
AIP/123-QED

Analysis of Transition Rates from Variational Flooding Using Analytical

Theory

David Cummins, Carter Longstreth, and James McCarty

Department of Chemistry, Bellingham WA, 98225, USA

(*mccartj8@wwu.edu.)

(Dated: October 29, 2024)

Abstract
Variational flooding is an enhanced sampling method for obtaining kinetic rates from molecular dynamics

simulations. The method is inspired by the idea of conformational flooding that employs a boost potential

acting along a chosen reaction coordinate to accelerate rare events. In this work, we show how the em-

pirical distribution of crossing times from variational flooding simulations can be modeled with analytical

Kramers’ time-dependent rate (KTR) theory. An optimized bias potential that fills metastable free energy

basins is constructed from the variationally enhanced sampling (VES) method. This VES-derived flooding

potential is then augmented by a switching function that determines the fill level of the boost. Having a pre-

scribed time-dependent fill rate of the flooding potential gives an analytical expression for the distribution of

crossing times from KTR theory that is used to extract unbiased rates. In the case of a static boost potential,

the distribution of barrier crossing times follows an expected exponential distribution, and unbiased rates

are extracted from a series of boosted simulations at discrete fill levels. Introducing a time-dependent boost

that increases the fill level gradually over the simulation time leads to a simplified procedure for fitting the

biased distribution of crossing times to analytical theory. We demonstrate the approach for the paradigmatic

cases of alanine dipeptide in vacuum, the asymmetric SN2 reaction, and the folding of chignolin in explicit

solvent.
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I. INTRODUCTION

Enhanced sampling methods are frequently used in atomistic simulations to accelerate con-

formational dynamics and to facilitate transitions between metastable states separated by large

kinetic barriers[1]. Examples include umbrella sampling[2], metadynamics[3], steered molecular

dynamics[4, 5], adaptive biasing force[6, 7], replica exchange[8], accelerated MD[9], variationally

enhanced sampling[10], on-the-fly probability enhanced sampling[11], and many others. A large

class of these methods, including metadynamics and its variants, use an external bias potential that

acts along a chosen set of slow degrees of freedom called collective variables (CVs). The bias am-

plifies fluctuations of the CVs, enabling the system to overcome free energy barriers[12]. Given

sufficient sampling of the configuration space, the free energy surface is reconstructed from the

biased trajectory using a reweighting procedure[13], and thermodynamic properties are calculated

as ensemble averages over the reweighted trajectory.

In addition to thermodynamic observables, one is often interested in calculating dynamic prop-

erties from MD simulations, including kinetic rate constants. Several methods have been intro-

duced to obtain kinetic properties at a reduced computational cost relative to conventional MD.

For example, algorithms that do not require a bias potential include the Weighted Ensemble (WE)

method[14, 15], transition path sampling[16], Markov state models[17], or a combination of these

approaches[18]. Another class of simulation approaches employs a bias or boost potential. These

include hyperdynamics[19], conformational flooding[20], Gaussian accelerated molecular dynam-

ics (GaMD)[21], infrequent metadynamics[22], variational flooding[23], and OPES flooding[24].

These approaches are similar in spirit to conventional enhanced sampling methods in that an ex-

ternal bias is employed; however, the aim is not to obtain a fully converged free energy surface but

to push the system out of a metastable state while preserving the ensemble of transition states and

maintaining rare-event kinetics. Tiwary and Parrinello introduced a way to obtain rare event kinet-

ics from metadynamics by using transition state theory to compute an acceleration factor due to the

accumulated bias potential[22]. In this approach, metadynamics is employed to fill the metastable

basin with a suitable boost potential that will accelerate barrier-crossing events. A Gaussian bias

kernel is deposited slowly so as to preserve rare-event statistics and a separation of time scales

between the time spent in the free energy basin and the time spent at the transition state. Under

the condition of a slow enough bias deposition, so-called infrequent metadynamics (iMetaD), the

recovered unbiased escape times follow the statistics of a Poisson process[25]. iMetaD has been
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successfully applied to calculate the residence time of small molecules for pharmacologically im-

portant protein drug targets[26, 27]. When combined with deep learning methods to learn approx-

imate reaction coordinates, iMetaD can provide quantitatively accurate drug residence times[28].

One restriction of the iMetaD approach is that the bias must not be placed on the dividing

surface, requiring a good estimate of the true reaction coordinate and a sufficiently slow hill depo-

sition rate. This condition may be challenging to achieve in practice. A method inspired by single-

molecule force spectroscopy was introduced to directly recover kinetic information from iMetaD

trajectories by applying Kramers’ time-dependent rate (KTR) theory[29]. Instead of rescaling the

simulation time, the observed empirical cumulative distribution function (ECDF) of biased cross-

ing times is fit to a model based on KTR theory. In the fitting procedure, the quality of the CV is

explicitly taken into account through an additional parameter. This enables accurate unbiased tran-

sition times to be estimated directly from the biased ECDF even for cases where the CV is less than

optimal or for cases that fail the assumption of Poisson statistics for the recovered escape times.

For example, KTR theory was recently used to obtain product release rates for a chemotherapeutic

prodrug/enzyme system from iMetaD simulations[30].

In iMetaD the maximum fill-level of the bias continues to increase on average due to the accu-

mulating sum of Gaussian kernels deposited in the local free energy basin. An alternative approach

to rare event kinetics, the variational flooding[23] procedure, employs a boost potential that is con-

structed using the variationally enhanced sampling (VES) formalism to sample a prescribed target

probability distribution[10]. In variational flooding, a target probability distribution is chosen such

that the system uniformly samples low-energy configurations while an energy cutoff ensures the

fill-level of the boost potential remains below the free energy barrier (DF†). A similarly inspired

approach that uses a prescribed target distribution to enforce a cutoff in the accumulated bias is

the recent OPES flooding[24]. The advantage of having a variational formalism is that one can

construct a boost potential that fills the free energy basin in a controlled way. In this work, we

demonstrate how the flexibility afforded by variational flooding allows one to design a boost po-

tential that is amenable to analytical KTR theory. Having an analytical expression for the distribu-

tion of crossing times allows us to directly fit the biased ECDF to obtain kinetic rates, simplifying

the analysis of kinetics from biased MD simulations.

