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Abstract

Contrastive Language-Image Pre-training (CLIP) has
shown its ability to learn distinctive visual representations
and generalize to various downstream vision tasks. How-
ever, its applicability in the classification of pathology im-
ages with limited labeled data is still under study due to the
giant domain shift (between large natural image datasets
in the source domain and small-scale target pathology im-
ages) and overfitting issues. In this work, we first explore
the zero-shot transferability of CLIP on pathology classifi-
cation tasks and benchmark the performance. Then, we pro-
pose Residual Feature Connection (RFC) to fine-tune CLIP
with a small amount of trainable parameters. RFC aims
to fuse the task-specific knowledge learned from the target
domain and the original knowledge pre-trained from CLIP.
We show that RFC can adapt pre-trained CLIP to down-
stream pathology tasks and achieve good performance with
just a few annotated samples. Specifically, RFC achieves
over 19% improvement in accuracy when only using 0.1%
of labeled data in PCam with only 10 minutes of fine-tuning
while running on a single GPU.

1. INTRODUCTION

Deep learning with better network designs and large-
scale well-curated datasets has achieved significant perfor-
mance improvement in pathology image analysis tasks [15,
19]. However, collecting high-quality datasets with reliable
annotations for every vision task can be time-consuming
and labor-extensive [20,44]. This may prevent the broad
adoption of advanced deep learning techniques. To relieve
the reliance on such datasets, pre-training and fine-tuning
methods have been studied in vision tasks: pre-train the
model on a large-scale dataset and then fine-tune the model
on different downstream tasks [6]. There are several chal-

lenges of such methods: 1) they may still require a large
amount of labeled set to avoid the overfitting issue when
fine-tuning the model for the downstream task [22,37]; 2)
the fine-tuning may not bring satisfactory performance in
the target domain due to the existence of a large domain gap
between the pre-trained data and pathology images [31].

To fill the performance gap due to domain shift,
Contrastive Language-Image Pre-training (CLIP) [25] has
shown its power in learning generic and distinctive visual
representations via language supervision. It aligns images
and texts in the same feature space and uses a contrastive
loss to formulate the learning objective. CLIP uses two
separate encoders for images and texts, then maximizes
the similarity score of positive pairs of images and texts
while minimizing for the negative pairs [25,45]. It achieves
promising results on various image classification tasks with-
out needing any annotated data, i.e., zero-shot transfer set-
tings. As a language-vision model, CLIP uses prompts as
the supervision, where the visual labels are entered into the
hand-crafted template. By pre-training the model at a large
scale, models can learn the visual contents and easily be
transferred to downstream tasks through the prompt-based
zero-shot transfer.

However, the manual design of prompts can be a non-
trivial and time-consuming task. In [45], the authors found
that even a slight change in the prompt (e.g., one word)
can make a big difference. They introduced Context Op-
timization (CoOp) to automate prompt engineering to gen-
erate continuous soft prompts instead of using hand-chosen
hard prompts [45]. CoOp requires substantial computing re-
sources, and the results of CoOp are not interpretable. Be-
sides, CoOp faces performance degradation when there is
a big domain shift, e.g., from natural to pathology images,
making it hard to adapt to medical imaging tasks.

In this work, we aim to fine-tune CLIP efficiently with
light computing resources for pathology image classifica-
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Flgure 1. An overview on the inference stage of CLIP in computer
vision tasks: f is the output from the vision encoder while W' is
the output from the text encoder.

tion tasks. There are several challenges in fine-tuning
CLIP. First, overfitting is a severe issue if we directly adapt
CLIP to the downstream tasks since CLIP is pre-trained
on a 400M dataset while the new domain dataset can be
small [7]. Second, it is unclear how to effectively learn
the new knowledge while retaining the original pre-trained
knowledge to maintain the generalization of CLIP. Third,
there are limited studies on benchmarking CLIP’s transfer-
ability in the pathology domain; hence, its applicability re-
mains unclear.

