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BACKGROUND: Postoperative respiratory failure (PRF) is associated with increased hospital
charges and worse patient outcomes. Reliable prediction models can help to guide post-
operative planning to optimize care, to guide resource allocation, and to foster shared
decision-making with patients.

RESEARCH QUESTION: Can a predictive model be developed to accurately identify patients at
high risk of PRF?

STUDY DESIGN AND METHODS: In this single-site proof-of-concept study, we used structured
query language to extract, transform, and load electronic health record data from 23,999
consecutive adult patients admitted for elective surgery (2014-2021). Our primary outcomewas
PRF, defined as mechanical ventilation after surgery of > 48 h. Predictors of interest included
demographics, comorbidities, and intraoperative factors. We used logistic regression to build a
predictive model and the least absolute shrinkage and selection operator procedure to select
variables and to estimatemodel coefficients.We evaluatedmodel performance using optimism-
corrected area under the receiver operating curve and area under the precision-recall curve and
calculated sensitivity, specificity, positive and negative predictive values, and Brier scores.

RESULTS: Two hundred twenty-five patients (0.94%) demonstrated PRF. The 18-variable pre-
dictive model included: operations on the cardiovascular, nervous, digestive, urinary, or
musculoskeletal system; surgical specialty orthopedic (nonspine); Medicare or Medicaid (as the
primary payer); race unknown; American Society of Anesthesiologists class$ III; BMI of 30 to
34.9 kg/m2; anesthesia duration (per hour); net fluid at end of the operation (per liter); median
intraoperative FIO2, end title CO2, heart rate, and tidal volume; and intraoperative vasopressor
medications. The optimism-corrected area under the receiver operating curvewas 0.835 (95%CI,
0.808-0.862) and the area under the precision-recall curve was 0.156 (95% CI, 0.105-0.203).

INTERPRETATION: This single-center proof-of-concept study demonstrated that a structured
query language extract, transform, and load process, based on readily available patient and
intraoperative variables, can be used to develop a prediction model for PRF. This PRF
prediction model is scalable for multicenter research. Clinical applications include decision
support to guide postoperative level of care admission and treatment decisions.
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Take-home Points

Study Question: In this study, we sought to determine
if a predictivemodel, using readily available patient and
intraoperative factors, could identify patients at high
risk of postoperative respiratory failure accurately.
Results: We developed an 18-variable predictive
model for PRF that included operations on the car-
diovascular, nervous, digestive, urinary, or musculo-
skeletal system; surgical specialty orthopedic
(nonspine); Medicare or Medicaid (as the primary
payer); race unknown; American Society of Anes-
thesiologists class $ III; BMI of 30 to 34.9 kg/m2;
anesthesia duration (per hour); net fluid at end of the
operation (per liter); median intraoperative FIO2,
end-tidal carbon dioxide, heart rate, and tidal vol-
ume; and intraoperative vasoactive medications.
Interpretation: A predictive model for postoperative
respiratory failure, based on readily available patient
and intraoperative variables, achieved an optimism-
corrected area under the receiver operating charac-
teristic curve of 0.835 (95% CI, 0.808-0.862) and an
area under the precision-recall curve of 0.156
(95% CI, 0.105-0.203).
Postoperative respiratory failure (PRF), defined as

requiring mechanical ventilation (MV) after surgery
of > 48 h, is a major source of morbidity.1 With an
incidence of 0.2% to 7.5%,1-4 PRF is associated with
increased hospital charges, hospital and ICU lengths of
stay, and in-hospital and postdischarge morbidity and
mortality.5-8 Risk factors for PRF in patients
undergoing a broad spectrum of surgical procedures
have been analyzed in prior predictive models.1,9,10

However, consensus among these models is lacking
ABBREVIATIONS: AUC = area under the receiver operating charac-
teristic curve; AUPRC = area under the precision-recall curve; CDS =
clinical decision support; EHR = electronic health record; EtCO2 =
end-tidal CO2; ETL = extract; transform = and load; LASSO = least
absolute shrinkage and selection operator; MV = mechanical ventila-
tion; PRF = postoperative respiratory failure; SQL = structured query
language
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because of differences in PRF definition, population,
and predictors of interest. Other studies have focused
on homogeneous patient populations, such as
abdominal,11 neurological,12 or cardiovascular13

surgery patients, often including both elective and
emergent surgical procedures. The Centers for
Medicare & Medicaid Services includes PRF that occurs
after elective surgery in the Hospital-Acquired
Condition Reduction and Hospital Compare Public
Reporting Programs, yet progress in reducing the
incidence of PRF has been hindered by this lack of
consensus in identifying the most at-risk patients.
Identifying patients at increased risk of PRF after
elective surgery is an important step toward developing
clinical workflows to improve postoperative care and
outcomes while appropriately allocating hospital
resources. Such workflows include postoperative level
of care, admission location, monitoring, and treatment
orders for at-risk patients.