We investigate several cases where the variational flooding potential is introduced in such a way

as to give an analytical expression for the survival probability from KTR theory. In the first case,

the bias is variationally optimized to fill the free energy basin up to a fixed prescribed maximum
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value before being used as a time-independent boost potential. This is similar to the approach

used in the original variational flooding paper[23], where the bias is first optimized with respect

to a target distribution that enforces a cutoff in free energy space. The boost potential effectively

“floods" the free energy surface as shown schematically in FIG. 1A. This boost potential is then

used to accelerate barrier crossing events, while maintaining the statistics of an activated process.

Because the bias is time-independent, the maximum fill-level, VMB, effectively lowers the free

energy barrier between the reactant and the transition state by a constant.

In the second case, by introducing a time-dependent switching function, we realize a boost

potential that increases in a controlled manner during the simulation time. We demonstrate the

case where the boost potential grows at a constant rate, leading to a maximum fill-level of the bias

that increases linearly during the simulation, shown schematically in FIG. 1B. The idea is similar

in spirit to single-molecule pulling experiments with a constant pulling rate, but in this case we are

not pulling along the reaction coordinate but increasing the fill-level of the boost potential. This

procedure leads to an analytical expression for the cumulative distribution of barrier crossing times

that can be used to extract the unbiased transition rate. This procedure simplifies the extraction of

rates from biased simulations and improves the computational efficiency as compared to iMetaD.

Finally, in a related example, to make the connection to iMetaD, we show how a time-dependent

switching function can be introduced that leads to a nonlinear increase of the boost potential such

that the fill level grows logarithmically over the simulation time. The paper is organized as follows:

In Section II we describe the theoretical background. In Section III we demonstrate the method on

a few illustrative cases. A discussion and summary of the approach concludes the paper.

II. THEORY

In our procedure, a preliminary MD simulation is used to construct a suitable boost potential

on-the-fly to fill a local metastable basin using VES in an approach termed variational flooding[23,

31]. In a subsequent step, multiple, independent MD simulations are run under the influence of

the boost potential to accelerate transitions out of the metastable basin. The boost potential is

augmented by a switching function that controls the fill-level. From these trajectories, Kramers’

theory gives a convenient method to analyze the distribution of crossing times and extract unbiased

rate constants. We now review the necessary theoretic background for each of these steps.
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FIG. 1. A) Case 1: The boost potential is constructed on-the-fly using VES with a fixed cutoff that ensures

only low-energy configurations are biased. The fill level is independent of the simulation time. The effect of

the boost potential is to lower the barrier height, accelerating crossing events. B) Case 2: A boost potential

is constructed with a time-dependent cutoff such that the low-energy basin is filled at a prescribed flooding

rate. For example, in the case of a constant flooding rate, the maximum boost level increases linearly during

the simulation.

A. Bias Construction Using Variational Flooding

Variational flooding is an application of the variationally enhanced sampling (VES) approach

of Valsson and Parrinello[10]. As in metadynamics, the bias acts along a set of CVs, s(R), that

are functions of the atomic coordinates, R. The free energy surface along the reaction coordinate

is defined up to an additive constant as

F(s) =� 1
b

log
Z

dR d [s� s(R)]exp(�bU(R)) (1)

where b = 1/kBT with kB being Boltzmann’s constant and T the temperature, and U(R) is the

potential energy. In variational flooding, we seek a boost potential, Vb(s), that fills the free energy

basin such that the system will explore a modified free energy surface F̃b(s) = F(s)+Vb(s), with

a lower activation energy. Such a boost potential takes the form:

Vb(s) =�F(s)� 1
b

log ptg(s) (2)

where ptg(s) is a target probability distribution chosen so that the boost potential destabilizes

the local free energy basin but goes strictly to zero at the transition state region (designated by
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regions of high free energy). Under the influence of a boost potential with the form of Equation 2,

the simulation will sample the target distribution along the modified free energy surface ptg(s) µ

e�b F̃b(s).

In variational flooding, the target distribution is chosen to uniformly fill low-energy regions of

the free energy surface up to a prescribed cutoff and is taken to be a normalized sigmoidal function

of the form:

ptg(s) = s(Fs �VMB)R
ds0 s(Fs �VMB)

(3)

with s(Fs �VMB) a Fermi-type switching function:

s(Fs �VMB) =
1

1+ el (Fs�VMB)
. (4)

The parameter, VMB, determines the maximum height of the boost potential and can be adjusted to

accelerate rare events without biasing high energy transition states. The parameter l determines

the softness of the switching function[23].

