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ABSTRACT
In clinical trials, it is common to design a study that permits the administra
tion of an experimental treatment to participants in the placebo or standard 
of care group post primary endpoint. This is often seen in the open-label 
extension phase of a phase III, pivotal study of the new medicine, where the 
focus is on assessing long-term safety and efficacy. With the availability of 
external controls, proper estimation and inference of long-term treatment 
effect during the open-label extension phase in the absence of placebo- 
controlled patients are now feasible. Within the framework of causal infer
ence, we propose several difference-in-differences (DID) type methods and 
a synthetic control method (SCM) for the combination of randomized con
trolled trials and external controls. Our realistic simulation studies demon
strate the desirable performance of the proposed estimators in a variety of 
practical scenarios. In particular, DID methods outperform SCM and are the 
recommended methods of choice. An empirical application of the methods is 
demonstrated through a phase III clinical trial in rare disease.
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1. Introduction

Randomized controlled trials (RCTs) are considered the gold standard for estimating the treat
ment effect of a therapeutic product on an outcome of interest in a particular disease. Due to 
ethical consideration, it is not feasible to maintain a blinded, placebo-controlled treatment assign
ment in a clinical trial for an extended period. But for medications treating chronic or slow 
degenerative diseases, long-term efficacy assessment is crucial for patients and health practi
tioners. Open-label extension phase of a phase III study, providing a potential opportunity for 
long-term effectiveness evaluation, is widely used (Day and Williams 2007). It extends a phase III, 
randomized placebo-controlled, pivotal study of the new medicine, during which the placebo 
group (hence all patients) will receive the trial medicine. Allowing the placebo or standard of care 
group to crossover to the experimental treatment after some time is a way to make such studies 
more attractive for patients.

Lacking a control group during the open-label extension phase poses a challenge to assess the 
treatment effect on the efficacy outcomes. A promising approach is to harness the RCT data with the 
so-called “external controls” (Wang et al. 2022; Yap et al. 2021). “External controls” referring to 
a comparison group of people external to the trial of interest who had not received the experimental 
treatment, is gaining traction in regulatory agencies (FDA 2023) and industry (Burger et al. 2021). 
The use of external controls aims to harness the RCTs by either fully or partially substituting the trial
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control arms. Although various sources of data can serve as external controls, they are primarily 
derived from patient-level data from other clinical trials or from real-world data (RWD) sources. 
The use of a control group from other trials is feasible if the eligible population and endpoints align 
closely with the current study, as demonstrated in our motivating example introduced later (McIver 
et al. 2023).

The use of external controls provides valuable information about disease progression in the absence 
of the experimental treatment. The fused data of RCT with external controls contains both treated and 
untreated patients, creating the possibility for estimation of treatment effects during periods when the 
internal control arm in the RCT has switched to the treatment. However, this combination lacks the 
fundamental ignorability property resulting from randomization, as patients are not randomly 
assigned to either the trial or the external control group. Directly pooling external controls to estimate 
treatment effects on the trial population can lead to biased results, irrespective of sample size. To 
address this challenge, causal inference methods provide a principled framework to incorporate real- 
world data in clinical trials, as advocated by recent research (Ho et al. 2021).

This work is motivated by a recent study of the medicine risdiplam to treat spinal muscular atrophy 
(SMA). The SUNFISH Trial (NCT02908685) is a phase 3, randomized, double-blind, placebo- 
controlled study of the efficacy and safety of the medicine risdiplam treatment among patients aged 
2–25 years with confirmed 5q autosomal recessive type 2 or type 3 SMA. Patients were stratified by age 
and randomly assigned (2:1) to receive either daily oral risdiplam or daily oral placebo. The phase 3 
study consisted of two periods. The first 12-month was a randomized placebo-controlled design with 
two arms. Patients were scheduled for regular followup visits to have their Motor Function Measure 
(MFM) measured along with other clinically relevant indicators. The primary endpoint was the change 
in the MFM from baseline to the end of month 12. Though the primary endpoint was captured and 
analyzed at the end of the first 12-month, the trial continued for a second 12-month open-label 
extension phase during which all patients in the control arm were switched to the risdiplam arm. The 
results in the primary endpoint have shown a significant improvement in motor function compared 
with placebo. More information about the trial can be found in Mercuri et al. (2022). The second 12- 
month period was designed to investigate the efficacy of risdiplam treatment beyond 12 months, as 
stated in the exploratory objective of the trial.

The objective of the 12-month randomized comparison was to adequately establish the efficacy of 
the new therapy. But further follow up beyond 12 months is needed to understand its long-term 
benefit, which raises methodological challenges that are of particular interest to us. For a disease such 
as SMA, which has limited treatment options, having a control group for long-term assessment has 
both practical and ethical implications. First, patients will progress over time and will never regain 
function lost during progression. It is therefore unethical to maintain placebo control for too long. 
Secondly, there can be feasibility issues when trying to maintain randomization for too long. Trial 
results may become non-interpretable due to excessive rates of protocol violations and drop outs. 
Therefore, trials with such a period without placebo-controlled arm to assess long-term effect are 
common and practical for diseases with limited options or progressive diseases in general, and the 
SUNFISH trial serves as a representative example of these challenges.

However, information about the disease progression without treatment often exists in trials 
designed for other treatment comparisons or RWD. For instance, the olesoxime trial 
(NCT01302600) (Berry et al. 2010) is a randomized, double-blind, placebo-controlled, phase 2 study 
for the same disease population as SUNFISH. The olesoxime trial shares the same set of measurements 
and follow-up visits as the SUNFISH study, but with a control arm that spans over 2 years, which can 
serve as external controls to augment the SUNFISH study (McIver et al. 2023). It is also possible to find 
external controls from RWD, e.g. registries, which go beyond one or two years.

The situation we consider differs from the application of external control data in other instances. 
First, there is no alternative anymore as we start with a randomized trial but cannot maintain the 
randomization for too long. Therefore the randomized assignment is no longer present for long-term 
follow up evaluations and we can leverage the use of external controls for statistical estimation and
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inference. Secondly, we have a randomized control group followed up for short term, which could be 
used to adjust the external controls and check assumptions made.

Our main contributions in this paper are to adapt the ideas of difference-in-differences 
methods (Abadie 2005; Sant’anna and Zhao 2020), and synthetic control methods (Abadie et al.  
2010) to the problem of augmenting RCT with external controls in the study design described 
above.

The remainder of this paper is organized as follows. In Section 2 we introduce the notation, define 
the estimand, and discuss the causal assumptions that are realistic for the setting. In Section 3 we 
describe our two proposed approaches: difference-in-differences methods and synthetic control 
methods, and briefly introduce the reference-based multiple imputation as an alternative method 
for comparison. We then present simulation studies to demonstrate the performance of the proposed 
methods in settings likely to occur in real trials, in Section 4 In Section 5, we demonstrate the 
applicability of proposed methods using our motivating study. Finally, Section 6 discusses practical 
takeaways for this research.

2. Notation, estimand, and causal assumptions

2.1. Notations

We have two datasets at hand: (1) an RCT with open-label extension phase, denoted by R (for two- 
phase RCT), and (2) an external control sample, denoted by E (for external control). We will use 
indices R and E to denote quantities taken with respect to different study populations. We use 
subscript i to denote the ith patient in the pooled dataset. Let Si denote trial participation status, 
with Si ¼ 1 for patients in the two-phase RCT and Si ¼ 0 for external control patients.

Let’s denote a p-dimensional vector of baseline covariates that could influence participation in 
either the two-phase RCT or the external study and are simultaneously risk factors for the outcome as 
Wi ¼ ðXi; UiÞ, where Xi is pX-dimensional measured covariates and Ui is pU-dimensional unmea
sured covariates. This implies that these variables act as confounders between the outcomes and the 
study participation.

Consider the sequence of binary treatment assignments Ai ¼ ðAi1; Ai2Þ structured to accommodate 
the two-phase RCT as follows: ð1; 1Þ corresponds to patients from the RCT who were assigned to the 
treatment group in the first randomized controlled phase and continued to be treated in the second 
open-label extension phase; ð0; 1Þcorresponds to patients from the RCT who were assigned to the 
control group during the first randomized controlled phase, but were later switched to receive 
treatment in the second open-label extension phase; and ð0; 0Þ corresponds to patients from the 
external control pool since they were never treated. In this context, only Ai1 is subject to randomiza
tion with a probability of πA for RCT patients. Once Ai1 is established, Ai2 is then determined as per 
the design of the study. Therefore, the treatment assignment Ai is influenced solely by Si, and any 
potential confounding bias arises from potentially unbalanced selection of study participants Si, not 
from a treatment assignment.

We acknowledge that study participation Si could directly influence the outcomes, separate from 
the effect of the treatment. This could be explained by the fact that patients participating in the RCT 
may experience closer monitoring, superior care, or other distinctive conditions that could eventually 
impact the outcomes.

Lastly, we have longitudinal outcomes Yi ¼ Yi1; . . . ; YiT1 ; . . . ; YiT2ð Þwhich are repeatedly measured 
at T2 discrete time points spread over two phases: the first randomized, placebo-controlled period 
T 1 ¼ ð0; T1�, and the second open-label extension period T 2 ¼ ðT1; T2�. In the context of the 
SUNFISH study, there are 2 observations in each of the two phases with approximately six months
separating each measurement, which corresponds to T1 ¼ 2 and T2 ¼ 4.

Our observed data are n independent and identically distributed observations Oi ¼ Xi; Si; Ai; Yið Þ

for i 2 R [ E, with n RCT patients and m external control patients, where R (jRj ¼ n) and E
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(jEj ¼ m) are sets of indices for the two-phases RCT subjects and external control subjects, 
respectively.

