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Abstract

Incorporating external data, such as external controls, holds the promise of improving the efficiency of
traditional randomized controlled trials especially when treating rare diseases or diseases with unmet
needs. To this end, we propose novel weighting estimators grounded in the causal inference framework.
As an alternative framework, Bayesian methods are also discussed. From trial design perspective,
operating characteristics including Type | error and power are particularly important and are assessed in our
realistic simulation studies representing a variety of practical scenarios. Our proposed weighting estimators
achieve significant power gain, while maintaining Type | error close to the nominal value of 0.05. An
empirical application of the methods is demonstrated through a Phase Ill clinical trial in rare disease.

Keywords: causal inference, efficiency, external controls, propensity score weighting

1 Introduction

Randomized controlled trials (RCTs) are widely recognized as the gold standard for determining
the effects of therapeutic products on specific outcomes. Yet, these trials are not without their lim-
itations. Attaining adequate statistical power for hypothesis testing of the treatment effect at the
primary endpoint may require sufficient number of patients, who are then assigned to either the
treatment or control groups (Viele et al., 2014). Firstly, when the number of patients with any spe-
cific disease is small, recruiting enough participants can be impractical or even unfeasible.
Secondly, the prospect of being assigned to the control group in high likelihood can be unappeal-
ing, or even ethically questionable, particularly in diseases with high unmet medical needs and no
or limited effective treatments. These challenges often occur in the rare disease setting and result in
smaller trial sizes, particularly affecting the size of the control arm, or in extreme cases, leading to
the absence of a control arm in single-arm trials (Gross, 2021).

The concept of ‘external controls’ (Chen et al., 2021; Pocock, 1976; Yap et al., 2021), which
involves using a comparison group of people external to the trial of interest who had not received
the experimental treatment, is becoming more common (FDA, 2023) and industry (Burger et al.,
2021). The use of external controls aims to harness the RCTs with above mentioned limitations by
either fully or partially substituting the trial control arms. These designs are considered innovative
(CID, 2023). Although various sources of data can serve as external controls, they are primarily
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derived from patient-level data from other clinical trials or from real-world data (RWD) sources,
like the example in the FDA CID program. The use of a control group from other trials is feasible if
the eligible population and endpoints align closely with the current study.

This paper focuses on methodologies to analyse hybrid controlled trials, where the control
group is composed of both trial and external controls. Incorporating external controls into
RCTs presents uniform statistical challenges, regardless of their sources. Pooling external controls
to estimate treatment effects on the trial population is subject to bias, as the randomized trial sub-
jects and the nonrandomized external control subjects are not exchangeable.

Currently, there is a growing interest in addressing this problem through the lens of causal in-
ference, as advocated by recent research [Ho et al., 2023]. Though much research has been done in
combining experimental and observational data, it has primarily focussed on different goals:
generalizability (Buchanan et al., 2018; Dahabreh et al., 2019), representativeness (Campbell,
1957), external validity (Stuart et al., 2018), transportability (Pearl & Bareinboim, 2011;
Westreich et al., 2017), and data fusion (Bareinboim & Pearl, 2016). This line of research focuses
on generalizing trial results to a target population for which the trial participants are not represen-
tative of. In contrast, this paper focuses on utilizing an external control population, to increase the
statistical efficiency and power of hypothesis testing for the treatment effect in the trial population.
For this goal, Bayesian dynamic borrowing methods (Fu et al., 2023) has been a popular frame-
work. Bayesian methods provide a natural mechanism for information borrowing through the
use of informative priors: the power prior (Ibrahim & Chen, 2000; Ibrahim et al., 2015), the
commensurate prior and the commensurate power prior (Hobbs et al., 2011), and the robust
metaanalytic-predictive prior (Schmidli et al., 2014).

The objective of this paper is to address the gap in current research on causal inference meth-
ods for hybrid controlled trials, aiming to enhance trial efficiency. The above mentioned
Bayesian methods do not focus on using causal inference framework. By integrating trial
data with external control data, the goal is to increase statistical power while maintaining
the desired Type I error rate. When designing a future trial with external controls, fewer intern-
al control subjects may be needed, which shortens the recruitment and possibly the duration the
trial, and leads to more efficient medical product development and approval. In particular, we
propose causal estimators based on weighting in two layers: the first layer tackles the distribu-
tional shift in confounders, while the second layer synthesizes evidence from both trial and ex-
ternal controls. Our focus is different from the literature in generalizability of trial results to
another population. Instead, we focus on the reverse direction of using external data to enhance
the efficiency of clinical trials. Our research work also establishes realistic data generating
mechanisms likely encountered in actual clinical trials to support new study designs. Those sim-
ulations allow trial designers to evaluate the trial operating characteristics by assumption vio-
lation. Finally, all methodological and practical discussions are motivated and illustrated
through a recent Phase III trial in a rare disease, illustrating the feasibility of the approach in
practical applications.

The work is motivated by a recent study of the medicine risdiplam to treat spinal muscular at-
rophy (SMA). Spinal muscular atrophy is a rare neuromuscular disorder that results in the loss of
motor neurones and progressive muscle wasting. The SUNFISH Trial (NCT02908685) is a Phase
111, randomized, double-blind, placebo-controlled study of the efficacy and safety of the risdiplam
treatment among patients aged 2-25 years with confirmed 5q autosomal recessive Type Il or Type
I SMA recruited from 42 hospitals in 14 countries across Europe, North America, South
America, and Asia. Risdiplam is an oral small molecule that modifies pre-mRNA splicing of the
SMN2 gene to increase production of functional SMN. Patients were stratified by age and ran-
domly assigned (2:1) to receive either daily oral risdiplam or daily oral placebo. Patients were
scheduled for follow-up visits roughly every 6 months to have their motor function measure
(MFM) measured along with other clinically relevant indicators. The primary endpoint was the
change in the MFM from baseline to the end of month 12. The results in the primary endpoint
have shown a significant improvement in motor function compared with placebo. More informa-
tion about the trial can be found in Mercuri et al. (2022).

The olesoxime trial (NCT01302600) (Berry et al., 2010) is a randomized, double-blind,
placebo-controlled, Phase II study for the same disease population as SUNFISH. The olesoxime
trial shares the same set of measurements and follow-up visits as the SUNFISH study, but with
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a control arm that spans over 2 years. The control subjects from this study can serve as external
controls to augment the SUNFISH study (Mclver et al., 2023).