Having specified the target distribution, a boost potential that satisfies Equation 2 also requires

knowledge of F(s) which is not a priori known. The appropriate boost is obtained using a varia-

tional procedure by minimizing the functional of Valsson and Parrinello[10]

W[Vb] =
1
b

log
R

ds exp(�b (F(s)+Vb(s)))R
ds exp(�b (F(s)))

+
Z

ds Vb(s)ptg(s) (5)

Minimization of W[Vb] with respect to Vb yields Equation 2. This is accomplished by writing the

bias potential as a basis set expansion in terms of a set of basis functions fk

Vb =

 
n

Â
k

ck · fk(s)

!
·s(x) (6)

where ck are a set of coefficients to be optimized according to a variational formalism. s(x) is the

switching function that enforces the condition that the max fill-level is VMB and has the form of

Equation 4, calculated self-consistently with x =�Ân
k ck · fk(s)�VMB. The variational coefficients

are updated using a stochastic gradient descent algorithm[32, 33] that involves the gradient

∂W
∂ck

=�
⌧

∂Vb

∂ck

�

Vb

+

⌧
∂Vb

∂ck

�

ptg
(7)

and the Hessian

∂ 2W
∂c j∂ck

= b ·Cov


∂Vb

∂c j
,
∂Vb

∂ck

�

Vb

�
⌧

∂ 2Vb

∂c j∂ck

�

Vb

+

⌧
∂ 2Vb

∂c j∂ck

�

ptg
(8)

where the expectation values and covariance are either obtained in a biased simulation employing

the boost potential Vb or are computed numerically on a grid over the target distribution, ptg.
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B. Conformational Flooding and Hyperdynamics Time Rescaling

In its original implementation[23], the boost potential, Vb, acting on the free energy surface is

introduced as a fixed bias after the variational coefficients have converged to a quasi-static boost

potential. From transition state theory, the acceleration factor, a(t), due to the boost potential is

given by[22]

a(t) =
kb

k0
=

Z0

Zb
=

R
l<l ⇤ dR e�bU(R)

R
l<l ⇤ dR e�b [U(R)+Vb(s)]

=
D

ebVb(s)
E

b
(9)

(10)

where kb is the biased rate measured in a MD simulation with the boost potential, Vb, and k0

is the unbiased rate that would be measured for the same transition in the absence of the boost

potential. The integrals are over all configurations in the reactant basin along the hypersurface,

l (R), with l ⇤ representing the transition state. The brackets < ... >b indicate an average over

a biased trajectory. The physical time, t⇤, is recovered by rescaling the simulation time by the

acceleration factor:

t⇤ = t
D

ebVb(s)
E

b

t⇤ = DtMD

ntot

Â
i

ebV (i)
b (s) (11)

where DtMD is the MD integration time step, and the sum is over the discrete MD steps with

V (i)
b (s) the boost potential at the ith step. In this procedure the trajectory time is weighted at each

step to obtain a rescaled trajectory from which unbiased rates are estimated from the distribution

of crossing events. We will refer to this procedure as the hyperdynamics time rescaling approach,

which involves scaling the biased simulation time according to Equation 11.

C. Kramers Time-dependent Rate Theory

Recently, a formulation based on KTR theory was introduced to estimate unbiased rates from

iMetaD simulations[29]. Considering the case of diffusive dynamics and a high barrier, the unbi-

ased rate of barrier crossing along a reaction coordinate is

k0 = Ae�bDF†
(12)
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where DF† is the barrier height, and A is a pre-exponential factor. It is assumed that in a biased

simulation, the time-dependent boost potential reduces the effective barrier height by the maxi-

mum level of the bias at time t, VMB(t). In multiple iMetaD simulations, VMB(t) is taken as the

average over independent runs and is an estimate of the average fill-level of the metastable basin

after some time, t. KTR theory estimates the biased escape rate as

kb(t) = Ae�bDF†+bgVMB(t) = k0ebgVMB(t) (13)

The parameter, g 2 [0,1], is added to account for the fact that the CVs along which the bias acts

only approximate the true reaction coordinate. In the case where g = 0, the CVs are orthogonal

to the reaction coordinate and the bias does not contribute to the rate acceleration. On the other

hand, when g = 1, the CVs lie ideally along the reaction coordinate, and the bias lowers the

effective barrier. From Equation 13, the survival probability is adapted from methods used in

single-molecule force spectroscopy[34]

S(t) = exp
✓
�k0

Z t

0
ebgVMB(t 0)dt 0

◆
(14)

where k0 is the unbiased crossing rate.

D. Case 1: Variational Flooding with a Constant Fill-level

We first examine the case in which the variational flooding procedure is used to obtain a boost

potential that floods the free energy surface uniformly up to a specified fixed cutoff value, VMB as

illustrated in FIG. 1A. This situation is similar to the approach used in Ref [23] where the boost

potential was first optimized using VES in a preliminary simulation and then used as a static boost

potential in independent simulations. Since the bias has already reached its maximum allowed

height, the value of VMB is time-independent and equal to the prescribed fill-level. In this case,

Equation 14 gives the survival probability

S(t) = exp
⇣
�k0tebgVMB

⌘
(15)

which has the form of an exponential process with a cumulative probability distribution of barrier

crossing times as

CDF = 1� exp
⇣
�k0tebgVMB

⌘

= 1� exp(�t/tb) (16)
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with the mean biased transition time,

tb =
e�bgVMB

k0
(17)

Thus, in the case of a time-independent boost potential, the ECDF from a biased simulation can

be fit to that of an exponential distribution, Equation 16, as expected for a Poisson process. This is

because a static boost potential lowers the activation barrier but still preserves the statistics of an

activated process, in contrast to metadynamics, which introduces a time-dependent bias, leading

to biased escape times that do not follow Poisson statistics[25]. If the CV is ideal (meaning g = 1),

the unbiased rate, k0, can, in principle, be obtained directly from the mean biased transition time,

tb, through Equation 17 because the value of the bias cutoff, VMB, is a known parameter in the

procedure. Generally, the CV will not be idea and even in the case of an ideal CV (g = 1), the

direct application of Equation 17 introduces some approximation error. It is instructive to compare

Equation 17 with the acceleration factor from the hyperdynamics time rescaling approach given

by Equation 10. From the hyperdynamics time rescaling approach, the result from Equation 17 is

recovered when the acceleration factor is
D

ebVb(t)
E

b
⇡ ebgVMB (18)

The ensemble-averaged acceleration factor on the left-hand side of Equation 18 can be approxi-

mated using a cumulant expansion
D

ebVb(t)
E

b
= exp

(
•

Â
k=1

b k

k!
Ck

)
(19)

with the first two cumulants given by

C1 = hVb(t)ib

C2 =
⌦
Vb(t)2↵

b �hVb(t)i2

(20)

We see that the acceleration factor reduces to the result from Kramers’ theory by setting the aver-

age bias everywhere to hVb(t)ib = VMB and assuming all higher order cumulants vanish. In prac-

tice, however, the error from the Kramers’ approach will be subsumed in the unknown parameter

g , when g 6= 1.

