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Abstract

Variational flooding is an enhanced sampling method for obtaining kinetic rates from molecular dynamics
simulations. The method is inspired by the idea of conformational flooding that employs a boost potential
acting along a chosen reaction coordinate to accelerate rare events. In this work, we show how the em-
pirical distribution of crossing times from variational flooding simulations can be modeled with analytical
Kramers’ time-dependent rate (KTR) theory. An optimized bias potential that fills metastable free energy
basins is constructed from the variationally enhanced sampling (VES) method. This VES-derived flooding
potential is then augmented by a switching function that determines the fill level of the boost. Having a pre-
scribed time-dependent fill rate of the flooding potential gives an analytical expression for the distribution of
crossing times from KTR theory that is used to extract unbiased rates. In the case of a static boost potential,
the distribution of barrier crossing times follows an expected exponential distribution, and unbiased rates
are extracted from a series of boosted simulations at discrete fill levels. Introducing a time-dependent boost
that increases the fill level gradually over the simulation time leads to a simplified procedure for fitting the
biased distribution of crossing times to analytical theory. We demonstrate the approach for the paradigmatic
cases of alanine dipeptide in vacuum, the asymmetric Sy2 reaction, and the folding of chignolin in explicit

solvent.



I. INTRODUCTION

Enhanced sampling methods are frequently used in atomistic simulations to accelerate con-
formational dynamics and to facilitate transitions between metastable states separated by large
kinetic barriers[1]. Examples include umbrella sampling[2], metadynamics[3], steered molecular
dynamics[4, 5], adaptive biasing force[6, 7], replica exchange[8], accelerated MD[9], variationally
enhanced sampling[10], on-the-fly probability enhanced sampling[11], and many others. A large
class of these methods, including metadynamics and its variants, use an external bias potential that
acts along a chosen set of slow degrees of freedom called collective variables (CVs). The bias am-
plifies fluctuations of the CVs, enabling the system to overcome free energy barriers[12]. Given
sufficient sampling of the configuration space, the free energy surface is reconstructed from the
biased trajectory using a reweighting procedure[13], and thermodynamic properties are calculated

as ensemble averages over the reweighted trajectory.

In addition to thermodynamic observables, one is often interested in calculating dynamic prop-
erties from MD simulations, including kinetic rate constants. Several methods have been intro-
duced to obtain kinetic properties at a reduced computational cost relative to conventional MD.
For example, algorithms that do not require a bias potential include the Weighted Ensemble (WE)
method[ 14, 15], transition path sampling[16], Markov state models[17], or a combination of these
approaches[18]. Another class of simulation approaches employs a bias or boost potential. These
include hyperdynamics[19], conformational flooding[20], Gaussian accelerated molecular dynam-
ics (GaMD)[21], infrequent metadynamics[22], variational flooding[23], and OPES flooding[24].
These approaches are similar in spirit to conventional enhanced sampling methods in that an ex-
ternal bias is employed; however, the aim is not to obtain a fully converged free energy surface but
to push the system out of a metastable state while preserving the ensemble of transition states and
maintaining rare-event kinetics. Tiwary and Parrinello introduced a way to obtain rare event kinet-
ics from metadynamics by using transition state theory to compute an acceleration factor due to the
accumulated bias potential[22]. In this approach, metadynamics is employed to fill the metastable
basin with a suitable boost potential that will accelerate barrier-crossing events. A Gaussian bias
kernel is deposited slowly so as to preserve rare-event statistics and a separation of time scales
between the time spent in the free energy basin and the time spent at the transition state. Under
the condition of a slow enough bias deposition, so-called infrequent metadynamics (iMetaD), the

recovered unbiased escape times follow the statistics of a Poisson process[25]. iMetaD has been
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successfully applied to calculate the residence time of small molecules for pharmacologically im-
portant protein drug targets[26, 27]. When combined with deep learning methods to learn approx-
imate reaction coordinates, iMetaD can provide quantitatively accurate drug residence times[28].

One restriction of the iMetaD approach is that the bias must not be placed on the dividing
surface, requiring a good estimate of the true reaction coordinate and a sufficiently slow hill depo-
sition rate. This condition may be challenging to achieve in practice. A method inspired by single-
molecule force spectroscopy was introduced to directly recover kinetic information from iMetaD
trajectories by applying Kramers’ time-dependent rate (KTR) theory[29]. Instead of rescaling the
simulation time, the observed empirical cumulative distribution function (ECDF) of biased cross-
ing times is fit to a model based on KTR theory. In the fitting procedure, the quality of the CV is
explicitly taken into account through an additional parameter. This enables accurate unbiased tran-
sition times to be estimated directly from the biased ECDF even for cases where the CV is less than
optimal or for cases that fail the assumption of Poisson statistics for the recovered escape times.
For example, KTR theory was recently used to obtain product release rates for a chemotherapeutic
prodrug/enzyme system from iMetaD simulations[30].

In iMetaD the maximum fill-level of the bias continues to increase on average due to the accu-
mulating sum of Gaussian kernels deposited in the local free energy basin. An alternative approach
to rare event kinetics, the variational flooding[23] procedure, employs a boost potential that is con-
structed using the variationally enhanced sampling (VES) formalism to sample a prescribed target
probability distribution[10]. In variational flooding, a target probability distribution is chosen such
that the system uniformly samples low-energy configurations while an energy cutoff ensures the
fill-level of the boost potential remains below the free energy barrier (AF'). A similarly inspired
approach that uses a prescribed target distribution to enforce a cutoff in the accumulated bias is
the recent OPES flooding[24]. The advantage of having a variational formalism is that one can
construct a boost potential that fills the free energy basin in a controlled way. In this work, we
demonstrate how the flexibility afforded by variational flooding allows one to design a boost po-
tential that is amenable to analytical KTR theory. Having an analytical expression for the distribu-
tion of crossing times allows us to directly fit the biased ECDF to obtain kinetic rates, simplifying
the analysis of kinetics from biased MD simulations.