The remainder of this paper is organized as follows. In Section 2, we introduce the notations,
estimand, and causal identifiability assumptions that explicit ‘qualities’ of the external controls.
In Section 3, we propose an identifying functional and its doubly robust counterpart, with a
weighting parameter that permits investigator control of the influence of the external controls.
The two functionals are used to develop a suite of weighting estimators. Consistency and asymp-
totic normality are provided when parametric models are used to estimate nuisance parameters,
given certain qualifying assumptions. In Section 4, we briefly discuss the power prior and commen-
surate prior methods. Simulation studies in Section 3 illustrate the finite-sample performance of
the proposed methods as well as the Bayesian methods, with realistic simulations mimicking the
SUNFISH trial and its external controls. In Section 6, application of the methods is demonstrated
through the SUNFISH trial with external controls. Finally, Section 7 summarizes and discusses key
takeaways.

2 Notations and assumptions for causal identifiability

2.1 Notations

The notations and assumptions used in this work are grounded in the potential outcome frame-
work (Imbens & Rubin, 2015). We assume to have two data sets at hand:

¢ ARCT, denoted by R (for randomized), assessing the efficacy of a binary treatment A on lon-
gitudinal outcomes Y = (Y4, ..., Yr) repeatedly measured on T time points (if only a single
primary endpoint is of interest, T =1), conducted on 7 subjects. Each subject i, labelled
from 1 to 7, is sampled from a distribution Pg (X, A, Y, Y% the current RCT trial popu-
lation, and also the target population of interest. For any subject , X; is a p-dimensional vector
of measured baseline covariates, and potential confounders, accounting for individual char-
acteristics. A; denotes the binary treatment assignment (with A; = 1 if treated and A; = 0 if un-

treated), and Y¥ = (Y(l"), ety Y(;)) are the potential outcomes had the subject i been given
treatment a (for a € {0, 1}). Y; denotes the observed outcomes, by the Assumption 2,

Y, = A,~Y£-]> +(1- A,-)YEO). Our interest is in those trials with small proportion of control sub-
jects, hence the probability of treatment assignment 74 = Pg(A = 1), usually >1/2. Let 11 be
the number of treated subjects and g be the number of control subjects.

¢ An external control sample, denoted by £ (for external controls), containing 7 subjects
sampled from a distribution P¢(X, A =0, Y'?). The available external control sample size
m could potentially be large. We assume observe the same set of baseline covariates X;.

We assume that each trial subject i € R is sampled from the current RCT trial population described
by Pr(X, A, YV, Y?) (also the target population of interest), while each external control subject
i € £ is sampled from P¢(X, A =0, Y'?), labelled from i =7 + 1 to 7 + m. P¢ could represent the
distribution of a larger disease population in the real world, or a population targeted by another tri-
al. We use S; to denote trial participation status, with S; =1 fori € R and S; =0 for i € £.

Throughout the paper, we will use indices R and € to denote quantities (probability, expect-
ation, variance, covariance) taken with respect to these populations, for example, Ex () for an ex-
pectation over Pg.

2.2 Causal estimand

We define the trial population (the target population) average treatment effect (ATE) as the causal
estimand

7 & Eg[Y - YO (1)

where 7= (ry, ..., 77) is a vector of time-indexed ATE. In contrast, the estimand in the related gen-
eralizability literature would be the same expectation, except taken with respect to Pg.
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2.3 ldentification assumptions

The identification assumptions needed are similar to those in the generalizability literature
(Dahabreh et al., 2019; Stuart et al., 2018).

Assumption 1 (No direct effect of trial participation). The only way through which trial
participation affects the outcome is through the treatment itself and there is
no direct effect of trial participation on the outcome. It implies that there is
no dependency of potential outcomes under no treatment on trial partici-
pation: Y$=0) = Y=0) for s € {0, 1}.

Assumption 2 [Stable unit treatment value {SUTVA}]. If i € R, then Y; = YZ(A’>, and if
i€ &, then Y; = Yl(.o). That is, the observed outcome for ith subject in the
RCT equals to that individual’s potential outcome under the treatment ac-
tually received, and the observed outcome for an external control subject
equals to that individual’s potential outcome under no treatment. Implicit
in this notation is that there is a single version of ‘no treatment’ that is con-

sistently defined across all subjects in the RCT and external controls.

Assumptions 1 and 2 assume that the outcomes for patients receiving no active treatment are
assumed to be stable and not influenced by the specific conditions of the study they participate
in. When external controls come from RWD, such a direct effect may arise if there are any substan-
tial placebo effects. This assumption may be more reasonable when using external controls from a
separate trial, as in our real data example. Then, it would be sufficient that the placebo effects are
identical in the control groups for each trial.

Assumption 3 (Internal validity of the trial). (1) Treatment randomization holds for all
subjects in the RCT: (Y\",Y!?) L A; for A;€{0,1)},i€R; and (2)
Positivity of treatment assignment: 0 <z4 = P(A;=1[S;=1) < 1.

Assumption4  (Conditional ignorability of trial participation). Given the measured cova-
riates X, the potential outcome under no treatment is independent of trial
participation, i.e. trial participation is conditionally ignorable or ex-
changeable, Yi-o) LS| X;forie Rué&

Assumption 4 is analogous to the no unmeasured confounding or ignorability assumption com-
monly used in causal inference literature, especially in the generalizability literature (Dahabreh
etal., 2019; Stuart et al., 2018). In practical terms, this means both the trial and the external study
must capture all risk factors of the outcomes that also influence study participation. This might
include demographic, socioeconomic, and disease features.

Unlike the usual ignorability assumption based on counterfactual variables, Assumption 4 im-
plies conditional independence among observed variables Y; L S; | X;, A; =0, i.e. the trial partici-
pation is conditionally independent with outcomes given covariates among the trial controls and
external controls. This assumption is falsifiable by testing for distributional differences in outcome
given covariates between the trial controls and external controls. However, it is important to note
that a violation of either Assumptions 1 or 4 (or both) could result in a discernible difference in
outcomes that cannot be readily distinguished as being due to one specific assumption being
violated.

Assumption 5 (Overlapping or positivity of trial participation). The support of the meas-
ured covariates in the RCT population is contained within that of the ex-
ternal control population: supp(Px (X)) C supp(P¢(X)), or equivalently,
Pr(§=1|X=x) <1 for all x.