Introducing g as a second fit parameter, both unknown parameters, k0 and g , are obtained by

linearization of Equation 17:

lntb =�bgVMB � lnk0 (21)
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where tb is the mean transition time measured in a series of biased simulations at different fixed

VMB values.

E. Case 2: Variational Flooding with a Time-dependent Boost Potential

For a time-dependent boost, as in metadynamics, the biased ECDF will not follow a simple

exponential distribution. Here, we exploit the flexibility afforded by variational flooding to con-

struct a boost potential acting on the free energy surface that leads to a fill-level that increases in

a controlled manner as depicted in FIG. 1B. As before, we perform a preliminary MD simulations

using VES to obtain a boost potential, expressed in terms of a set of variational coefficients and

basis set functions according to

Vb(s) =
n

Â
k

ck · fk(s) (22)

The variational coefficients converge quickly because the simulation remains within the reactant

basin. In a second step, we introduce a time-dependent switching function of the form of Equation

4 but now with a time-dependent cutoff VMB(t) = rt:

s(Fs, t) =
1

1+ el (Fs�rt) . (23)

where r determines the rate of increase in the fill-level and has units of power. Introducing the

boost potential in the form of Equation 6 with a time-dependent switching function Equation 23,

ensures that the fill-level increases linearly as VMB(t) = rt. In this step, the optimized variational

coefficients that define the boost potential through Equation 22 are kept fixed and not optimized

so that the only time-dependence of the bias is through the time-dependent switching function.

Substituting VMB(t) = rt into Equation 14 from KTR theory gives an analytical expression for the

cumulative probability distribution of barrier crossing times:

CDF = 1� exp
✓

k0

gb r

⇣
1� egb rt

⌘◆
. (24)

Note that Equation 24 is different from the CDF for a simple exponential distribution because of

the time-dependence of the fill-level as the boost potential is increased. From a series of indepen-

dent trajectories, the ECDF of crossing times can be fit to Equation 24 with two fitting parameters

being k0 and g . This avoids the need of performing multiple simulations at varying fixed VMB

values since the fill-level is not static but steadily increasing during the simulation. Furthermore,

there is no need to rescale the simulation time as is done in the hyperdynamics approach, since the
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ECDF of the biased crossing times can be fit directly to the analytical result. However, to be con-

sistent with Kramers’ theory, the fill rate, r, should be chosen such that the boost always remains

lower than the barrier height, which is not generally known a priori. In practice, a preliminary

metadynamics or VES simulation can provide an estimate of the barrier height to check that the

boost potential does not increase past the barrier height during the simulation.

As a closely related example, a logarithmic time dependence of the fill-level, VMB = a log(1+

bt), can be achieved by using a switching function of the form:

s(Fs, t) =
1

1+ el (Fs�a log(1+bt)) . (25)

where the parameters a and b determine the filling rate of the boost potential. From Equation 14,

the cumulative distribution of crossing times is given from KTR theory as[29]

CDF = 1� exp
✓

k0

b(bga+1)

h
1� (1+bt)bga+1

i◆
(26)

The bias constructed using Equation 25 for the switching function in Equation 6 is comparable to

metadynamics since the average max bias in iMetaD is approximately described by a logarithmic

time dependence. However, the advantage here is that the fill rate can be precisely tuned by setting

the parameters a and b in the switching function.

III. RESULTS

A. Alanine dipeptide in vacuum

We demonstrate the approach of using variational flooding to obtain kinetic rates from analyti-

cal theory on the well-studied alanine dipeptide (Ace-Ala-Nme) in vacuum (FIG. 2A). This system

has a conformation transition from the C7eq to the C7ax state that can be distinguished by the two

backbone dihedral angles, f and y , and serves as a prototypical model for backbone dynamics

of proteins. Simulations were performed with GROMACS-5.1.4[35–38] using the Amber99-SB

force fields[39]. We used an integration time step of 0.002 ps with bonds to hydrogen atoms

constrained using the LINCS algorithm[40]. The temperature was maintained at 260 K using the

stochastic velocity rescaling thermostat[41]. To obtain a boost potential acting on the free energy

surface, we performed a VES simulation as implemented in the VES module of PLUMED2[42]

starting in the C7eq state. We used a Fourier series expansion for the basis set that defines the

bias potential acting only on the f dihedral angle: Vb(f) = Âk ckeikf with periodicity (�p ,p) and
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20 coefficients. The variational coefficients are updated every 1 ps using a stochastic gradient

descent[32] with a fixed step size of 0.1. We used a committor so that the simulation stops after

crossing into the C7ax state. The final set of optimized coefficients are used as fixed coefficients

to define a boost potential through Equation 6 that is employed in subsequent MD simulations to

accelerate crossing events from the C7eq to the C7ax state.

1. Variational Flooding with a Constant Fill-level.

A boost potential with a constant fill-level is achieved by employing a switching function given

by Equation 4 that ensures the bias defined through Equation 6 has a maximum value at VMB. We

used prescribed fill-levels of VMB = {22,24,26,28} kJ/mole. The target probability distribution

given by Equation 3 is self-consistently updated every 100 iterations during the bias optimization.

The boost potential generated from VES simulations with different values of VMB is shown in FIG.

2B. These boost potentials are sufficient to destabilize the C7eq state and accelerate transitions into

the C7ax state. We subsequently performed 60 independent MD simulations for each value of VMB.

