles of training and testing data. For example, classes initially
used for training as seen classes are subsequently used for testing
as unseen classes, and vice versa. This approach effectively in-
creases the testing scenarios. The performance of ontology-based
ZSL in improving embeddings to compensate for data shortages
with several scenarios has been demonstrated s in our prior work
[26]. Additionally, prior research [27] has thoroughly tested larger
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Fig. 6 Availability of image samples for training pro-
vided by Manufacturer 1 and Manufacturer 2. Defects for
which manufacturers did not provide morphology data
were used as testing data.

testing datasets as long as the class embedding is accurate. This
study focuses on collaborative efforts to improve class embedding
for manufacturing defects, given data shortages on each manufac-
turer while ensuring privacy guarantees. This study focuses on
collaborative efforts to mitigate data shortages while ensuring pri-
vacy guarantees.

Following [26], feature extraction involved obtaining 𝜽 (x) from
defect images, where the Img2Vec Python library was employed
for image embedding. This method leveraged a ResNet50 model
with pre-trained weights sourced from the ImageNet dataset [34].
This study incorporated an ontology exploration strategy and nat-
ural language processing to convert the ontology into class em-
beddings represented as vectors for ZSL. A customized “walk” al-
gorithm facilitated the process of ontology parsing. Furthermore,
the “BERT BASE Uncased” variant of the BERT model was ap-
plied for converting sentences derived from multiple “walks” into
contextualized embedding vectors, denoted as (𝝓) of size 768.

5.1.2 Manufacturer’s data. In this example, both manufactur-
ers provided ontology with ten different defect types and morphol-
ogy data for seven. Defect images were provided by Manufacturer
1 and Manufacturer 2 for seven types of defects. As shown in Fig.
6, there were differences between the manufacturers in the avail-
ability of image samples. Manufacturer-1’s image data represented
Tiny crack-1, Tiny crack-2, Irregular pore-1, Irregular pore-2, Large
pore-1, Small pore-1, and Small pore-2, but did not include im-
age data for Large crack-1, Large crack-2, and Large pore-2. In
contrast, Manufacturer-2’s image data included Tiny crack-1, Tiny
crack-2, Irregular pore-2, Large crack-1, Large crack-2, Large pore-
2, and Small pore-1 but did not include images for Irregular pore-1,
Large pore-1, and Small pore-2.

The ontology available to Manufacturer-1 and Manufacturer-2 is
illustrated schematically in Fig. 7. This ontology exhibits a com-
bination of complementary and overlap in certain attributes, while
instances of entirely missing data in other attributes. The ontol-
ogy of Manufacturer-1 included the morphology of Tiny crack-
1, Tiny crack-2, Irregular pore-1, Irregular pore-2, Large pore-1,
Small pore-1, and Small pore-2. However, this ontology does not
include information about the Large crack-1, Large crack-2, and
Large pore-2 morphology. In contrast, Manufacturer-2’s ontology
includes morphology for Tiny crack-1, Tiny crack-2, Irregular pore-
2, Large crack-1, Large crack-2, Large pore-2, and Small pore-1.
It lacks morphology for Irregular pore-1, Large pore-1, and Small
pore-2. A summary of ontology information regarding morphol-
ogy, materials, and causes for each defect in both manufacturers is
presented in Fig. 7.

5.1.3 Privacy budget. This study focuses on evaluating the im-
pact of the privacy budget on the accuracy of the model. It involves
training the proposed algorithm with various privacy parameters

Table 1 Ranges and increments of the factors evaluated
in the proposed algorithm.