We investigate several cases where the variational flooding potential is introduced in such a way
as to give an analytical expression for the survival probability from KTR theory. In the first case,

the bias is variationally optimized to fill the free energy basin up to a fixed prescribed maximum
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value before being used as a time-independent boost potential. This is similar to the approach
used in the original variational flooding paper[23], where the bias is first optimized with respect
to a target distribution that enforces a cutoff in free energy space. The boost potential effectively
“floods" the free energy surface as shown schematically in FIG. 1A. This boost potential is then
used to accelerate barrier crossing events, while maintaining the statistics of an activated process.
Because the bias is time-independent, the maximum fill-level, Vj;p, effectively lowers the free

energy barrier between the reactant and the transition state by a constant.

In the second case, by introducing a time-dependent switching function, we realize a boost
potential that increases in a controlled manner during the simulation time. We demonstrate the
case where the boost potential grows at a constant rate, leading to a maximum fill-level of the bias
that increases linearly during the simulation, shown schematically in FIG. 1B. The idea is similar
in spirit to single-molecule pulling experiments with a constant pulling rate, but in this case we are
not pulling along the reaction coordinate but increasing the fill-level of the boost potential. This
procedure leads to an analytical expression for the cumulative distribution of barrier crossing times
that can be used to extract the unbiased transition rate. This procedure simplifies the extraction of
rates from biased simulations and improves the computational efficiency as compared to iMetaD.
Finally, in a related example, to make the connection to iMetaD, we show how a time-dependent
switching function can be introduced that leads to a nonlinear increase of the boost potential such
that the fill level grows logarithmically over the simulation time. The paper is organized as follows:
In Section II we describe the theoretical background. In Section III we demonstrate the method on

a few illustrative cases. A discussion and summary of the approach concludes the paper.

II. THEORY

In our procedure, a preliminary MD simulation is used to construct a suitable boost potential
on-the-fly to fill a local metastable basin using VES in an approach termed variational flooding[23,
31]. In a subsequent step, multiple, independent MD simulations are run under the influence of
the boost potential to accelerate transitions out of the metastable basin. The boost potential is
augmented by a switching function that controls the fill-level. From these trajectories, Kramers’
theory gives a convenient method to analyze the distribution of crossing times and extract unbiased

rate constants. We now review the necessary theoretic background for each of these steps.

4



blishing

=

<a
|

'ﬁ] Static boost Fill lasal

Fill level T . .
" Vur
- P - 2
T R L A T
._:-_.-" N L Jeag il
VES bocst by
poterdial /.
lTima
B) Tirna-dapandant heaogt
Fill lewal #1250
Tl "
o ; x
Yemeeyg T pag g e - ¥ S 1 I ! -I L
! mar i
R o s ) -
Kl 1 i ” - ___.-"".
Tme=

FIG. 1. A) Case 1: The boost potential is constructed on-the-fly using VES with a fixed cutoff that ensures
only low-energy configurations are biased. The fill level is independent of the simulation time. The effect of
the boost potential is to lower the barrier height, accelerating crossing events. B) Case 2: A boost potential
is constructed with a time-dependent cutoff such that the low-energy basin is filled at a prescribed flooding
rate. For example, in the case of a constant flooding rate, the maximum boost level increases linearly during

the simulation.

A. Bias Construction Using Variational Flooding

Variational flooding is an application of the variationally enhanced sampling (VES) approach
of Valsson and Parrinello[10]. As in metadynamics, the bias acts along a set of CVs, s(R), that
are functions of the atomic coordinates, R. The free energy surface along the reaction coordinate

is defined up to an additive constant as

F(s) = —%mg [ R 3ls—s(R)lexp(~BUR)) )

where B = 1/kgT with kg being Boltzmann’s constant and 7 the temperature, and U(R) is the
potential energy. In variational flooding, we seek a boost potential, V,(s), that fills the free energy
basin such that the system will explore a modified free energy surface Fj,(s) = F(s) + V,(s), with
a lower activation energy. Such a boost potential takes the form:

1

Vi(s) = —F(s) — B log p'é(s) 2

where p'8(s) is a target probability distribution chosen so that the boost potential destabilizes

the local free energy basin but goes strictly to zero at the transition state region (designated by
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regions of high free energy). Under the influence of a boost potential with the form of Equation 2,
the simulation will sample the target distribution along the modified free energy surface p'8(s) o
e BFs(s).

In variational flooding, the target distribution is chosen to uniformly fill low-energy regions of

the free energy surface up to a prescribed cutoff and is taken to be a normalized sigmoidal function

of the form:
o(Fs— VMB)
18 (s o 3
p ( ) f ds' o ( VMB) ( )
with o(F; — Viyp) a Fermi-type switching function:
1
(0} (FS — VMB) = (4)

The parameter, Vj;p, determines the maximum height of the boost potential and can be adjusted to
accelerate rare events without biasing high energy transition states. The parameter A determines
the softness of the switching function[23].