Herein we describe an automated structured query
language (SQL)-based extract, transform, and load
(ETL) procedure that enables rapid acquisition of data
exclusively from an electronic health record (EHR).
We then used the selected and validated data to
develop a single-site proof-of-concept predictive
model14 for PRF after elective surgery in adults. Our
aim was to develop a model that considered a
patient’s pre-existing risk factors, intraoperative care
and physiologic parameters, and status on exiting the
operating room to identify patients at risk of PRF. We
hypothesized that our model would have at least good
discrimination and would be well calibrated across its
range of predicted probabilities. Our methods will
allow us to expand our SQL ETL process across the
five centers of our University of California Critical
Care Research Collaborative for further model
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development and validation. Generating standardized,
automated approaches to large-scale multicenter
Operations on the Cardiovasc

Nervous, or Orthopedic syste
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Figure 1 – Conceptual framework of predictive model for postoperative respi
postoperative respiratory failure.
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research using real-world data is crucial in predictive
modeling of rare adverse events, such as PRF.
Study Design and Methods
This retrospective cohort study was approved by the institutional review
board at the University of California, Davis; the requirement for
informed consent was waived. This article adheres to the
Strengthening the Reporting of Observational Studies in Epidemiology
Statement15 and the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis Or Diagnosis16 guidelines.

Study Design, Setting, and Population

We analyzed 23,999 consecutive adult patients undergoing elective
surgery at a single academic center (2014-2021). The start date was
selected based on the conversion from paper to EHR clinical
documentation for perioperative services and the end date was
selected to provide access to 8 full calendar years of data for ETL.
Inclusion criteria were adults aged 18 years and older, elective
surgical admissions, undergoing an operation within 24 h of
admission, and general anesthesia. Exclusion criteria were transfers
from another hospital and a tracheostomy present on admission.
The primary outcome was PRF. Secondary outcomes included
hospital and ICU length of stay and discharge disposition.

Data ETL Procedure

PRFwas defined as> 48 h ofMV, from the anesthesia end time to hospital
discharge. Predictors of interest spanned the preoperative and
intraoperative care continuum and included demographics, pre-existing
comorbidities, and preoperative and intraoperative factors (e-Table 1).
We used SQL coding to perform the data ETL procedure from our Epic
EHR (e-Appendix 1). Two clinicians validated data acquisition by
comparing ETL output for 100% of patients with PRF and a random
10% of patients without PRF via manual independent chart review until
agreement reached 100%. All variables had < 2.5% missing data;
missingness was imputed to the cohort mode for categorical variables
and median for continuous variables. Although other studies have
included preoperative laboratory values, despite also having >

50% missing data17 and emergency surgery18-20 in their models, we
opted not to include either. Although our health system, like others, has
used an SQL ETL process for clinical data, this was our first use of this
method for perioperative flow sheet data from the Epic OpTime module.

Descriptive Statistics

We report the median and interquartile range for continuous variables
and total number and percentage for categorical variables. We used
Pearson’s c2 test and the Wilcoxon rank-sum test to compare
patients with PRF with patients without PRF for categorical and
continuous variables, respectively. Significance was set a priori at
P < .05. Data were analyzed using Stata MP version 18 software
(StataCorp) and R version 4.2.2 software (R Foundation for
Statistical Computing).

Predictive Model Development and Evaluation

We used logistic regression to build the predictive model14 and least
absolute shrinkage and selection operator (LASSO)21 regularization
to select variables and estimate model coefficients (e-Table 2). Our
conceptual model for the analysis considered a patient’s pre-existing
risk factors, intraoperative factors, and status on exiting the
operating room to identify patients at risk of PRF (Fig 1).

Before model fitting, we dichotomized all categorical variables and
standardized all numeric variables to have a mean of 0 and an SD of
Anesthesia Duration
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ular,
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rdiac arrythmias, valvular disease, pulmonary circulatory disorders,
omplicated), paralysis, other neurological disorders, chronic

thyroidism, renal failure, liver disease, peptic ulcer disease excluding
stasis, rheumatoid arthritis/collagen vascular diseases coagulopathy,
ciency anemia, alcohol abuse, drug abuse, psychoses, depression.25
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Figure 2 – Diagram showing steps in the model derivation and validation process. M = mean; LASSO¼ least absolute shrinkage and selection operator.
1. To select the regularization parameter in the logistic LASSO model,
we used a 10-fold cross-validation procedure and application of the 1-
SE rule. This helps to ensure the generalizability and interpretability of
the model by encouraging parsimony.22 We retained variables with
nonzero coefficients from the fitted logistic LASSO model in the
final prediction model. Given the small number of patients with PRF
and the need to develop a model representative of the real-world
prevalence of PRF, we used the entire data set in model
development. To evaluate the performance of the model while
controlling for overfitting, we used an optimism-corrected bootstrap
procedure.23 We drew 250 bootstrap samples from the training data
stratified by PRF group, maintaining the overall sample prevalence,
and repeated the logistic LASSO modeling procedure on each
bootstrap sample. We estimated optimism-corrected performance
using the bootstrap models following Steyerberg.23 We additionally
used a bootstrap procedure in combination with the logistic
LASSO24 model fitting procedure to evaluate the stability of the
variable selection procedure by calculating the frequency at which
each variable was selected in the bootstrap models. This approach
has the advantage of providing a robust feature selection
performance and a more accurate estimate of coefficients. By
training multiple LASSO models on different bootstrap samples of
4 Original Research
data, this method accounts for data variability and helps to identify
features that consistently are important across different samples. We
evaluated model performance using area under the receiver operating
characteristic curve (AUC) and area under the precision-recall curve
(AUPRC). Sensitivity, specificity, positive and negative predictive
values, and Brier scores were calculated using a cutoff that
maximized Youden’s index (Fig 2).
Sensitivity and Robustness Analyses