Factor Range of Values Increment

Federating Round (N) 5 − 30 5
Upper Bound Budget 103 − 106 102

Epsilon 0.1−10 ×100

for each manufacturer. The accuracy was evaluated at various lev-
els of the privacy budget to assess the privacy-accuracy trade-off.
The objective is to determine an appropriate privacy budget by
fine-tuning the parameters. Table 1 shows the range of privacy
parameters in the case study. We conducted experiments with dif-
ferent combinations of federating rounds 𝑁 , upper bound budget
𝐵𝑖 , and 𝜖𝑖 for manufacturer 𝑖=1 or 2. Forty-two (42) numerical
experiments on the proposed method were conducted, each with a
different combination of the above-mentioned factors. Each exper-
iment was repeated five times.

5.2 Results and discussion.

5.2.1 Results of ontology sharing in DP-attribute learning
framework under the context of federated learning. This section
discusses how each manufacturer benefits from ontology sharing
based on the proposed DP-attribute learning framework under fed-
erated learning. Each manufacturer may miss some data in the
ontology, as shown in Fig. 7, but they can leverage the com-
plementary information from another manufacturer to improve the
learning. The ontology of manufacturing defects always exhibits
a root-branches-subbranches structure, with branches in each class
containing information about materials, causes, or morphology.
However, the composition of these branches can differ between
manufacturers, such as the attribute information in each branch
and the depth of the branch. This variability in the ontology com-
position can impact the performance of the proposed algorithm.
In this study, changing the privacy budget can affect the depth
of each ontology branch to be shared, resulting in different ZSL
performances.

Figure 8 (dark grey cells) illustrates the actual ontology data
shared during training, in which manufacturers complement each
other to supplement the missing ontology data of their respec-
tive unseen classes. For instance, considering Manufacturer-1,
the unseen class Large crack-1 lacked morphology information
in the ontology, images, and shared model trained on “cause.”
Through DP federated training, Manufacturer-2 shared a model
trained on images and morphology of Large crack-1 to supple-
ment information for Manufacturer-1. Similarly, for identifying
Large crack-2, Manufacturer-1 selected ontology containing “ma-
terial” and “cause” data, supplemented by morphology informa-
tion in ontology and images of Large crack-1 from Manufacturer
2. Another defect, Large pore-2, missed morphology information
in the ontology and images in Manufacturer-1, which was com-
plemented by the data from Manufacturer-2. Similarly, the DP
attribute learning framework in federated learning was also bene-
ficial for Manufacturer-2, as missing morphology information on
three types of defects was supplemented from Manufacturer-1. As
illustrated in Figure 8, in Manufacturer-2’s unseen classes, image
data and morphology were absent for “Irregular pore-1", “Large
pore-1”, and “Small pore-2”. Despite this absence, DP federated
training facilitated the integration of these missing attributes from
the partner manufacturer, effectively supplementing information on
the missing data.

Although both manufacturers lacked image and morphology
data for their respective unseen classes, the proposed algorithm
demonstrated the ability to correctly classify these unseen classes
for both manufacturers through collaboration. Given the available
ontology structure in Fig. 7 and the optimal ontology structure

Journal of Computing and Information
Science in Engineering

PREPRINT FOR REVIEW / 9

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Computing and Information Science in Engineering. Received February 25, 2024;
Accepted manuscript posted October 26, 2024. doi:10.1115/1.4067086
Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/doi/10.1115/1.4067086/7400865/jcise-24-1108.pdf by Florida State U
niversity user on 20 N

ovem
ber 2024



Fig. 7 Available ontology for Manufacturer 1 and Manufacturer 2

Fig. 8 Selected optimal ontology (dark grey cells) for Manufacturer-1 and Manufacturer-2

selected in Fig. 8, Manufacturer-1 achieved 100% accuracy in cor-
rectly classifying all samples in a three unseen class scenario (Fig.
9). This result demonstrates how different ontology structures can
be harmonized to improve the effectiveness of the proposed al-
gorithm in real-world manufacturing scenarios. Given the actual
ontology shared, Manufacturer-1 and 2 spent a similar amount of
privacy budget, which regulates the frequency of its defect ontol-
ogy and images shared. The results underscore the potential of the
proposed method to effectively leverage shared information from
both manufacturers, even in scenarios of missing or fragmented
data.