Having specified the target distribution, a boost potential that satisfies Equation 2 also requires
knowledge of F(s) which is not a priori known. The appropriate boost is obtained using a varia-

tional procedure by minimizing the functional of Valsson and Parrinello[10]

Jds exp(—B(F(s) +Vb
Q[v,] = Blg isonl BIF +/d Vi

Minimization of Q[V},] with respect to V,, yields Equatlon 2. This is accomplished by writing the

(&)

bias potential as a basis set expansion in terms of a set of basis functions fj

Vp = (i%'fk@) -o(x) (0)
k

where ¢y are a set of coefficients to be optimized according to a variational formalism. ¢ (x) is the
switching function that enforces the condition that the max fill-level is Vj/p and has the form of
Equation 4, calculated self-consistently with x = — Y} ¢ - fi(s) — Vmp. The variational coefficients

are updated using a stochastic gradient descent algorithm[32, 33] that involves the gradient

aIQ aV, aV,
s (5), () @
Ck Ck /v, Ck / prs
o and the Hessian
= ’Q Vv, 9V, %V, %,
= EP BCovlabab} <—(9 8b> +<8 ab> (®)
r;'J Cj Ck CJ Ck Cj Ck v Cj Ck pie
oL where the expectation values and covariance are either obtained in a biased simulation employing

e the boost potential Vj, or are computed numerically on a grid over the target distribution, p’S.
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B. Conformational Flooding and Hyperdynamics Time Rescaling

In its original implementation[23], the boost potential, V}, acting on the free energy surface is
introduced as a fixed bias after the variational coefficients have converged to a quasi-static boost

potential. From transition state theory, the acceleration factor, a(z), due to the boost potential is

given by[22]
‘ _kb_Z()_ fl<l*dR€_ﬁU(R)
==z -y dR e~ BIUR)+V,(8)
- <eﬁvb<s>>b )

(10)

where k;, is the biased rate measured in a MD simulation with the boost potential, V,,, and ko
is the unbiased rate that would be measured for the same transition in the absence of the boost
potential. The integrals are over all configurations in the reactant basin along the hypersurface,
A(R), with A* representing the transition state. The brackets < ... >, indicate an average over
a biased trajectory. The physical time, ¢, is recovered by rescaling the simulation time by the
acceleration factor:

— <eﬁVh(S)>

b

Ntor (i)
t* :AtMDZeBVb (s) (11)
i
where Afyp is the MD integration time step, and the sum is over the discrete MD steps with
Vb(l) (s) the boost potential at the " step. In this procedure the trajectory time is weighted at each
step to obtain a rescaled trajectory from which unbiased rates are estimated from the distribution
of crossing events. We will refer to this procedure as the hyperdynamics time rescaling approach,

which involves scaling the biased simulation time according to Equation 11.

C. Kramers Time-dependent Rate Theory

Recently, a formulation based on KTR theory was introduced to estimate unbiased rates from
iMetaD simulations[29]. Considering the case of diffusive dynamics and a high barrier, the unbi-

ased rate of barrier crossing along a reaction coordinate is
_BAFt
ko = Ae PAF (12)
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where AFT is the barrier height, and A is a pre-exponential factor. It is assumed that in a biased
simulation, the time-dependent boost potential reduces the effective barrier height by the maxi-
mum level of the bias at time 7, V(). In multiple iMetaD simulations, Vip(¢) is taken as the
average over independent runs and is an estimate of the average fill-level of the metastable basin

after some time, . KTR theory estimates the biased escape rate as

ky(t) = Ae PAFT+BWup(t) — o B1Vin (1) (13)

The parameter, y € [0, 1], is added to account for the fact that the CVs along which the bias acts
only approximate the true reaction coordinate. In the case where y = 0, the CVs are orthogonal
to the reaction coordinate and the bias does not contribute to the rate acceleration. On the other
hand, when y = 1, the CVs lie ideally along the reaction coordinate, and the bias lowers the
effective barrier. From Equation 13, the survival probability is adapted from methods used in

single-molecule force spectroscopy([34]

t !
S(t) = exp <—k0 /0 ePVms(r )dt’> (14)

where kg is the unbiased crossing rate.

D. Case 1: Variational Flooding with a Constant Fill-level

We first examine the case in which the variational flooding procedure is used to obtain a boost
potential that floods the free energy surface uniformly up to a specified fixed cutoff value, V5 as
illustrated in FIG. 1A. This situation is similar to the approach used in Ref [23] where the boost
potential was first optimized using VES in a preliminary simulation and then used as a static boost
potential in independent simulations. Since the bias has already reached its maximum allowed
height, the value of V), is time-independent and equal to the prescribed fill-level. In this case,

Equation 14 gives the survival probability
S(t) = exp (—koteﬁWMB> (15)

which has the form of an exponential process with a cumulative probability distribution of barrier

crossing times as
CDF =1 —exp (—koteﬁWMB>
=1—exp(—t/1) (16)
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with the mean biased transition time,
e BYVus
ko

Thus, in the case of a time-independent boost potential, the ECDF from a biased simulation can

Tp = 7)

be fit to that of an exponential distribution, Equation 16, as expected for a Poisson process. This is
because a static boost potential lowers the activation barrier but still preserves the statistics of an
activated process, in contrast to metadynamics, which introduces a time-dependent bias, leading
to biased escape times that do not follow Poisson statistics[25]. If the CV is ideal (meaning y = 1),
the unbiased rate, kg, can, in principle, be obtained directly from the mean biased transition time,
T, through Equation 17 because the value of the bias cutoff, Vjsp, is a known parameter in the
procedure. Generally, the CV will not be idea and even in the case of an ideal CV (y = 1), the
direct application of Equation 17 introduces some approximation error. It is instructive to compare
Equation 17 with the acceleration factor from the hyperdynamics time rescaling approach given
by Equation 10. From the hyperdynamics time rescaling approach, the result from Equation 17 is

recovered when the acceleration factor is
<eﬁVb(l)> ~ ePVVus (18)
b
The ensemble-averaged acceleration factor on the left-hand side of Equation 18 can be approxi-
mated using a cumulant expansion

) LA
(P00 :exp{z FC,{} (19)

k=1

with the first two cumulants given by
Cir = V(1))
Cr = (Vo(1)*), — (Vo(1))?
(20)
We see that the acceleration factor reduces to the result from Kramers’ theory by setting the aver-

age bias everywhere to (V,(¢)), = Vg and assuming all higher order cumulants vanish. In prac-

tice, however, the error from the Kramers’ approach will be subsumed in the unknown parameter

Y, when v # 1.