Working under the potential outcome framework (Imbens and Rubin 2015), let 
Yðs;aÞi ¼ Yðs;aÞi1 ; . . . ; Yðs;aÞiT1

; . . . ; Yðs;aÞiT2

� �
be the time-indexed potential outcomes had the patient i parti

cipated in the study s 2 f0; 1gand gone through the sequence of treatment a 2 fð1; 1Þ; ð0; 1Þ; ð0; 0Þg. 
Here, the potential outcomes depend on both the study participation and treatment sequence.

2.2. Estimand

The objective is to estimate the average treatment effect (ATE) for the RCT population during the 
open-label extension phase, which quantify the long-term treatment effect evolution: 

τt ¼ ER Yð1;ð1;1ÞÞ
t � Yð1;ð0;0ÞÞ

t

h i
; for t 2 T 2: (1) 

where the expectation is with respect to the RCT population.

2.3. Causal assumptions

We first state two assumptions that are standard and generally hold.

Assumption 1 (Stable unit treatment value (SUTVA)). Consistency and no interference hold, i.e. the 
observed outcome equals to the potential outcome under the actual study and treatment sequence 
received: Yi ¼ YðSi;AiÞ

i , for i 2 R [ E; Si 2 f0; 1g; Ai 2 ð0; 0Þ; ð0; 1Þ; ð1; 1Þf g.

Assumption 2 (Internal validity of the trial). (a) Initial treatment randomization holds for all RCT 
patients, that is: Yð1;aÞ

i ?Ai1jSi ¼ 1, for Ai1 2 0; 1f g; a 2 ð1; 1Þ; ð0; 1Þf g; (b) Positivity of trial treatment 
assignment holds, that is: 0< πA < 1.

Figure 1 represents a Directed Acyclic Graph (DAG) (Pearl 2009) encoding our knowledge about 
the mechanism between covariates, interventions and outcomes, for the RCT and external controls 
pooled data.

The most commonly invoked causal assumption is the conditional ignorability of trial participation 
in the literature of combining experimental and observational data, analogous to the unconfounded
ness assumption for observational studies (Rubin 1977) (synonymous to the selection on observables 
or exogeneity assumption). There has been a wealth of research built upon this type of assumption, for

Figure 1. Graphical model representing the pooled dataset. The node YI ¼ ðY1 . . . YT1 Þ represents the repeated measures during the 
randomized controlled phase, and YII ¼ ðYT1þ1 . . . YT1þT2 Þ represents the open-label extension phase.
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different purposes and under different terms: generalizability (Buchanan et al. 2018; Cole and Stuart  
2010; Dahabreh and Hernán 2019), representativeness (Campbell 1957), external validity (Stuart et al.  
2018), transportability (Pearl and Bareinboim 2011; Westreich et al. 2017), and data fusion 
(Bareinboim and Pearl 2016). However, it might be too strong in practice. Two features in Figure 1 
invalidate this assumption, as described below.

First, there could exist unmeasured baseline confounders U between trial participation and the 
outcomes. In practical term, this means both the trial and the external study must capture all risk 
factors of the outcomes that also influence study participation. This might include demographic, 
socioeconomic, and disease features. For example, rare disease patients may differ in terms of access to 
high-quality care, financial resources, or general living conditions, that might make some patients less 
likely to participate in the RCT, and coincidentally, these same conditions could exacerbate the 
progression of the disease. Therefore, the population participating in the trial could be self-selected 
in a way that differs from the external control population in manners that investigators are unaware of.

Second, the trial participation may have a direct effect on the outcomes. This is illustrated in 
Figure 1 by the path S! ðYI ; YIIÞ. This might include study bias and placebo effect. For example, 
patients in the clinical trial might be monitored more closely, receive better care, or simply being 
measured differently.

The above reasons, illustrated by the unblocked back-door path S U ! YII and a front-door 
path S! YII , imply that trial patients and external control patients are not exchangeable, given the 
measured characteristics. Therefore, we do not reply on the ignorability assumption. Different 
methods for estimating the treatment effect during the open-label extension phase are discussed in 
subsequent sections which depend on various forms of more relaxed assumptions to be specified in 
Section 2, allowing the existence of unmeasured confounders and direct effect of trial participation.

3. Methods

Let n1 � T1 matrix Yobs
t;I and n1 � ðT2 � T1Þ matrix Yobs

t;II denote the stacked observed outcome matrix 
for two-phase RCT patients receiving treatment sequence ð1; 1Þ in the randomized controlled phase 
and open-label extension phase, respectively. Similarly, define n0 � T1 matrix Yobs

c;I and n0 � ðT2 � T1Þ

matrix Yobs
c;II for RCT patients receiving treatment sequence ð0; 1Þ, and m� T1 matrix Yobs

e;I and 

m� ðT2 � T1Þmatrix Yobs
e;II for external control patients. In addition, let Yðs;aÞI and Yðs;aÞII be the stacked 

potential outcome matrices if participated in study s 2 f0; 1g and received treatment 
a 2 fð0; 0Þ; ð0; 1Þ; ð1; 1Þg. By Assumption 1, a subset of potential outcomes are observed, and the 
relation between observed outcomes and potential outcomes is 

Yobs
t;I Yobs

t;II
Yobs

c;I Yobs
c;II

Yobs
e;I Yobs

e;II

0

B
@

1

C
A ¼

Yð1;ð1ÞÞ
I Yð1;ð1;1ÞÞ

II

Yð1;ð0ÞÞ
I Yð1;ð0;1ÞÞ

II

Yð0;ð0ÞÞ
I Yð0;ð0;0ÞÞ

II

0

B
@

1

C
A

The causal estimand of interest can be estimated by the pair of matrices Yð1;ð1;1ÞÞ
II (always-treated RCT 

patient outcomes in open-label extension phase) and Yð1;ð0;0ÞÞ
II (never-treated RCT patient outcomes in 

open-label extension phase). The former is observed in the group of RCT patients who received 
treatment sequence ð1; 1Þ, but the latter is not due to switching initial control arm to be treated in the 
open-label extension phase. So, the problem can be viewed as a missing data problem where the never- 
treated outcomes for RCT patients need to be estimated or imputed.

Notice that we have three different sets of outcomes without treatment contamination, Yð1;ð0ÞÞ
I 

(RCT initial control during first phase), Yð0;ð0ÞÞ
I (external control during first phase), and Yð0;ð0;0ÞÞ

II 
(external control during second phase). Given that the difficulty is due to the unobservable,
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counterfactual, never-treated outcomes for trial subjects Yð1;ð0;0ÞÞ
II , the question is how to model the 

relation between the three observable sets and the unobservable in order to impute the latter. 

Yð1;ð0ÞÞ
I Yð1;ð0;0ÞÞ

II ¼ ?

Yð0;ð0ÞÞ
I Yð0;ð0;0ÞÞ

II

 !

This perspective opens the connection with an extensive body of literature on determining the impact 
of non-randomized interventions in longitudinal data settings, a common situation in social sciences, 
and enables us to draw upon novel statistical methods.

3.1. Approach 1: difference-in-differences type methods

To estimate the counterfactual never-treated outcomes for trial patients during the open-label exten
sion phase, using the observed outcomes of the external control patients during the same period can 
result in (conditional) bias BðX; tÞ :¼ E Yð1;ð0;0ÞÞ

t � Yð0;ð0;0ÞÞ
t jX

h i
. In general, the bias depends on both 

the measured baseline confounders X and time t, and unfortunately, is never known a priori. It only 
disappears under the more stringent ignorability assumption which we do not assume.

The open-label extension phase following a randomized controlled trial provides a negative control 
(NC) situation to approximate this bias term. The essential purpose of a NC is to reproduce 
a condition that cannot involve the hypothesized causal mechanism, but is very likely to involve the 
same sources of bias, and have been used to detect residual confounding in epidemiology (Lipsitch 
et al. 2010). In our setting, the outcomes in the randomized controlled phase, Yobs

c;I ¼ Yð1;ð0ÞÞ
I and 

Yobs
e;I ¼ Yð0;ð0ÞÞ

I can be used as NCs for estimating Yð1;ð0;0ÞÞ
II using Yobs

e;II ¼ Yð0;ð0;0ÞÞ
II , as the relation 

between trial participation and the two sets of never-treated outcomes, one in the first randomized 
controlled phase and one in the open-label extension phase, should share same source of bias, such as 
the unmeasured confounding bias and direct effect of trial participation. The idea of using first phase 
outcomes as NCs also coincides with idea of the difference-in-differences (DID) methods (Abadie  
2005; Heckman et al. 1998; Sant’anna and Zhao 2020).

We formalize the assumption that enables the identification of the bias term, and hence the 
estimand.

Assumption 3 (Conditional Parallel Trends). The conditional bias only depends on the measured 
baseline covariates but not time t, in other words, the average potential outcome trajectories under no 
treatment for the trial and external control patients would have followed parallel path over time, given
measured baseline covaraites, as illustrated in Figure 2.  

BðX; tÞ :¼ E Yð1;ð0;0ÞÞ
t � Yð0;ð0;0ÞÞ

t jX
h i

¼ BðXÞ for all t 2 T 1 [ T 2 and X 

Figure 2. Illustration of the conditional parallel trends assumption.
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See Remark 6 in Appendix A for a discussion of the verifiability.
Remark 1. Assumption 3 is satisfied if never-treated outcomes of the trial and external control 

patients follows the linear factor model  

Yðs;ð0;0ÞÞ
t ¼ δt þ θT

t Xþ λTUþ ΔsSþ εt (2) 

for t 2 T 1 [ T 2, where δt is an unknown time-varying common factor shared by all patients, θt and λ 
are vectors of coefficients associated with measured and unmeasured baseline confounders, respectively, 
and Δs is the direct effect of trial participation. Note that both λ and Δ are time-constant, indicating that 
the unmeasured confounding bias and the direct effect of trial participation only exert a consistent, 
unchanging impact on outcomes over time.