We conducted secondary analyses to verify the optimism-corrected
bootstrap procedure results and to evaluate robustly the model’s
performance. For these analyses, data were split temporally into a
training set (2014-2018) and a test set (2019-2021). First, the training
set was used to develop a model in the same manner as the primary
analysis and was evaluated on the test set. Second, again using the
training set, we developed models using 1,000 bootstrapped data sets
with equal numbers of patients with PRF and patients without PRF by
randomly sampling from among patients without PRF. These models
also were evaluated on the test set (e-Appendix 2). We also conducted
a sensitivity analysis to determine the effect of the Elixhauser
comorbidity count and score on model performance (e-Appendix 3).
Results

Pre-existing Patient and Intraoperative
Characteristics

After 23,999 consecutive surgical encounters, PRF
developed in 225 patients (0.94%). Patients with PRF
were older, male, covered by Medicare, not obese, and
admitted with multiple comorbidities (Table 1).25,26

Patients with PRF underwent longer anesthesia and
surgery durations and more often underwent surgery on

the cardiovascular system (Table 2). Patients with PRF
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TABLE 1 ] Patient Characteristics: Patients Who Demonstrated PRF Compared With Patients Who Did Not
Demonstrate PRF

Variable
Total Sample
(N ¼ 23,999)

No PRF
(n ¼ 23,774)

All PRF
(n ¼ 225) P Valuea

Patient demographics

Age, y 61 (49-70) 61 (49-70) 66 (56-73) < .001

Sex, male 11,237 (46.8) 11,111 (46.7) 126 (56.0) .006

Race .310

White 17,123 (71.3) 16,973 (71.4) 150 (66.7)

Black (Black and African American) 1,396 (5.8) 1,382 (5.8) 14 (6.2)

Asian (Asian, Native Hawaiian or Pacific Islander,
American Indian)

1,379 (5.7) 1,361 (5.7) 18 (8.0)

Other (other, multiracial) 3,733 (15.6) 3,696 (15.5) 37 (16.4)

Unknown (unable, unavailable, unknown, declined) 368 (1.5) 362 (1.5) 6 (2.7)

Ethnicity .319

Non-Hispanic 20,559 (85.7) 20,373 (85.7) 186 (82.7)

Hispanic 2,799 (11.7) 2,769 (11.6) 30 (13.3)

Not reported (unknown) 641 (2.7) 632 (2.7) 9 (4.0)

Primary payer category < .001

Medicare 10,844 (45.2) 10,701 (45.0) 143 (63.6)

Medicaid 3,633 (15.1) 3,589 (15.1) 44 (19.6)

Commercial insurance 9,416 (39.2) 9,379 (39.5) 37 (16.4)

Unavailable/unknown 106 (0.4) 105 (0.4) 1 (0.4)

Patient comorbidities

BMI, kg/m2 < .001

< 18.5 (underweight) 534 (2.3) 519 (2.2) 15 (6.7)

18.5-24.9 (normal) 6,197 (26.2) 6,126 (26.1) 69 (30.8)

25-29.9 (overweight) 7,409 (31.3) 7,338 (31.3) 71 (31.7)

30-34.9 (obese 1) 5,007 (21.2) 4,973 (21.2) 34 (15.2)

35-39.9 (obese 2) 2,530 (10.7) 2,512 (10.7) 18 (8.0)

$ 40 (morbidly obese) 1,986 (8.4) 1,969 (8.4) 17 (7.6)