Introducing 7y as a second fit parameter, both unknown parameters, ko and 7, are obtained by
linearization of Equation 17:

ll’lfb = —BYVMB—III/(() 21D
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where 7, is the mean transition time measured in a series of biased simulations at different fixed

Vg values.

E. Case 2: Variational Flooding with a Time-dependent Boost Potential

For a time-dependent boost, as in metadynamics, the biased ECDF will not follow a simple
exponential distribution. Here, we exploit the flexibility afforded by variational flooding to con-
struct a boost potential acting on the free energy surface that leads to a fill-level that increases in
a controlled manner as depicted in FIG. 1B. As before, we perform a preliminary MD simulations
using VES to obtain a boost potential, expressed in terms of a set of variational coefficients and

basis set functions according to
n
Vo(s) =} ci- fi(s) (22)
k

The variational coefficients converge quickly because the simulation remains within the reactant
basin. In a second step, we introduce a time-dependent switching function of the form of Equation

4 but now with a time-dependent cutoff Vy5(t) = rt:

1

G(be)zzij;;zagjgj-

(23)

where r determines the rate of increase in the fill-level and has units of power. Introducing the
boost potential in the form of Equation 6 with a time-dependent switching function Equation 23,
ensures that the fill-level increases linearly as Vjyp(¢) = rz. In this step, the optimized variational
coefficients that define the boost potential through Equation 22 are kept fixed and not optimized
so that the only time-dependence of the bias is through the time-dependent switching function.
Substituting Vy,p(¢) = rt into Equation 14 from KTR theory gives an analytical expression for the

cumulative probability distribution of barrier crossing times:

— ko Br
CDF = 1 — exp (W (1—eY ’)) (24)

Note that Equation 24 is different from the CDF for a simple exponential distribution because of
the time-dependence of the fill-level as the boost potential is increased. From a series of indepen-
dent trajectories, the ECDF of crossing times can be fit to Equation 24 with two fitting parameters
being ko and y. This avoids the need of performing multiple simulations at varying fixed Vyp
values since the fill-level is not static but steadily increasing during the simulation. Furthermore,

there is no need to rescale the simulation time as is done in the hyperdynamics approach, since the
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ECDF of the biased crossing times can be fit directly to the analytical result. However, to be con-
sistent with Kramers’ theory, the fill rate, r, should be chosen such that the boost always remains
lower than the barrier height, which is not generally known a priori. In practice, a preliminary
metadynamics or VES simulation can provide an estimate of the barrier height to check that the
boost potential does not increase past the barrier height during the simulation.

As a closely related example, a logarithmic time dependence of the fill-level, Viyp = alog(1 +
bt), can be achieved by using a switching function of the form:

1
T 1 + eME—alog(1+br)) "

o (Fs,t) (25)

where the parameters a and b determine the filling rate of the boost potential. From Equation 14,

the cumulative distribution of crossing times is given from KTR theory as[29]

1 _ L _ Brya+1
CDF = 1 exp(b(ﬁya+l) [1 (14 br) D (26)

The bias constructed using Equation 25 for the switching function in Equation 6 is comparable to
metadynamics since the average max bias in iMetaD is approximately described by a logarithmic
time dependence. However, the advantage here is that the fill rate can be precisely tuned by setting

the parameters a and b in the switching function.

III. RESULTS
A. Alanine dipeptide in vacuum

We demonstrate the approach of using variational flooding to obtain kinetic rates from analyti-
cal theory on the well-studied alanine dipeptide (Ace-Ala-Nme) in vacuum (FIG. 2A). This system
has a conformation transition from the C7,, to the C7, state that can be distinguished by the two
backbone dihedral angles, ¢ and y, and serves as a prototypical model for backbone dynamics
of proteins. Simulations were performed with GROMACS-5.1.4[35-38] using the Amber99-SB
force fields[39]. We used an integration time step of 0.002 ps with bonds to hydrogen atoms
constrained using the LINCS algorithm[40]. The temperature was maintained at 260 K using the
stochastic velocity rescaling thermostat[41]. To obtain a boost potential acting on the free energy
surface, we performed a VES simulation as implemented in the VES module of PLUMED2[42]
starting in the C7,, state. We used a Fourier series expansion for the basis set that defines the

bias potential acting only on the ¢ dihedral angle: Vj,(¢) = Y cxe’®® with periodicity (—,) and
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20 coefficients. The variational coefficients are updated every 1 ps using a stochastic gradient
descent[32] with a fixed step size of 0.1. We used a committor so that the simulation stops after
crossing into the C7,, state. The final set of optimized coefficients are used as fixed coefficients
to define a boost potential through Equation 6 that is employed in subsequent MD simulations to

accelerate crossing events from the C7,, to the Cy,, state.