To address the above issues, we first study the applicabil-
ity of CLIP on two pathology datasets and benchmark the
zero-shot ability of CLIP on them. Then, we propose Resid-
ual Feature Connection (RFC) as a lightweight approach for
adapting CLIP to pathology images. It will fuse the origi-
nal knowledge from CLIP and the new knowledge learned
from the new pathological task with only a tiny number of
trainable additional weights instead of optimizing the en-
tire encoders in CLIP. Third, to further improve the fine-
tuning ability, we propose using Language-Vision Align-
ment (LVA) in the fine-tuning stage to mimic contrastive
learning in the pre-training stage.

We summarize our contributions as follows:

e We explore the applicability of CLIP on pathology im-
ages and benchmark its zero-shot transfer ability.

e We propose CLIPath to introduce CLIP in pathology
image applications. In CLIPath, we propose Resid-
ual Feature Connection (RFC) and Language-Vision
Alignment to fine-tune CLIP on pathology tasks with
limited labeled data.

e We show that CLIPath has the potential to quickly
adapt pre-trained CLIP to downstream tasks with good
performance but light computational cost.

2. Related Work
2.1. Language-vision model

Language-vision models have exhibited promising per-
formance in acquiring general visual representations [11,
23,25,41]. Recent advancements in these models in-
volve text representation learning using large-scale Trans-
formers [29] and training on extensive datasets from the
web [45]. Transformer-based multimodal learning has
achieved remarkable success on such vast datasets [28, 35].
For instance, CLIP [25] was trained on 400 million image-
caption pairs and achieved state-of-the-art performance
across various domains [16, 25, 38—40]. CLIP comprises
two encoders: a vision encoder, which can be ResNet [9]
or ViT [4], and a text encoder, such as Transformer (e.g.,
BERT [3]).

In a recent study [26], CLIP was fine-tuned for video
data and demonstrated competitive results compared to
more complex methods specifically designed for video pro-
cessing. Another application, PointCLIP [43], employed
CLIP for 3D recognition. CLIP has also been utilized for
image generation tasks [5] and exhibits the ability to reduce
data collection. However, the optimal approach for adapting
CLIP to downstream tasks is still under investigation, par-
ticularly when the new domain, such as the medical field,
significantly differs from the pre-trained domains.

2.2. Language-vision training in medical domain

Language-vision pre-training, which involves training
models to understand language and visual information, typ-
ically relies on vast amounts of web images and captions
from diverse domains. For instance, the CLIP model uti-
lizes a 400 million image-caption pairs dataset [25]. How-
ever, medical datasets are considerably smaller in compar-
ison, posing a challenge in applying pre-training methods
to the medical domain. Additionally, annotating medical
images require specialized domain knowledge [20], further
increasing the cost of training when dealing with multiple
medical tasks. To illustrate, Lai ef al. conducted a study on
the distribution of Amyloid-/ plaques, a prominent pathol-
ogy in Alzheimer’s disease, in grey and white matter. This
investigation involved two learning tasks: image segmenta-
tion and object detection, each requiring separate datasets
and their respective annotations [13—15,24].

Although expert annotation of medical images is al-
ready expensive, the situation becomes even more challeng-
ing when incorporating language-vision training due to the
need for captions and prompts for the images. For exam-
ple, MedCLIP [33] achieved 60% zero-shot accuracy by
employing 570,000 image-text pairs. Acquiring datasets of
such magnitude is particularly daunting in pathology image
tasks, where each slide is at the gigapixel level. Efforts to
adapt CLIP for the medical domain have been limited, pri-
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Figure 2. Overview of the proposed framework: the image and text encoders of CLIP are frozen while the Trainable Layer (RFC) is of
a downsampling-upsampling architecture of linear layers. It blends the fine-tuned knowledge with the original knowledge from CLIP’s

vision encoder (F'(+)).

marily due to the substantial disparity between general im-
ages and medical images. In this study, our objective is to
develop an efficient adaptation framework that can be eas-
ily applied to multiple downstream tasks in the medical field
while addressing the scalability issue.