This study also computed additional performance such as Re-
call, precision, and F1-Score for both manufacturers. The metrics
in Table 2 provide a detailed comparison of the performance of
both manufacturers. Manufacturer 1 shows perfect performance
across all tests with Precision, Recall, and F1-Score consistently at
1.0, indicating an excellent classification. Manufacturer 2, while
demonstrating strong performance, shows variability, particularly
in Test-4 and Test-5. In Test-4, Manufacturer 2 has a Precision of
0.83 but maintains a Recall of 1.0, leading to an F1-Score of 0.91.
Test-5 reveals a trade-off, with a Precision of 1.0 but a lower Recall
of 0.8, resulting in an F1-Score of 0.89. These variations highlight
the impact of imbalanced datasets and the effectiveness of the fed-
erated learning approach in improving classification performance
despite these challenges. The consistent performance of Manufac-
turer 1 suggests that the ontology-based ZSL method effectively
captures the necessary semantic information, while the slight vari-
ations for Manufacturer 2 indicate areas for further refinement and
adjustment in handling diverse datasets.
To illustrate the performance of the proposed method on seen
classes, as an example, figure 10 presents the confusion matrix

Table 2 Precision, Recall, and F1-Score for Manufac-
turer 1 and 2

Manufacturer Sample Precision Recall F1-Score
Manufacturer 1 Test-1 1.0 1.0 1.0
Manufacturer 1 Test-2 1.0 1.0 1.0
Manufacturer 1 Test-3 1.0 1.0 1.0
Manufacturer 2 Test-4 0.83 1.0 0.91
Manufacturer 2 Test-5 1.0 0.8 0.89
Manufacturer 2 Test-6 1.0 1.0 1.0

for Manufacturer 1. These experiments were based on separate
test results, which expanded the number of testing classes to ten,
and it was conducted based on training with three training samples
and two testing samples for each class; the testing data contained
a mixture of seen and unseen classes. Specifically, Test-5, Test-6,
and Test-8 were unseen classes, while the rest were seen classes.
Manufacturer 1 achieved a test accuracy of 0.55 overall, with an
accuracy of 0.70 for seen classes. Testing a mixture of seen and
unseen classes is particularly challenging because the model must
recognize the classes it has been trained on and generalize to iden-
tify and classify entirely new defect types. This complexity can
lead to lower accuracy for unseen classes as the model has no prior
exposure to these defects during training but is still much better
than random guesses. The confusion matrix in Figure 10 further
illustrates the model’s performance in these test scenarios.
Remark: This study only considers two manufacturers but the
conclusions can apply to more than two. If manufacturers have
ontologies that complement each other, the results will improve re-
gardless of the number of manufacturers involved. The conclusions
are similar to those of the two manufacturers.
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Fig. 9 The confusion matrix for Manufacturer 1 and Manufacturer 2 based on the ontology structure of Fig. 8

Fig. 10 The confusion matrix for Manufacturer 1 based
on the expanded test results with ten testing classes, in-
clude a mixture of seen and unseen classes. Test-5, Test-
6, and Test-8 are unseen classes

5.2.2 Learning performance for classification with different
numbers of unseen classes. This section tests the performance of
the proposed algorithm dealing with different complexities of zero-
shot classification problems. The complexity is evaluated by the
number of unseen classes, including two, three, four, and five un-
seen classes, from a pool of ten total classes. There are five samples
in each class. Each experiment was run five times.

Figure 11 illustrates the box plots of accuracy for Manufacturer-
1 and Manufacturer-2 across various unseen class scenarios. No-
tably, Manufacturer-1 demonstrated an accuracy of 100% during
the experiment with the two unseen classes. As the number of
unseen classes increased from two to five, a gradual decline in ac-
curacy was observed. In the scenario involving five unseen classes
out of ten, the accuracy lowers to about 43%. This result is supe-
rior to random coin toss classification, underlining the framework’s

efficacy. Manufacturer-2’s performance showed a similar pattern.
For two unseen classes, the accuracy was 100%; for three unseen
classes, the median accuracy was around 80%; for four unseen
classes, it was about 60%; and for five unseen classes, it was about
40%.