In contrast to positivity assumption in the generalizability literature (Buchanan et al., 2018;
Dahabreh et al., 2019), which generally requires Pr(S=1|X =x) > 0 for all x, Assumption 5 re-
quires that, in all areas of the covariate distribution, it is possible to have external controls.
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Figure 1. Graphical model representing the pooled dataset. Here, we illustrate two repeated outcomes, in general,
there could be arbitrary number of repeated outcomes, where the dashed node and edges are assumed to be
absent. a) Directed Acyclic Graph (DAG); b) Equivalent Single World Intervention Graph (SWIG).

Assumption 5 is empirically falsifiable by comparing the empirical distributions of the covariates
in the trial sample and the external controls.

The Directed Acyclic Graph (DAG) in Figure 1a illustrates the possible mechanism of the set-
ting, and the equivalent Single World Intervention Graph (SWIG) (Richardson & Robins,
2013) in Figure 1b shows the relationship between covariates, interventions and potential out-
comes under no treatment, where the dashed node and edges are assumed to be absent. The exist-
ence of U would violate the Conditional Ignorability Assumption 4. Two mechanisms are assumed
to be absent: (1) the arrow from trial participation S to outcome Y, and (2) unmeasured confound-
ing U. (1) assumes that there is no direct effect of trial participation, it frees the dependency of po-
tential outcomes on trial participation, which we formalize in Assumption 1. (2) is analogous to
the no unmeasured confounding or ignorability assumption common in causal inference literature
and we formalize it in Assumption 4.

3 Causal inference methods

Without external controls, ATE can be estimated from the trial data, via (covariate-adjusted) dif-
ference in means, by internal validity.

A brute-force incorporation of the external controls, treating them equally as trial controls,
could run the risk of introducing bias (see Section 3.2 for a discussion on bias), outweighing the
benefit of gaining efficiency by accessing to additional data. Granting that Assumptions 1, 2, 3,
4, 5 hold, we weight the external controls so that the weighted distribution of the confounder
X in & is equal to that of the target trial population R. As a result, the weighted observed outcomes
of the external controls can be thought of as a representative sample from the distribution of po-
tential outcome under no treatment in the trial population, similar to the trial controls.

We are in possession of two representative samples to inform the potential outcome under no
treatment in the trial population: (1) the trial control sample, and (2) the weighted external control
sample, which is the augmented ‘control’ subjects to the trial without actually recruiting additional
trial controls, with the goal to increase the precision and efficiency in the estimation of and infer-
ence about the ATE in the trial population. The trial controls, from source (1), could give an un-
biased estimate of Ex[Y'?'], (assuming the internal validity), with limited samples, on the contrary,
and the external controls, from source (2), give another estimate of Ex[Y'”] that could suffer from
bias, but requires fewer resources to obtain. The intuitive idea to combine multiple sources of
information to estimate the same quantity is a convex combination, that is, to assign a weight
w (0 <w < 1) to the external controls, and synthesizes multiple estimates (here only two), by a
convex combination as the hybrid control estimate of ,u(R .

3.1 Weighting estimators for external controls to enhance trial findings

In this work, we focus on the weighting strategy that weights samples in two layers, with the first
layer of weights tackling the distribution shift between the external control population and the
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trial population and can be thought of as a special case of the balancing weights in Li et al. (2018)
and similar to the inverse probability of sampling weighting estimators (Cole & Stuart, 2010;
Stuart et al., 2011), and with the second layer of weights synthesizing the external controls esti-
mate with that of the trial controls estimate to form a single hybrid estimate. We name the novel
estimators External Controls Enhanced Inverse Probability Weighting (EC-IPW), and its doubly
robust (DR) version External Controls Enbanced Augmented Inverse Probability Weighting
(EC-AIPW), derived from identification formulae that share a general structure

T=pyy - [(1 —2)uyg + wpgp) ,

synthesis of external control and trial control

for any w € [0, 1], where p, denote expectation of appropriately weighted outcome of the sub-
jects in the sample s € {0, 1} and received treatment a € {0, 1} to be specified in Theorems 1
and 2.

Theorem 1  (Identification via EC-IPW). The estimand in equation (1) can be identified
using the observed data, combining trial and external controls, for any
w e [0, 1],

ey ERAYW ]

T ER[AW]
e e’
M1

(2)
Er[(1 — A)YWyo] w[Es[YWoo]
Er[(1 - A)Wio] Ee[ Wool

Hio0 Hoo

- | (1T-w)

where the trial treated, trial control, and external control subjects receive

. Pr(X X)(1-
weights Wiy =1, Wio =1L, and Wy = &g} = FEAGE. 75(X) = Pr(S =

1|X) denote the conditional probability of trial participation given covari-
ates, ms = Pr(S=1) denote the marginal probability of trial participation.
The weights associated with the trial subjects, Wy, and Wy, based on cova-
riates can increase the efficiency of the estimator (Tsiatis, 2006) and are op-
tional in a completely randomized trial. Wy is the balancing weights as in
Li et al. (2018) which weights the external control samples to represent the
target trial population.

In practice, m5(X) is unknown, which suggests fitting a model for the prob-
ability of trial participation z5(X) based on a logistic regression model
logit{ms(X; o)) = @ X with an unknown p-dimensional parameter a.

If the trial participation model z5(X; ) for zs(X) is correct,

TEC_IP‘X/:T’ (3)

see proof in Appendix A.

When w =0, P Y reduces to the normalized inverse probability of treatment weighting
(IPTW) estimator using only the trial data, i.e. the Hajek estimator, that is considered more stable
than the unnormalized IPTW, i.e. the Horvitz—Thompson estimator (Horvitz & Thompson,
1952).

Theorem2  (Identification via EC-AIPW). To improve upon Theorem 1, 25"V in equa-
tion (2) be robustified similarly as the augmented IPW for estimating ATE
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using observational data, by replacing Y with Y, the residual after projection
Y = Y — u(X), where u(X) = F[Y | X, A = 0].

Er[AY Wi |
Er[AW1]

1

LEC-AIPW 2

[ER[(l - A){(Wm] Ee [?Woo]
ER[(1 = A)Wio] ** Ee[Woo]

1o Hoo

(1 -w)

In practice, both zg(X) and u(X) are unknown, which suggests (i) fitting a
model for the probability of trial participation Pr(S = 1 | X) based on a logistic
regression model logit{ms(X; @)} = @ X with an unknown parameter a, and (ii)
fitting a parametric model u(X; f) = g(f X) for u(X) with ¢! a known link
function and g is an unkown parameter. For continuous outcome, the canon-
ical link function g~! is identity so that u(X; g) = #X.