3. METHODS
3.1. CLIP and Setup

CLIP [25] has a vision encoder F'(-) and a text encoder
G(+). The vision encoder maps a high-dimensional image
into low-dimensional image embeddings. The text encoder
is built on Transformer [29] and generates text embeddings
from the prompt. During training, CLIP jointly trains F'(-)
and G(-) to optimize the similarity score (e.g., symmetric
cross-entropy loss [32]) between the visual and textual em-
beddings for each batch. Specifically, the input consists
of an image and its corresponding prompt (e.g., “this is a
dog”). Then given a batch of image-prompt pairs, CLIP
maximizes the similarity score for positive pairs while min-
imizing it for negative pairs.

For the inference process, as shown in Fig. 1, an image
I is transformed into a feature manifold f € RP, where
D is the feature dimension. Then, f is multiplied with a
classifier weight matrix W € RP*¥  where K is the num-
ber of classes in the learning task. We get a K -dimensional
logit after matrix multiplication. Then we apply softmax to
convert this logit into a probability vector p € R¥ over the
K classes. The whole process can be summarized as the
following equation:

exp(WiT x f)/T
"7 SE (Wi x f)/r

where 7 is the temperature parameter learned by CLIP dur-
ing training and Wj is the prototype weight vector for class-
i.

3.2. Residual Feature Connection

In this subsection, we introduce Residual Feature Con-
nection (RFC) to learn the task-relevant context when we
adapt CLIP to the downstream learning tasks. Inspired by
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CLIP-Adapter [6] that achieves promising results on com-
puter vision few-shot benchmark, we argue the importance
of preserving the original knowledge and fusing the new
knowledge. Unlike CoOp’s prompt tuning, which may
not address the domain shift issue between the natural and
pathology images, we focus on fine-tuning the visual fea-
tures f. However, simple fine-tuning of the entire network
may fail in a new pathological task due to the overfitting is-
sue caused by a large number of parameters and a shortage
of the training samples [ 10]. Inspired by [10] that fine-tunes
the model with additional layers, we argue the importance
of retaining the features from CLIP and propose a residual
connection architecture to dynamically fuse the fine-tuned
knowledge with the original CLIP’s feature.

As shown in Fig. 2, given an image X, we get the visual
feature f from the image encoder and compute the classifier
weight W from the text encoder. Then we design trainable
fine-tuning layers L to convert f into L(f). L can be multi-
ple layers of linear transformations in a “down-and-up” ar-
chitecture. As shown in Fig. 2, we have four layers to trans-
form the feature dimension as “1024-256-64-256-1024" so
that L(f) can be of the same size of f and blended with f
as follows:

fT=al(f)+ (1 -a)f, 2

where « is a residual ratio to balance the fine-tuned knowl-
edge and the original CLIP’s knowledge. Then we adopt
Equation 1 with the new f* to get the class probability vec-
tor and predict the category with the highest probability.
During the fine-tuning, the weights of the trainable layers
are optimized through the symmetric contrastive loss used
in CLIP [25]. The prompt here is “this is a photo of []”,
where “[]” is filled with the class name. For example, “[]”
can be “healthy lymph node tissue” or “healthy lymph tu-
mor tissue” in PCam [30].

3.3. Language-vision Alignment

Although CLIP has shown promising zero-shot ability,
there is a strong preference to enhance performance by en-
gaging in supervised fine-tuning in many scenarios. This in-
volves additional training and adjustments to the pretrained
parameters using a limited set of labeled images, which can
lead to further improvements [8]. While RFC can retain
the pre-trained knowledge and learn new knowledge, it may
still suffer from overfitting issues when the target dataset is
too small. Goyal er al. [8] studies the importance of con-
trastive loss in the fine-tuning stage to alleviate this issue.
Different from previous fine-tuning approaches that mini-
mize a standard supervised loss (e.g., cross-entropy loss on
an image classifier), they claim that keeping the contrastive
loss used in the pre-training stage is more advantageous.
Therefore, in CLIPath, we follow [8] and use a contrastive
loss in the fine-tuning.