1. Variational Flooding with a Constant Fill-level.

A boost potential with a constant fill-level is achieved by employing a switching function given
by Equation 4 that ensures the bias defined through Equation 6 has a maximum value at Vj;p. We
used prescribed fill-levels of Vyp = {22,24,26,28} kJ/mole. The target probability distribution
given by Equation 3 is self-consistently updated every 100 iterations during the bias optimization.
The boost potential generated from VES simulations with different values of Vj;p is shown in FIG.
2B. These boost potentials are sufficient to destabilize the C7,, state and accelerate transitions into
the C7,, state. We subsequently performed 60 independent MD simulations for each value of Vj;p.
Each MD simulation was started from the same starting structure and the same initial set of bias
coefficients from the prior VES simulation, but with different initial velocities randomly gener-
ated from a Maxwell-Boltzmann distribution. In each simulation the fill-level is time-independent
since the value of Vysp in the switching function is set at a fixed value. From these 60 trajectories,
the crossing time to reach the C7,, state is recorded. FIG. 2C shows the cumulative distribution
of biased crossing times from 60 independent trajectories at different Vjsp values. The ECDF of
crossing times shifts to shorter times as the fill-level is increased due to the increased boost poten-
tial. Each ECDF is fit to the theoretical CDF for an exponential distribution given by Equation 16
that is valid for a boost potential with a constant fill-level. A fit of the ECDF gives the mean biased
transition time, Tp, for each value of Vj . FIG. 2D shows the linear plot of the log mean biased
transition times, Tp, as a function of the boost fill-level. A fit to Equation 21 gives an unbiased
transition rate of kg = 0.03+0.01 us~! with y = 0.93.

To compare this result with the hyperdynamics time rescaling approach, we scale the simulation
time according to Equation 11. Upon rescaling the simulation time, the ECDFs for each set of
simulations collapse to a single distribution shown in FIG. 2E. The ECDF of the rescaled times
can be fit to the CDF for an exponential distribution, 1 —exp(—t*/1), where t* is the rescaled

time, to extract the mean unbiased transition time, Tp = k ! The mean unbiased time is an order
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FIG. 2. A) Alanine dipeptide in vacuum. As a reference, the free energy surface along the ¢ torsion is
shown with a dashed line. B) The optimized boost potential obtained from VES simulations with different
prescribed fill-level values, Vjsp, implemented through the target distribution to flood the C7,, state. This
leads to quasi-stationary VES boost potentials with V,,,, = 22 kJ/mol (blue), V,,;, = 24 kJ/mol (orange),
Viup = 26 kJ/mol (green), V,,;, = 28 kl/mol (red). C) The ECDF of crossing times from 60 biased simulations
for different fill-level values, Vjyp. The solid line is a fit to the CDF for an exponential distribution that gives
the mean biased transition time, 7,. D) Plot of the log of the mean biased transition time, T, as a function
of the fill-level of the boost potential. Extrapolation to the y-intercept gives the unbiased transition rate
when the boost potential is zero. E) The ECDFs collapse to a single exponential distribution after rescaling
the simulation time according to the hyperdynamics formalism. F) The unbiased mean transition times, 7,

after time rescaling are independent of the fill-level, Vjp.
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of magnitude larger than the biased transition times, showing the speed-up afforded by the boost
potential. After rescaling the biased simulation time by Equation 11 the mean transition times,
To, are independent of the fill-level as shown in FIG. 2F. The average of these unbiased transition
times gives ko = 0.07 =0.02 us~! which is consistent with the above method of directly fitting
the biased ECDF. However, it should be noted that the hyperdynamics approach of scaling the
simulation time according to the acceleration factor does not introduce the parameter Y, and the
single torsion, @, is likely not an ideal CV. Prior variational flooding simulations biasing both ¢
and y torsion angles gave ko = 0.035 us~!, in better agreement with results using Kramers’ theory

from this work[23].

2. Variational Flooding with a Time-dependent Boost Potential

To demonstrate a time-dependent boost, we performed a second set of 60 independent simula-
tions with the boost potential now multiplied by a time-dependent switching function. First, a VES
simulation was performed for 1.7 ns to optimize a boost potential through Equation 6 using the
same optimization procedure as above. Subsequently, this boost potential was fit to a cubic spline
and multiplied by the time-dependent switching function given by Equation 23 for a linear boost.
This ensures that the fill-level of the bias increases at a constant rate during the simulation accord-
ing to Vasp(t) = rt. We set r =5 x 10~* kJ mol~! ps~!. FIG. 3A shows the time-dependent boost
potential at 5 ns increments during a single representative MD simulation, showing the steady in-
crease of the fill-level with time. The inset shows the fill-level, Vjsp(¢), increases linearly during
the simulation. FIG. 3B shows the ECDF of biased crossing times using this time-dependent VES
boost potential. The ECDF is fit to the analytical expression of Equation 24 from KTR theory
giving an unbiased rate of kg = 0.04 =0.02 us~! and y = 0.94. This is in excellent agreement
with unbiased simulations (kg = 0.043 +0.008 s~ ') and the results using a fixed boost potential
above. The advantage of this approach is that only a single set of simulations need to be performed
instead of performing multiple simulations at different Vjsp values as was done in the previous free
energy flooding method that used a constant fill-level[23]. Using a VES-optimized boost potential
with a time-dependent switching function and fitting the biased ECDF directly to analytical theory
gives a simple method to extract unbiased rates from MD simulation.

Error bars from fits to the ECDF are estimated using a bootstrap analysis of the barrier crossing

times taking 50 bootstrap samples, sampling with replacement. The size of the error bars represent
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FIG. 3. A) Time series of the time-dependent boost potential from a single representative MD simulation.
The instantaneous boost potential is shown every 5 ns. The flooding rate is controlled by a time-dependent
switching function. The inset shows the fill-level increases linearly during the simulation time. B) The
ECDF of crossing events from 60 independent simulations biased with the time-dependent boost potential.
The solid line is a fit to the analytical CDF from KTR theory, giving the unbiased rate kg and 7y parameter

from a single set of simulations.