If either the trial participation model z5(X; a) for z5(X) or the outcome

model u(X; ) for u(X) is correct,

TEC—AIPW =1, (5)

see proof in Appendix A.
The identification formulae in Theorems 1 and 2, result in two novel estimators presented in
Definitions 1 and 2 that share a common structure

t=llyy — [(1 — wityo + il >

synthesis of external control and trial control

forany w € [0, 1], where z,, denote appropriately weighted average outcome of the subjects in the
sample s € {0, 1} and received treatment a € {0, 1} to be specified in Definitions 1 and 2.

Definition 1  (EC-IPW Estimator). The EC-IPW estimator, when nuisance parameters are
unknown and estimated, is given by

Z ALY Wy

C-IPW p i€R

o B ZAiWMi

i€ER

N
M1
(6)
- A)Y: Wi >Y, Wooi
_ (1_w) iER _ +w €€ _
Z (1—A) Wi Z Wooi
i€R i€
- 7:10 7;00

where a hat indicates an estimated quantity.
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Definition 2 (EC-AIPW Estimator). The EC-AIPW estimator, when nuisance parameters
are unknown and estimated, is given by

DAY Wiy
C-AIPW p i€R

w ZA Wiii

i€ER
—
Hi1
i ] (7)
Z (1- Az‘)§i"x710i Z Y, Wooi
_ (1 _ ) i€ER 1e£
P sz Z Wooi
i€ER €€
;;l(l E)()

where a hat indicates an estimated quantity.

3.2 Bias-variance trade-off
The EC-IPW and EC-AIPW estimators in Definitions 1 and 2 indexed by a weight w € [0, 1] are
motivated by the need to combine an unbiased but small trial data, with a potentially biased but
large external data, with the goal to improve efficiency in estimating ATE in the RCT. The synthe-
sizing weight gives rise to a class of EC-IPSW estimators (similarly EC-AIPW), with infinitely many
choices of weights. The weight represents the degree of trust we put on the external controls, where
w < 1/2 amounts to discounting the influence of external controls on the final estimate. It is similar
to the power parameter in the Bayesian power prior approach (essentially uses weighted likeli-
hood), which assign weights through a power parameter to discount the external controls.
Ideally, the choice of the synthesize weight should strike a balance between bias and variance
trade-off of the final estimator: larger weight for external controls could potentially introduce
more bias through 71, while reduce the variance of the hybrid estimate; smaller weight minimizes
such bias but lost the gain of efficiency.

Since E[fi;o] = Er[Y'?)], it is unbiased, but Ziy, could be biased, denote E[fiyy] = Er[Y"] + B
where B characterizes the bias of estimating Ex[Y'?'] using the external control. Then the mean
square error (MSE) indexed by weight

MSE(w) 2 [E[ Fw) - 1)2]
= Var[iy; | + (1 — w)*Var[fi]
+w? Var[fig ] + B?) (8)
= 2(1 = w)Covlayy, fyo] — 2wCov[fiyy, Fgo]
+21w(1 = w)Cov[f; 0, Fiy]

where 7(w) is a generic representation of either rEC Pw or?Ec‘AIPW in Definitions 1 and 2.
The MSE is quadratic in weight w, and the optlrnal welght minimizing equation (8) is

( VafLﬁlOl"' COV[/?M»JIOOL )
« - COV[ﬂna ﬂ1o] - COV[ﬂlo, ﬂoo]

Var[ao] + Var[fig]
+B?

b ZCOV[ﬁlo, ﬁoo

w =

9)

The optimal weight in equation (9) can be simplified when the nuisance components are known,

W= Vaf[ﬁw]

= 1
Var[p,,] + Var[py, ] + B 10
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Note that the optimal weight depends on the variances of trial controls’ estimate Var[p;,] and ex-
ternal controls’ estimate Var[g], as well as the bias term B: If the variance of the external control’
estimate is large relative to the external control’ estimate, or the bias is large, the optimal weight is
close to 0, reflecting that the incorporation of external controls tends to inflate unnecessary bias
that cannot be compensated by a decrease in variance; on the other hand, when the variance of
external controls estimate is small relative to the external controls’ estimate, and its bias is negli-
gible, then the optimal weight is larger, reflecting that the incorporation of external controls does
not incur extra bias and can increase precision.

Bias could arise through the incorporation of external controls for several reasons: (1) When
there is a direct effect of trial participation such that Assumption 1 is not satisfied. For example,
patients in the clinical trial might be monitored more closely, receive better care, or simply be
measured differently. (2) Assumption 4 is violated by the existence of unmeasured confounding.
For example, rare disease patients may differ in terms of access to high-quality care, financial re-
sources, or general living conditions, that might make some patients less likely to participate in the
RCT, and coincidentally, these same conditions could exacerbate the progression of the disease.
Therefore, the population participating in the trial could be self-selected in a way that differs
from the external control population in manners that investigators are unaware of. (3) The correct
models to estimate the nuisance parameters zg(X) and u(X) are never known and subject to mis-
specification. Though (1) and (2) are collectively falsifiable by testing for distributional differences
in outcome between the trial controls and external controls given covariates, such tests are subject
to limitation of Type I and Type II errors.

Additional simulations are presented in the Web-based online supplementary materials to dem-
onstrate the role of the synthesizing weight w in the bias-variance trade-off, facing violations of the
causal Assumptions 1, 4, and 3, as well as model misspecification for nuisance components.

3.3 The choice of weight

The weight w needs to be chosen at the design stage. Though desirable, the weight that minimizes
MSE in equation (9) cannot be estimated without access to the outcome data. One option is to se-
lect the weight at the design stage based on subjective knowledge about the size and quality of the
external controls: if the sample size of the external controls is large and it is likely that the external
controls are similar to the trial population, then a larger weight can be assigned; a smaller weight
can be assigned if the opposite is true. However, this choice is subjective and vulnerable to miscon-
ception that may end up with too much bias or no precision gain.

An alternative approach is to choose a weight that approximately minimizes the variability of
the resulting estimator without access to the outcome data. This aligns with Rubin’s principles
in designing observational studies (Rubin, 2008), that the design phase (refers to employing pro-
pensity scores to help create distributional balance of covariates between the two treatment
groups) should be done without access to any outcome data. With a few simplifying assumptions,
equation (10) can be approximated by a ‘variance ratio’ (shown in Appendix B), which is estim-
able without any outcome data.

