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Abstract

Traditional Unsupervised Domain Adaptation (UDA)
leverages the labeled source domain to tackle the learning
tasks on the unlabeled target domain. It can be more chal-
lenging when a large domain gap exists between the source
and the target domain. A more practical setting is to utilize
a large-scale pre-trained model to fill the domain gap. For
example, CLIP shows promising zero-shot generalizability
to bridge the gap. However, after applying traditional fine-
tuning to specifically adjust CLIP on a target domain, CLIP
suffers from catastrophic forgetting issues where the new
domain knowledge can quickly override CLIP’s pre-trained
knowledge and decreases the accuracy by half. We propose
Catastrophic Forgetting Measurement (CFM) to adjust the
learning rate to avoid excessive training (thus mitigating
the catastrophic forgetting issue). We then utilize CLIP’s
zero-shot prediction to formulate a Pseudo-labeling setting
with Adaptive Debiasing in CLIP (PADCLIP) by adjust-
ing causal inference with our momentum and CFM. Our
PADCLIP allows end-to-end training on source and target
domains without extra overhead. We achieved the best re-
sults on four public datasets, with a significant improvement
(+18.5% accuracy) on DomainNet.

1. Introduction
Unsupervised Domain Adaptation (UDA) proposes to

reduce data annotation costs by leveraging a labeled source
domain to transfer the knowledge into an unlabeled target
domain [11, 27, 49, 60, 73]. Prior UDA works focus on
bridging the domain gap between source and target domains
[4, 12, 25, 27], or increasing network capacity [49, 60] by
changing a convolutional neural network (e.g., ResNet [14])
to Vision Transformer (ViT) [9]. All of these past methods
are pre-trained on ImageNet [7], but large-scale pre-training
is becoming practical and achieves superior performance in
many fields [41, 64, 65, 67]. In theory, if the pre-trained

*Equal contributions. This work was done at Amazon.

Figure 1: Catastrophic Forgetting. We naively fine-tune
CLIP (ResNet-101) on VisDA-2017 source domain train-
ing set, and test it on validation sets of VisDA-2017 target
domain and ImageNet-1K. CLIP forgets pre-trained knowl-
edge (ImageNet accuracy -45%), resulting in -27% VisDA-
2017 accuracy. Our PADCLIP mitigates catastrophic for-
getting issues to achieve +6% VisDA-2017 accuracy.

dataset is large enough, the domain gap between source and
target domains could be bridged by the pre-trained dataset
itself. Hence, we argue that large-scale pre-training is an
important missing part of UDA.

We choose CLIP [41], a vision-language model pre-
trained on 400 million image-text pairs. Without fine-
tuning, CLIP outperforms SSRT [49], a state-of-the-art
UDA method on DomainNet [38]. This is thanks to the
large-scale training set, which allows CLIP to disentangle
object class from object domain (e.g., “a photo of a dog” vs
“a sketch of a dog”): the language supervision in the form
of a sentence used by CLIP is more descriptive than a sin-
gle class label. However, on VisDA-2017, CLIP without
fine-tuning underperforms previous work, SDAT [42]. This
is because the synthetic data generated from the real-world
domain do not exist in CLIP’s training set, so we still need
to fine-tune CLIP to adapt it for a specific domain task.

We first adopt the traditional approach to fine-tune CLIP
on VisDA-2017 [39] but found that CLIP suffers from
catastrophic forgetting issues. As shown in Fig.1: before
fine-tuning, CLIP has a strong representation power that
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Figure 2: Overview. For the source domain, we convert the label and domain name into a prompt, and obtain text and image
representations to train CLIP in a supervised manner. We use CLIP’s original representation, and weak/strong augmented
representations to measure CFM to adjust the learning rate for mitigating catastrophic forgetting issues. For the target domain,
we use zero-shot prediction in CLIP to obtain pseudo-labels and adaptively debias them with CFM (adjust debias factor) and
DCM (adjust momentum) for unsupervised learning. *Pseudo-label is converted into a prompt to obtain text representation.

can achieve 67% top-1 ImageNet accuracy, while drop-
ping to 22% after fine-tuning on VisDA-2017. The loss
of CLIP’s representation power causes the accuracy degra-
dation on VisDA-2017. To counter this, it is possible to
preserve CLIP’s representation power by fine-tuning both
CLIP and VisDA-2017 datasets jointly, but CLIP requires
several weeks to train a single setting (DomainNet has 30
settings, so it takes a year for a single experiment). More-
over, we anticipate the data imbalance issue during joint
training since CLIP’s training set is 142 times larger than
VisDA-2017. We seek a more practical solution for catas-
trophic forgetting issues without adding extra overheads.

We attempt to fine-tune CLIP on the UDA dataset with
a lower learning rate and observe less catastrophic forget-
ting issues, but the low learning rate prevents CLIP from
learning new knowledge. To solve this problem, we pro-
pose to adjust the learning rate with Catastrophic Forgetting
Measurement (CFM, Fig. 2) by comparing the original rep-
resentation (forward original image on original CLIP) and
fine-tuned representations (forward augmented images on
fine-tuned CLIP). CFM is, however, unstable because ev-
ery image has a different forgetting rate, so we leverage our
observation that CLIP is likely to have similar predictions
across all augmentations when the training example is easy
(and large difference for the hard example). We propose to
measure the consistency between weak (translate, flip) and
strong augmentation (perturb visual appearance) as a mo-
mentum (Dual Consistency Momentum, DCM) to stabilize
CFM. Our method does not introduce extra overhead: since
the augmentation is already a part of fine-tuning, original

prediction can be cached, and we do not need to fine-tune
UDA and CLIP datasets jointly.

We further seek to use CLIP with pseudo-labeling on
the target domain, which recently enjoyed success in UDA
[35,60,75,76,76]. DebiasPL [57] utilized CLIP for pseudo-
labeling, but it was designed for a single domain. After
extending to source and target domains (UDA setting), De-
biasPL [57] suffers from catastrophic forgetting issues (ac-
curacy decreases by 21% on VisDA-2017 after fine-tuning).
To solve this problem, we replace the fixed debias factor in
DebiasPL [57] with our CFM, and replace the fixed momen-
tum in DebiasPL with our adaptive momentum (DCM). We
further include a domain name into a prompt (such as: “This
is a [sketch] photo of [car]”). Our method mitigates the
catastrophic forgetting issue, and achieves the best results
on DomainNet [38], VisDA-2017 [39], Office-Home [54],
Office-31 [44]. To summarize, our main contributions are:

• We propose to use CLIP in UDA and discover the
catastrophic forgetting issue when fine-tuning CLIP.
We propose CFM for CLIP in UDA to mitigate this is-
sue without introducing extra computational overhead.