Under causal asssumptions 1, 2 and 3, we present three identification formulae for the estimand in 
Eq. 1: DID-EC-OR (outcome regression) approach, DID-EC-IPW (inverse probability weighting) 
approach, and DID-EC-AIPW (augmented inverse probability weighting) approach, inspired by 
(Abadie 2005; Heckman et al. 1998; Sant’anna and Zhao 2020).

For t 2 T 2;

τDID�EC�OR
t ¼ ER μðX; S ¼ 1; A ¼ ð1; 1Þ; tÞ � μðX; S ¼ 1; A1 ¼ 0; T 1Þð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δtrial

2

6
4

� μðX; S ¼ 0; A ¼ ð0; 0Þ; tÞ � μðX; S ¼ 0; A1 ¼ 0; T 1Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔEC

3

7
5

(3) 

τDID�EC�IPW
t ¼ ER

A1W11

ER A1W11½ �
Yt �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
YðT 1Þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δtrial

� EE
W0ðXÞ

EE W0ðXÞ½ �
Yt � YðT 1Þ
� �

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔEC

(4) 

τDID�EC�AIPW
t ¼ ER

A1W11

ER A1W11½ �
eYt �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
eYðT 1Þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δtrial

� EE
W0ðXÞ

EE W0ðXÞ½ �
eYt � eYðT 1Þ
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔEC

(5) 

where in Eq.3, μðX; S; A; tÞ represents the true conditional expected outcome given the covariates, 
study participation, treatment assignment, and time, and accordingly, 
μðX; S; A; T 1Þ ¼

1
T1

P
t2T 1

μðX; S; A; tÞ is the true conditional expected outcomes averaged over the 
randomized controlled phase. In Eq. 4 and 5 the trial treated, trial control, and external control 
patients receive weights W11 ¼ 1=πA, W10 ¼ 1=ð1� πAÞ, and W0ðXÞ ¼ pRðXÞ

pEðXÞ , respectively. W0ðXÞ can 
be thought of as a special case of the balancing weights in (Li et al. 2018) to match the measured
covariate distribution of the external controls to that of the trial patients. YðT 1Þ ¼

1
T1

P
t2T 1

Yt is 
average of outcomes in the first randomized controlled phase. eYt ¼ Yt � μðX; S ¼ 0; A ¼ ð0; 0Þ; tÞ is 
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the residual after projection using the outcome regression model for the external controls, and 
eYðT 1Þ ¼

1
T1

P
t2T 1

eYt is the average of such residuals in the first phase.
Remark 2. In addition to the rationale for using the randomized controlled phase outcomes 

as negative controls based on Assumption 3, the three variants can be interpreted as the 
difference between two differences, hence the name difference-in-differences (DID): Δtrial repre
sents the expected difference between always-treated outcomes during the open-label extension 
phase and untreated outcomes during the randomized controlled phase, for trial patients, while 
ΔEC represents the expected difference between never-treated outcomes during the open-label 
extension phase and untreated outcomes during the randomized controlled phase, for the 
external controls. The variants differ in how they account for the observed covariates X: DID- 
EC-OR employs outcome regression, DID-EC-IPW utilizes propensity score weighting, and DID- 
EC-AIPW combines both models.

Specially, four sets of observed outcomes are used: Yobs
c;I and Yobs

t;II for Δtrial, and Yobs
e;I and Yobs

e;II for ΔEC. 
While the observed outcomes for the trial initial control patients who were later switched to be treated 
during the open-label extension phase, Yobs

c;II , are not utilized, as it informs neither the always treated 
regime nor the always untreated regime.

Nuisance components: There are two unknown nuisance components in the identification for
mulae to be estimated: outcome model μðX; S; A; tÞ, and the balancing weights W0ðXÞ. In most cases, 
X is a mixture of continuous and categorical variables with moderate dimensions, resulting in 
estimating W0ðXÞ directly challenging. It can be expressed as πSðXÞð1�πSÞ

ð1�πSðXÞÞπS
, where πSðXÞ and πS are the 

true conditional and marginal probability of trial participation, respectively. Then the two nuisance 
components become πSðXÞ and μðX; S; A; tÞ.

They can be estimated flexibly, such as parametric or non-parametric methods. Here, we assume 
that parametric models are rich enough to enclose the true models for πSðXÞ and μðX; S; A; tÞ. 
Specifically, we assume that πSðX; βÞ is a correctly specified logistic regression model for πSðXÞ and 
πSðXÞ ¼ πSðX; β�Þ with true parameters β�, μðX; S; A; t; γÞ is a correctly specified outcome model for 
μðX; S; A; tÞ and μðX; S; A; tÞ ¼ μðX; S; A; t; y�Þ with true parameters γ�.

Plug in the estimated nuisance parameters and replace the expectations with sample average, we 
arrive at three variants of DID type estimators, bτDID�EC�OR

t , bτDID�EC�IPW
t , and bτDID�EC�AIPW

t (formulas 
presented in Appendix B), corresponding to Eq. 3, 4 and 5, respectively.

We can show that these three estimators converge to the estimand in large samples, provided that 
certain nuisance components are correctly modelled.

Theorem 1. Suppose causal assumptions 1, 2, 3 and statistical assumption 5 hold, then for any 
t 2 T 2

(1) If the outcome regression model is correctly specified, i.e. μðX; S; A; tÞ ¼ μðX; S; A; t; γ�Þ, then 
bτDID�EC�OR

t �!
p

τt as n; m!1.
(2) If the probability of trial participation model is correctly specified, i.e. πSðXÞ ¼ πSðX; β�Þ, then 

bτDID�EC�IPW
t �!

p
τt as n; m!1.

(3) If either the outcome regression model or the probability of trial participation model is correctly 
specified (or both), i.e. πSðXÞ ¼ πSðX; β�Þ or μðX; S; A; tÞ ¼ μðX; S; A; t; γ�Þ, then 
bτDID�EC�AIPW

t �!
p

τt as n; m!1. (It has doubly robust property.)

For inference, such as to confidence interval, one can derive the influence functions, with 
additional regularity conditions, from there, asymptotic normality can be established and the 
asymptotic (theoretical) variance would be the second moment of corresponding influence
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function. However, these influence functions and asymptotic variance are complex mainly due to 
the need of estimating nuisance parameters. An alternative approach is using bootstrap, which will 
be adopted in this work.

3.2. Synthetic control method

The synthetic control method (SCM), first proposed by Abadie et al. (2010, 2015), is a widely used 
approach in the social sciences for evaluating the unit-specific effects of large-scale, infrequent 
interventions on one or few treated unit(s), with the presence of longitudinal evolution of aggregated 
outcome before and after the intervention. We repurpose SCM for our RCT-external controls 
problem.

Assumption 4 (Linear Factor Model). If the never-treated outcomes of the trial and external control 
patients follow the linear factor model  

Yðs;ð0;0ÞÞ
t ¼ δt þ θT

t Xþ λT
t Uþ εt (6) 

for t 2 T 1 [ T 2, where δt is an unknown time-varying common factor shared by all patients, θt 
and λt are vectors of time-varying coefficients associated with measured and unmeasured base
line confounders.

Remark 3. The linear factor model in Assumption 4 differs with the linear model in 
Assumption 3 in two ways. First, it does not allow for systematic difference between the two- 
phase RCT and the external controls as the trial participation play no role in the linear factor 
model, such as the direct effect of trial participation presented in the linear model Assumption 3. 
Second, it allows the coefficients of U to change with time. This allows for more complex time- 
dynamics driven by unmeasured confounders, whereas the DID methods rely on the time- 
constant effect of unmeasured components. An example favoring the time-varying coefficients 
associated with U might be that, patients with limited access to quality care are less likely to 
participate in clinical trials, and the inadequate care they receive, or lack thereof, may lead to 
a detrimental effect that exacerbates over time. Therefore, the DID methods can accommodate 
the direct effect of trial participation while the SCM could not; and the SCM could accommo
date time-varying coefficients associated with unmeasured baseline confounders, while the DID 
methods could not. For our setting, the two approaches present two non-nested assumptions and 
distinct methods of estimation. See Remark 9 in Appendix A for a discussion of the connection 
between DID framework and SCM framework.

The SCM idea is to find a few external control patients, for each initial RCT control 
patient, that share similar values of baseline covariates and the outcomes in the randomized 
controlled phase, such that the weighted average of the selected external control patients are 
as similar as possible to the initial RCT control patient under consideration, in both X 
and fYt : t 2 T 1g.

The way to find those “synthetic control” patients from the external control pool is by matching 
that solves an optimization problem minimizing an objective function measuring the discrepancies. 
For each RCT control patients fi 2 R : Ai1 ¼ 0g, we find optimal weights fw�ij : j 2 Eg by solving the
optimization problem 
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min
wi2Rm

zi �
X

j2E
wijzj

�
�
�
�
�
�

�
�
�
�
�
�

2

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L2 distance

þ λ
X

j2E
wij zi � zj
�
�

�
�2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Penalization

s:t: wij � 0; for j 2 E
X

j2E
wij ¼ 1

(7) 

where zi is stacked vector of baseline covaraites Xi and outcomes in the randomized controlled phase 
Yitfort 2 T 1. See Remark 8 in Appendix A for a discussion of the non-negative and sum-to-one 
constraints.