> USi(1 - AWy,

2
Y Si1 - A) W

- Zsi(l — AW, Z(l - 5) W3,

2+ 2

ZSi(l - A) Wiy 37 (1= 8:) Wop,

A

1

Equation (11) can be interpreted as the proportion of variance in covariate balancing weights as-
sociated with the trial controls relative to the total variance in these weights across both trial and
external controls. Intuitively, a greater disparity in the covariate distribution X leads to increased
variability in the covariate balancing weights for the external controls, consequently elevating the
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variability of the hybrid estimator. A higher value of w suggests a smaller weight assigned to the
external controls. Conversely, if the external controls have a covariate distribution similar to that
of the trial subjects, the variability in their covariate balancing weights decreases. In such cases, w
would indicate a larger weight assigned to the external controls, effectively treating them almost
on par with the trial data in terms of influence and relevance.

We will refer to estimators with weight w* as the Optimally weighted EC-IPW-OPT and
Optimally weighted EC-AIPW-OPT, respectively.

3.4 Large-sample properties of the weighting estimators
The results of the section provide the asymptotic distributions of the EC-IPSW and EC-AIPSW es-
timators, which is necessary for carrying out inference tasks. To study the (asymptotic) behaviour
of the weighting estimators (EC-IPW and EC-AIPW) presented in Section 3.1, we express them as
the solutions to corresponding estimating equations to establish asymptotic normality and to pro-
vide consistent sandwich estimators for the variances (Tsiatis, 2006).

We consider the practical case when the nuisance parameters 75(X) and u(X) are estimated via
parametric models that satisfy Assumption 6. These requirements are standard and satisfied when
the outcome regression and propensity score models are estimated by maximum likelihood methods.

Assumption 6  g(X) = g(X; 0) is a parametric model, where 8 € ® c R¥, © is compact; (ii)
&(X; ) is a.s. continuous at each # € ; (iii) there exists a unique pseudo-
true parameter % € int (®); (v) the estimator 6 is consistent for §*.

-~

Theorem 3 (Asymptotics of ). Let 0* = (uy1, #1095 Hoo> @), 0= (H115 Higs Hoos @)
and note that @ is the solution for §* of the estimating equation

> ¥(0;0)=0,

IERUE

~EC-IPW
Tn,m

where O; = (X, S;, A;, Y;), with the influence function

SiAi(Y; —pyy)
TTSTA
¥, (0 0) Si(1 = A)(Y; —.”10)
| (050 | _ zs(1 — 74)
Y(O;; 0) = ¥5(0;; 6) =1 (1 =S8)Wooi(Y; —.”oo)
(3T+p)x1 ¥,(0;; 6) 1 -7
> eX,Ta
S,‘ - X,‘
1+eXie

that satisfies E[¥(0; 0)] =0 .

i~

Then as 7, m — o0, 0 converges in probability to 8, and /n + (0 — 0%)

converges in distribution to N(0, 5¢-PV) where
st =A7'BiA]T
——
(3T+p)X(3T+p)
)
A =lgron)]
(BT+p)x(3T+p)
-l 0 0 0
0 -l 0 0 (12)
= (1 - SHasX) T
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Next we show that

’z:EC —AIPW

Assuming that the logistic regression model z5(X; a) for z5(X) is correct,

then by equation (3), Slusky’s theorem and the delta method, ?ffn‘lpw is a
consistent estimator of z, for any fixed w € [0, 1], meaning that
1. Asn,m — oo,

2. Jn+m(@ECPW _ 7) converges in distribution to A(0, ZECPW) where

?EC ~IPW converges in probability to .

SECIPW — 51 4 (1 —w)?s), + w?sl and X}, X),, and 215 are block ma-

trices in ! corresponding to the var-covariance of g, fi;o, and iy, re-
spectively. A consistent estimate of the variance can be obtained by
plugging in sample analogue of population expectations into the expres-
sion for matrices A; and By:

@[#C—IPW] —

We can use this result to build Gaussian confidence intervals:

[P’[r € {?ff;”’w + 21_gyp Var[fECTPV] V2 ” Sl-a  (14)

is DR or doubly protected in that it remains consistent when either

the trial participation model o the outcome model is correctly specified.

Theorem

4 (Asymptotics of  ZHCHAIPW) Let 0" = (u11, H105 Hoos @*5 B7),

0 = (111, Hios Hoo»> % A, and note that 8 is the solution for 6 of the esti-
mating equation

> ¥(0;0)=0,

IERVE

where O; = (X,, S;, A;, Y;), with the influence function

SiA{(Y; —pyy)
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that satisfies E[¥(O; )] =0
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Then as 1, m — oo, 0 converges in probability to 6%, and /7 + m(0 — 6%)

converges in distribution to A'(0, Z5¢-AW) 'where
—1p_ A-T
¥? =A;'ByA;
(3T+p+q)X(3T+p+q)
0
A = | Zw(0;
2 [ 3 0‘1'(0’ 3)j|
BT+p+q)x(3T+p+q)
i _[E[& XT]
TSTA
S(1-A) T
A (0) _[E[nsu—mx ] (15)
— — T
~ B[S WooX]
0
000 0| -E[}=2xX"]

B, = Varl¥ 05 0)| =E|¥ O; 0)¥ 0;0)']
——
(3T+p+q)x(3T+p+q)

where A{(0) is defined in Theorem 3

Assuming that either the logistic regression model 75(X; a) for z5(X) or the
outcome model u(X; B) for u(X) is correct, then by equation (5), Slusky’s the-
orem and the delta method, ?ffn‘AIP W is a consistent estimator of r, for any
fixed w € [0, 1], meaning that

~EC-AIPW

1. Asn,m — o0, 7.5 converges in probability to 7.

2. «/n+m(?£’fn‘AIPW—r) converges in distribution to N(O0, TEC-AIPWy
where TECAPW — 32 4 (1 - u/)ZE%2 +w?%3; and 2%, £2,, and X3; are
block matrices in £? corresponding to the var-covariance of iy, fjo,
and H, respectively. A consistent estimate of the variance can be ob-

tained by plugging in sample analogue of population expectations into
the expression for matrices A, and B:

1

Var[#H Y = B (16)
+ (1 —w)*3}, +w’s3,)

We can use this result to build Gaussian confidence intervals:

P[‘r € [?E),Cn_AIPW + Zl_a/z\a[%Ec_AH)W]l/z}] —>1-a (17)

4 Other methods: Bayesian dynamic borrowing

The goal of Bayesian methods, similar to our proposal, is to increase precision when external con-
trols are ‘compatible’ and simultaneously control bias when not ‘compatible’. In this work, we do
not intend to do an exhaustive study of the Bayesian methods, instead, we compare the perform-
ance of two widely used approaches from this category with our proposed methods.