Fig. 11 Zero-shot defect classification accuracy

5.2.3 Privacy Expenditure in Zero-Shot Learning. This sec-
tion discusses the privacy costs incurred by Manufacturer-1 and
Manufacturer-2. Figure 12 uses a box plot to illustrate the relation-
ship between privacy spending and the number of unseen classes
in zero-shot learning scenarios. This graphical representation of-
fers insights into the privacy spent under scenarios containing two,
three, four, and five unseen classes.

The results show a pattern that reducing the number of un-
seen classes is associated with decreased privacy costs. For
Manufacturer-1, as the number of unseen classes rises from two
to five, the overall privacy loss significantly decreases, with the
privacy cost reduction observed at approximately a 25% de-
crease when moving to five unseen classes from two. Similarly,
Manufacturer-2’s overall privacy expenditure follows this trajec-
tory, where the transition from scenarios with two unseen classes
to those with five unseen classes results in a privacy loss reduction
of close to 25%. The overall privacy loss for both manufactur-
ers decreases as the number of unseen classes increases. This
trend is consistent with the notion that less information sharing re-
sults from having many unseen classes since not much information
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Fig. 12 Privacy expenditure and the number of unseen
classes in zero-shot learning

is shared about unseen classes, which minimizes information loss.
In other words, more morphology data is missing in the ontology
if there are many unseen classes.

5.2.4 The trade-off between privacy budget and accuracy.
This section presents the results of experiments to evaluate the
impact of three factors on the privacy and accuracy of the pro-
posed algorithm. The factors evaluated were federating round,
upper bound budget, and epsilon. The experiment involved two
manufacturers, and the accuracy was recorded for each manufac-
turer and the total amount of privacy budget spent. The number
of federating rounds was varied from 5 to 30 in increments of 5
to study the effect of iterative learning on model accuracy and pri-
vacy. The upper bound budget for privacy was set between 103

and 106, with increments of 102, controlling the total allowable
privacy expenditure.
Impacts on accuracy: The experiments were designed to evaluate
the impact of these parameters on the model’s accuracy (Table 3).
Federating Rounds (N) indicate the number of iterations the feder-
ated learning process undergoes. The values tested were 5, 10, 15,
20, 25, and 30 rounds. Epsilon (𝜖) represents the privacy budget
in the differential privacy mechanism, controlling the amount of
noise added to the data. Two epsilon values were tested: 0.1 and
10.

(1) Manufacturer 1: With an epsilon value of 0.1, the accuracy
improves steadily with increasing federating rounds, starting
from 0.5 at N=5 and reaching 0.68 at N=30. Higher initial
accuracy is observed for an epsilon value of 10, starting at
0.65 for N=5 and achieving 0.75 by N=30, indicating better
model performance with decreased privacy restrictions.

(2) Manufacturer 2: For an epsilon value of 0.1, similar to Man-
ufacturer 1, accuracy increases from 0.5 at N=5 to 0.7 at
N=30, showing a positive trend with more federating rounds.
For an epsilon value of 10, the accuracy starts at 0.62 for
N=5 and reaches 0.73 at N=30, indicating an improvement,
although slightly less variation compared to Manufacturer 1.