• We propose pseudo-labeling for CLIP in UDA by ex-
tending DebiasPL to multiple domains, and replacing
debias factor and momentum with our CFM and DCM.
We also introduce a domain name into a prompt.

• We achieve the best results on four benchmarks on
both ResNet and ViT, with a large performance im-
provement on the large-scale dataset (+18.5% accu-
racy on DomainNet).
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2. R el at e d W o r ks

U ns u p e r vis e d D o m ai n A d a pt ati o n ( U D A) a d a pts a
m o d el tr ai n e d o n a s o ur c e d o m ai n wit h a n n ot at e d d at as ets
t o a n u nl a b el e d t ar g et d o m ai n. Dis cr e p a n c y- b as e d m et h-
o ds [ 2 0 ,3 1 ,4 7 ,5 2 ] l e ar n d o m ai n-i n v ari a nt f e at ur es vi a mi ni-
mi zi n g t h e dis cr e p a n c y b et w e e n s o ur c e a n d t ar g et d o m ai ns,
or a p pl yi n g a d v ers ari al l e ar ni n g [ 2 4 , 3 0 , 3 1 , 4 2 , 4 7 , 5 2 ] t o
o bt ai n d o m ai n-i n v ari a nt r e pr es e nt ati o ns. D A N N [ 1 1 ] a n d
C D A N [ 3 0 ] us e a d o m ai n dis cri mi n at or t o cl assif y s o ur c e
a n d t ar g et s a m pl es w hil e t h e f e at ur e e xtr a ct or tri es t o f o ol
t h e d o m ai n dis cri mi n at or wit h g e n er at e d d o m ai n-i n v ari a nt
f e at ur es. A a D [6 2 ] pr o p os es pr e di cti o n c o nsist e n c y o n t h e
n ei g h b ori n g f e at ur es, w hil e C P R [ 1 7 ] us es pr ot ot y p es i n-
st e a d. I n t h e or y, o ur i m pr o v e m e nt is ort h o g o n al t o t h es e
m et h o ds, a n d t h e y c o ul d c o m pl e m e nt e a c h ot h er.  R e-
c e nt w or ks f o u n d t h at t h e cr oss- att e nti o n i n Visi o n Tr a ns-
f or m er ( Vi T) [9 ] is a d v a nt a g e o us t o f e at ur e ali g n m e nt, a n d
it is m or e r o b ust t o t h e n ois y s a m pl es c o m p ar e d t o C N N,
w hi c h is t h e k e y t o t h e U D A t as k [ 6 0 ].  H e n c e r e c e nt
w or ks [ 4 2 , 4 9 , 6 0 , 6 1 ] us e Vi T as t h e b a c k b o n e a n d a c hi e v e
b ett er p erf or m a n c e t h a n C N Ns. We als o l e v er a g e Vi T.

Ps e u d o-l a b eli n g i n U D A ai ms t o l e v er a g e u nl a b el e d t ar-
g et d o m ai n d at a [ 2 6 , 2 9 , 3 5 , 4 9 , 6 0 , 7 6 ]. S p e ci fi c all y, t h e
m o d el will g e n er at e ps e u d o l a b els o n t h e u nl a b el e d d at a
d uri n g t h e tr ai ni n g pr o c ess a n d us e t h e m as t h e s u p er visi o n
i n t h e f oll o wi n g tr ai ni n g l o o p. C o nsist e n c y r e g ul ari z ati o n is
als o a p pli e d t o diff er e nt dist ur b e d vi e ws of t h e s a m e s a m-
pl es [ 2 1 , 4 6 , 6 9 ] t o pr o m ot e t h e pr e di cti o n c o nsist e n c y o n
t h e u nl a b el e d d at a. H o w e v er, t h es e m et h o ds ar e b uilt o n
t h e ass u m pti o n t h at t h e u nl a b el e d d at a s h ar e si mil ar distri-
b uti o ns as t h e l a b el e d d at a [ 2 3 ,2 6 ,4 8 ,5 7 ], w hi c h is us u all y
n ot tr u e si n c e t h e s o ur c e a n d t ar g et ar e i n diff er e nt d o m ai ns.
S u c h distri b uti o n mis m at c h m a y g e n er at e l o w- q u alit y a n d
bi as e d ps e u d o l a b els [ 2 3 ], r es ulti n g i n a p o or- p erf or m a n c e
cl assi fi er d uri n g t h e s elf-tr ai ni n g pr o c ess. T h er ef or e, t o r e-
li e v e t h e n ois e a n d bi as, w e f o c us o n g e n er ati n g l ess- bi as e d
ps e u d o l a b els d uri n g t h e U D A tr ai ni n g i n t his w or k.

Visi o n- L a n g u a g e M o d els h a v e s h o w n pr o misi n g r es ults
i n l e ar ni n g g e n eri c vis u al r e pr es e nt ati o ns [1 9 , 3 4 , 4 1 , 6 8 ].
R e c e nt m o d els g ai n t h eir a d v a n c e m e nt vi a t e xt r e pr es e nt a-
ti o n l e ar ni n g wit h Tr a nsf or m ers [5 3 ], c o ntr asti v e r e pr es e n-
t ati o n l e ar ni n g, a n d w e b-s c al e tr ai ni n g d at as ets [7 4 ]. F or
e x a m pl e, C LI P [ 4 1 ] w as tr ai n e d o n 4 0 0 milli o n i m a g e-
t e xt p airs a n d a c hi e v e d st at e- of-t h e- art p erf or m a n c e i n m a n y
fi el ds [ 4 1 ,6 4 ,6 5 ,6 7 ]. H o w e v er, t h e b est w a y t o a d a pt C LI P
f or d o w nstr e a m t as ks is still u n d er st u d y. F or e x a m pl e, D e-
bi as P L [ 5 7 ] f o u n d t h at C LI P [4 1 ] pr o d u c es i m b al a n c e d pr e-
di cti o n a n d pr o p os es t o a d a pti v el y d e bi as ps e u d o-l a b el f or a
si n gl e d o m ai n. We e xt e n d D e bi as P L [ 5 7 ] fr o m a si n gl e d o-
m ai n t o m ulti pl e d o m ai ns i n t h e U D A s etti n g, a n d a d dr ess
t h e d o m ai n g a p pr o bl e m b y miti g ati n g c at astr o p hi c f or g et-

ti n g iss u es, i ntr o d u ci n g d o m ai n n a m e i nt o t h e pr o m pt, a n d
d y n a mi c all y a dj usti n g d e bi as str e n gt h a n d m o m e nt u m.