Let # denote model parameters (regression parameters for the relation between covariates X and

the outcomes) and L(6 | S) denote a general likelihood function associated with a given outcome
model [such as linear and generalized linear model (GLM)], and a population (S = 1 for trial popu-
lation, § = 0 for external control population).
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Formulation of the power prior. Following (Ibrahim & Chen, 2000), the power prior is formu-
lated as

T 0]S=0,a0) xL 0]S=0)"m(6) (18)

where 0 < gy <1 is a discounting parameter for the external controls data likelihood, and
7o(0) is the initial prior for 6. The parameter ay allows researchers to control the influence
of the external controls: with gy =0, external control information is discarded, and with
ap =1, the external controls contribute equally as the trial data to the likelihood. Priors can
be specified for ag, such as the beta distribution, and the choice is discussed in Ibrahim
et al. (2015).

Formulation of the commensurate priors. Following (Hobbs et al., 2011), the informative prior
is constructed using a hierarchical model that incorporates commensurate priors as the primary
mechanism for weighting the influence of prior information relative to its consistency with the trial
data. Specifically, the informative prior is constructed in a hierarchical model by specifying the pri-
or for the trial parameters @ to be ‘centred’ at the external control parameters @y with precision
7> 0, where 7 is the commensurability parameter that quantifies the ‘similarity’ among the external
controls and the trial controls in terms of model parameters § and 6y,

70]S=0,00,7) xL 6 |S=0)x 6] 6, 1)m(6) (19)

As t — 0, the external controls data is discarded. On the other hand, as t — o0, the external con-
trols are treated equivalently as the trial data.

5 Simulations

In choosing a simulation to comparison the finite-sample performance of the methods discussed in
Sections 3 and 4, we design our simulations to have a few properties. First, the data generating
mechanism should reflect the particular problem under study. Second, an important property of
the simulation is the realism of the relationship between the confounding variables and the out-
come, as well as a realistic level of confounding. Third, as all methods require either an outcome
model or propensity score model (or both), important aspect of these estimators to comparison is
how they respond to possible model misspecifications.

The simulations are based on the following data generating processes that is consistent with the
DAG in Figure 1:

S = Bernoulli(zg(W))
A Bernoulli(ny), if S=1
1o, ifS=0
Yi(a) =uW,t) +ar; +€¢,a€{0,1},t € [0, T]

(20)

where 7; represents the true time dependent ATE.

Let W denote a vector of baseline covariates that includes both the measured (X) and unmeas-
ured (U) confounders. We simulate W based on the empirical distribution of the measured baseline
covariates in the combined SUNFISH and external controls data set. There are five baseline cova-
riates that X and U emulate: scoliosis (binary, yes or no) as W7 , SMN2 copy number (binary, 2, 3,
or 4) as W5, baseline MFM (continuous) as W3, age at enrolment (continuous) as W4, and SMA
type (binary, Type Il or IIT) as Ws. Different subsets of (W1, ..., Ws) are designated as measured X
and unmeasured U based on the needs of each simulation setting. We then sample the trial partici-
pation on the basis of a propensity score model learned from fitting a logistic regression model on
the real data. The treatment assignment is based on the trial participation and 2:1
treatment-to-control ratio for trial participants. Lastly, the outcome is sampled based on a linear
model learned from the real data. The sample sizes are set to be similar as the real data, with total
n+m to be 220, with ny:mp:m roughly equals to 2:1:1 ratio, resulting in
ny ~ 110, n9 = 55, m ~ 55. This approach ensures that the joint distribution of
(W, S, A, Y(0), Y(1)) are as realistic as possible, coming directly from real data.
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To demonstrate the performance of proposed methods in different practical scenarios, we simu-
late five settings with various levels of selection bias due to unobserved U (ranging from the most
ideal case where U does not exist, the more practical case where U exist) and various levels of dif-
ficulty in modelling the nuisance components: (1) No causal assumption violated, models for both
nuisance parameters well-specified, (2) outcome model misspecified, (3) propensity score model
misspecified, (4) both outcome model and propensity score model misspecified, and (5) No un-
measured confounding assumption violated.

To simulate these settings, the true models are

o (W1, Wr, W3, W4, Ws), for Settings 1,2, 5

a (W1, W, W3, Wa, W3, Ws), for Settings 3, 4
B (W1, Wy, W3, Wy, Ws), for Settings 1, 3, 5

B (Wi, Wa, W3, Wy, W3, Ws), for Settings 2, 4

logit{ms(W)} = {
w(W, t) = {

The observed and omitted confounding variables are

(W, Wy, W3, W4, Ws), for Settings 1, 2, 3, 4
- { (W, W, W3, Wy), for Setting 5

_ [ None, for Settings 1, 2, 3, 4

B { Ws, for Setting 5

We then specify the propensity of trial participation model and the component of the outcome
model related to measured confounders as

(l,(Wl, Wl) W39 W49 WS)) for Settings 19 2) 3) 4

logit{ng(W)} =1
ogitims(W)} {a (Wq, W, W3, Wy) for Setting 5

(W, ) = B (W1, Wi, W3, Wy, W), for Settings 1,2, 3, 4
Y B (Wi, Wi, W3, Wy), for Setting 5

For each design, we perform 3,000 Monte Carlo simulations.

Bayesian specifications:. The power prior and commensurate prior for generalized linear models
accommodating our simulation setup is presented in Appendix C.

5.1 Results

At the trial design stage, operating characteristics including Type I error rate, power, and coverage
are important. Theoretically, if two estimators are consistent and their variances are correctly spe-
cified, then at least for large samples, both should have well-controlled Type I error, the one with
smaller standard error (SE) should have higher power. It has been shown in Theorem 3 that, when
the probability of trial participation model is correctly specified, EC-IPW is consistent, and when
either the probability of trial participation or the outcome model is correctly specified, EC-AIPW is
consistent (doubly robust). Generally, DR estimators also enjoy the benefit of variance reduction
and therefore efficiency gain. We expect to see more variance reduction with EC-AIPW as a DR
estimator. This supports the validity of our proposed estimators towards the goal of trial design
with correct Type I error control and power boost, especially the EC-AIPW estimator.