Here we adapt a modified version of the original SCM (Abadie et al. 2010, 2015), Penalized 
Synthetic Control Estimator, by Abadie and L’Hour (2021). This modification is designed for 
individual-level data and addresses the issue of non-unique best synthetic controls when a large 
number of external control patients are available and some of the selected external controls might be 
far away from the corresponding trial control patient in the matched variable space, but nevertheless 
being selected because by averaging the synthetic control as a whole is close to the target trial control 
patient. The penalization term balances the pairwise discrepancies and the similarity of the synthetic 
control unit as a whole in the matched variable space, ultimately selecting external controls that are 
both individually similar to the target trial control patient and alike in aggregation.

Once the “synthetic control” patients and their associated weights are determined, the weighted 
average of their outcomes in the open-label extension phase is used as the synthetic control estimate 
for the counterfactual, never-treated outcomes of the trial control patient under consideration. 

Ŷð1;ð0;0ÞÞ
it ¼

X

j2E
w�ijYjt (8) 

for t 2 T 2 and fi 2 R : Ai1 ¼ 0g.
Then the average of synthetic controls estimates of all initial trial controls would approximate the 

average counterfactual never-treated outcomes in the estimand Eq. 1, as a result of proper randomiza
tion within the trial. Hence, the ATE during the open-label extension phase for the trial population can 
be estimated via 

bτscm
t ¼

1
n1

X

i2fi2R:Ai1¼1g

Yit �
1
n0

X

i2fi2R:Ai1¼0g

Ŷð1;ð0;0ÞÞ
it (9) 

for t 2 T 2:

Remark 4. Note that the SC estimator depends on a tuning parameter λ. Since the external controls are 
never treated, their observed outcome trajectories are the potential never-treated outcome trajectories, 
which can be considered as the ground truth. One way to choose λ in a data-driven fashion is by leave- 
one-out cross-validation using only external controls that minimizes the sum of the squared errors:  

X

i2E

X

t2T 2

Yit � Ŷit;ð�iÞ
� �2 

where Ŷit;ð�iÞ is the synthetic control estimate for the external control patient i according to Eq.8 by all 
other external controls except itself.

To summarize, let’s divide the longitudinal outcomes into two phases: YI for the initial randomized 
controlled phase, and YII for the open-label extension phase. The SCM idea is to find a few external 
control patients, for each trial control patient, that share similar values of baseline covariates X and the 
outcomes in the randomized controlled phase YI , such that the weighted average of the selected
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external controls are as similar as possible to the trial control patient under consideration, in both X 
and YI . The way to find the weights is by the optimization problem in Eq.7, where X and YI are used. 
So the estimation of weights using X and YI , not YII . After the weights have been chosen, the ATE 
estimation involves YII . So the entire process can be thought of as carried out in two stages: (1) weights 
estimated using ðX; YIÞ, (2) weighted average of YII of external controls as the “synthetic control”.

The SCM draws inspiration from the statistical matching literature (Abadie et al. 2010). 
The estimation of wij depends on both X and YI , with X used for matching on measured 
covariates and YI as an approximation for matching on unmeasured covariates. The perfor
mance of SCM hinges on how well YI can approximate U. According to Assumption 4, the 
linear factor model contains a residual term, influencing the accuracy of this approximation. 
When perfect synthetic controls can be found, i.e. L2 distance in Eq.7 equals to zero (Abadie 
et al. 2010), proved that, under a linear factor model assumption (similarly as Assumption 4), 
the bias of SCM diminishes only if the number of YI time points is large relative to the scale 
of the residual term. Therefore, the presence of high-quality covariates that minimize the 
variation of the residual term positively affects the results, rather than merely increasing the 
number of covariates. For more theoretical justification, see (Abadie et al. 2010).

3.2.1. Reference-based multiple imputation
Carpenter et al. (2013) proposed reference-based multiple imputation (RBMI) methods for the 
problem of missing data in longitudinal trials with protocol deviation, using a reference arm to inform 
the distribution of post-discontinuation outcomes. A recent publication by White et al. (2020) put 
RBMI under a formal causal framework. Our problem, though not protocol deviation, can be thought 
of as deviation from the original treatment assignment for the trial control group during the open- 
label extension phase which results in missing data.

For this problem, RBMI assumes the never-treated outcomes during open-label extension phase are 
missing at random (MAR), 

Yi;IIjYi;I ; Xi (10) 

Given a specific parametric form for the conditional distribution (typically multivariate normal), and 
estimate the parameters using a “reference” group of patients (this would be external controls), we can 
impute missing data by multiple imputation.

Remark 5. However, Assumption 10 is less compatible with our problem setting as illustrated by 
Figure 1. Instead, the linear model in Eq. 2 satisfying the Assumption 3 and the linear model in Eq. 6 
satisfying the Assumption 4 would be more plausible. Therefore, RBMI is used as a comparison with our 
proposed DID and SC methods in Sections 3.1 and 3.2.

4. Simulation study

This section presents simulations to examine the finite sample properties of the methods discussed in 
Section 3.

4.1. Setup

The simulations are based on the following data generating processes (DGPs): 

S ¼ Bernoulli πSðWÞð Þ

A ¼ S� Bernoulli πAð Þ

Yt ¼ gtðW; S; AÞ þ εt; t 2 ð0; T1� [ ðT1; T2�

8
<

:
(11) 

where the baseline covariates W ¼ ðW1; . . . ; W5Þ are sampled from the empirical joint distribu
tion of SMA type (binary, type II or III), scoliosis (binary, yes or no), SMN2 copy number (2, 3,
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or 4), age at enrollment (continuous), and baseline MFM (continuous); πSðWÞ is the true 
propensity of trial participation model. πA ¼ 1=3 is same as the treatment to control ratio 
observed in the SUNFISH trial; gtðW; S; AÞ is the true outcome model; T1 ¼ 2 and T2 ¼ 4 
correspond to two repeated measures in both the randomized controlled phase and the open- 
label extension phase.

To compare the finite sample performance of the methods proposed in Section 3, we simulate 4 
settings:

Setting 1: No unmeasured confounding, no study bias. Here, W ¼ X, the true propensity score 
model logitðπSðWÞÞ ¼ ðX1; X2; X3; X4; X2 � X4; X5Þ

Tβ, and the true outcome 
model gtðW; S; AÞ ¼ δt þ ðX1; X2; X3; X4; X2 � X4; X5Þ

TθT þ τtA.
Setting 2: Exist unmeasured confounding, no study bias, DID Assumption and SCM 

Assumption satisfied. Here, X ¼ ðW1; W2; W3; W4Þ, U ¼W5, the true propensity score model 
logitðπSðWÞÞ ¼ ðX1; X2; X3; X4; X2 � X4; UÞTβ, and the true outcome 
model gtðW; S; AÞ ¼ δt þ ðX1; X2; X3; X4; X2 � X4Þ

TθT þ Uλþ τtA.
Setting 3: Exist unmeasured confounding and study bias, DID Assumption satisfied, SCM 

Assumption Not satisfied. Here, X ¼ ðW1; W2; W3; W4Þ, U ¼W5, the true propensity score model 
logitðπSðWÞÞ ¼ ðX1; X2; X3; X4; X2 � X4; UÞTβ, and the true outcome model 
gtðW; S; AÞ ¼ δt þ ðX1; X2; X3; X4; X2 � X4Þ

TθT þ Uλþ τtAþ ΔS, where the added Δ is the constant 
study effect. Though the DID methods allow for interaction terms between S and covariates in the 
outcome model, it does not affect the simulation performance.

Setting 4: Exist unmeasured confounding, No study bias, DID Assumption Not satisfied, SCM 
Assumption satisfied. Here, X ¼ ðW1; W2; W3; W4Þ, U ¼W5, the true propensity score model 
logitðπSðWÞÞ ¼ ðX1; X2; X3; X4; X2 � X4; UÞTβ, and the true outcome model 
gtðW; S; AÞ ¼ δt þ ðX1; X2; X3; X4; X2 � X4Þ

TθT þ Uλt þ τtA, where the λt is the time-varying coeffi
cient of the unmeasured confounding, which invalidates the DID Assumption 3 while agrees with the 
SCM Assumption 4.

Furthermore, notice that the DID methods require models for the nuisance parameters (propensity 
score model or outcome model, or both), within each setting, we consider 2 simulations (one with 
correct outcome model, one with mis-specified outcome model) for DID-EC-OR, 2 simulations (one 
with correct propensity score model, one with mis-specified propensity score model) for DID-EC- 
IPW, and 3 simulations (one with correct outcome and propensity score models, one with mis- 
specified outcome model, one with mis-specified propensity score model) for DID-EC-AIPW. To 
create mis-specified models for the outcome and propensity score, we leave out the X2 � X4 interac
tion term.

In order to have simulations mimic the real data, the SUNFISH and external controls combined, all 
the model parameters, such as coefficients, are chosen to be similar as the value obtained by fitting the 
assumed model to the real data. For example, the true ATE over time are set to 
be τ1 ¼ 0:625; τ2 ¼ 1:5; τ3 ¼ 1:875; τ4 ¼ 2:5.

We consider total sample size nþm to be 220, with n1 : n0 : m approximately equals to 2 : 1 : 1, 
resulting in n1 � 110; n0 � 55; m � 55. We perform 3,000 Monte Carlo simulations. We implement 
the three DID variants and the SCM in R, and use the rbmi package (Gower-Page and Noci 2022) for 
the RBMI method.

4.2. Results

Figure 3 presents the estimated ATEs τ̂t¼4 across 3,000 simulations, at the last time point. Table 1 
summarizes the empirical bias, standard error (SE), root mean square error (RMSE), 95% coverage 
probability, and the average length of a 95% confidence interval, where the confidence intervals are
constructed using bootstrap.
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Setting 1 represents the most ideal and less plausible situation where the no unmeasured 
confounding and no study bias assumptions are valid. In theory, this setting can be handled by 
methods based on ignorability, such as g-formula, the inverse probability weighting (IPW), and 
the augmented inverse probability weighting (AIPW). The three DID estimators under correct 
model specifications all have close to zero bias in finite samples, while the SCM has non negligible 
bias and RBMI has the largest bias. The DID estimators also have smaller SE and RMSE compared 
with SCM and RBMI, and have reached nominal coverage probability, while SCM is slightly off 
and RBMI is more severe.