ASA class, $ III 15,957 (66.7) 15,746 (66.4) 211 (93.8) < .001

Elixhauser comorbidity scoreb 1 (0-8) 1 (0-8) 11 (4-17) < .001

Elixhauser comorbidity countb 2 (1-4) 2 (1-4) 4 (3-7) < .001

Data are presented as No. (%) or median (interquartile range), unless otherwise indicated. ASA ¼ American Society of Anesthesiologists; PRF ¼ post-
operative respiratory failure.
aWilcoxon rank-sum test for continuous variables and Pearson c2 test for categorical variables.
bComorbid conditions included in the Elixhauser measures: congestive heart failure, cardiac arrhythmias, valvular disease, pulmonary circulatory dis-
orders, peripheral vascular disorders, hypertension (uncomplicated), hypertension (complicated), paralysis, other neurologic disorders, chronic pulmonary
disease, diabetes (uncomplicated), diabetes (complicated), hypothyroidism, renal failure, liver disease, peptic ulcer disease excluding bleeding, AIDS or HIV,
lymphoma, metastatic cancer, solid tumor without metastasis, rheumatoid arthritis or collagen vascular diseases, coagulopathy, obesity, weight loss, fluid
and electrolyte disorders, blood loss anemia, deficiency anemia, alcohol abuse, drug abuse, psychoses, and depression.25 Elixhauser comorbidity score was
calculated by assigning weights to each comorbidity based on van Walraven et al.26
also showed lower operative tidal volume and greater net
positive fluid balance at the end of surgery and 24 h after
surgery. Patients with PRF received more morphine
equivalent units and more often received vasopressor
medications. The most frequently used vasopressor
medication in patients with PRF was norepinephrine
and in patients without PRF was phenylephrine.
chestcc.org
Among all patients, the first oxygen device outside of the
operating room was supplemental oxygen (47.3%),
followed by room air (45.9%), MV (4.9%), noninvasive
positive pressure ventilation (0.8%), and high-flow nasal
cannula (0.05%). Patients with PRF left the operating
room while receiving MV more often than patients
without PRF (49.8% vs 4.5%) and while receiving room
5
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TABLE 2 ] Perioperative Characteristics: Patients Who Demonstrated PRF Compared With Patients Who Did Not
Demonstrate PRF

Variable
Total Sample
(N ¼ 23,999)

No PRF
(n ¼ 23,774)

All PRF
(n ¼ 225) P Valuea

Anesthesia procedure

Anesthesia duration, h 4.6 (3.3-6.4) 4.6 (3.3-6.3) 8.8 (5.8-11.4) < .001

Surgical specialty < .001

General 4,706 (19.6) 4,678 (19.7) 28 (12.4)

Cardiovascular 2,898 (12.1) 2,807 (11.8) 91 (40.4)

Neurosurgery, including spine 3,520 (14.7) 3,487 (14.7) 33 (14.7)

Oncology 2,200 (9.2) 2,179 (9.2) 21 (9.3)

Orthopedic, nonspine 5,441 (22.7) 5,431 (22.8) 10 (4.4)

Urology, gynecology 3,336 (13.9) 3,311 (13.9) 25 (11.1)

Head, eyes, ears, nose, throat 1,880 (7.8) 1,863 (7.8) 17 (7.6)

Other 18 (0.1) 18 (0.1) 0 (0)

Operations by ICD coding system < .001

Cardiovascular 1,554 (6.4) 1,465 (6.2) 79 (35.1)

Digestive 4,165 (17.4) 4,118 (17.3) 47 (20.9)

Ear 105 (0.4) 105 (0.4) 0 (0)

Endocrine 678 (2.8) 676 (2.8) 2 (0.9)

Eye 29 (0.1) 29 (0.1) 0 (0)

Female genital organs 1,494 (6.2) 1,489 (6.3) 5 (2.2)

Hemic and lymphatic 675 (2.8) 671 (2.8) 4 (1.8)

Integumentary 1,164 (4.9) 1,160 (4.9) 4 (1.8)

Male genital organs 428 (1.8) 428 (1.8) 0 (0)

Musculoskeletal 7,087 (29.5) 7,062 (29.7) 25 (11.1)

Nervous 1,846 (7.7) 1,821 (7.7) 25 (11.1)

Nose, mouth, and pharynx 499 (2.1) 495 (2.1) 4 (1.8)

Obstetric 51 (0.2) 51 (0.2) 0 (0)

Respiratory 1,022 (4.3) 1,012 (4.3) 10 (4.4)

Urinary 1,882 (7.8) 1,862 (7.8) 20 (8.9)

Miscellaneous diagnostic and
therapeutic procedures

8 (< 0.1) 8 (< 0.1) 0 (0)

Unable to map to ICD clinical
classification system because of
annual updates to technical
specification and multiyear
dataset

1,322 (5.5) 1,322 (5.6) 0 (0)

Surgical duration, h 3.3 (2.1-4.8) 3.2 (2.1-4.8) 6.7 (4.1-9.4) < .001

Intraoperative ventilator management

Tidal volume, mL 500 (434-550) 500 (435-550) 475 (421-536) .004

Positive end-expiratory pressure, cm
H2O

5 (5-5) 5 (5-5) 5 (5-5) .004

Positive end-expiratory pressure >

5 cm H2O
4,212 (18.1) 4,158 (18.0) 54 (24.3) .05

Peak inspiratory pressure, cm H2O 19 (16-23) 19 (16-23) 19 (17-23) .157

Plateau pressure, cm H2O 18 (16-20) 18 (16-19) 21 (16-28) .359

No. of patients 32 26 6

Respiratory rate 12 (10-12) 12 (10-12) 12 (10-13) .004

(Continued)
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TABLE 2 ] (Continued)

Variable
Total Sample
(N ¼ 23,999)

No PRF
(n ¼ 23,774)