We compare methods in terms of bias, SE, MSE, 95% coverage probability, power (at a specific
nonnull treatment effect similar to the observed effect in SUNFISH) and Type I error (at null treat-
ment effect), estimated empirically across 3,000 simulations. We use the mixed models for
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repeated measures on trial data (within trial MMRM) as the reference to compare methods in
Sections 3 and 4, as it is the standard method of reporting trial results with only RCT data.

The degree of borrowing from external controls is indicated by the ‘weight’ column in Table 1;
however, the values are not directly comparable across methods. In the power prior method, the
weight represents the posterior mean of the discounting parameter in equation (19). For the com-
mensurate prior method, it corresponds to the posterior mean of the commensurability parameter
in equation (20). In the case of EC-IPW-OPT and EC-AIPW-OPT, the weight w is defined in
Definitions 1 and 2, respectively. Across all settings, the power prior method exhibits minimal bor-
rowing from external controls, as its power parameters have posterior distributions centred
around a value close to zero. The commensurate prior method displays varying degrees of borrow-
ing, with more significant borrowing in Settings 1-4 and less borrowing in Setting 5. A larger com-
mensurability parameter implies greater agreement between trial controls and external controls in
terms of parameter values, resulting in increased borrowing. For EC-IPW-OPT and
EC-AIPW-OPT, the weight @* is determined in a data-driven manner without using outcome
data. Greater weight is given to external controls when they offer more precise estimates, which
occurs when a large number of similar external controls are available in terms of observed con-
founders. In Settings 1 and 2, larger weights result in minimal bias and significant efficiency gains
from incorporating external controls. In Settings 3 and 4, smaller weights lead to minor bias in-
creases and still notable power gains. In Setting 5, where an unmeasured confounder is present,
larger weights are assigned because external controls are similar to trial subjects in terms of meas-
ured attributes. This still leads to efficiency gains that outweigh the bias introduced by the unmeas-
ured confounder.

The bias column in Table 1 displays the estimated bias across 3,000 simulations. Generally,
both the weighting estimators and the Bayesian methods effectively control the additional bias in-
troduced by utilizing external controls under various mechanisms.

Figure 2 and the SE column in Table 1 show the potential benefit of incorporating external con-
trols using the proposed estimators as well as the Bayesian methods, which is to increase the pre-
cision or reduce the variability. For EC-IPW-OPT, and EC-AIPW-OPT, SEs were estimated using
the asymptotic sandwich variance estimators given in Section 3.4, and for the power prior and
commensurate prior methods, although no frequentist SE is defined, we use the standard deviation
of the posterior sampling to make the comparison. The EC-IPW-OPT and EC-AIPW-OPT estima-
tors show greater reduction across all settings, with EC-AIPW-OPT having the greatest reduction.

The last column in Table 1 shows the empirical Type I error rates, for testing the null hypothesis
Hy : 7= 0 versus alternative Hy : 7 # 0. For EC-IPW-OPT, and EC-AIPW-OPT, 95% Wald confi-
dence intervals were constructed based on the estimated SEs and the asymptotic normality results
established in Section 3.4. For the power prior and commensurate prior methods, the posterior
95% posterior credible intervals were constructed. The confidence or credible intervals were
used to perform inference. We notice that both the Bayesian methods and our proposed weighting
estimators have Type I error close to the nominal value of 0.05.

The power column in Table 1 shows the estimated power at one specific alternative that is most
relevant to the SUNFISH trial z = 1.5, for testing the null hypothesis Hy : 7= 0 versus alternative
Hy : 7 # 0. Again, the confidence or credible intervals were then used to perform inference. The with-
in trial MMRM are powered slightly over 70% depending on settings. The ‘power gain’ column
shows the power increase using the within trial MMRM as the reference. The four methods can
be ranked by their power gain as follows: the EC-AIPW-OPT has the highest power gain, followed
by the EC-IPW-OPT as the second-highest, then the commensurate prior method as the third-highest
power gain, and finally, the power prior method shows little to no power gain. In addition, the esti-
mated power curves over a range of nonnull treatment effects are shown in Figure 3 to augment
Table 1. The pattern of relative power performance remains consistent across a variety of nonnull
treatment effects, encompassing the specific alternative that holds the most relevance for the
SUNFISH trial. In summary, the proposed causal weighting estimators, particularly
EC-AIPW-OPT, exhibit a more substantial and consistent power gain compared to other methods.

The coverage column in Table 1 shows the empirical 95% CI coverage probabilities. Due to our
use of 3,000 simulations, empirical coverage rates between 0.943 and 0.957, can be considered
close to 0.95. EC-IPW-OPT and EC-AIPW-OPT have slight under coverage in Settings 3 and 4,
while the Bayesian posterior credible intervals achieve the frequentist nominal coverage rate.
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Table 1. Estimated bias, standard error (SE), root mean square error (RMSE), 95% coverage probability, power (at
nonnull treatment effect 1.5), power gain using the ‘within trial MMRM'" as reference, and Type | error (at null
treatment effect), across 3,000 simulations®

Method Weight”  Bias SE  RMSE Coverage Power Power Type I
(%) (%) gainb(%) error (%)

Setting 1

Within trial MMRM - -0.007 0.591 0.591 94.3 72.6 0.0 4.7
Power prior 0.001 -0.010 0.578 0.579 95.3 72.4 -0.1 4.7
Commensurate prior  2.370 0.018 0.547 0.547 95.1 78.9 6.3 4.7
EC-IPW-OPT 0.402 0.002 0.536 0.536 95.0 81.0 8.4 4.7
EC-AIPW-OPT 0.404 -0.003 0.493 0.493 94.7 85.9 13.4 51
Setting 2

Within trial MMRM - 0.002 0.586 0.586 94.8 73.5 0.0 5.6
Power prior 0.001 0.006 0.573 0.573 95.5 73.4 -0.1 6.9
Commensurate prior  2.363 0.003 0.544 0.544 95.4 78.0 4.5 5.5
EC-IPW-OPT 0.404 0.007 0.548 0.549 93.7 79.8 6.3 4.5
EC-AIPW-OPT 0.403 0.002 0.497 0.497 94.7 85.2 11.7 4.0
Setting 3