C a us al I nf e r e n c e h as b e e n i ntr o d u c e d i n c o m p ut er visi o n
t as ks t o all e vi at e t h e d at as et bi as i n d o m ai n-s p e ci fi c a p pli-
c ati o ns [ 5 ,8 ,1 6 ,2 8 ,4 0 ,5 1 ,7 0 ]. T h es e m et h o ds s u c c essf ull y
i m pr o v e p erf or m a n c e i n m a n y fi el ds s u c h as i m a g e cl assi-
fi c ati o n [ 1 , 3 2 ], s e m a nti c s e g m e nt ati o n [6 6 ], vis u al r e pr e-
s e nt ati o n l e ar ni n g [ 5 5 ] a n d i m a g e c a pti o ni n g [6 3 ]. C o u n-
t erf a ct u al i nf er e n c e is a p o p ul ar m et h o d t h at w as us e d t o
c a pt ur e t h e bi as as t h e dir e ct c a us al eff e ct [ 3 7 ], eli mi n at e
t h e c o nf o u n di n g eff e ct [7 0 ], a n d dis e nt a n gl e t h e d esir e d di-
r e ct eff e ct [3 ]. O ur m et h o d is b uilt o n t o p of t h es e w or ks t o
d e bi as ps e u d o-l a b els i n o ur s etti n g.

3. M et h o d ol o g y

Gi v e n a l a b el e d s o ur c e d o m ai n D s = { (x s
i , ysi )} N s

i = 1 a n d

a n u nl a b el e d t ar g et d o m ai n D t = { (x t
i )}

N t
i = 1 , w e ai m t o

o pti mi z e a m o d el fr o m t h e l a b el e d s o ur c e d o m ai n t o t h e u n-
l a b el e d t ar g et d o m ai n. N s a n d N t d e n ot e t h e si z e of t h e
s o ur c e a n d t ar g et d at as ets r es p e cti v el y.

3. 1. C LI P i n U D A

We first m o dif y C LI P t o b e s uit a bl e f or U D A t as ks.
C LI P [ 4 1 ] is c o m p os e d of a visi o n e n c o d er f ( m a ps i m-
a g e i nt o l o w di m e nsi o n al i m a g e r e pr es e nt ati o ns), a n d a t e xt
e n c o d er g ( m a ps s e nt e n c e i nt o t e xt r e pr es e nt ati o ns). C LI P
r e q uir es i m a g e-t e xt p airs t o j oi ntl y tr ai n f a n d g wit h s y m-
m etri c cr oss- e ntr o p y l oss [ 5 8 ] b et w e e n t h e i m a g e a n d t e xt
r e pr es e nt ati o ns. We f oll o w pr o m pt e n gi n e eri n g [4 1 ] t o pr e-
p ar e i m a g e-t e xt p airs i n U D A d at as ets. O ur l a b el y s

z d e-
n ot es a s e nt e n c e i n t h e f or m at of “ a [ D O M AI N ] p h ot o of
a [ C L A S S] ”, w h er e [ C L A S S] is a cl assi fi c ati o n cl ass n a m e
a n d [ D O M AI N ] is a d o m ai n n a m e i n U D A t as ks ( e. g., a
s y nt h eti c p h ot o of a p ers o n). D uri n g t esti n g, w e f oll o w
C LI P z er o-s h ot i nf er e n c e b y c o m p ari n g i m a g e r e pr es e nt a-
ti o ns wit h t h e cl assi fi c ati o n w ei g hts g e n er at e d b y t h e t e xt
e n c o d er, d e n ot e d as { θ z } K

z = 1 . B y f or w ar di n g K d es cri p-
ti o ns c orr es p o n di n g t o K cl ass es, w e c a n c al c ul at e t h e pr o b-
a bilit y t h at a tr ai ni n g i m a g e b el o n gs t o t h e k -t h c at e g or y.

p̈ k = P ( ŷ t
z = k |x t ) =

e x p( c o s( θ k , f(x t )/ T )
K
z = 1 e x p( c o s( θ z , f(x t )/ T )

( 1)

w h er e T is t h e t e m p er at ur e p ar a m et er l e ar n e d b y C LI P, c o s
r ef ers t o c osi n e si mil arit y [4 1 ], a n d w e d e n ot e a v e ct or of
p̈ k as p ( pr o b a bilit y of a s a m pl e i n a mi ni b at c h).

3. 2. C at ast r o p hi c F o r g etti n g M e as u r e m e nt

Aft er f or m ul ati n g C LI P f or U D A a n d att e m pti n g t o fi n e-
t u n e C LI P o n U D A d at as ets, w e f o u n d t h at C LI P s uff ers
fr o m c at astr o p hi c f or g etti n g iss u es ( Fi g. 1 ). We e x pl or e d
b as eli n es i n Ta b. 1 a n d f o u n d t h at t h e ori gi n al C LI P ( n o

1 6 1 5 7



Ta bl e 1: B as eli n e. We fi n e-t u n e C LI P ( R es N et- 1 0 1) o n
Vis D A- 2 0 1 7 s o ur c e d o m ai n tr ai ni n g s et, a n d t est o n Vis D A-
2 0 1 7 t ar g et d o m ai n v ali d ati o n s et. “ N o fi n e-t u ni n g ” is t h e
b est b as eli n e b e c a us e c at astr o p hi c f or g etti n g iss u es ar e s o
s e v er e s u c h t h at a n y fi n e-t u ni n g will c a us e a c c ur a c y dr o ps.