All PRF
(n ¼ 225) P Valuea

FIO2 0.56 (0.49-0.61) 0.56 (0.49-0.61) 0.60 (0.53-0.84) < .001

Oxygen saturation, % 99 (98-100) 99 (98-100) 100 (99-100) < .001

EtCO2, mm Hg 35 (33-37) 35 (33-37) 34 (32-36) < .001

Intraoperative fluid management

Net fluid in operating room, L 1.3 (0.8-2.0) 1.3 (0.8-2.0) 2.3 (1.1-5.5) < .001

Net fluid in first 24 h after surgery, L 0.28 (–0.6 to 1.1) 0.27 (–0.6 to 1.1) 1.17 (0.1-2.8) < .001

Intraoperative medication management

Morphine equivalent units, total mg 90 (71-127) 90 (71-126) 147 (82-225) < .001

Vasopressor medications administered
in the operating room (includes
bolus dose and continuous
infusions), yes/no

15,112 (63.0) 14,912 (62.7) 200 (88.9) < .001

Vasopressor medications as a
continuous, titrated infusion, yes/
no

4,721 (19.7) 4,594 (19.3) 127 (56.4) < .001

Vasopressor medications as a
continuous, titrated infusion,
count

1 (1-1) 1 (1-1) 1 (1-3) < .001

No. (%) of patients 4,721 (19.7) 4,594 (19.3) 127 (56.4)

Phenylephrine infusion 3,778 (15.7) 3,718 (15.6) 60 (26.7) < .001

Norepinephrine infusion 902 (3.8) 834 (3.5) 68 (30.2) < .001

Vasopressin infusion 249 (1.0) 208 (0.9) 41 (18.2) < .001

Dopamine infusion 87 (0.4) 75 (0.3) 12 (5.3) < .001

Dobutamine infusion 20 (0.1) 18 (0.1) 2 (0.9) < .001

Milrinone infusion 81 (0.3) 60 (0.3) 21 (9.3) < .001

Intraoperative vital signs

Mean arterial pressure, mm Hg 74 (68-80) 74 (68-80) 73 (68-79) .368

Heart rate, beats/min 69 (63-77) 69 (63-77) 73 (65-80) < .001

Mechanical ventilation duration

First continuous phase after operating
room, h

0 (0-0) 0 (0-0) 88.4 (51-177.7) < .001

Longest continuous phase after
operating room, h

0 (0-0) 0 (0-0) 138.6 (78.6-278.0) < .001

Total duration of all continuous phases
after operating room, h

0 (0-0) 0 (0-0) 163.8 (86.5-401.7) < .001

Reintubation after operating room

Reintubated after operating room 380 (1.6) 263 (1.1) 117 (52.0) < .001

Time from airway removal to
reintubation after operating room, h

0 (0-0) 0 (0-0) 51.4 (0-135.1) < .001

Data are presented as No. (%) or median (interquartile range), unless otherwise indicated. EtCO2 ¼ end-tidal carbon dioxide; ICD ¼ International
Classification of Diseases; PRF ¼ postoperative respiratory failure.
aWilcoxon rank-sum test for continuous variables and Pearson’s c2 test for categorical variables.
air less often (14.2% vs 46.3%; P < .001). Patients with
PRF underwent a median of 164 h of postoperative MV
(Table 2). Nearly one-half of patients with PRF
continued to receive MV for > 48 h immediately after
surgery, whereas 52% were reintubated and returned to
chestcc.org
MV for > 48 h. The median time to reintubation for
patients with PRF was 51.4 h.

Ninety-nine percent of patients with PRF were admitted to
an ICU from the operating room, compared with only
7
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TABLE 3 ] Outcomes for Patients Who Demonstrated PRF Compared With Patients Who Did Not Demonstrate PRF

Variable
Total Sample
(N ¼ 23,999)

No PRF
(n ¼ 23,774)

All PRF
(n ¼ 225) P Valuea

Hospital length of stay, d 3.3 (1.9-5.3) 3.3 (1.8-5.3) 21.5 (13.4-41.2) < .001

ICU stay, yes/no 4,136 (17.2) 3,914 (16.5) 222 (98.7) < .001

ICU length of stay (for those who had an ICU
stay), d

2.01 (0.98-3.97) 1.93 (0.96-3.75) 13.6 (8.1-27.1) < .001

Total No. of trips to operating room,mean (SD) 1.02 (0.2) 1.01 (0.1) 1.29 (0.7) < .001

> 1 total trip to the operating room 323 (1.3) 279 (1.2) 44 (19.6) < .001

Discharge disposition < .001

Home 21,693 (90.4) 21,617 (90.9) 76 (33.8)

Died 100 (0.4) 46 (0.2) 54 (24.0)

Discharge to other facility (SNF, LTAC,
other acute care)

2,206 (9.2) 2,111 (8.9) 95 (42.2)