Setting 2 represents a slightly more plausible situation where investigators might be unaware of 
some confounder(s) that satisfies Eq. 2 in the DID Assumption 3 without the study bias term, 
which is also a special case of Eq. 6 in the SCM Assumption 4. The performance metrics are
similar to setting 1.

Figure 3. Boxplot of estimated ATEs τ̂t¼4 across 3,000 simulations, at the last time point. The true ATE τ4 ¼ 2:5 are represented by 
the red dashed lines for reference.
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Setting 3 moves beyond setting 2 by allowing a direct effect of trial participation, i.e. study bias, so 
that satisfies Eq. 2 in the DID Assumption 3, but no longer satisfies Eq. 6 in the SCM Assumption 4. It 
is possible for unmeasured confounding bias and study bias to be in opposite directions, thereby 
neutralizing each out, as seen in this simulation setting 3. As a result, SCM may perform numerically 
better. However, if the two biases are synergistic, SCM’s performance could deteriorate. In Appendix 
D, we present an additional scenario for setting 3, where the study bias, suggested by the observed data, 
is not fully canceling out the unmeasured confounding bias. In this scenario, SCM’s performance is 
consistent.

It is possible for unmeasured confounding bias and study bias to be in opposite directions, 
thereby canceling each other out, as observed in this simulation. As a result, SCM may perform 
better than in setting 2, where the unmeasured confounding bias is more pronounced. However,

Table 1. Estimated bias, standard error (SE), root mean square error (RMSE), 95% coverage probability, and the average width of 
a 95% confidence interval, across 3,000 simulations.

Method Mis-specified Model Bias SE RMSE Coverage C.I. Width

Setting 1:

No unmeasured confounding, No study bias
RBMI 0.222 0.189 0.292 84.100 0.828
DID-EC-OR None −0.001 0.096 0.096 94.533 0.374

outcome model −0.002 0.195 0.195 95.333 0.772
DID-EC-IPW None 0.003 0.215 0.215 96.233 0.909

ps model 0.004 0.216 0.215 96.067 0.906
DID-EC-AIPW None 0.003 0.125 0.125 95.697 0.498

outcome model 0.002 0.202 0.202 95.626 0.824
ps model 0.001 0.122 0.122 94.991 0.491

SCM 0.163 0.347 0.383 91.204 1.378

Setting 2:

Exist unmeasured confounding, No study bias, DID Assumption and SCM Assumption satisfied
RBMI 0.319 0.244 0.401 61.600 0.848
DID-EC-OR None −0.001 0.111 0.111 94.733 0.441

outcome model 0.001 0.203 0.203 95.067 0.801
DID-EC-IPW None 0.000 0.216 0.216 95.933 0.904

ps model 0.001 0.216 0.216 95.833 0.901
DID-EC-AIPW None 0.004 0.138 0.138 94.603 0.537

outcome model 0.001 0.214 0.214 94.674 0.845
ps model 0.003 0.138 0.138 94.074 0.533

SCM 0.144 0.345 0.374 92.813 1.391

Setting 3:

Exist unmeasured confounding and study bias, DID Assumption satisfied, SCM Assumption Not satisfied
RBMI 0.067 0.237 0.246 89.567 0.838
DID-EC-OR None 0.003 0.112 0.112 94.733 0.441

outcome model −0.004 0.204 0.204 94.733 0.801
DID-EC-IPW None −0.001 0.220 0.220 95.900 0.899

ps model −0.001 0.221 0.221 95.500 0.894
DID-EC-AIPW None 0.002 0.136 0.136 94.321 0.538

outcome model 0.002 0.210 0.210 94.991 0.843
ps model 0.001 0.136 0.136 94.533 0.536

SCM 0.040 0.347 0.349 94.508 1.387

Setting 4:

Exist unmeasured confounding, No study bias, DID Assumption Not satisfied, SCM Assumption satisfied
RBMI 0.112 0.272 0.294 93.567 0.910
DID-EC-OR None 0.032 0.137 0.141 94.067 0.539

outcome model 0.030 0.222 0.224 94.267 0.861
DID-EC-IPW None 0.050 0.237 0.242 95.167 0.971

ps model 0.051 0.237 0.243 94.867 0.967
DID-EC-AIPW None 0.054 0.164 0.172 93.157 0.641

outcome model 0.054 0.229 0.235 94.674 0.916
ps model 0.054 0.162 0.171 92.945 0.635

SCM 0.165 0.357 0.393 90.657 1.412
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if the two biases are synergistic, SCM’s performance could deteriorate. In Appendix D, we 
introduce additional simulations for setting 3, where the study bias, suggested by the observed 
data, is close to 0. In this scenario, SCM’s performance is similar to, if not worse than, that in 
setting 2

Setting 4 moves beyond setting 2 by allowing the coefficient associated with the unmeasured 
confounding to be time-varying, so that satisfies Eq. 6 in the SCM Assumption 4, but no longer 
satisfies Eq. 2 in the DID Assumption 3. In this case, DID estimators show increased bias but are still 
lower than that of SCM and RBMI.

Nested within each setting, we notice that the effect of model mis-specification is less notable. Mis- 
specification of outcome tends to increase the SE more than propensity score model mis-specification, 
while both do not increase bias significantly.

In all four settings, the three DID estimators consistently outperform others on the basis of bias, SE, 
RMSE, coverage and length of the confidence interval. SCM has noticeable bias, larger SE, wider 
confidence intervals, and below nominal coverage. In comparison, RBMI performs even worse than 
both DID and SCM estimators.

Interestingly, even in setting 4, where the SCM Assumption 4 is met but the DID 
Assumption 3 isn’t, DID methods still surpass SCM. This aligns with our theoretical expecta
tions. The bias of SCM is shown to vanish if (1) the number of first phase time points is large 
relative to the scale of the error term, which is not likely to hold in settings with limited 
follow-up visits, such as 2 visits in the randomized controlled phase of SUNFISH trial; and (2) 
when estimated weights can produce synthetic controls that are a perfect or good match for 
the respective RCT control patient (Abadie 2021; Abadie et al. 2010). Though DID methods 
seem to have a more strict assumption, as in the linear model 2 which is a special case 
satisfying assumption 3, they can still be considered good approximations for settings with 
slight deviation, as demonstrated in setting 4. In addition, DID methods are computationally 
more efficient than SCM.

Consequently, we conclude that DID methods are preferred over SCM, and both are preferred over 
RBMI, for our problem setting. Among the three DID variants, DID-EC-IPW tends to have larger SE 
than others, while DID-EC-OR and DID-EC-AIPW demonstrate similar finite sample performance. 
The variance of propensity score weighting estimators has been studied in the literature (Kranker et al.  
2021; Zubizarreta 2015), showing that highly variable weights increase the variance of treatment effect 
estimate, and IPW estimators have seen larger variance compared to the doubly robust (DR) and the 
outcome regression (OR) approaches (Bang and Robins 2005). When the two groups are imbalanced 
in terms of measured confounders, the propensity score weights tend to have high variability.

We present additional simulations with a higher percentage of trial controls, where the ratio n1 : n0 
is approximately 1 : 1 instead of 2 : 1, in Appendix E as a sensitivity analysis. The results are consistent 
with the main simulation results.

5. Application: SUNFISH trial

In this section, we aim to illustrate the application of the proposed methods in Section 3 to the 
SUNFISH study. The goal is to compare the proposed methods in assessing the long-term efficacy of 
risdplam during the post primary endpoint, i.e. period II of 12–24 months since the initialization of 
the study, in the absence of a control group. We augment the SUNFISH trial with external control 
patients from the olesoxime trial.

Figure 4 displays the balance in baseline covariates between the SUNFISH trial and external 
controls. The left panel highlights the differences in patient age, Scoliosis, and SMN2 copy number 
between the two populations. The right panel shows that the propensity scores largely overlap between 
the two populations, with small regions of non-overlap at both extreme ends, indicating the presence 
of a few patients in both studies without similar counterparts in the other based on measured 
covariates. The adjusted sample using the propensity score (covariates enter the propensity score
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Figure 4. Balance in baseline measured covariates (left panel) and balance in propensity score (right panel).

Figure 5. Estimated ATEs for the SUNFISH population and 95% confidence intervals using SUNFISH and external controls combined 
data. The “RCT results” (solid black line) is a comparison between the two arms of the SUNFISH trial: the risdiplam and the original 
control group, until week 52. After week 52, the “naive comparison” (black dashed line) is a comparison between the same two 
groups. Both the “RCT results” and “naive comparison” are obtained using a MMRM, which includes baseline covariates, time 
(categorized), treatment group, and the interaction between time and treatment group, and is estimated using only the SUNFISH 
trial data. RBMI, DID-EC-OR, DID-EC-IPW, DID-EC-AIPW and SCM results are estimated using the SUNFISH and the external controls 
combined data, however, the SUNFISH control patients’ observed outcomes during period II were not used in any of the methods.
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model linearly) demonstrates improved balance, as indicated by the absolute standardized mean 
difference below the 0.1 threshold (a rough measure of balance).

Figure 5 and Table 2 present the estimated ATE for the SUNFISH population and 95% confidence 
intervals of the proposed methods, along with the results from a mixed effects model for repeated 
measures (MMRM) considering the entire 2-year period (period I and II combined), ignoring the fact 
that the original control arm received treatment after the primary endpoint. Therefore, this analysis 
during period II (i.e. Naive Comparison) does not align with the estimand of interest, and we use it 
here simply as a reference to illustrate the consequence of inappropriate analysis.