#  C o n fi g ur ati o n  A c c ur a c y

1 N o fi n e-t u ni n g 8 2. 3 %
2 Fi n e-t u n e 3 0 e p o c h 5 5. 6 %
3  E arl y st o p ( fi n e-t u n e 1 e p o c h) 7 3. 2 %
4  L o w er l e ar ni n g r at e 5 0 x o n # 2 7 5. 8 %

fi n e-t u ni n g) p erf or ms t h e b est ( a n y fi n e-t u ni n g will c a us e
p erf or m a n c e d e gr a d ati o n), b ut t h e d e gr a d ati o n c a n b e miti-
g at e d b y l o w eri n g t h e l e ar ni n g r at e. We pr o p os e t o d e cr e as e
t h e l e ar ni n g r at e a c c or di n g t o t h e diff er e n c e b et w e e n t h e
ori gi n al C LI P ( o ) a n d fi n e-t u n e d C LI P (f )’s r e pr es e nt ati o ns.
L ar g e diff er e n c es i n di c at e t h at C LI P f or g ets t h e pr e-tr ai n e d
k n o wl e d g e (r es ulti n g i n a n e w r e pr es e nt ati o n). T h e ori gi-
n al C LI P’s r e pr es e nt ati o n c a n b e c a c h e d b y r u n ni n g C LI P
o n t h e ori gi n al i m a g e ( n o a u g m e nt ati o n) b ef or e fi n e-t u ni n g,
a n d w e s e e k a m e a ni n gf ul a u g m e nt ati o n d uri n g fi n e-t u ni n g.

We f oll o w C L S A [ 5 6 ] t o i ntr o d u c e “ w e a k ” ( n o a p p e ar-
a n c e c h a n g e: tr a nsl at e, fli p) a n d “str o n g ” a u g m e nt ati o n
( p ert ur b a p p e ar a n c e: C T A u g m e nt [2 ], R a n d A u g m e nt [6 ]),
a n d pr o p os e t o m e as ur e t h e dist a n c e b et w e e n r e pr es e nt a-
ti o ns fr o m b ot h a u g m e nt ati o ns. We l o w er t h e l e ar ni n g r at e
w h e n t h e diff er e n c e is l ar g e b e c a us e w e o bs er v e m or e mis-
t a k es fr o m “str o n g ” (s (x s )) t h a n “ w e a k ” (w (x s )) a u g m e n-
t ati o n pr e di cti o ns w h e n C LI P str u g gl es wit h t h e h ar d tr ai n-
i n g e x a m pl e (l e a ds t o m or e f or g etti n g). C o m bi ni n g b ot h
of o ur pr o p os als, w e f or m ul at e a tri pl et of ori gi n al C LI P’s
r e pr es e nt ati o ns fr o m t h e ori gi n al i m a g e (o (x s )), fi n e-t u n e d
C LI P’s r e pr es e nt ati o ns f or “ w e a k ” ( f (w (x s )) ) a n d “str o n g ”
(f (s (x s )) ) a u g m e nt ati o n. We us e E u cli d e a n Dist a n c e t o
m e as ur e t h e si mil arit y of e a c h p air, a n d w e s u m all p airs
i nt o o ur tri pl et dist a n c e (λ s ). We fli p t h e si g n t o l o w er t h e
l e ar ni n g r at e w h e n t h e diff er e n c e of e a c h p air is l ar g e.

λ s = 1 −
1

6 B

B

i = 1

(||f̃ ( w ( x s
i )) − õ ( x s

i )||2 +

||f̃ ( s ( x s
i )) − õ ( x s

i )||2 + ||f̃ ( w ( x s
i )) − f̃ ( s ( x s

i )) ||2 )

( 2)

w h er e ∼ d e n ot es r e pr es e nt ati o n n or m ali z ati o n wit h L 2 n or m
( e. g., õ ( x s ) = o (x s )/ ||o (x s )||2 ) t o c a p e a c h r e pr es e nt ati o n
b et w e e n [- 1, 1]. T h e s u m m ati o n of all t er ms is i n t h e r a n g e
of [ 0, 6], s o w e di vi d e t h e s u m m ati o n b y 6 t o c a p λ s r a n g e t o
[ 0, 1], a n d a v er a g e dist a n c es o v er t h e b at c h si z e (B ). λ s is,
h o w e v er, u nst a bl e b e c a us e t h e i n p ut ( x s ) c h a n g es e v er y it er-
ati o n, s o t h e l e ar ni n g r at e will c o nst a ntl y b e a dj ust e d (r es ult-
i n g i n u nst a bl e tr ai ni n g). T o s ol v e t his pr o bl e m, w e pr o p os e
a m o m e nt u m t o sl o w d o w n t h e c h a n g e of λ s . We m e as ur e

Ta bl e 2: O ur i m pr o v e m e nts o n D e bi as P L. We fi n e-t u n e D e-
bi as P L ( R es N et- 1 0 1) o n Vis D A- 2 0 1 7 s o ur c e d o m ai n tr ai n-
i n g s et, a n d t est o n Vis D A- 2 0 1 7 t ar g et d o m ai n v ali d ati o n
s et. O ur i m pr o v e m e nt miti g at es c at astr o p hi c f or g etti n g is-
s u es, a n d i m pr o v e ps e u d o-l a b el q u alit y.

#  C o n fi g ur ati o n  A c c ur a c y

1  D e bi as P L [ 5 7 ] 6 4. 4 %
2  A d d C F M t o s u p er vis e d l oss ( L s u p , E q. 1 2 ) o n # 1 8 5. 9 %
3  A d d d o m ai n n a m e t o pr o m pt o n # 2 8 6. 5 %
4  A d d C F M t o ps e u d o-l a b el ( E q. 1 0 ) o n # 3 8 7. 8 %
5 A d d D C M t o ps e u d o-l a b el ( E q. 9 ) o n # 4 8 8. 5 %

t h e c o nsist e n c y b et w e e n “ w e a k ” a n d “str o n g ” r e pr es e nt a-
ti o ns t o us e as D u al C o nsist e n c y M o m e nt u m ( D C M, m s ).

m s =
1

B

B

i = 1

c o s (f (w (x s
i )) , f(s (x s

i ))) ( 3)

w h er e c o s is a c osi n e si mil arit y. We us e l o w m o m e nt u m
(s m all m s , sl o w λ s c h a n g es) w h e n t h e c o nsist e n c y is l o w
(i n di c ati n g a h ar d tr ai ni n g e x a m pl e). We c o m bi n e tri pl et
dist a n c e wit h D C M t o d e fi n e C at astr o p hi c F or g etti n g M e a-
s ur e m e nt ( C F M, λ s

z ) f or e a c h it er ati o n (z ) wit h λ s
0 = 0 .