Each MD simulation was started from the same starting structure and the same initial set of bias

coefficients from the prior VES simulation, but with different initial velocities randomly gener-

ated from a Maxwell-Boltzmann distribution. In each simulation the fill-level is time-independent

since the value of VMB in the switching function is set at a fixed value. From these 60 trajectories,

the crossing time to reach the C7ax state is recorded. FIG. 2C shows the cumulative distribution

of biased crossing times from 60 independent trajectories at different VMB values. The ECDF of

crossing times shifts to shorter times as the fill-level is increased due to the increased boost poten-

tial. Each ECDF is fit to the theoretical CDF for an exponential distribution given by Equation 16

that is valid for a boost potential with a constant fill-level. A fit of the ECDF gives the mean biased

transition time, tb, for each value of VMB. FIG. 2D shows the linear plot of the log mean biased

transition times, tb, as a function of the boost fill-level. A fit to Equation 21 gives an unbiased

transition rate of k0 = 0.03±0.01 µs�1 with g = 0.93.

To compare this result with the hyperdynamics time rescaling approach, we scale the simulation

time according to Equation 11. Upon rescaling the simulation time, the ECDFs for each set of

simulations collapse to a single distribution shown in FIG. 2E. The ECDF of the rescaled times

can be fit to the CDF for an exponential distribution, 1� exp(�t⇤/t0), where t⇤ is the rescaled

time, to extract the mean unbiased transition time, t0 = k�1
0 . The mean unbiased time is an order
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FIG. 2. A) Alanine dipeptide in vacuum. As a reference, the free energy surface along the f torsion is

shown with a dashed line. B) The optimized boost potential obtained from VES simulations with different

prescribed fill-level values, VMB, implemented through the target distribution to flood the C7eq state. This

leads to quasi-stationary VES boost potentials with Vmb = 22 kJ/mol (blue), Vmb = 24 kJ/mol (orange),

Vmb = 26 kJ/mol (green), Vmb = 28 kJ/mol (red). C) The ECDF of crossing times from 60 biased simulations

for different fill-level values, VMB. The solid line is a fit to the CDF for an exponential distribution that gives

the mean biased transition time, tb. D) Plot of the log of the mean biased transition time, tb, as a function

of the fill-level of the boost potential. Extrapolation to the y-intercept gives the unbiased transition rate

when the boost potential is zero. E) The ECDFs collapse to a single exponential distribution after rescaling

the simulation time according to the hyperdynamics formalism. F) The unbiased mean transition times, t0,

after time rescaling are independent of the fill-level, VMB.
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of magnitude larger than the biased transition times, showing the speed-up afforded by the boost

potential. After rescaling the biased simulation time by Equation 11 the mean transition times,

t0, are independent of the fill-level as shown in FIG. 2F. The average of these unbiased transition

times gives k0 = 0.07± 0.02 µs�1 which is consistent with the above method of directly fitting

the biased ECDF. However, it should be noted that the hyperdynamics approach of scaling the

simulation time according to the acceleration factor does not introduce the parameter g , and the

single torsion, f , is likely not an ideal CV. Prior variational flooding simulations biasing both f

and y torsion angles gave k0 = 0.035 µs�1, in better agreement with results using Kramers’ theory

from this work[23].

2. Variational Flooding with a Time-dependent Boost Potential

To demonstrate a time-dependent boost, we performed a second set of 60 independent simula-

tions with the boost potential now multiplied by a time-dependent switching function. First, a VES

simulation was performed for 1.7 ns to optimize a boost potential through Equation 6 using the

same optimization procedure as above. Subsequently, this boost potential was fit to a cubic spline

and multiplied by the time-dependent switching function given by Equation 23 for a linear boost.

This ensures that the fill-level of the bias increases at a constant rate during the simulation accord-

ing to VMB(t) = rt. We set r = 5⇥10�4 kJ mol�1 ps�1. FIG. 3A shows the time-dependent boost

potential at 5 ns increments during a single representative MD simulation, showing the steady in-

crease of the fill-level with time. The inset shows the fill-level, VMB(t), increases linearly during

the simulation. FIG. 3B shows the ECDF of biased crossing times using this time-dependent VES

boost potential. The ECDF is fit to the analytical expression of Equation 24 from KTR theory

giving an unbiased rate of k0 = 0.04± 0.02 µs�1 and g = 0.94. This is in excellent agreement

with unbiased simulations (k0 = 0.043±0.008 µs�1) and the results using a fixed boost potential

above. The advantage of this approach is that only a single set of simulations need to be performed

instead of performing multiple simulations at different VMB values as was done in the previous free

energy flooding method that used a constant fill-level[23]. Using a VES-optimized boost potential

with a time-dependent switching function and fitting the biased ECDF directly to analytical theory

gives a simple method to extract unbiased rates from MD simulation.

Error bars from fits to the ECDF are estimated using a bootstrap analysis of the barrier crossing

times taking 50 bootstrap samples, sampling with replacement. The size of the error bars represent
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FIG. 3. A) Time series of the time-dependent boost potential from a single representative MD simulation.

The instantaneous boost potential is shown every 5 ns. The flooding rate is controlled by a time-dependent

switching function. The inset shows the fill-level increases linearly during the simulation time. B) The

ECDF of crossing events from 60 independent simulations biased with the time-dependent boost potential.