4. EXPERIMENTS
4.1. Data Preparation and Setup

The datasets used for validation of our framework are
collected from two distinct pathology projects [30, 34].
Both projects make their data available as patches, ex-
tracted from H&E stained Whole Slide Images (WSI)
digitized from Formalin-Fixed Paraffin-Embedded (FFPE)
slides. Each dataset has a distinct binary classification task
aimed at detecting different cancerous tissue.

Minimalist Histopathology Image Analysis Dataset
(MHIST) [34]. MHIST contains 3,152 patches from col-
orectal regions at 224 x 224 pixel resolution. These patches
were extracted from 328 WSIs scanned at 40x resolution.
Each patch may be labeled as Hyperplastic Polyp (HP) or
Sessile Serrated Adenoma (SSA). HP is the majority class
with 68.59% of the labels. The labeling of colorectal polyps
between HP and SSA is a challenge due to high inter-
pathologist disagreement. Seven pathologists contributed
in the ground truth to ensure reliable labels.

PatchCamelyon (PCam) [30]. PCam patches were ex-
tracted from Camelyon16 challenge [!]. The original 400
WSIs from Camelyonl6 were digitized breast tissue with
potential metastasized cancerous tissue on the lymph nodes.
The original WSIs were scanned at 40x resolution but
later downsampled to 10x. The WSIs were collected from
two different centers. PCam extracted 327,680 patches at
9696 resolution and labeled them as positive or negative.
Positive labeled patches present tumor tissue in the central
32 %32 patch region. There are an equal amount of positive
and negative labeled samples.

For a fair comparison, we use ResNet-50 [9] as the back-
bone in the vision encoder f(-). We follow CLIP [25] to
use gradient scaling in facilitating mixed-precision training.
We set the learning rate as 0.0001. The batch size is 32. We
use Adam [12] as the optimizer. All of the experiments are
conducted on one piece of GPU (Nvidia RTX 2080Ti) to
compare the computational complexity.

4.2. Main Results

In this subsection, we report the results on PCam [30]
and MHIST [34] to show how RFC’s fine-tuning improves
CLIP. We select Accuracy, Recall, Precision, F1-score, and
AUC to have a comprehensive comparison. The main re-
sults on PCam [30] when only using 0.5% data for fine-
tuning are summarized in Table 1. First, CLIP shows its
strong zero-shot ability: it can achieve 56.5% accuracy un-
der this setting. Our proposed method can get better results
than semi-supervised learning approaches that use extra un-
labeled data [17,18,21,27,36,42]. Therefore, CLIP and its
efficient adaptation are promising for minimizing data col-
lection efforts in clinical applications. Similar observations
can also be found in MHIST, summarized in Table 2.
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Table 1. Quantitative comparison on PCam. Precision, Recall, and F1-score refer to the macro-averaged values from all classes

Learning Manner  Labeled Ratio Algorithm Accuracy  Precision Recall F1-score AUC
Supervised 100% - 92.8 +030 929 +020 92.6+021 928020 0.95 +001
__ Swpervised 05% - _____ 450220 420214 336x30_ 373+2e6 051001
Self-supervised __ 05% SImCLR 7]~ 6042145 6334100 5852201 608120 061 =001
Pseudo-Label [21] 55.7 £205 59.2 +223 5454197 56.8+15 0.58 £0.03
Semi-supervised 0.5% FixMatch [27] 732 +076 77.5+050 73.7+025 75.6+037 0.84 +0.04
P 7 Dash [36] 71.0 +098 753 +078 70.2 +045 72.7+050 0.82 +0.02
,,,,,,,,,,,,,,,,,,,,, FlexMatch [42] _ 74.0 +os0 7814115 7302050 755408 085003
- Zero-shot [25] 56.5 +000 57.4 +000 50.3+000 53.7+000 0.60 +0.00
. CoOp [45] 63.6 +025 639 +042 62.5+035 63.0+02 0.67 +0.02
Multimodal CLIP 0.5% CLIP-Adapter [6] 723 +1.02 7724095 63.2+056 69.4+084 0.81 +0.02
Proposed 81.5+078 794 +035 85.0+080 82.1+095 0.89 +0.02

Table 2. Quantitative results on the hold-out test set of MHIST.