λ s
z ← m s λ s

z + ( 1 − m s )λ s
z − 1 ( 4)

3. 3. Ps e u d o-l a b eli n g a n d I nt e r- cl ass Bi as

Ps e u d o-l a b eli n g i n C LI P. Ps e u d o-l a b eli n g [ 4 6 , 6 9 ] e n-
j o y e d s u c c ess i n U D A b y l e v er a gi n g t h e u nl a b el e d t ar g et
d o m ai n d at a, b ut p ast m et h o ds [ 3 5 ,4 9 ,6 0 ,7 6 ] w er e n ot d e-
si g n e d f or C LI P. D e bi as P L [ 5 7 ] s u p p orts ps e u d o-l a b eli n g
f or C LI P, b ut w as d esi g n e d f or a si n gl e d o m ai n. We first
f oll o w D e bi as P L t o g e n er at e a s oft l a b el o n “ w e a k ” a u g-
m e nt e d s a m pl es fr o m t h e t ar g et d o m ai n as q = p (y |w (x t )) ,
c o n v ert a s oft l a b el i nt o a h ar d l a b el b y a o n e- h ot e n c o d er
(✶ ), a n d us e a fi x e d t hr es h ol d (τ = 0 .4 ) t o s el e ct hi g h c o n-
fi d e nt ps e u d o-l a b els. We f or m ul at e a c o nsist e n c y l oss ( L c p )
b y usi n g a cr oss- e ntr o p y l oss ( H ) t o p us h t h e pr e di cti o n
fr o m “str o n g ” a u g m e nt ati o n (p (y |s (x t )) ) t o b e cl os e d t o
ps e u d o-l a b el fr o m “ w e a k ” a u g m e nt ati o n.

L c p =
1

B

B

i = 1

✶ [ m a x(q i ) ≥ τ ] · H (p (y i |s (x t
i )) , qi ) ( 5)

I nt e r- cl ass Bi as i n Ps e u d o-l a b eli n g is c a us e d b y t h e r e-
li a n c e o n a tr ai n e d m o d el t o g e n er at e ps e u d o-l a b els. If m ul-
ti pl e cl ass es h a v e si mil ar a p p e ar a n c es ( e. g., d o g vs. w olf),
t h e m o d el t e n ds t o h a v e pr e di cti o n err ors, w hi c h will g e n er-
at e i n c orr e ct ps e u d o-l a b els. As t h e tr ai ni n g g o es o n, t h es e
i n c orr e ct ps e u d o-l a b els will f urt h er i n cr e as e t h e e xisti n g
bi as a n d e v e nt u all y l e a d t o a si g ni fi c a nt a c c ur a c y dr o p. P ast
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Fi g ur e 3: D e bi as e d Ps e u d o-l a b eli n g. I nt er- cl ass bi as d e-
gr a d es ps e u d o-l a b el q u alit y a n d r e d u c es t h e r e c all of cl ass es
wit h si mil ar a p p e ar a n c e ( e. g., b us, c ar, tr u c k). O ur d e bi as e d
m et h o d c a n miti g at e s u c h iss u es a n d i m pr o v e r e c all.

ps e u d o-l a b eli n g d e bi as e d m et h o ds [ 2 3 ,5 7 ] p erf or m r e as o n-
a bl y w ell i n a g e n eri c s etti n g, b ut t h e bi as i n t h e U D A s etti n g
is m or e s e v er e d u e t o t h e d o m ai n g a p b et w e e n s o ur c e a n d
t ar g et d o m ai ns. We a n al y z e t h e ps e u d o-l a b el q u alit y i n Fi g.
3 a n d o bs er v e t h e c o- e xist e n c e eff e ct [ 5 0 ] w h er e m a n y s a m-
pl es i n t h e c o nf usi n g cl ass es t e n d t o b e mis cl assi fi e d i nt o
ot h er si mil ar cl ass es ( e. g., “ b us ”, “ c ar ”, a n d “tr u c k ” ar e all
b el o n g t o “ v e hi cl e ”). We s e e k t o si m ult a n e o usl y miti g at e
i nt er- cl ass bi as w hil e c o m b ati n g c at astr o p hi c f or g etti n g.

3. 4. Ps e u d o-l a b eli n g wit h A d a pti v e D e bi asi n g

C a us al I nf e r e n c e. We f oll o w D e bi as P L [ 5 7 ] t o us e c a us al
i nf er e n c e t o miti g at e i nt er- cl ass bi as i n ps e u d o-l a b els.
Gi v e n t h e c a us al gr a p h i n Fi g. 4 , d e bi asi n g of pr e di cti o ns
c a n b e d eli n e at e d as t h e dir e ct c a us al eff e ct al o n g x t

i → p ,
d e fi n e d as C o ntr oll e d Dir e ct Eff e ct ( C D E) [ 4 3 ,5 0 ,5 7 ].

C D E (p i ) = [ p i |d o (x t
i ), d o(D )] − [p i |d o ( x̂ t ), d o(D )] ( 6)

w h er e d o (·) d e n ot es t h e c a us al i nt er v e nti o n [ 1 3 ] t h at r e-
m o v es t h e m o d el bi as ( M ) fr o m x t , a n d x̂ t = { x t

1 , ..., xtn } .
It is, h o w e v er, c o m p ut ati o n all y e x p e nsi v e t o visit all tr ai n-
i n g s a m pl es t o m e as ur e t h e c o u nt erf a ct u al o ut c o m e.

D e bi asi n g b y D e bi as P L [ 5 7 ]. We f oll o w D e bi as P L [ 5 7 ]
t o us e A p pr o xi m at e d C o ntr oll e d Dir e ct Eff e ct ( A C D E) b y
ass u mi n g t h e m o d el bi as is n ot dr asti c all y c h a n g e d. T his
ass u m pti o n h ol ds tr u e i n o ur s etti n gs as w e ai m t o fi n e-t u n e
C LI P a n d k e e p t h e ori gi n al k n o wl e d g e. We a p pr o xi m at e t h e
first t er m ( [p i |d o (x t

i ), d o(M )]) i n E q. 6 as

p ′
i ← m̈ p ′

i + ( 1 − m̈ )
1

B

B

i = 1

p i ( 7)

w h er e p i is t h e v e ct or of pr e di cti o n fr o m E q. 1 , p ′ is t h e
d e bi as e d pr e di cti o n, a n d m̈ i s a fi x e d m o m e nt u m. T h e n t h e
d e bi as e d ps e u d o-l a b el c a n b e f or m ul at e d as

q ′
i = q i − µ l o g p ′

i ( 8)

w h er e µ is a fi x e d d e bi as f a ct or, q is a s oft l a b el fr o m E q. 5 ,
a n d q ′ is t h e d e bi as e d s oft l a b el.