The native comparison from MMRM during period II shows almost no increase in the benefit of 
taking risdiplam after the primary endpoint, which is likely to be an underestimate of the long-term 
benefit as the comparison group were treated. The RBMI estimates are similar to the naive compar
ison. In contrast, the DID-EC-OR, DID-EC-OR, DID-EC-AIPW, and SCM methods estimate 
a consistent pattern of continued increase in treatment effect during year 1–2 and therefore show 
the long-term benefit of taking risdiplam continuously (at least over 2 years). During period II, the 
external control patients exhibited a declining trend in their observed outcome trajectory (Bertini et al.  
2017). In contrast, the trial control group who received treatment during period II showed a relatively 
stable outcome trajectory (Oskoui et al. 2023). Therefore, a simplistic comparison using the trial 
control group as the sole reference may underestimate the true treatment effect of risdplam during 
period II. Using external controls and making appropriate adjustments can provide a more accurate 
estimate of the treatment effect. Proper adjustment using our proposed methods, i.e. DID and SCM, 
can mitigate bias when using external controls arise from mechanisms illustrated in Figure 1.

Lastly, note that the schedules of assessment for the SUNFISH trial and the external controls are not 
exactly matched. In this application, we treated the week 35 in SUNFISH as the same analysis time 
point as the week 26 in the external controls, assuming that the impact from the time difference is 
negligible. However, it may not always be the case in practice. One should review the schedule of 
assessment prior to conducting the analysis and bridging methods may be required. The analysis will 
benefit from early planning and make sure the trial and external control endpoint assessment 
frequency are aligned when it is also scientifically rational.

6. Discussion

In this article, we consider a methodological challenge encountered in a trial design that allows the 
control group to crossover to the experimental treatment after reaching the primary endpoint or a pre- 
determined time, resulting in the absence of a comparison group for evaluating the long-term 
treatment effect. This design is commonly found in phase III randomized, placebo-controlled studies 
that include an open-label extension phase, which allows for the assessment of long-term safety and 
effectiveness while maintaining practicality. To compensate for the lack of a comparison group in the 
trial for the long-term outcome after switching, we augment the RCT data with appropriately chosen 
external controls. We have proposed the difference-in-differences (DID) framework and the synthetic 
control method (SCM) framework for analyzing externally controlled trials, within the causal

Table 2. Estimated ATEs for the SUNFISH population post primary endpoint.

Week 78 Week 104

τ̂ SE 95% C.I. τ̂ SE 95% C.I.

Naive Comparison 1.562 0.817 (−0.041, 3.164) 2.044 1.018 (0.049, 4.039)

RBMI 1.674 0.806 (0.077, 3.271) 1.941 0.986 (−0.012, 3.893)
DID-EC-OR 3.059 0.988 (1.218, 5.022) 3.685 1.133 (1.570, 6.037)
DID-EC-IPW 3.290 0.946 (1.463, 5.160) 3.721 0.965 (1.964, 5.711)
DID-EC-AIPW 3.246 0.930 (1.363, 5.114) 3.596 1.124 (1.607, 5.935)
SCM 3.387 0.845 (1.732, 5.042) 4.066 1.048 (2.011, 6.121)
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inference framework. Our proposal complements the literature on externally controlled trials in an 
RCT with an open-label extension, and also complements the literature on combining experimental 
and observational data beyond ignorability assumption. Furthermore, we broaden the use of the DID 
and SCM frameworks, traditionally employed primarily in social sciences, to encompass clinical trials.

The fundamental challenge is that the counterfactual never-treated outcomes for trial 
patients during the open-label extension phase is unobservable due to switching initial control 
arm to be treated in the open-label extension phase. To estimate this unobservable counter
factual quantity using the observed outcomes of the external control patients during the same 
period can result in bias, which only disappears under the ignorability assumption. This 
assumption is violated in the presence of unmeasured confounding and study bias, as 
illustrated in Figure 1 by the unblocked back-door path S U ! YII and a front-door path 
S! YII , imply that trial patients and external control patients are not exchangeable, given the 
measured characteristics. In practical scenarios, being unaware of or unable to obtain certain 
confounding factors from both data sources can lead to unmeasured confounding bias. 
Additionally, any systematic differences in outcome measurement between the trial and 
external controls, such as the placebo effect, can introduce study bias. For a comprehensive 
discussion on potential sources of bias associated with the use of external controls, refer to 
(Burger et al. 2021).

Our work relaxes the overly restrictive but commonly used ignorability assumption and proposes 
methods to adjust for unmeasured confounding bias and study bias. The DID framework relaxes it 
with the DID Assumption 3. The basic idea is to use the randomized controlled phase outcome as 
a negative control to de-bias the residual confounding. A special example allows for unmeasured 
confounding and study bias is shown in Eq. 2. The SCM framework moves beyond the ignorability 
assumption by allowing for the existence of unmeasured confounding with time-varying coefficients, 
but not study bias, as shown in Eq. 6 in Assumption 4. The SCM estimation strategy is to find 
a weighted average of external control patients that matches with each trial control patient in terms of 
the first phase outcomes and baseline covariates. It has been shown in prior literature that even when 
perfect match can be found, the bias of SCM estimate goes to zero when the number of first phase time 
points is large relative to the scale of the error term, which is not likely to hold in settings with limited 
follow-up visits. The two frameworks, though can be used in similar settings, are based on non-nested 
assumptions and distinct estimation strategies.

The selection of suitable external controls must be approached with caution to mitigate potential 
biases. The Pocock criteria (Pocock 1976) is commonly used to evaluate the comparability between 
external controls and current trials. Additionally, FDA recently released some guidelines for assessing 
the comparability of external controls (FDA 2023).

We have conducted extensive simulations to compare the performance of the methods proposed. 
Across all settings, we found that the DID estimators generally produce negligible bias in finite samples, 
while SCM tends to have noticeable bias. This is consistent with our expectations for several reasons. 
The DID estimators are consistent if the DID assumption 3 is satisfied, meaning they are unbiased 
asymptotically, as stated in Theorem 1. In contrast, SCM does not inherently possess an unbiasedness 
property. The bias in SCM diminishes only under certain conditions: (a) when there is a sufficiently 
large number of first phase time points relative to the scale of the error term, a condition unlikely to be 
met in settings with limited follow-up visits such as the randomized controlled phase of the SUNFISH 
trial featuring only two visits; and (b) when the estimated weights generate synthetic controls closely 
matching the respective RCT control patients (Abadie 2021; Abadie et al. 2010). Neither condition is 
commonly satisfied in practice. While DID methods might appear to impose stricter assumptions, 
particularly in the linear model referenced in Eq. 2—which is a special case meeting the DID assumption 
3—they still serve as good approximations even when these assumptions are slightly violated, as 
evidenced in setting 4. In summary, the DID framework outperforms SCM across various metrics 
including bias, Root Mean Square Error (RMSE), coverage, confidence interval length, and computa
tional time. Therefore, we recommend the DID framework as the method of choice over SCM.

18 X. ZHOU ET AL.



Certainly, if both the DID and SCM methods yield consistent results, this would offer an additional layer 
of reassurance regarding the robustness and validity of the findings, as our findings for the SUNFISH 
trial in Section 5.

For future research, we will consider extending the proposed framework in the following directions. 
(1) We will consider extending the DID and SCM framework to accommodate more flexible long
itudinal data structure. (2) The DID estimators require the estimation of either the outcome model or 
propensity of trial participation model, or both, and their performances are dependent on the ability to 
have correct models for these nuisance parameters. This is especially challenging in the presence of 
high-dimensional baseline covariates, one needs to go beyond parametric models. We will also 
consider the incorporation of machine learning in the DID framework.

We hope our proposed methods offer strategies to the analysis of long-term outcomes by augment
ing the trial data with real-world data, such as external controls, enrich the literature in the current 
topic of external controls in clinical trials, and stimulate further investigation.
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Appendix A.

Remark 6. Assumption 3 is a causal assumption that describes relationship between potentially unobserved counterfactual 
outcomes, making it unverifiable in practice. However, we can assess its plausibility by comparing trial control patients and 
external control patients during the randomized placebo-controlled period I. This comparison can be facilitated through 
a regression model incorporating measured covariates, trial participation, time, and an interaction between trial participa
tion and time. If the interaction term proves insignificant, it lends some credibility to Assumption 3. Nevertheless, it’s 
important to note that this only suggests the plausibility of the assumption during the time period for which data is 
available. It doesn’t directly validate the assumption’s plausibility during the open-label extension period, which is our 
primary area of interest.

Remark 7. Assumption 3 offers a mechanism to estimate the residual bias by leveraging the existence of the first 
randomized controlled period. If satisfied, this assumption results in unbiased estimators. Despite being unverifiable, if one 
deems this assumption approximately reasonable, it can be viewed as an approximation to the unknowable bias term. 
Consequently, the resulting estimators can be interpreted as approximations to the average treatment effect.

Remark 8. The non-negative and sum-to-one constraints in the SC weights are proposed, similarly as the matching 
estimators, to minimize extrapolation bias. Ideally, the observed characteristics of a trial control patient should reside inside 
the convex null of few external controls, which avoids the danger of extrapolation. And the penalization of pairwise 
discrepancies further minimizes the danger of interpolation bias.