Data are presented as No. (%) or median (interquartile range), unless otherwise indicated. LTAC ¼ long-term acute care; PRF ¼ postoperative respiratory
failure; SNF ¼ skilled nursing facility.
aWilcoxon rank-sum test for continuous variables and Pearson c2 test for categorical variables.
17% of patients without PRF (P< .001). Patients with PRF
underwent longer hospital and ICU lengths of stay
(Table 3). Twenty-four percent of patientswith PRFdied in
thehospital, compared to# 1%ofpatientswithoutPRF.Of
the 171 patients with PRF who survived to discharge, 95
patients (42%) were discharged to another facility (eg,
skilled nursing, long-term acute care), rather than home.
TABLE 4 ] Variables Retained by the LASSO Procedures in t

Predictor Variable

Intercept

Anesthesia duration, /h

Net fluid at end of the operation, /L

Operations on the cardiovascular system

Medicare (as the primary payer)

ASA class $ III

FIO2, median

Operations on the nervous system

Vasopressor medication in the operating room

Heart rate, median

Tidal volume, median

Operations on the musculoskeletal system

Operations on the digestive system

Surgical specialty orthopedic (nonspine)

Medical (Medicaid) (as the primary payer)

Operations on the urinary system

BMI 30-34.9 kg/m2 (obese 1)

End-tidal CO2, median

Race unknown (unable to respond, unavailable or unknown, de

ASA ¼ American Society of Anesthesiologists; LASSO ¼ least absolute shrinkag
aProbability selected is the percentage of bootstrap samples in which the varia
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Predictive Model Performance

The LASSO procedure retained 18 predictors in the
logistic regression (Table 4). Duration of anesthesia
(hours), net fluid balance at operating room departure
(liters), operations on the cardiovascular system,
Medicare (as the primary payer), and American Society
of Anesthesiologists class of $ III were selected as
he Logistic Regression for Predicting Occurrence of PRF

Coefficient Probability Selected, %a

–7.4426 100

0.1921 100

0.1681 100

0.9246 100

0.4672 100

0.5663 100

0.0086 98

0.5520 96.4

0.3000 95.6

0.0088 94.8

–0.0011 92.4

–0.3957 91.2

0.1136 88.8

–0.2202 82.8

0.1937 82.4

0.1706 81.2

–0.0745 80.4

–0.0135 75.6

clined to state) 0.2557 62.8

e and selection operator; PRF ¼ postoperative respiratory failure;
ble was retained.
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Figure 3 – ROC curve for fitted least absolute shrinkage and selection
operator logistic regression predicting postoperative respiratory failure.
This model achieved an observed area under the ROC curve (AUC) of
0.851 (95% CI, 0.824-0.878) and an optimism-corrected AUC of 0.835
(95% CI, 0.808-0.862). AUC ¼ area under the operating curve; ROC ¼
receiver operating characteristic.
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Figure 4 – Precision-recall curve for fitted least absolute shrinkage and
selection operator logistic regression predicting postoperative respiratory
failure. This model achieved an observed area under the precision-recall
curve of 0.174 (95% CI, 0.123-0.221) with an optimism-corrected value
of 0.156 (95% CI, 0.105-0.203).
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Figure 5 – Calibration plot for the least absolute shrinkage and selection
operator logistic regression model predicting postoperative respiratory
failure. To create this plot, predicted probabilities were binned into 10
equally sized groups. The mean predicted probability and 95% CI were
calculated for each bin and were plotted against the observed proportion
of events in each bin. Because of the very low prevalence of events, the
mean predicted probability remains small (approximately 5%), even for
the bin containing the largest predicted probabilities. The mean pre-
dicted probabilities are close to the 45� line, reflecting good agreement
between predicted probabilities and observed probabilities, and hence
good calibration.
predictors in all bootstrap samples and increased the
odds of PRF. Other predictors included operations on
the cardiovascular, nervous, digestive, urinary, or
musculoskeletal system; surgical specialty orthopedic
(nonspine); Medicaid (as the primary payer); race
unknown; BMI of 30 to 34.9 kg/m2; median FIO2, end-
tidal CO2 (EtCO2), heart rate, and tidal volume; and
intraoperative vasopressor medications. All predictors
except race unknown and EtCO2 were retained in $

80% of bootstrap samples (Table 4).

This model achieved an observed AUC of 0.851
(95% CI, 0.824-0.878) and an optimism-corrected AUC
of 0.835 (95% CI, 0.808-0.862) (Fig 3). The observed
AUPRC was 0.174 (95% CI, 0.123-0.221) with an
optimism-corrected value of 0.156 (95% CI, 0.105-0.203)
(Fig 4). The calibration curve indicates that the predicted
probabilities are a strong match for the actual outcomes
(Fig 5).