Fi g ur e 4: C a us al gr a p h vi a c o u nt erf a ct u al r e as o ni n g f or d e-
bi asi n g m o d el pr e di cti o ns f or ps e u d o-l a b els.

D e bi asi n g b y C F M. D e bi as P L [ 5 7 ] w as d esi g n e d f or a
si n gl e d o m ai n ( D e bi as P L’s s etti n g s plits a si n gl e d at as et
(s u c h as CI F A R- 1 0) i nt o l a b el e d (s o ur c e) a n d u nl a b ell e d
(t ar g et) d at a). H e n c e, it s uff ers fr o m s e v er e bi as d u e t o t h e
d o m ai n g a p i n U D A ( Ta b. 2 ). We i d e ntif y t h e d e bi as f a ct or
(µ , E q. 8 ) as o n e of t h e r o ot c a us e b e c a us e µ is s e nsiti v e
(s m all µ d o es n ot eli mi n at e bi as, a n d l ar g e µ pr e v e nts t h e
m o d el fr o m l e ar ni n g n e w k n o wl e d g e [ 5 0 ,5 7 ]). M or e o v er, µ
is s et t o a fi x e d v al u e, b ut t h e bi as is d e p e n d e nt o n t h e d o-
m ai n s etti n g ( e. g., r e al- w orl d vs. s y nt h eti c will li k el y h a v e
a hi g h er bi as t h a n s k et c h vs. q ui c k dr a w), s o w e pr o p os e t o
a d a pti v el y a dj ust µ . We i n c or p or at e c at astr o p hi c f or g etti n g
i nf or m ati o n b y r e pl a ci n g µ wit h C F M ( λ t

z ) t o a dj ust µ a d a p-
ti v el y, a n d r e pl a c e t h e fi x m o m e nt u m (m̈ , E q. 7 ) wit h D C M
(m t ) t o als o a dj ust m̈ a d a pti v el y. B ot h C F M a n d D C M f or
d e bi asi n g ar e c o m p ut e d o n t ar g et d o m ai n i n p ut ( x t ).

p ′
i ← m t p ′

i + ( 1 − m t )
1

B

B

i = 1

p i ( 9)

q ′
i = q i − λ t

z l o g p ′
i ( 1 0)

Fi n all y, t h e d e bi as e d c o nsist e n c y l oss ( L d c p ) is f or m ul at e d
b y r e pl a ci n g q wit h q ′ o n t h e c o nsist e n c y l oss ( E q. 5 ).

L d c p =
1

B

B

i = 1

✶ [ m a x(q ′
i ) ≥ τ ] · H (p (y i |s (x t

i )) , q′i ) ( 1 1)

3. 5. E n d-t o- e n d Tr ai n a bl e Pi p eli n e

Fi g. 2 s h o ws t h e pi p eli n e. We us e s y m m etri c c o ntr asti v e
l oss [4 1 ] (L s u p ) a n d d e bi as e d c o nsist e n c y l oss (L d c p ).

L = λ s
z L s u p (D s ) + Λ L d c p (D t ) ( 1 2)

w h er e Λ = 0 .5 is a c o nst a nt t er m f or a dj usti n g L d c p . We
us e C F M ( λ t

z , E q. 2 ) t o a dj ust L s u p t o miti g at e c at astr o p hi c
f or g etti n g iss u es. O ur l oss f or m ul ati o n all o ws e n d-t o- e n d
tr ai ni n g t o si m ult a n e o usl y pr es er v e C LI P k n o wl e d g e, s u-
p er vis e d fi n e-t u ni n g o n t h e s o ur c e d o m ai n, a n d fi n e-t u ni n g
wit h d e bi as ps e u d o-l a b els o n t h e t ar g et d o m ai n.

4. E x p e ri m e nt al S et u p

D at as et. We e v al u at e o ur pr o p os e d m et h o ds o n f o ur p o p-
ul ar U D A d at as ets. Vis D A- 2 0 1 7 [ 3 9 ] c o nt ai ns 1 5 2 k s y n-
t h eti c i m a g es a n d 5 5 k r e al o bj e ct i m a g es of 1 2 c at e g ori es

1 6 1 5 9



Figure 5: The confusion matrix on VisDA-2017 shows the effect of pseudo-label and the pseudo-label with adaptive debiasing
(PAD). Diagonal values are true positive (darker = better) and other values are errors (brighter = better).

Table 3: Accuracies (%) on VisDA-2017. “-B” indicates ViT-B (except CDTrans uses DeiT). See full table in Appendix.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

RN-101 [14] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
SDAT [42] 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
CAN [20] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
AaD [62] 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
Ours (RN-101) 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5

ViT-B [9] 99.1 60.7 70.6 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
TVT-B [61] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans [60] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B [49] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
SDAT-B [42] 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
Ours-B 98.1 93.8 87.1 85.5 98.0 96.0 94.4 86.0 94.9 93.3 93.5 70.2 90.9

Table 4: Accuracies (%) on Office-Home. “-B” indicates ViT-B (except CDTrans uses DeiT). See full table in Appendix.

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg.

RN-50 [14] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
SDAT [42] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
AaD [62] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
KUDA [48] 58.2 80.0 82.9 71.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9
Ours (RN-50) 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6

ViT-B [9] 54.7 83.0 87.2 77.3 83.4 85.5 74.4 50.9 87.2 79.6 53.8 88.8 75.5
CDTrans [60] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT-B [61] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
SDAT-B [42] 70.8 87.0 90.5 85.2 87.3 89.7 94.1 70.7 90.6 88.3 75.5 92.1 84.3
SSRT-B [49] 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.3 85.7 78.6 91.8 85.4
Ours-B 76.4 90.6 90.8 86.7 92.3 92.0 86.0 74.5 91.5 86.9 79.1 93.1 86.7

sampled from Microsoft COCO. Office-Home [54] has
15.5k images of 65 categories from 4 domains: Art (Ar),
Clipart (Cl), Product (Pr), and Real-world (Rw). Office-
31 [44] includes 31 classes and 4.6k images from 3 do-
mains: Amazon (A), DSLR (D), and Webcam (W). Do-
mainNet [38] is the most challenging dataset that contains
0.6 million images of 345 classes from 6 domains: Cli-
part (clp), Infograph (inf), Painting (pnt), Quickdraw (qdr),
Real-world (rel), and Sketch (skt). We strictly follow the
protocol of previous works [42, 49, 60]. On VisDA-2017,
we use synthetic as the source domain and the real object
as the target domain; on the other three datasets, we select
one domain as the source and another domain as the tar-
get. We have 12, 6, and 30 source-target combinations on

Office-Home, Office-31, and DomainNet, respectively.