Remark 9. Though the difference-in-differences methods and synthetic control methods have different assumptions and 
approach the counterfactual estimation problem differently, both can be viewed as special types of regression estimators, as both 
are in the form of linear combinations of external controls. Refer to the observed and missing outcome structure in Eq. ?, both can 
be viewed as “vertical regression” with different constraints, where we treat the external control outcomes across patients as 
predictors and across time as repeated observations (Doudchenko and Imbens 2016). The regression formulation corresponding 
to the original SCM (Abadie et al. 2010) has one distinctive constraint – no intercept. From the pure statistical model perspective, 
they are different constrained regression models. From the causal perspective, the constraints have substantive interpretations: the 
no-intercept constraint of SCM does not allow for study effect or a direct effect of trial participation on outcomes outside of 
treatment, which is an important feature of DID methods which assume that the never-treated outcomes of the trial controls and 
external controls can be systematically different as long as this gap is constant over time.

Appendix B.

Let gðO; θÞ be a generic notation for parametric models πSðX; βÞ and μðt; S; A; X; γÞ, where O stands for relevant 
variables used in generic model g. Assumption 5 requires that the models for the nuisance components to be smooth 
parametric models. These requirements are standard and satisfied when the outcome regression and propensity score 
models are estimated by least squares or maximum likelihood methods.

Assumption 5. gðxÞ ¼ gðx; θÞ is a parametric model, where θ 2 Θ � Rk; Θ being compact, and 

(1) gðX; θÞ is a.s. continuous at each θ 2 Θ;
(2) there exists a unique pseudo-true parameter θ� 2 int ðΘÞ;
(3) the estimator bθ is consistent for the θ�.

PROOF (EQUATION 3). ER Yð1;ð1;1ÞÞ
t

h i
is directly estimable from the trial treated patients. Under the assumption 2, 

ER Yð1;ð1;1ÞÞ
t

h i
¼ EXjR E YtjX; S ¼ 1; A1 ¼ 1½ �½ �

The external controls can be used to identify ER Yð1;ð0;0ÞÞ
t

h i
, provided that the assumption 3 holds, 

ER Yð1;ð0;0ÞÞ
t

h i
¼ EXjR E Yð1;ð0;0ÞÞ

t jX
� �h i

¼ EXjR E Yð0;ð0;0ÞÞ
t jX

� �
þ BðXÞ

h i

¼ EXjR E YtjX; S ¼ 0; A ¼ ð0; 0Þð Þ þ BðXÞ½ �

The constant conditional bias BðXÞ can be estimated under assumption 3, as long as there exists a period 
I (even a single measurement is enough) during which the trial control patients were not treated, so that the 
difference between the trial controls and external controls at those time points quantify the unmeasured 
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conditional bias, and we can use the estimated conditional bias to de-bias the period II of interest. This idea is 
intuitively illustrated as the parallel trend in Figure 1. A simple strategy to pool the differences observed in 
multiple period I time points is an average difference: 

BðXÞ ¼
1

T1

X

t2T 1

ER Yð1;ð0ÞÞ
t jX

h i
� EE Yð0;ð0ÞÞ

t jX
h i� �

¼
1

T1

X

t2T 1

E YtjX; S ¼ 1; A1 ¼ 0½ � � E YtjX; S ¼ 0; A1 ¼ 0½ �ð Þ

Put it together, the estimand in Eq. 1 can be identified by 

τt ¼ ER μðX; S ¼ 1; A ¼ ð1; 1Þ; tÞ � μðX; S ¼ 1; A1 ¼ 0; T 1Þð Þ½

� μðX; S ¼ 0; A ¼ ð0; 0Þ; tÞ � μðX; S ¼ 0; A1 ¼ 0; T 1Þð Þ�

for t 2 T 2:

PROOF (EQUATION 4). We can also identify the estimand using a weighting approach. Under the assumption 2, 

ER Yð1;ð1;1ÞÞ
t

h i
¼

ER
A1Yt
πA

h i

ER
A1
πA

h i ¼
ER A1W11Yt½ �

ER A1W11½ �

Similarly, provided that the assumption 3 holds, 

ER Yð1;ð0;0ÞÞ
t

h i
¼

ð

E Yð1;ð0;0ÞÞ
t jX

h i
pRðxÞμðdxÞ

¼

ð

E Yð1;ð0;0ÞÞ
t jX

h i
pRðxÞ
pE ðxÞ pEðxÞμðdxÞ

ð
pRðxÞ
pE ðxÞ pEðxÞμðdxÞ

¼

ð

E Yð0;ð0;0ÞÞ
t jX

h i
þ BðXÞ

� �
pRðxÞ
pE ðxÞ pEðxÞμðdxÞ

ð
pRðxÞ
pE ðxÞ pEðxÞμðdxÞ

¼
EE ½W0ðXÞ Yt þ BðXÞð Þ�

EE ½W0ðXÞ�

The constant conditional bias BðXÞ can be estimated similarly 

BðXÞ ¼
1

T1

X

t2T 1

E Yð1;ð0;0ÞÞ
t jX

h i
� E Yð0;ð0;0ÞÞ

t jX
h i� �

Put it together, the estimand in Eq. 1 can be identified by 

τt ¼
ER A1W11Yt½ �

ER A1W11½ �
�

EE½W0ðXÞ Yð0;ð0;0ÞÞ
t þ 1

T1

P
t2T 1

E Yð1;ð0;0ÞÞ
t jX

h i
� E Yð0;ð0;0ÞÞ

t jX
h i� �� �

�

EE ½W0ðXÞ�

¼ ER
A1W11

ER A1W11½ �
Yt �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
YðT 1Þ

� �

� EE
W0ðXÞ

EE W0ðXÞ½ �
Yt � YðT 1Þ
� �

� �
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for t 2 T 2:

PROOF (EQUATION 5). 

τDID�EC�AIPW
t ¼ τDID�EC�IPW

t 

� ER
A1W11

ER A1W11½ �
μðX; S ¼ 0; A ¼ 0; tÞ �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
μðX; S ¼ 0; A ¼ 0; T 1Þ

� �

� EE
W0ðXÞ

EE W0ðXÞ½ �
μðX; S ¼ 0; A ¼ 0; tÞ � μðX; S ¼ 0; A ¼ 0; T 1Þð Þ

� �

¼ τDID�EC�IPW
t 

� ER μðX; S ¼ 0; A ¼ 0; tÞ � μðX; S ¼ 0; A ¼ 0; T 1Þ½ �

� ER μðX; S ¼ 0; A ¼ 0; tÞ � μðX; S ¼ 0; A ¼ 0; T 1Þ½ �

¼ τDID�EC�IPW
t ¼ τt 

for t 2 T 2:

Plug in the estimated nuisance parameters and replace the expectations with sample average, the three variants of DID 
type estimators, bτDID�EC�OR

t , bτDID�EC�IPW
t , and bτDID�EC�AIPW

t : 

bτDID�EC�OR
t ¼

1
n
X

i2R
μðXi; Si ¼ 1; Ai ¼ ð1; 1Þ; tÞ � μðXi; Si ¼ 1; Ai1 ¼ 0; T 1Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δtrial 

� μðXi; Si ¼ 0; Ai ¼ ð0; 0Þ; tÞ � μðXi; Si ¼ 0; Ai1 ¼ 0; T 1Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔEC 

bτDID�EC�IPW
t ¼

X

i2R

Ai1 bW11
P

i2R Ai1 bW11
Yit �

ð1� Ai1Þ bW10
P

i2R ð1� Ai1Þ bW10
YiðT 1Þ

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δtrial 

�
X

i2E

bW0ðXiÞ
P

i2E
bW0ðXiÞ

Yit � YiðT 1Þ
� �

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔEC 

bτDID�EC�AIPW
t ¼

X

i2R

Ai1 bW11
P

i2R Ai1 bW11

beYit �
ð1� Ai1Þ bW10

P
i2R ð1� Ai1Þ bW10

b
eYiðT 1Þ

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δtrial 

�
X

i2E

bW0
P

i2E
bW0

beYit �
b
eYiðT 1Þ

� �" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔEC 

where the estimated nuisance components are plugged in and indicated by the hats.

Appendix C.

PROOF (1). (a) If the outcome model is correctly specified, i.e. μðX; S; A; t; γ�Þ ¼ μðX; S; A; tÞ, and it satisfies assumption 5, 
by the continuous mapping theorem and the weak law of large numbers, we have 
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bμSðX; S; A; t;bγÞ �!
p

μðX; S; A; γ�Þ ¼ μðX; S; A; tÞ

Then, 

bτDID�EC�OR
t ¼

1
n
X

i2R
bμðXi; Si ¼ 1; Ai ¼ ð1; 1Þ; tÞ � bμðXi; Si ¼ 1; Ai1 ¼ 0; T 1Þ
� �h

� bμðXi; Si ¼ 0; Ai ¼ ð0; 0Þ; tÞ � bμðXi; Si ¼ 0; Ai1 ¼ 0; T 1Þ
� �i

�!
p

ER μðX; S ¼ 1; A ¼ ð1; 1Þ; t; γ�Þ � μðX; S ¼ 1; A1 ¼ 0; T 1; γ�Þð Þ½

� μðX; S ¼ 0; A ¼ ð0; 0Þ; t; γ�Þ � μðX; S ¼ 0; A1 ¼ 0; T 1; γ�Þð Þ�

¼ τDID�EC�OR
t ¼ τt 

t 2 T 2:

(b) If the propensity of trial participation model is correctly specified, i.e. πSðX; β�Þ ¼ πSðXÞ, and it satisfies 
assumption 5, by the continuous mapping theorem and the weak law of large numbers, we have 

bπSðX;bβÞ �!
p

πSðX; β�Þ ¼ πSðXÞ

Then, 

bτDID�EC�IPW
t ¼

X

i2R

Ai1 bW11
P

i2R Ai1 bW11
Yit �

ð1� Ai1Þ bW10
P

i2R ð1� Ai1Þ bW10
YiðT 1Þ

" #

�
X

i2E

bW0ðXiÞ
P

i2E
bW0ðXiÞ

Yit � YiðT 1Þ
� �

" #

�!
p

ER
A1W11

ER A1W11½ �
Yt �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
YðT 1Þ

� �

� EE
W0ðXÞ

EE W0ðXÞ½ �
Yt � YðT 1Þ
� �

� �

¼ τDID�EC�IPW
t ¼ τt 

for t 2 T 2:

(c) If the assumption 5 holds for both the outcome model and the propensity of trial participation model, by the 
continuous mapping theorem and the weak law of large numbers, we have 

bμSðX; S; A; t;bγÞ �!
p

μðX; S; A; γ�Þ

bπSðX;bβÞ �!
p

πSðX; β�Þ

bτDID�EC�AIPW
t ¼

X

i2R

Ai1 bW11
P

i2R Ai1 bW11

beYit �
ð1� Ai1Þ bW10

P
i2R ð1� Ai1Þ bW10

b
eYiðT 1Þ

" #

�
X

i2E

bW0ðXiÞ
P

i2E
bW0ðXiÞ

beYit �
b
eYiðT 1Þ

� �" #
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�!
p

ER
A1W11

ER A1W11½ �
eYtðγ�Þ �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
eYðT 1; γ�Þ

� �

� EE
W0ðX; β�Þ

EE W0ðX; β�Þ½ �
eYtðγ�Þ � eYðT 1; γ�Þ
� �� �

Next, we show it has the doubly robust property. If the outcome model is correctly specified, i.e. 
μðX; S; A; t; γ�Þ ¼ μðX; S; A; tÞ, then 

EE
W0ðX; β�Þ

EE W0ðX; β�Þ½ �
eYtðγ�Þ � eYðT 1; γ�Þ
� �� �

¼ EE
W0ðXÞ

EE W0ðXÞ½ �
eYt � eYðT 1Þ
� �� �

¼ EE
W0ðXÞ

EE W0ðXÞ½ �
E½eYtjX; S ¼ 0; A ¼ ð0; 0Þ; t� � E½eYðT 1ÞjX; S ¼ 0; A1 ¼ 0; t�
� �

� �

¼ EE
W0ðXÞ

EE W0ðXÞ½ �
0� 0ð Þ

� �

¼ 0 

and 

ER
A1W11

ER A1W11½ �
eYtðg�y�Þ �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
eYðT 1; γ�Þ

� �

¼ ER
A1W11

ER A1W11½ �
eYt �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
eYðT 1Þ

� �

¼ ER½ μðX; S ¼ 1; A ¼ ð1; 1Þ; tÞ � μðX; S ¼ 1; A1 ¼ 0; T 1Þð Þ

� μðX; S ¼ 0; A ¼ ð0; 0Þ; tÞ � μðX; S ¼ 0; A1 ¼ 0; T 1Þð Þ�

¼ τDID�EC�OR
t ¼ τt 

Therefore, 

bτDID�EC�AIPW
t �!

p
τDID�EC�OR

t ¼ τt 

On the other hand, if the propensity of trial participation model πSðX; β�Þ ¼ πSðXÞ, then re-arrange 

ER
A1W11

ER A1W11½ �
eYtðγ�Þ �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
eYðT 1; γ�Þ

� �

� EE
W0ðX; β�Þ

EE W0ðX; β�Þ½ �
eYtðγ�Þ � eYðT 1; γ�Þ
� �� �

¼ τDID�EC�IPW
t 

� ER
A1W11

ER A1W11½ �
μðX; S ¼ 0; A ¼ ð0; 0Þ; t; γ�Þ �

ð1� A1ÞW10

ER ð1� A1ÞW10½ �
μðX; S ¼ 0; A1 ¼ 0; ; T 1; γ�Þ

� �

þ EE
W0ðX; β�Þ

EE W0ðX; β�Þ½ �
μðX; S ¼ 0; A ¼ ð0; 0Þ; t; γ�Þ � μðX; S ¼ 0; A1 ¼ 0; ; T 1; γ�Þð Þ

� �

¼ τDID�EC�IPW
t 
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� ER μðX; S ¼ 0; A ¼ ð0; 0Þ; t; γ�Þ � μðX; S ¼ 0; A1 ¼ 0; T 1; γ�Þ½ �

þ ER μðX; S ¼ 0; A ¼ ð0; 0Þ; t; γ�Þ � μðX; S ¼ 0; A ¼ ð0; 0Þ; T 1; γ�Þ½ �

¼ τDID�EC�IPW
t 

Therefore, 

bτDID�EC�AIPW
t �!

p
τDID�EC�IPW

t ¼ τt 

We have shown it has the doubly robust property that, if either one of the outcome model and the propensity of trial 
participation model is correctly specified, 

bτDID�EC�AIPW
t �!

p
τt 

for t 2 T 2:

Appendix D

We present additional simulations for setting 3, in Figure D1 and Table D1, where the study bias is suggested by the 
observed data.

Figure D1. Boxplot of estimated ATEs τ̂t¼4 across 3,000 simulations, at the last time point. The true ATE τ4 ¼ 2:5 are represented by 
the red dashed lines for reference.

Table D1. Estimated bias, standard error (SE), root mean square error (RMSE), 95% coverage probability, and the average width of 
a 95% confidence interval, across 3,000 simulations.

Method Mis-specified Model Bias SE RMSE Coverage C.I. Width

Setting 3:

Exist unmeasured confounding and study bias, DID Assumption satisfied, SCM Assumption Not satisfied
RBMI 0.227 0.200 0.303 83.467 0.856
DID-EC-OR None −0.000 0.111 0.111 95.133 0.442

outcome model −0.003 0.206 0.206 95.067 0.798
DID-EC-IPW None 0.004 0.217 0.217 95.667 0.907

ps model 0.003 0.217 0.217 95.867 0.904
DID-EC-AIPW None 0.004 0.136 0.136 94.867 0.537

outcome model 0.008 0.216 0.216 94.533 0.845
ps model 0.003 0.137 0.137 94.567 0.536

SCM 0.154 0.352 0.384 91.400 1.393
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Appendix E We present additional simulations, in Figure E1 and Table E1, with a higher percentage of trial 
controls where the ratio n1 : n0 is approximately 1 : 1 instead of 2 : 1. All other aspects of the simulations 
remain the same as in the main simulation, except for setting 3, which is the same as that described in 
Appendix D, where the study bias is suggested by the observed data. The results are consistent with the main 
simulation results.

Figure E1. Boxplot of estimated ATEs τ̂t¼4 across 3,000 simulations, at the last time point. The true ATE τ4 ¼ 2:5 are represented by 
the red dashed lines for reference.
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Table E1. Estimated bias, standard error (SE), root mean square error (RMSE), 95% coverage probability, and the average width of 
a 95% confidence interval, across 3,000 simulations.

Method Mis-specified Model Bias SE RMSE Coverage C.I. Width

Setting 1:

No unmeasured confounding, No study bias
RBMI 0.176 0.204 0.269 89.667 0.883
DID-EC-OR None −0.001 0.092 0.092 95.567 0.370

outcome model 0.000 0.191 0.191 94.667 0.736
DID-EC-IPW None −0.002 0.202 0.202 95.633 0.817

ps model −0.001 0.202 0.202 95.367 0.814
DID-EC-AIPW None −0.001 0.124 0.124 95.233 0.495

outcome model 0.002 0.200 0.200 94.733 0.790
ps model −0.001 0.125 0.125 94.600 0.490

SCM 0.135 0.328 0.354 62.545 0.758

Setting 2:

Exist unmeasured confounding, No study bias, DID Assumption and SCM Assumption satisfied
RBMI 0.199 0.192 0.276 88.200 0.924
DID-EC-OR None −0.001 0.110 0.110 94.567 0.430

outcome model −0.002 0.193 0.193 95.100 0.762
DID-EC-IPW None −0.000 0.207 0.207 95.300 0.826

ps model 0.000 0.206 0.205 94.867 0.824
DID-EC-AIPW None 0.003 0.137 0.137 94.967 0.533

outcome model 0.002 0.211 0.211 94.667 0.806
ps model 0.003 0.137 0.137 94.167 0.528

SCM 0.127 0.332 0.356 63.306 0.769

Setting 3:

Exist unmeasured confounding and study bias, DID Assumption satisfied, SCM Assumption Not satisfied
RBMI 0.170 0.184 0.251 92.467 0.923
DID-EC-OR None 0.001 0.111 0.111 94.500 0.430

outcome model −0.001 0.196 0.196 95.000 0.764
DID-EC-IPW None −0.001 0.208 0.208 95.167 0.825

ps model 0.000 0.207 0.207 94.767 0.821
DID-EC-AIPW None 0.001 0.135 0.135 94.933 0.532

outcome model −0.004 0.203 0.203 95.533 0.808
ps model 0.001 0.135 0.135 94.633 0.529

SCM 0.168 0.335 0.375 59.041 0.754

Setting 4:

Exist unmeasured confounding, No study bias, DID Assumption Not satisfied, SCM Assumption satisfied
RBMI 0.198 0.201 0.282 91.067 0.995
DID-EC-OR None 0.032 0.140 0.143 94.533 0.551

outcome model 0.036 0.217 0.220 94.400 0.837
DID-EC-IPW None 0.055 0.225 0.231 94.933 0.911

ps model 0.056 0.224 0.231 95.000 0.906
DID-EC-AIPW None 0.054 0.171 0.179 93.033 0.652

outcome model 0.056 0.230 0.237 94.033 0.890
ps model 0.055 0.167 0.175 92.900 0.644

SCM 0.158 0.347 0.381 60.860 0.781
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