the 30 and 70 percentiles of the bootstrap samples. Table I presents a comparison of the unbiased
crossing rates extracted using each method: analytical Kramers’ theory with a static fill-level, an-
alytical KTR theory with a time-dependent fill-level, and hyperdynamics time rescaling. All rate
estimates are in agreement with the value obtained from long unbiased simulations reported in Ref
[23], demonstrating that all these methods yield reliable kinetics of rare events using variational
flooding. In this work we demonstrate the time-dependent boost only for a single reaction coordi-
nate; however, the time-dependent switching function could be applied to a two dimensional boost
and is shown in the Supporting Materials. Future work is needed to investigate the application of

analytical KTR theory to a two dimensional boost potential in terms of efficiency and accuracy.
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TABLE I. Comparison of theoretical CDF and kinetic parameters obtained from variational flooding simu-

lations for alanine dipeptide

analysis method CDF ko (us™") Y
analytical Kramers’ theory with constant fill-level 1—e /% 0.03 £ 0.01 0.93
analytical KTR theory with linear flooding 1 —exp (7"70 (1- eYﬁ’f)> 0.04+0.02  0.94
Hyperdynamics time rescaling 1—e '/ 0.07 £ 0.02 -
unbiased MD simulation ® 1—e!/® 0.043 £0.008 -

4 Ref [23]

B. Sp2 reaction in vacuum

As a second example, we consider the asymmetric nucleophilic Sy2 substitution reaction
CH3F + C1I- —— CH3Cl + F~ in vacuum, shown in FIG. 4A. This reaction has previously been
studied by variational flooding[31], and serves as a prototypical model for the application to ab
initio MD simulations to study reaction kinetics[43]. Simulations were performed using CP2K
version 2023.1 (Development Version 2013.1)[44—46], patched with PLUMED?2.9[42] using the
semiempirical PM6 model[47] to reduce the computational cost. We used a supercell of 10 x 10
x 10 A3 without periodic boundary conditions, with a threshold accuracy of 10> Hartree in the
self-consistent field iteration. We used a time step of 0.5 fs to update the atomic positions based
on the Born-Oppenheimer approach. The temperature was set to 1200 K and maintained using
the stochastic velocity rescaling thermostat[41]. In a first step, we performed a VES simulation to
construct the boost potential using the CV, s = d| — d;, where d; is the distance between fluorine
and carbon atoms and d» is the distance between chlorine and carbon atoms (FIG. 4A). We used the
Legendre polynomials as the basis set functions with 50 variational coefficients to be optimized.
The coefficients are updated using the stochastic gradient descent with a step size of 10, and the
coefficients that define the bias are updated every 1 ps. The VES simulation is stopped when the
product is formed using a committor, which occurred after 50 iterations of the bias (50 ps).

We employed the VES-optimized bias as a time-dependent boost potential by using the switch-
ing function given by Equation 23 with a filling rate of » = 0.4 kJ mol~! ps~!. We performed 60
independent simulations using this time-dependent boost potential. Each simulation started from

the same initial reactant configuration, but with a different initial seed for the velocity. The in-
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stantaneous boost potential at intervals of 5 ps from a single representative simulation is shown in
FIG. 4B. This implementation of the boost leads to a linearly increasing fill-level as shown in the
inset of FIG. 4B. As a second example of a time-dependent boost, we also performed a set of 60
simulations using the switching function given by Equation 25 that leads to a logarithmic filling
rate. Here, we used parameters a = 120.0 kJ mol~! and » = 0.01 ps~!. The instantaneous boost
from a single representative simulation at intervals of 10 ps is shown in FIG. 4C, demonstrating a
logarithmic growth of the fill-level.

As a control, we also performed 30 independent iMetaD simulations. Metadynamics was per-
formed as implemented in PLUMED?2([42] with a Gaussian width of 0.025 A, a Gaussian height of
0.3 kJ mol~!, and a deposition stride of 1 ps. From iMetaD simulations, the fill-level is obtained

as an average over R total runs
1
Vug(t) = = Vit 27
mp(t) = % ), max Vg(t') (27)

where Vj4(t) is the instantaneous bias (sum of Gaussian hills) at time 7 for simulation run r. As
seen in FIG. 4D the fill-level determined from Equation 27 increases monotonically, resembling a
logarithmic growth of the fill-level. However, because of the infrequent deposition stride required
for iMetaD, the filling rate is slower than in our VES boosted simulation by about an order of
magnitude.

FIG. 5A shows the ECDF of the biased crossing times for each set of simulations for the Sy2
reaction. The ECDF from simulations biased with a variational flooding boost potential with a
linear fill rate is fit to the analytical expression for the CDF given by Equation 24, giving an
unbiased rate of kg = 26 ms~! with y ~ 1. Confidence intervals are computed as the 30th and
70th percentiles from a bootstrap analysis. The accumulated crossing times were resampled with
replacement, giving an upper and lower confidence interval for the transition rate of (10, 49) ms~!.
Similarly, the ECDF from simulations biased with a variational flooding boost potential with a
logarithmic fill rate is fit to the analytical expression for the CDF given by Equation 26, giving
an unbiased rate of kg = 105 ms~! with Y ~ 0.43 and a confidence interval of (30, 250) ms~ .
The ECDF from iMetaD simulations was modeled using the procedure of Palacio-Rodriguez,
et al.[29]. Briefly, the numerical Vj(¢) from Equation 27 (FIG. 4D) is fit to a spline and the

parameters ko and 7y are determined by maximizing the likelihood function[29]

M N
=11 —dfl—(;) [T s@) (28)

icevents t=t; jenon-events
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FIG. 4. A) Distances used to define the CV for the asymmetric Sy2 nucleophilic substitution reaction of
fluoromethane to chloromethane. B) Time series of the time-dependent variational flooding boost potential
from a representative MD simulation demonstrating linear flooding. The instantaneous boost potential is
shown every 5 ps. For reference, the free energy landscape is shown as a dashed line. The inset shows the
linear increase of the fill level. C) The time-dependent boost potential from a representative MD simulation
demonstrating logarithmic flooding. The instantaneous boost potential is shown every 10 ps. The free
energy landscape is shown as a dashed line. The inset shows a logarithmic increase of the fill level. D) The
average fill level from 30 independent iMetaD simulations. The solid blue line represents the average and

the gray shaded region represents the standard deviation of the maximum bias.