Training Configuration. We experiment on both ViT-
B [9] (patch size 16 × 16, batch size 16) and ResNet [14]
(batch size 32) as the vision encoder in CLIP [41]. The
learning rate is set to 1e−6 on all datasets, except 1e−7 on
VisDA-2017 because training on VisDA-2017’s synthetic
data is not stable and the training may diverge. We freeze
the text encoder and only train the vision encoder in the
CLIP framework. We follow the training process in CLIP
to use Adam optimizer with decoupled weight decay reg-
ularization [36] incorporated into all weights that are not
gains or biases. Cosine schedule [33] is used to decay the
learning rate and we train every setting for 30 epochs.

16160



Table 5: Accuracies (%) on DomainNet. In each sub-table, the column-wise means source domain and the row-wise means
target domain. “-B” indicates ViT-B (except CDTrans uses DeiT). See full table in Appendix.

MDD+
SCDA [25] clp inf pnt qdr rel skt Avg. ViT-B [9] clp inf pnt qdr rel skt Avg. CD-

Trans∗ [60] clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9 clp - 27.2 53.1 13.2 71.2 53.3 43.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
inf 32.7 - 34.5 6.3 47.6 29.2 30.1 inf 51.4 - 49.3 4.0 66.3 41.1 42.4 inf 57.0 - 54.4 12.8 69.5 48.4 48.4
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2 pnt 53.1 25.6 - 4.8 70.0 41.8 39.1 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3 qdr 30.5 4.5 16.0 - 27.0 19.3 19.5 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
rel 55.5 23.7 52.9 9.5 - 45.2 37.4 rel 58.4 29.0 60.0 6.0 - 45.8 39.9 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
skt 55.8 20.1 46.5 15.0 56.7 - 38.8 skt 63.9 23.8 52.3 14.4 67.4 - 44.4 skt 69.0 29.6 59.0 27.2 72.5 - 51.5

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3 Avg. 51.5 22.0 46.1 8.5 60.4 40.3 38.1 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

SDAT
-B [42] clp inf pnt qdr rel skt Avg. SSRT

-B [49] clp inf pnt qdr rel skt Avg. Ours
-B clp inf pnt qdr rel skt Avg.

clp - 22.0 41.5 - 57.5 47.2 42.1 clp - 33.8 60.2 19.4 75.8 59.8 49.8 clp - 73.6 75.4 74.6 76.4 76.3 75.3
inf 33.9 - 30.3 - 48.1 27.9 35.0 inf 55.5 - 54.0 9.0 68.2 44.7 46.3 inf 55.1 - 54.3 53.6 54.9 54.9 54.6
pnt 47.5 20.7 - - 58.0 41.8 42.0 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0 pnt 71.1 70.6 - 70.0 72.7 71.7 71.2
qdr - - - - - - - qdr 42.5 8.8 24.2 - 37.6 33.6 29.3 qdr 36.8 18.0 32.0 - 31.7 34.9 30.7
rel 56.7 25.1 53.6 - - 43.9 44.8 rel 69.9 37.1 66.0 10.1 - 58.9 48.4 rel 84.2 83.5 83.5 83.1 - 83.6 83.6
skt 58.7 21.8 48.1 - 57.1 - 46.4 skt 70.6 32.8 62.2 21.7 73.2 - 52.1 skt 68.1 66.6 67.2 66.1 67.5 - 67.1

Avg. 49.2 22.4 43.4 - 55.2 40.2 42.1 Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2 Avg. 63.1 62.5 62.5 69.5 60.6 64.3 63.7

Table 6: Accuracies (%) on Office-31.

Method A�W D�W W�D A�D D�A W�A Avg.

ViT-B [9] 91.2 99.2 100. 90.4 81.1 80.6 90.4
SHOT-B [27] 94.3 99.0 100. 95.3 79.4 80.2 91.4
CDTrans [60] 96.7 99.0 100. 97.0 81.1 81.9 92.6
SSRT-B [49] 97.7 99.2 100. 98.6 83.5 82.2 93.5
TVT-B [61] 96.4 99.4 100. 96.4 84.9 86.1 93.8
Ours-B 97.9 99.2 100. 98.5 84.6 85.3 94.3

5. Results
5.1. Ablation studies

Importance of Pretrained Data. Since CLIP is data-
hungry [19,34,41,68], we first study the sensitivity of CLIP
in the UDA setting. We compare public models from CLIP
[41] (trained on 400 million image-text pairs) with Open-
CLIP [18] (trained on Conceptual Captions dataset [45], 3
million image-text pairs). Tab. 7 shows the accuracy drops
from 82% to 59% when the pre-trained dataset is reduced.
Therefore, although CLIP has a strong zero-shot generaliza-
tion, such capability is learned through large-scale data. In
contrast, a small dataset is likely to lack enough samples to
disentangle the domain and class. We conclude that a large
pre-trained dataset is important, but we keep both datasets
throughout our ablation studies to show that our improve-
ment holds true even with small pre-trained data.

Importance of CFM. CLIP suffers from catastrophic for-
getting issues (Fig. 1), so we use Catastrophic Forgetting
Measurement (CFM) to compare representations from the
fine-tuned CLIP against the original CLIP. CFM adjusts the
learning rate to slow down the forgetting process while ac-
cumulating new knowledge from the UDA dataset (Fig. 7).
Tab. 7 shows that CFM can recover from -26% accuracy
drops to improve accuracy by +1.6% (row: 6-8). Fig. 6 fur-
ther shows that the improvement from CFM is consistent
across all classes on multiple datasets.

(a) OfficeHome [54] (b) DomainNet [38]

Figure 6: Our improvement compared to the original
CLIP [41]: the score is averaged over all tasks using each
domain as the target domain. “-B” refers to ViT-B [9].