These results highlight that both manufacturers benefit from in-
creased federating rounds and higher epsilon values, which im-
prove model performance and accuracy. The trends are consistent
across both manufacturers, suggesting robustness and reliability in
the proposed method.
Impacts on privacy spent (𝑃(𝜖𝑖 , 𝑁)): The following analysis ex-
plores how epsilon affects overall privacy expenditure 𝑃(𝜖𝑖 , 𝑁)
affected by federating rounds and noises controlled by 𝜖𝑖 . Notably,
the epsilon choice substantially impacts privacy spending. For in-
stance, when 𝜖 = 0.1, privacy spending is considerably lower com-
pared to 𝜖 = 10. Figures 13 and 14 illustrated the median of privacy

spent against 𝑁 and upper bound budget 𝐵𝑖 for Manufacturer-1 and
Manufacturer-2. When 𝜖 = 0.1, the observations include

(1) Effect of Federating Rounds 𝑁: Generally, as the number of
federating rounds increases from 𝑁 = 5 to 𝑁 = 30, privacy
spending increases approximately 2.5-fold (i.e., more chance
of exposing the data and ontology), underlining growing
privacy concerns as federating rounds increase.

(2) Effect of upper bound budget limit 𝐵𝑖 : For a given feder-
ating round, when 𝜖=0.1, the upper bound budgets do not
impact the overall privacy expenditure because it is consid-
erably lower than the set upper bound limit. As a result, all
upper-bound limits lead to the same privacy spent for each
federating round.

When 𝜖 = 10, the observations are:

(1) Effect of Federating Rounds 𝑁: For high upper bound limits
(104 and 106), the privacy spent increases as the number of
federating rounds increases (𝑁 = 5 to 𝑁 = 30). For Manu-
facturer 1, privacy spending nearly triples when 𝑁 increases
from 5 to 30 at an upper budget limit of 104, indicating a
vast privacy loss increase as federating rounds increase.

(2) Effect of upper bound budget limit 𝐵𝑖 : For relatively lower
privacy budget limit of 103, the privacy spent is reduced
accordingly. A small upper bound privacy limit effec-
tively restricted privacy spending despite increasing federat-
ing rounds.

Cost-effective data sharing: Numerical results from optimization
(Eq. (6) - Eq. (7)) sheds light on the accuracy achieved per unit pri-
vacy cost spent by the proposed algorithm. This section discusses
the optimal trade-off between privacy and accuracy in a federated
learning scenario by tuning the privacy parameter (𝜖) and the num-
ber of federating rounds (𝑁). The optimization problem is stated
as:

min
𝜖𝑖 ,𝑁

{︃
𝑃(𝜖𝑖 , 𝑁)

𝐴

}︃
(24)

Subject to 0.1 ≤ 𝜖 ≤ 10 (Privacy Constraint)

0 ≤ 𝐴 ≤ 1 (Accuracy Constraint)

𝑁 ∈ {5, 10, 15, 20, 25, 30} (Federating Constraint)
The results of this optimization suggest that the most cost-effective
way of sharing for Manufacturer-1 is 30 federating rounds with a
privacy parameter 𝜖1 of 0.1, achieving an accuracy of 0.68.

6 Conclusions
For manufacturing quality control, data sharing among multi-

ple manufacturers has emerged as a promising solution to scarcity
in labeled data. Knowledge transfer and sharing have emerged
as solutions to small-data challenges in quality control, enhancing
machine learning with limited data. However, this approach raises
significant privacy concerns. Current zero-shot learning and feder-
ated learning methods do not adequately address the complexities
of representing, selecting, masking, and quantifying the privacy
loss of shared data. This study introduces a differential privacy
(DP)-enhanced federated attribute learning framework, guided by
a defect ontology, to preserve privacy when exchanging data to
identify manufacturing defects amidst limited measurement data.
The defect ontology based on multi-level attributes to character-
ize manufacturing defects offers a structured approach to facilitate
data sharing. Federated attribute learning enables the zero-shot
detection of defects by collectively refining local attribute mod-
els, thereby circumventing the need to share original data directly.
Differential privacy is integrated into this federated learning frame-
work, safeguarding individual data during sharing processes and
providing a quantifiable measure to assess privacy breaches.
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Table 3 Comparison of Accuracy Data for Manufacturer 1 and Manufacturer 2 at Different Federating Rounds and
Epsilon Values