The solid line is a fit to the analytical CDF from KTR theory, giving the unbiased rate k0 and g parameter

from a single set of simulations.

the 30 and 70 percentiles of the bootstrap samples. Table I presents a comparison of the unbiased

crossing rates extracted using each method: analytical Kramers’ theory with a static fill-level, an-

alytical KTR theory with a time-dependent fill-level, and hyperdynamics time rescaling. All rate

estimates are in agreement with the value obtained from long unbiased simulations reported in Ref

[23], demonstrating that all these methods yield reliable kinetics of rare events using variational

flooding. In this work we demonstrate the time-dependent boost only for a single reaction coordi-

nate; however, the time-dependent switching function could be applied to a two dimensional boost

and is shown in the Supporting Materials. Future work is needed to investigate the application of

analytical KTR theory to a two dimensional boost potential in terms of efficiency and accuracy.
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TABLE I. Comparison of theoretical CDF and kinetic parameters obtained from variational flooding simu-

lations for alanine dipeptide

analysis method CDF k0 (µs�1) g

analytical Kramers’ theory with constant fill-level 1� e�t/tb 0.03 ± 0.01 0.93

analytical KTR theory with linear flooding 1� exp
⇣

k0
gb r

�
1� egb rt�

⌘
0.04 ± 0.02 0.94

Hyperdynamics time rescaling 1� e�t⇤/t0 0.07 ± 0.02 -

unbiased MD simulation a 1� e�t/t0 0.043 ± 0.008 -

a Ref [23]

B. SN2 reaction in vacuum

As a second example, we consider the asymmetric nucleophilic SN2 substitution reaction

CH3F + Cl– ��! CH3Cl + F– in vacuum, shown in FIG. 4A. This reaction has previously been

studied by variational flooding[31], and serves as a prototypical model for the application to ab

initio MD simulations to study reaction kinetics[43]. Simulations were performed using CP2K

version 2023.1 (Development Version 2013.1)[44–46], patched with PLUMED2.9[42] using the

semiempirical PM6 model[47] to reduce the computational cost. We used a supercell of 10 ⇥ 10

⇥ 10 Å3 without periodic boundary conditions, with a threshold accuracy of 10�5 Hartree in the

self-consistent field iteration. We used a time step of 0.5 fs to update the atomic positions based

on the Born-Oppenheimer approach. The temperature was set to 1200 K and maintained using

the stochastic velocity rescaling thermostat[41]. In a first step, we performed a VES simulation to

construct the boost potential using the CV, s = d1 �d2, where d1 is the distance between fluorine

and carbon atoms and d2 is the distance between chlorine and carbon atoms (FIG. 4A). We used the

Legendre polynomials as the basis set functions with 50 variational coefficients to be optimized.

The coefficients are updated using the stochastic gradient descent with a step size of 10, and the

coefficients that define the bias are updated every 1 ps. The VES simulation is stopped when the

product is formed using a committor, which occurred after 50 iterations of the bias (50 ps).

We employed the VES-optimized bias as a time-dependent boost potential by using the switch-

ing function given by Equation 23 with a filling rate of r = 0.4 kJ mol�1 ps�1. We performed 60

independent simulations using this time-dependent boost potential. Each simulation started from

the same initial reactant configuration, but with a different initial seed for the velocity. The in-
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stantaneous boost potential at intervals of 5 ps from a single representative simulation is shown in

FIG. 4B. This implementation of the boost leads to a linearly increasing fill-level as shown in the

inset of FIG. 4B. As a second example of a time-dependent boost, we also performed a set of 60

simulations using the switching function given by Equation 25 that leads to a logarithmic filling

rate. Here, we used parameters a = 120.0 kJ mol�1 and b = 0.01 ps�1. The instantaneous boost

from a single representative simulation at intervals of 10 ps is shown in FIG. 4C, demonstrating a

logarithmic growth of the fill-level.

As a control, we also performed 30 independent iMetaD simulations. Metadynamics was per-

formed as implemented in PLUMED2[42] with a Gaussian width of 0.025 Å, a Gaussian height of

0.3 kJ mol�1, and a deposition stride of 1 ps. From iMetaD simulations, the fill-level is obtained

as an average over R total runs

VMB(t) =
1
R Â

r
max

t 02[0,t]
V r

B(t
0) (27)

where V r
B(t) is the instantaneous bias (sum of Gaussian hills) at time t for simulation run r. As

seen in FIG. 4D the fill-level determined from Equation 27 increases monotonically, resembling a

logarithmic growth of the fill-level. However, because of the infrequent deposition stride required

for iMetaD, the filling rate is slower than in our VES boosted simulation by about an order of

magnitude.

FIG. 5A shows the ECDF of the biased crossing times for each set of simulations for the SN2

reaction. The ECDF from simulations biased with a variational flooding boost potential with a

linear fill rate is fit to the analytical expression for the CDF given by Equation 24, giving an

unbiased rate of k0 = 26 ms�1 with g ⇠ 1. Confidence intervals are computed as the 30th and

70th percentiles from a bootstrap analysis. The accumulated crossing times were resampled with

replacement, giving an upper and lower confidence interval for the transition rate of (10, 49) ms�1.

Similarly, the ECDF from simulations biased with a variational flooding boost potential with a

logarithmic fill rate is fit to the analytical expression for the CDF given by Equation 26, giving

an unbiased rate of k0 = 105 ms�1 with g ⇠ 0.43 and a confidence interval of (30, 250) ms�1.

The ECDF from iMetaD simulations was modeled using the procedure of Palacio-Rodriguez,

et al.[29]. Briefly, the numerical VMB(t) from Equation 27 (FIG. 4D) is fit to a spline and the

parameters k0 and g are determined by maximizing the likelihood function[29]

L =
M

’
i2events

�dS(t)
dt

����
t=ti

N

’
j2non-events

S(t j) (28)
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FIG. 4. A) Distances used to define the CV for the asymmetric SN2 nucleophilic substitution reaction of

fluoromethane to chloromethane. B) Time series of the time-dependent variational flooding boost potential

from a representative MD simulation demonstrating linear flooding. The instantaneous boost potential is

shown every 5 ps. For reference, the free energy landscape is shown as a dashed line. The inset shows the

linear increase of the fill level. C) The time-dependent boost potential from a representative MD simulation

demonstrating logarithmic flooding. The instantaneous boost potential is shown every 10 ps. The free

energy landscape is shown as a dashed line. The inset shows a logarithmic increase of the fill level. D) The

average fill level from 30 independent iMetaD simulations. The solid blue line represents the average and

the gray shaded region represents the standard deviation of the maximum bias.

where S(t) is the survival probability from KTR theory, given by Equation 14. In Equation 28,

M is the number of crossing events observed, and N is the number of non-events observed up

to time t j. The parameters k0 and g are found from numerical maximization of lnL (k⇤0(g),g)

using the script provided in Ref. [29]. The quality of the fit is assessed using the Kolmogorov

Smirnov test (KS-test)[25]. The ECDF of accumulated crossing times from iMetaD simulations

is also presented in FIG. 5A with the fit to the numerical KTR theory giving a p-value of 0.39.