We used Youden’s index27 to identify a potential
threshold for discriminating patients with PRF from
patients without PRF. A predicted probability of
PRF of 1.315% maximized Youden’s index, achieving
an optimism-corrected sensitivity of 0.647 (95% CI,
0.593-0.713) and specificity of 0.858 (95% CI,
0.851-0.86) (Table 5). Other performance metrics
(positive predictive value, negative predictive value,
Brier score) are provided in Table 5. The confusion
matrix shows 3,372 of 23,774 as false-positive
findings and 69 of 225 as false-negative findings
(Table 6).
chestcc.org
Sensitivity and Robustness Analyses

In the secondary analyses (e-Appendix 2), the predictors
retained in the LASSO logistic regression and their
coefficients like were the primary model (e-Table 2).
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TABLE 6 ] Confusion Matrix of Predicted Patients With
PRF and Patients Without PRFa

Variable Patients Without PRF Patients With PRF

Predicted no PRF 20,402 69

Predicted PRF 3,372 156

Data are presented as No. PRF ¼ postoperative respiratory failure.
aUsing 1.315% as classification threshold.
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Performance metrics of models developed with the
training set and applied to the holdout test sets were
slightly worse than the optimism-corrected metrics for
the primary model. The AUC declined from 0.835 to
between 0.763 and 0.786 in the supplementary analyses,
whereas the AUPRC values increased from 0.156 for the
primary model to 0.172 in the comparable secondary
analysis (e-Table 3, approach 1). We also performed
sensitivity analysis to determine the effect of including
Elixhauser comorbidity count and score on model
performance (e-Appendix 3; e-Table 5, e-Figure 1, e-
Figure 2). This resulted in a 13-variable predictive model
with a negligible increase in optimism-corrected AUC
from 0.835 to 0.84 and an AUPRC from 0.156 to 0.162
(e-Table 4).
Discussion
We developed a prediction model for PRF that used
readily available patient preoperative and intraoperative
data from 23,999 consecutive adult elective surgeries
using an automated SQL ETL process. Our model
includes 18 variables; duration of anesthesia, net fluid
balance at operating room departure, operations on the
cardiovascular system, Medicare coverage, and
American Society of Anesthesiologists class $ III were
selected as predictors in all bootstrap samples. Other
predictors included operations on the cardiovascular,
nervous, digestive, urinary, or musculoskeletal system;
surgical specialty orthopedic (nonspine); Medicaid
coverage; race unknown; BMI of 30 to 34.9 kg/m2;
median FIO2, EtCO2, heart rate, and tidal volume; and
intraoperative vasopressor medications. The model
showed good discrimination and calibration. Secondary
analyses validated our primary findings.

This study extends prior work in several important ways.
In contrast to our previous PRF research that used
manual chart abstraction,28-30 our current study
developed and validated an automated ETL process to
enable efficient, standardized acquisition of real-world
data from the EHR. The potentially extensible nature of
SQL ETL processes should allow adaptation of our
[ 1# 3 CHE ST C r i t i c a l C a r e D E C EM B E R 2 0 2 3 ]



methods to the EHRs of other research sites, thereby
enabling data acquisition and large-scale research into
rare events like PRF that would not be feasible if data
collection were restricted to manual chart review.
Although our prior work focused on developing an
explanatory model, our current study aimed to develop a
model optimized for prediction that eventually might be
incorporated into clinical decision support (CDS)-aided
clinical workflows. Our work is distinct from the work of
others in that we excluded emergent surgical procedures
and preoperative laboratory findings and focused
exclusively on elective surgical procedures. We also
narrowed our outcome of interest to PRF, rather than
the broad continuum of all postoperative pulmonary
complications.

In this predictive model, we aimed to estimate accurately
the probability that PRF would develop based on
preoperative and intraoperative factors. Other published
predictive models (eg, Assess Respiratory Risk in
Surgical Patients in Catalonia [ARISCAT],18 Prospective
Evaluation of a Risk Score for Postoperative Pulmonary
Complications in Europe [PERISCOPE],19 and Local
Assessment of Ventilatory Management During General
Anesthesia for Surgery [LAS VEGAS]20) focused on all
postoperative pulmonary complications, ranging from
atelectasis to respiratory failure, which occurred in 5% to
11% of patients. These models also included emergency
surgeries. Despite the good discrimination of all three
models, the focus on all postoperative pulmonary
complications and the inclusion of emergency surgeries
makes extrapolation to elective surgery populations
challenging and external validation of the models in the
patient population impossible. Importantly, the
ARISCAT and PERISCOPE studies did not include
intraoperative fluid, medications, or MV parameters in
their predictive models. The LAS VEGAS study
evaluated intraoperative predictors, but the inclusion of
emergency surgeries precludes direct comparison with
our model. The more recent Respiratory Support,
Prolonged Intubation, or Reintubation. Accuracy
(RESPIRE)17 single-site predictive model for PRF was
EHR based and had good accuracy; however, in addition
to using a consensus definition for PRF that differed
from ours, it included outpatient, same-day, and
emergency surgeries and did not include intraoperative
treatment factors, although surgical site was included.