where S(¢) is the survival probability from KTR theory, given by Equation 14. In Equation 28,
M is the number of crossing events observed, and N is the number of non-events observed up
to time 7;. The parameters ko and 7y are found from numerical maximization of In.Z (k;(7),7)
using the script provided in Ref. [29]. The quality of the fit is assessed using the Kolmogorov
Smirnov test (KS-test)[25]. The ECDF of accumulated crossing times from iMetaD simulations
is also presented in FIG. SA with the fit to the numerical KTR theory giving a p-value of 0.39.
Confidence intervals from iMetaD simulations are estimated from 50 bootstrap samples that pass
the KS-test. The iMetaD procedure yields an unbiased rate of kg = 351 ms™' and y ~ 1, with

a confidence interval of (346, 465) ms !, consistent with the rate obtained from our variational
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TABLE II. Comparison of transition rates obtained from variational flooding and iMetad simulations for the

asymmetric Sy?2 reaction at 1200 K.

analysis method CDF ko (ms™1)
analytical KTR theory linear flooding 1 —exp (% (1- e¥Br )) 26 (10,49)*
analytical KTR theory logarithmic flooding 1 —exp (W 1—(1+ br)P 7’““]) 105 (30,250)
iMetaD numerical 1 —S(7) 351 (346,465)
Hyperdynamics time rescaling ° l—e '/ 154 £4

4 Lower and upper confidence intervals represent the 30th and 70th percentiles from a bootstrap analysis of the

transition times
b Ref [31]

flooding procedure.

While all ECDFs in FIG. 5A are well-described by KTR theory, the convenience of having
an analytical expression afforded by the variational flooding approach simplifies the extraction
of rate constants. Previously, variational flooding with a fixed boost potential found an unbiased
transition rate of ko = 154 + 4 ms™! at 1200 K[31]. Table II summarizes the results for the
extracted rates from variational flooding and iMetaD simulations for the Sy2 reaction. Transition
rates from variational flooding are in general agreement with the rate from iMetaD simulations, but
obtained at a reduced computational cost. Finally, to compare with the previous hyperdynamics
time rescaling approach[31], we scaled the times according to Equation 10. As seen in FIG. 5B, all
CDF curves collapse to a single distribution for the rescaled transition times within the uncertainty

range.

C. Chignolin folding

As a final example system we consider the folding of the 10-residue chignolin miniprotein[48]
in explicit solvent (FIG.6A). Input files for the MD simulation were obtained from the PLUMED-
NEST (plumID:22.031)[49], as provided by Ray, et al.[24]. Simulations were performed in
GROMACS-2019.4[50] using the CHARMM22* force fields[51] with an integration time step
of 0.002 ps and bonds to hydrogen atoms constrained using the LINCS algorithm[40]. The start-
ing structure is taken as the unfolded chain and solvated in a box of 1907 CHARMM TIP3P water
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FIG. 5. A) The ECDF of crossing events from 60 independent simulations employing a linear variational
flooding boost (orange), a logarithmic variational flooding boost (green), and iMetaD (blue). For variational
flooding simulations, the solid line is a fit to analytical KTR theory. For iMetaD the solid line is a fit to
KTR theory using the numerical S(¢) by maximizing the log likelihood function to estimate the optimal pa-
rameters. For iMetaD, the KS-test gives a p-value of 0.39. B) The ECDFs collapse to the same exponential

distribution after rescaling the simulation time according to the hyperdynamics formalism.

molecules with two sodium ions to neutralize the system. The temperature was kept at 340 K
using the stochastic velocity rescaling thermostat[41]. We used the harmonic linear discriminant
analysis (HLDA) CV based on six interatomic contacts within the protein[52]. The interatomic
distances and definition of the CV is described in the Supplemental Material. We first performed
a VES simulation as implemented in the VES module of PLUMED?2[42] using multiple walkers
with four replicas to efficiently sample the unfolded state and converge the variational coeffi-
cients that define the bias. We used the Legendre polynomials as the basis set functions with 50
variational coefficients to be optimized. The coefficients are updated using the stochastic gra-

dient descent with a step size of 0.1, and the coefficients that define the bias are updated every
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TABLE III. Folding times for chignolin obtained from variational flooding

analysis method k[us™1] Y
time-dependent flooding 1.85 (1.35, 2.00)? 0.3
unbiased ° 1.67 -

4 Lower and upper confidence intervals represent the 30th and 70th percentiles from a bootstrap analysis of the

transition times
b Ref [53]

4 ps. The VES simulation is stopped when the folded state is found using a committor, which
occurred after 1940 iterations of the bias (7.78 ns). After the initial boost potential is generated
using VES, the optimized bias is fit to a cubic spline and employed is subsequent MD simulations
with a time-dependent switching function. We ran 60 independent trajectories using a linear time-
dependent boost with a switching function defined by Equation 23. Each simulation started from
the same unfolded structure and same bias coefficients but with velocities randomly generated
from a Maxwell-Boltzmann distribution. For the linear time-dependent boost we used a constant
fill rate of r = 2.5 x 10~* kJ mol~! ps~!. The folding times are compared to the folding time of
0.6 s reported from a 106 us unbiased trajectory[53].

The instantaneous boost potential at intervals of 5 ns from a representative MD simulation is
shown in FIG. 6B, leading to a linear flooding rate. The empirical distribution of crossing times
is well described by the analytical KTR theory (FIG. 6C). A fit to Equation 24 gives the unbiased
folding time of 0.54 us in good agreement with unbiased MD simulation. The fit gives Y ~ 0.3
indicating that the single HLDA CV is suboptimal, yet the procedure still yields an accurate kinetic
estimate. Table III summarizes the comparison of chignolin folding times from time-dependent

flooding simulations with unbiased MD.