Confidence intervals from iMetaD simulations are estimated from 50 bootstrap samples that pass

the KS-test. The iMetaD procedure yields an unbiased rate of k0 = 351 ms�1 and g ⇠ 1, with

a confidence interval of (346, 465) ms�1, consistent with the rate obtained from our variational
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TABLE II. Comparison of transition rates obtained from variational flooding and iMetad simulations for the

asymmetric SN2 reaction at 1200 K.

analysis method CDF k0 (ms�1)

analytical KTR theory linear flooding 1� exp
⇣

k0
gb r

�
1� egb rt�

⌘
26 (10,49)a

analytical KTR theory logarithmic flooding 1� exp
⇣

k0
b(bga+1)

⇥
1� (1+bt)bga+1⇤

⌘
105 (30,250)

iMetaD numerical 1�S(t) 351 (346,465)

Hyperdynamics time rescaling b 1� e�t⇤/t0 154 ± 4

a Lower and upper confidence intervals represent the 30th and 70th percentiles from a bootstrap analysis of the

transition times
b Ref [31]

flooding procedure.

While all ECDFs in FIG. 5A are well-described by KTR theory, the convenience of having

an analytical expression afforded by the variational flooding approach simplifies the extraction

of rate constants. Previously, variational flooding with a fixed boost potential found an unbiased

transition rate of k0 = 154 ± 4 ms�1 at 1200 K[31]. Table II summarizes the results for the

extracted rates from variational flooding and iMetaD simulations for the SN2 reaction. Transition

rates from variational flooding are in general agreement with the rate from iMetaD simulations, but

obtained at a reduced computational cost. Finally, to compare with the previous hyperdynamics

time rescaling approach[31], we scaled the times according to Equation 10. As seen in FIG. 5B, all

CDF curves collapse to a single distribution for the rescaled transition times within the uncertainty

range.

C. Chignolin folding

As a final example system we consider the folding of the 10-residue chignolin miniprotein[48]

in explicit solvent (FIG.6A). Input files for the MD simulation were obtained from the PLUMED-

NEST (plumID:22.031)[49], as provided by Ray, et al.[24]. Simulations were performed in

GROMACS-2019.4[50] using the CHARMM22⇤ force fields[51] with an integration time step

of 0.002 ps and bonds to hydrogen atoms constrained using the LINCS algorithm[40]. The start-

ing structure is taken as the unfolded chain and solvated in a box of 1907 CHARMM TIP3P water
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FIG. 5. A) The ECDF of crossing events from 60 independent simulations employing a linear variational

flooding boost (orange), a logarithmic variational flooding boost (green), and iMetaD (blue). For variational

flooding simulations, the solid line is a fit to analytical KTR theory. For iMetaD the solid line is a fit to

KTR theory using the numerical S(t) by maximizing the log likelihood function to estimate the optimal pa-

rameters. For iMetaD, the KS-test gives a p-value of 0.39. B) The ECDFs collapse to the same exponential

distribution after rescaling the simulation time according to the hyperdynamics formalism.

molecules with two sodium ions to neutralize the system. The temperature was kept at 340 K

using the stochastic velocity rescaling thermostat[41]. We used the harmonic linear discriminant

analysis (HLDA) CV based on six interatomic contacts within the protein[52]. The interatomic

distances and definition of the CV is described in the Supplemental Material. We first performed

a VES simulation as implemented in the VES module of PLUMED2[42] using multiple walkers

with four replicas to efficiently sample the unfolded state and converge the variational coeffi-

cients that define the bias. We used the Legendre polynomials as the basis set functions with 50

variational coefficients to be optimized. The coefficients are updated using the stochastic gra-

dient descent with a step size of 0.1, and the coefficients that define the bias are updated every
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TABLE III. Folding times for chignolin obtained from variational flooding

analysis method k [µs�1] g

time-dependent flooding 1.85 (1.35, 2.00)a 0.3

unbiased b 1.67 -

a Lower and upper confidence intervals represent the 30th and 70th percentiles from a bootstrap analysis of the

transition times
b Ref [53]

4 ps. The VES simulation is stopped when the folded state is found using a committor, which

occurred after 1940 iterations of the bias (7.78 ns). After the initial boost potential is generated

using VES, the optimized bias is fit to a cubic spline and employed is subsequent MD simulations

with a time-dependent switching function. We ran 60 independent trajectories using a linear time-

dependent boost with a switching function defined by Equation 23. Each simulation started from

the same unfolded structure and same bias coefficients but with velocities randomly generated

from a Maxwell-Boltzmann distribution. For the linear time-dependent boost we used a constant

fill rate of r = 2.5⇥ 10�4 kJ mol�1 ps�1. The folding times are compared to the folding time of

0.6 µs reported from a 106 µs unbiased trajectory[53].