Importance of Adaptive Debiasing. Pseudo-labeling
improves our method by +2% (Tab. 7, row: 8,9), and we
enhance the pseudo-labeling process with adaptive debias-
ing (PAD) by our CFM and DCM on top of DebiasPL [57]
(row: 9, 10). To further verify the effectiveness of our de-
bias method, we summarize the confusion matrix in Fig. 5
and compute precision/recall in Fig. 3 to show improvement
in inter-class confusion (“car”, “bus” and “truck” belong to
“vehicle” category).

5.2. External Comparison

We achieved state-of-the-art results on four public
datasets using ViT-B backbone, and we test multiple con-
volutional backbones for a fair comparison.

VisDA-2017. We first use ResNet-101 (RN-101) as the
baseline model to perform fair comparisons with recent
methods [4, 10, 15, 42, 59, 71]. Tab. 3 shows that our
method consistently improves almost all classes, and im-
proves 4.2% on the average accuracy compared to the pre-
vious best method, SDAT [42]. We then follow ViT-based
methods [42, 49, 60] to use ViT-B (denote as “-B”) and
achieve superior performance compared to the state-of-the-
art methods. We also observe a significant accuracy in-
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Table 7: Ablation study. We fine-tune CLIP (ResNet-101)
on VisDA-2017 source domain training set, and test on
VisDA-2017 target domain validation set. CLIP, trained
on 400M, ourperforms 3M (row: 1,6). Finetune CLIP on
a source domain leads to catastrophic forgetting and CFM
can mitigate it (row: 6-8). Pseudo-label (PL) with Adaptive
Debiasing (PAD) further improves accuracy (row: 8-10).

# Pretrain CLIP Source CFM PL PAD Accuracy

1 3 M ✓ ✗ ✗ ✗ ✗ 59.1%
2 3 M ✓ ✓ ✗ ✗ ✗ 44.3%
3 3 M ✓ ✓ ✓ ✗ ✗ 62.9%
4 3 M ✓ ✓ ✓ ✓ ✗ 65.7%
5 3 M ✓ ✓ ✓ ✓ ✓ 67.1%

6 400 M ✓ ✗ ✗ ✗ ✗ 82.3%
7 400 M ✓ ✓ ✗ ✗ ✗ 55.6%
8 400 M ✓ ✓ ✓ ✗ ✗ 83.9%
9 400 M ✓ ✓ ✓ ✓ ✗ 86.0%
10 400 M ✓ ✓ ✓ ✓ ✓ 88.5%

crease on “truck”, thanks to our adaptive debiasing module
that makes “truck” more discriminate from “car”.

Office-Home/31. For Office-Home [54], we first use
ResNet-50 (RN-50) to fairly compare with recent meth-
ods [4, 25, 42, 59]. Tab. 4 shows a +2.7% increase from
the previous best method, KUDA [48]. We then follow
ViT-based methods [42, 49, 60, 61] to use ViT-B, and ob-
serve consistent improvement across almost all settings. For
office-31 [44], we have a similar observation on consistent
improvement compared to the recent methods (Tab. 6).

DomainNet. Previous improvement (SSRT [49] vs SDAT
[42]) only achieves +3.1% accuracy on DomainNet [38] be-
cause this is the largest dataset, several domains have com-
pletely different appearances (e.g., infographic vs quick-
draw), and the distributions among different domains are
imbalanced. Our method, however, achieves +18.5% im-
provement over the previous best method, SSRT, thanks to
our proposed CFM for preserving the original CLIP’s pre-
trained knowledge, and our pseudo-label with adaptive de-
biasing for improving the pseudo-label quality.

5.3. Generalization of Our Method

Applications. We observe catastrophic forgetting issue in
CLIP across multiple applications where the accuracy de-
creases when fine-tuning CLIP in Incremental Learning (-
9.9%), and Domain Generalization (-14.0%) and CFM can
increase the accuracy +5.3%, +2.4% respectively. For few-
shot learning, our method outperforms Tip-Adapter-F [72]
by 0.5%. Details are in Appendix.

Vision backbone. Our method works on both vision lan-
guage (CLIP), and vision model. With our method, BiT-

Figure 7: We use cosine scheduler with base learning rate
(base LR) 1e−6 (except VISDA 2017 (1e−7)) and warm up
for 1 epoch. CFM (λs

z) is the loss weight for the source
domain (Lsup) and CFM will adjust the gradient together
with the learning rate (λs

z ∗ LR). Low CFM (high catas-
trophic forgetting) will decrease the gradient, and we fur-
ther smooth CFM with momentum (DCM).

M-R101x3 [22] (trained on JFT-300M) achieved 88.1%
on VisDA-2017 (comparable to CLIP (90.9%, Tab. 3)).
However, a small pre-trained dataset is a limitation, as our
method has no effect on ResNet-101 with ImageNet-1K due
to the minimal effect of catastrophic forgetting issues.

5.4. Computational Complexity

It takes 16.5 hours to train CLIP with ViT-B backbone on
an Nvidia Tesla V100 GPU for VisDA-2017. Pseudo-label
is a standard method in UDA [35, 49, 60, 76] and adding
pseudo-label increases the training times to 23.3 hours. To
compute CFM, we forward the entire dataset with the orig-
inal CLIP (0.6 hours for VisDA-2017) to cache the origi-
nal CLIP representation (only needs to do once). We did
not observe any overhead from CFM during training since
CFM simply compare the low dimensional representations
(obtain as part of the training). We observe a training time
increase to 23.5 hours from our adaptive debiasing, but the
overhead is trivial with <1% increases from the pseudo-
label setting. Our method does not change the test speed.

6. Conclusion
We propose CLIP in the UDA setting. We first in-

clude a domain name into a prompt, and we uncover catas-
trophic forgetting issues when fine-tuning CLIP. We pro-
pose to counter this by adjusting the learning rate according
to CFM. We add pseudo-labeling by further extending De-
biasPL (from a single domain to multiple domains in the
UDA setting) with our CFM and DCM to better adjust de-
bias strength and momentum. Our method does not intro-
duce computational overhead, and achieves superior results
than the state-of-the-art methods on four public datasets,
with a large improvement (+18.5%) on DomainNet. For
future work, CFM and DCM could be improved to a more
sophisticated function or even learnable.
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