IV. DISCUSSION AND CONCLUSION

We have investigated an application of KTR theory to the variational flooding method for rate
calculation from biased MD simulations. In a first step, a boost potential that is able to accelerate
barrier crossing events is constructed using VES. Because we are only interested in accelerating

transitions out of a metastable basin, and not converging the entire free energy surface, the VES
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FIG. 6. A) Structures representing the unfolded and folded states of chignolin. B) Time series of the time-
dependent boost potential from a representative MD simulation. The instantaneous boost potential is shown
every 5 ns and increases linearly during the simulation. C) The biased ECDF of crossing events from 60
independent simulations employing a linear variational flooding boost. The solid line is a fit to analytical

KTR theory Equation 24.

bias converges quickly and the optimization is stopped after a crossing event is observed. In a
subsequent step, we employ the optimized bias with fixed coefficients and a switching function
that determines the fill-level of the boost. The method lends itself to the construction of a boost
potential that results in a distribution of crossing times that can be described by analytical KTR
theory. This procedure greatly simplifies the extraction of unbiased rates from biased simulations
since the ECDF of crossing times from multiple independent simulations is fit directly to an an-

alytical expression. We have demonstrated the approach for three different switching functions
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that lead to different time-dependencies of the boost potential. In the case of a time-independent
switching function with a static cutoff, Vg, the model recovers the expected Kramers’ result of
an exponential dependence of the transition rate on the barrier height. In this case, the ECDF of
crossing times is consistent with a Poisson process for an activated process, leading to an expo-
nential distribution of crossing times. However, because the fit to a single exponential function
has only one parameter, the mean biased time, 7, it is not possible to extract both v and ko from
a single set of simulations with a fixed Vjsp. Furthermore, we show that the error introduced by
setting ¥ = 1 even for an ideal CV amounts to setting the average bias everywhere to its maximum
<V}, >= Vjyp and assuming higher order cumulants vanish. For a fixed boost potential, it is better
to perform multiple simulations with increasing Vjp to extract both ¥ and ko from a linear fit to
the data. For example, when only the dihedral angle, ¢, is used as a CV for the alanine dipep-
tide system, we obtained Y = 0.93. This procedure gives a kinetic rate in quantitative agreement
with unbiased simulations of the same system. A consequence of introducing Y is that one only
requires an approximate reaction coordinate to accelerate rare events. This is an advantage of the
KTR approach as compared to the hyperdynamics approach of rescaling the simulation time by

the acceleration factor.

Introducing a time-dependent value of Vj5(¢) into the variational flooding procedure through a
time-dependent switching function, eliminates the need of performing multiple sets of MD simula-
tions at different fixed Vjsp values. Here, we investigated two time-dependent switching functions:
one that results in linear flooding, and another that leads to logarithmic flooding. Both procedures
are easily implemented through a Fermi-type switching function, and extracted kinetic rates are in
quantitative agreement with rates determined using the hyperdynamics time rescaling approach.
Parameters of the time-dependent switching function, including the fill rate of the boost, must be
chosen carefully to ensure the boost remains below the barrier height. In this work, we monitor the
bias value during the simulation to check that the boost has not increased past a threshold value.
In this respect, the logarithmic flooding achieved through Equation 25 is useful for implementing
a boost that fills at a less extreme filling rate near the barrier. Such a boost may be applicable for
situations where the system must find the near attack conformation before reacting to the product

state.

In contrast to iMetaD, which requires multiple MD simulations with a slow deposition of Gaus-
sian hills, the variational flooding procedure uses a boost potential optimized using a prior VES

simulation. This two-step procedure improves the computational efficiency of obtaining rates from
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biased MD simulations. This is important for applications to ab initio simulations that are more
computationally intensive, where the slow bias deposition from iMetaD becomes prohibitive. With
variational flooding, one only needs to perform one preliminary simulation to construct a suitable
boost potential, and then use the time-dependent switching function to accelerate transitions out of
the basin. The speed up is afforded by the flexibility of the switching function to control the filling
rate at a desired level that is introduced in a post-hoc manner after the VES optimization step.
Although VES was chosen as the enhanced sampling method to construct the boost in this work,
one could apply the switching function to any boost potential, such as the bias obtained from a
preliminary metadynamics or OPES simulation. Another possible extension would be to perform
infrequent metadynamics on top of the time-dependent flooding bias. Metadynamics encourages
the exploration of conformational space and could prevent the system from getting stuck if the
VES bias is not fully converged. For a sufficiently slow deposition stride, the filling rate would

still be controlled by the time-dependent flooding potential.

One limitation of the present work is the focus on only a single CV. We envision that future
applications may take advantage of data-driven machine learned CVs[54] or DeepTICA CVs[55]
to enable a one dimensional boost for more complex chemical reactions or system with more

conformational complexity.

In conclusion, we have demonstrated an application of variational flooding with a time-
dependent boost to accelerate barrier crossing in MD simulations. We have illustrated how the fill
rate of a VES-optimized bias can be controlled to achieve a boost potential that is amenable to
analytical KTR theory. We term this method Kramers Rate Approach to Variationally Enhanced
Sampling (KRAVES). This method that combines variational flooding with KTR theory leads to a
convenient way to extract kinetic rates from an analytical expression for the distribution of crossing

times. This procedure should be useful for studying reaction kinetics from MD simulations.

V. SUPPLEMENTAL MATERIAL

The Supplement Material includes details on the construction of a two dimensional VES bias
for use with a time-dependent switching function and details of the HLDA CV used for chignolin

folding.
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