The instantaneous boost potential at intervals of 5 ns from a representative MD simulation is

shown in FIG. 6B, leading to a linear flooding rate. The empirical distribution of crossing times

is well described by the analytical KTR theory (FIG. 6C). A fit to Equation 24 gives the unbiased

folding time of 0.54 µs in good agreement with unbiased MD simulation. The fit gives g ⇠ 0.3

indicating that the single HLDA CV is suboptimal, yet the procedure still yields an accurate kinetic

estimate. Table III summarizes the comparison of chignolin folding times from time-dependent

flooding simulations with unbiased MD.

IV. DISCUSSION AND CONCLUSION

We have investigated an application of KTR theory to the variational flooding method for rate

calculation from biased MD simulations. In a first step, a boost potential that is able to accelerate

barrier crossing events is constructed using VES. Because we are only interested in accelerating

transitions out of a metastable basin, and not converging the entire free energy surface, the VES
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FIG. 6. A) Structures representing the unfolded and folded states of chignolin. B) Time series of the time-

dependent boost potential from a representative MD simulation. The instantaneous boost potential is shown

every 5 ns and increases linearly during the simulation. C) The biased ECDF of crossing events from 60

independent simulations employing a linear variational flooding boost. The solid line is a fit to analytical

KTR theory Equation 24.

bias converges quickly and the optimization is stopped after a crossing event is observed. In a

subsequent step, we employ the optimized bias with fixed coefficients and a switching function

that determines the fill-level of the boost. The method lends itself to the construction of a boost

potential that results in a distribution of crossing times that can be described by analytical KTR

theory. This procedure greatly simplifies the extraction of unbiased rates from biased simulations

since the ECDF of crossing times from multiple independent simulations is fit directly to an an-

alytical expression. We have demonstrated the approach for three different switching functions
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that lead to different time-dependencies of the boost potential. In the case of a time-independent

switching function with a static cutoff, VMB, the model recovers the expected Kramers’ result of

an exponential dependence of the transition rate on the barrier height. In this case, the ECDF of

crossing times is consistent with a Poisson process for an activated process, leading to an expo-

nential distribution of crossing times. However, because the fit to a single exponential function

has only one parameter, the mean biased time, tb, it is not possible to extract both g and k0 from

a single set of simulations with a fixed VMB. Furthermore, we show that the error introduced by

setting g = 1 even for an ideal CV amounts to setting the average bias everywhere to its maximum

<Vb >=VMB and assuming higher order cumulants vanish. For a fixed boost potential, it is better

to perform multiple simulations with increasing VMB to extract both g and k0 from a linear fit to

the data. For example, when only the dihedral angle, f , is used as a CV for the alanine dipep-

tide system, we obtained g = 0.93. This procedure gives a kinetic rate in quantitative agreement

with unbiased simulations of the same system. A consequence of introducing g is that one only

requires an approximate reaction coordinate to accelerate rare events. This is an advantage of the

KTR approach as compared to the hyperdynamics approach of rescaling the simulation time by

the acceleration factor.

Introducing a time-dependent value of VMB(t) into the variational flooding procedure through a

time-dependent switching function, eliminates the need of performing multiple sets of MD simula-

tions at different fixed VMB values. Here, we investigated two time-dependent switching functions:

one that results in linear flooding, and another that leads to logarithmic flooding. Both procedures

are easily implemented through a Fermi-type switching function, and extracted kinetic rates are in

quantitative agreement with rates determined using the hyperdynamics time rescaling approach.

Parameters of the time-dependent switching function, including the fill rate of the boost, must be

chosen carefully to ensure the boost remains below the barrier height. In this work, we monitor the

bias value during the simulation to check that the boost has not increased past a threshold value.

In this respect, the logarithmic flooding achieved through Equation 25 is useful for implementing

a boost that fills at a less extreme filling rate near the barrier. Such a boost may be applicable for

situations where the system must find the near attack conformation before reacting to the product

state.

In contrast to iMetaD, which requires multiple MD simulations with a slow deposition of Gaus-

sian hills, the variational flooding procedure uses a boost potential optimized using a prior VES

simulation. This two-step procedure improves the computational efficiency of obtaining rates from

23

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
38

28
9



biased MD simulations. This is important for applications to ab initio simulations that are more

computationally intensive, where the slow bias deposition from iMetaD becomes prohibitive. With

variational flooding, one only needs to perform one preliminary simulation to construct a suitable

boost potential, and then use the time-dependent switching function to accelerate transitions out of

the basin. The speed up is afforded by the flexibility of the switching function to control the filling

rate at a desired level that is introduced in a post-hoc manner after the VES optimization step.

Although VES was chosen as the enhanced sampling method to construct the boost in this work,

one could apply the switching function to any boost potential, such as the bias obtained from a

preliminary metadynamics or OPES simulation. Another possible extension would be to perform

infrequent metadynamics on top of the time-dependent flooding bias. Metadynamics encourages

the exploration of conformational space and could prevent the system from getting stuck if the

VES bias is not fully converged. For a sufficiently slow deposition stride, the filling rate would

still be controlled by the time-dependent flooding potential.

One limitation of the present work is the focus on only a single CV. We envision that future

applications may take advantage of data-driven machine learned CVs[54] or DeepTICA CVs[55]

to enable a one dimensional boost for more complex chemical reactions or system with more

conformational complexity.

In conclusion, we have demonstrated an application of variational flooding with a time-

dependent boost to accelerate barrier crossing in MD simulations. We have illustrated how the fill

rate of a VES-optimized bias can be controlled to achieve a boost potential that is amenable to

analytical KTR theory. We term this method Kramers Rate Approach to Variationally Enhanced

Sampling (KRAVES). This method that combines variational flooding with KTR theory leads to a

convenient way to extract kinetic rates from an analytical expression for the distribution of crossing

times. This procedure should be useful for studying reaction kinetics from MD simulations.

V. SUPPLEMENTAL MATERIAL

The Supplement Material includes details on the construction of a two dimensional VES bias

for use with a time-dependent switching function and details of the HLDA CV used for chignolin

folding.
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