Algorithm  Data Usage | Accuracy Recall Precision Fl-score AUC
CLIP [25] Zero-shot 36.9 100.0 36.9 53.9 0.501
1% 63.9 7.5 57.5 133 0.643

5% 66.8 42.8 56.6 48.7 0.732

CLIP+RFC 100 705 797 571 66.6 0784
20% 70.7 86.1 56.8 68.4 0.788

50% 74.8 75.6 63.3 68.9 0.838

Table 3. Quantitative results on the hold-out test set of PCam.

Algorithm  Data Usage | Accuracy Recall Precision Fl-score AUC
CLIP [25] Zero-shot 56.5 50.3 57.4 53.7 0.600
0.1% 76.4 90.0 70.7 79.2 0.849

0.5% 81.5 85.0 79.4 82.1 0.894

1% 81.9 82.9 81.3 82.1 0.900

CLIP + RFC 5% 829 771 872 818 0918
10% 82.8 79.2 854 82.1 0914

50% 81.4 71.0 89.6 79.3 0.918

4.3. A Closer Look at RFC
4.3.1 How Does RFC Improve CLIP?

In this subsection, we have a deeper look at RFC and study
how it improves CLIP. As shown in Table 3, RFC can bring
over 25% improvement in accuracy and 28.4% in F1-score
by only using 0.5% of data in PCam [30] compared to the
original CLIP. In Table 2, we get significant improvement
in accuracy and AUC on MHIST [34], while the perfor-
mance in Fl-score and recall seems limited. We diagnose
that MHIST is a more challenging task and has an inter-rate
agreement issue, which may confuse the model during fine-
tuning.

4.3.2 Compare with CoOp [45]

CoOp [45] is the recent state-of-the-art fine-tuning method
for CLIP. Hence we mainly compare our proposed RFC
with it in both performance and computational complex-
ity. We summarize the results in Table 4. The training time
refers to the time period from the start point to the time
point when the validation set gets the best results. When we
range the data usage from 0.1% to 1%, we find that RFC can

get 5.5% improvement in accuracy while only introducing
1 minute of additional training time. However, CoOp [45]
has the overfitting issue and gets a lower score while using
53 minutes, which is almost 5 times compared to the time
used by RFC. The situation remains similar under the 10%
of data usage. We conclude that our proposed RFC can get
over 25% improvement on CLIP by only using 10 minutes
for the fine-tuning on a single GPU, which is promising for
digital pathology research.

Table 4. Performance and Complexity comparison on PCam.
Data Usage Algorithm Accuracy Training Time
Zero-shot CLIP [25] 56.5 -
0.1% CLIP + CoOp [45] 64.3 7 min 6 sec
e CLIP + RFC 76.4 10 min 29 sec
1% CLIP + CoOp [45] 61.9 53 min 21 sec
? CLIP + RFC 81.9 11 min 56 sec
10% CLIP + CoOp [45] 59.9 2 h 23 min 45 sec
’ CLIP + RFC 82.8 27 min 18 sec

5. Discussion

In this work, we explore the generalization of Con-
trastive Language-Image Pre-training (CLIP) in pathology
image classification. We propose RFC to efficiently fine-
tune CLIP using a small dataset and light computing re-
sources. On the other hand, we use a contrastive loss in
the fine-tuning stage to preserve the model’s capacity. We
show that RFC has the potential to bridge the domain shift
between the pre-trained natural images and pathology im-
ages. However, we only evaluate our frameworks on two
small-scale datasets. In the future, we aim to test it over
more diverse pathology image tasks.
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