To create a targeted and readily interpretable model for
CDS, we chose a fundamentally different approach by
considering both pre-existing patient comorbidities and
intraoperative treatment. Our goal was to consider the
chestcc.org
effect of a patient’s pre-existing risk factors,
intraoperative care and physiologic parameters, and
status on exiting the operating room to determine risk
and to assist in postoperative level of care and treatment
decisions. This approach is congruent with the theory of
cascade iatrogenesis,31,32 in which adverse events may
occur if trigger events are not recognized and addressed.
An example of cascade iatrogenesis is intraoperative
fluid overload in a patient with pre-existing heart failure,
leading to pulmonary edema, respiratory failure, and
invasive MV. We also chose a different statistical
approach than others, logistic regression, because we
sought to develop a model that was readily interpretable
by clinicians and that could be developed into a risk
score-based, real-time CDS tool.

Possible clinical applications of our model include
identification of at-risk patients who could benefit from
postoperative admission or upgrade to the ICU;
implementation and monitoring of adherence to the
daily Assess, Prevent, and Manage Pain, Both
Spontaneous Awakening Trials and Spontaneous
Breathing Trials, Choice of Analgesia and Sedation,
Delirium: Assess, Prevent, and Manage, Early Mobility
and Exercise, and Family Engagement and
Empowerment bundle33; and the postoperative
application of procedure-specific, evidence-based
enhanced recovery after surgery34 protocols. For
example, although enhanced recovery after surgery
implementation has been shown to improve outcomes
in almost all major surgical specialties,34 as a
multidisciplinary and multimodal approach, it can be
resource intensive, thus limiting its widespread use.
Application of well-calibrated PRF prediction models
may allow patient-level risk stratification and
subsequent ICU admission; Assess, Prevent, and
Manage Pain, Both Spontaneous Awakening Trials and
Spontaneous Breathing Trials, Choice of Analgesia and
Sedation, Delirium: Assess, Prevent, and Manage, Early
Mobility and Exercise, and Family Engagement and
Empowerment bundle implementation; and enhanced
recovery after surgery application for only those patients
identified as at risk, simultaneously optimizing patient
outcomes and the efficiency of care delivery by avoiding
underuse or overuse of critical care resources.35 Early
identification of patients at risk of PRF, creation of
supportive infrastructure, and implementation of
prevention strategies helped one health system reduce
PRF by 35%.36

Strengths of our study include our easily interpretable
statistical approach, use of a large and diverse patient
11
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population, and restriction to elective surgeries and the
outcome of PRF to reduce heterogeneity. Our
development of an SQL ETL data extraction method
enabled us to analyze all 23,999 consecutive elective
surgical encounters over an 8-year period. This
approach could improve the ability to build scale in
studies of PRF and to support implementation and
validation of predictive models across health systems.
Our focus on a more narrowly defined population and
single serious adverse event should enable future
researchers both to refine predictive models and to test
the effects of incorporating model outputs into CDS-
enabled clinical workflows designed to prevent adverse
outcomes such as PRF in at-risk patients.37,38

Limitations of our current study include the single-
center proof-of-concept design and a relatively small
number of patients with PRF, which we addressed
through optimism-corrected analyses. With our SQL
ETL, we were limited to analyses of data found in
discrete fields, rather than free-text notes. This
constrained our definition of the primary outcome to
MV after surgery of > 48 h without further qualification
of the reason for prolonged MV. Thus, it is possible this
cohort of 225 patients with PRF includes patients who
required prolonged MV for airway protection, not
respiratory failure. In our prior work, 4.3% of patients
flagged for PRF had airway compromise, not respiratory
failure.28 We also acknowledge that not all cases of PRF
can be prevented. Patients at risk may still opt to
undergo an elective surgical intervention to address
quality-of-life issues such as chronic pain or reduced life
expectancy (eg, laminectomy, lung resection).
Furthermore, our ETL procedure was developed in a
standard EHR deployment from a single vendor, and it
is possible that extension of our methods to a
nonstandard Epic implementation or another EHR
vendor’s data model would require cost-prohibitive
adaptation of our methods. Finally, the model was
developed using data from one hospital, and external
validation in other cohorts is needed to confirm its
performance.

Feasible multicenter analysis is key to the study of rare
adverse events such as PRF. We have described a
method using an SQL ETL that could be deployed at
other centers effectively to automate the abstraction of
tens of thousands of charts, work that would not be
feasible through manual chart abstraction. The ability to
12 Original Research
predict patients at risk of PRF reliably using readily
available patient preoperative and intraoperative
variables is valuable for clinicians and may afford
individualized, optimized postoperative planning.
Future research is needed to validate our findings in
other centers, to conduct clustered machine learning to
identify subgroups (eg, low, moderate, and high risk),
and to develop, test, and operationalize a risk score for
real-time use by clinicians.

In conclusion, we developed a prediction model for PRF
based on readily available patient, preoperative, and
intraoperative data using an automated procedure to
extract large volumes of data from the EHR. If validated
in other centers, our model may represent an intuitive
and practical tool for prediction of PRF. With improved
prediction, clinician scientists can understand PRF
better, can begin to classify phenotypes, and can discern
if heterogeneity of treatment effect exists. This
eventually might lead to improved care and outcomes
for PRF, which is associated with high morbidity and
mortality.
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