Fed. Rnds (N) Manufacturer 1 (𝜖 = 0.1) Manufacturer 1 (𝜖 = 10) Manufacturer 2 (𝜖 = 0.1) Manufacturer 2 (𝜖 = 10)
5 0.5 0.65 0.5 0.62
10 0.55 0.68 0.55 0.68
15 0.6 0.7 0.6 0.65
20 0.65 0.7 0.63 0.7
25 0.58 0.72 0.65 0.72
30 0.68 0.75 0.7 0.73

Fig. 13 The median plot of privacy spent against the number of federating rounds N and upper bound budget
for Manufacturer-1 and Manufacturer-2. The privacy spent generally increases as the number of federating rounds
increases (N = 5 to N = 30). Within each federating round, epsilon 0.1 yields similar privacy spend for all upper-
bound budget limits.

Fig. 14 The median of privacy spent against the number of federating rounds N and upper bound budget for Manu-
facturer 1 and Manufacturer 2. For high upper bound limits, the privacy spent increases as the number of federating
rounds increases. On the other hand, the privacy spent is limited at a specified level for a very low privacy budget
limit.

Given noises added to conceal shared data, the paper formulates
a joint optimization problem to refine data exchange strategies,
taking into account (1) selection of ontology and image data for
sharing, (2) collaboration through federated learning, and (3) zero-
shot classification of defects. To reduce computation, a two-stage
solution algorithm is proposed: a zero-shot classifier is trained
using stochastic gradient descent in Stage 1, given certain shared
ontology/data. Strategies for federated sharing of ontology/data
are optimized using an evolutionary algorithm in Stage 2. Two
stages iterate till stopping criteria are met. This framework strikes
a balance between the enhancement of shared data utility and the
management of differential privacy.

Case studies demonstrated the effectiveness of the proposed al-

gorithm in discerning unseen defect classes while preserving pri-
vacy. The results show that although each manufacturer may miss
some data in the ontology, they can leverage complementary in-
formation from other manufacturers to improve the defect identi-
fication accuracy. The study highlights the importance of shared
attributes in boosting ZSL performance. The study also evaluates
the performance of the proposed algorithm in tackling different
complexities of zero-shot classification problems. As the number
of unseen classes increases, the classification accuracy gradually
declines, but the privacy expenditure decreases.

The study also discusses the trade-off between privacy and ac-
curacy. Experimental results reveal that increasing the number of
federating rounds boosts accuracy for both participating manufac-
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turers. However, opting for a larger privacy parameter 𝜖 improves
accuracy at the expense of increased privacy risk. Furthermore,
increasing the number of federating rounds increases privacy costs
for both manufacturers, particularly with higher values of 𝜖 . This
observation underscores the privacy sensitivity to the choice of
𝜖 . Finally, this paper demonstrates that this framework can help
estimate the most cost-effective data sharing with the best defect
identification accuracy achieved per unit privacy budget spent. In
the long run, this research can enable essential data sharing based
on text and image data from the literature for zero-shot or few-shot
identification of printing defects, given very limited measurements
from real processes.

Future research will address the following limitations of this
work, including:

• Ontology Based on Text Data Only: The proposed approach
utilized the text-based ontology for defect classification as
presented in our prior work [26]. This type of input limits the
scope of available data for ontology generation. Extending
the ontology to include image and sensor data would greatly
expand the dataset, improving the comprehensiveness of the
defect detection models.

• Qualitative Nature of Output: The output of the proposed
method is primarily qualitative, focusing on the classification
and identification of defects. Integrating quantitative mea-
sures and performance metrics could provide a more detailed
and actionable insight into the manufacturing processes. Fu-
ture research should incorporate quantitative analysis to com-
plement the qualitative findings.
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