Within trial MMRM - -0.008 0.578 0.578 94.7 72.0 0.0 4.9
Power prior 0.001  -0.004 0.577 0.577 94.4 71.6 -0.4 5.0
Commensurate prior  2.349  —-0.015 0.534 0.535 95.6 76.6 4.6 4.3
EC-IPW-OPT 0.404 0.006 0.530 0.530 94.9 81.2 9.2 5.0
EC-AIPW-OPT 0.403 -0.002 0.505 0.505 94.0 84.9 12.9 51
Setting 4

Within trial MMRM - 0.004 0.597 0.597 94.8 72.7 0.0 5.8
Power prior 0.001 0.004 0.577 0.577 94.5 73.6 0.8 3.6
Commensurate prior  2.350 -0.006 0.548 0.548 94.8 77.8 5.0 4.2
EC-IPW-OPT 0.402 0.004 0.529 0.529 94.9 80.4 7.7 4.4
EC-AIPW-OPT 0.403 -0.011 0.506 0.507 94.4 84.3 11.6 5.1
Setting §

Within trial MMRM - 0.004 0.565 0.565 95.7 73.8 0.0 5.6
Power prior 0.001 -0.026 0.574 0.575 94.9 71.9 -1.9 5.8
Commensurate prior  2.24$ 0.014 0.536 0.537 95.1 78.6 4.8 4.6
EC-IPW-OPT 0.415 0.006 0.527 0.527 95.3 81.4 7.6 52
EC-AIPW-OPT 0.413 0.006 0.506 0.506 93.6 85.9 121 51

? The weight column represents different parameters for the four methods: for the power prior, it is posterior mean of
discounting parameter in equation (19); for the commensurate prior, it is posterior mean of commensurability parameter
in equation (20); and for EC-IPW-OPT and EC-AIPW-OPT, it is the weight w in Definitions 1 and 2, respectively.

” Power gain is calculated as the difference of power between the corresponding method and the within trial MMRM.
¢ The best number among the Bayesian methods and our proposed methods in each column (except for weight) is bolded.

Taking together, from the trial design perspective, the proposed causal weighting estimators
have the advantage of significant power boost that are consistent across a range of favourable
or unfavourable scenario, while maintaining the nominal Type I error.

6 Application: SUNFISH trial

In this section, the methods described in Sections 3 and 4 are applied to reanalyse the SUNFISH
trial with the incorporation of an appropriately chosen external control group introduced in
Section 1.
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Figure 2. Boxplots of standard errors (SEs). For EC-IPW-OPT, and EC-AIPW-OPT, SEs were estimated using the
asymptotic sandwich variance estimators given in Section 3.4, and for the power prior and commensurate prior
methods, although no frequentist SE is defined, we use the standard deviation of the posterior sampling to make the
comparison. a) No causal assumption violated, models for both nuisance parameters well-specified; b) Outcome
model mis-specified; ¢) Propensity score model mis-specified; d) Both outcome model and propensity score model
mis-specified; e) No unmeasured confounding assumption violated.

The EC-IPW-OPT and EC-IPW-OPT, along with the power prior and commensurate prior
methods are employed to assess the ATE of risdiplam on MFM change from baseline, at months
6 and 12 (primary endpoint) for the SUNFISH trial population, using the olesoxime trial control
subjects as the external controls. Whenever the propensity score model is needed (for
EC-IPW-OPT and EC-AIPW-OPT), a logistic regression model was used, the outcome was trial
participation and the possible covariates including Age at enrolment, SMA Type (I or III),
SMN2 copy number (2,3,4), Scoliosis (Yes or No), and baseline MFM. Whenever the outcome
model is needed (for power prior, commensurate prior, and EC-AIPW-OPT), a linear model
was used, the outcome was MFM change from baseline and the possible covariates including
time (categorical), Age at enrolment, SMA Type (II or II), SMN2 copy number (2,3,4),
Scoliosis (Yes or No), and baseline MFM.

The distributions of the propensity of trial participation for the SUNFISH and external control
subjects comparisons are shown in Figure 4 (a: Unweighted probability of trial participation). The
slight imbalance in the two ends of the distributions is an indication of some covariate imbalance.
The weighted comparison (c: Weighted probability of trial participation) in Figure 4 illustrates the
improved balance by weighting the external controls using the EC-IPW and EC-AIPW weighting
scheme. Figure 4b and d provides a closer look at one of the covariates, age at enrolment showing
the unweighted and weighted age distributions under the EC-IPW and EC-AIPW weighting
scheme. There is a group of relatively older patients in the external controls in the unweighted sam-
ple, but improved balance is achieved by weighting down this group.

The estimated ATE of risdiplam MFM change from baseline and corresponding 95% ClIs, from
different methods are given in Table 2 and visualized in Figure 5, along with the within trial
MMRM as the reference which can be viewed as unbiased estimate of the true treatment effect.
All four estimators show similar ATE as the within trial estimate at both time points. In addition,
the EC-IPW-OPT and EC-AIPW-OPT estimators have noticeably narrower confidence intervals,

$20Z JaquianopN |z uo 1sanb Aq g1 1212 //S . 08eub/esssil/es01 01 /1op/ejonie-aoueApe/esss.il/woo dno-olwapeoe//:sdiy Woll papeojumo(]



18 Zhou et al.
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Figure 3. Estimated power at a range of treatment effects. a) No causal assumption violated, models for both nuisance
parameters well-specified; b) Outcome model mis-specified; c) Propensity score model mis-specified; d) Both outcome
model and propensity score model mis-specified; e) No unmeasured confounding assumption violated.

compared with within trial MMRM as well as the Bayesian methods. This shows that using data
outside of the trial with effective adjustment methods have the potential to improve the efficiency
of medical product approval by reducing the required trial subjects and shorten the length of the
study.

7 Discussion

The primary aim of this work is to suggest methods based on causal inference for augmenting trial
data with external control data to increase statistical power while preserving the desired Type I
error rate. We have proposed two estimators, EC-IPW-OPT and its DR version EC-
AIPW-OPT, that weight the trial and external controls combined data in two layers: the first layer
of weights assigned to the external controls tackling the distribution shift between external control
population and the trial population and can be thought of as a special case of the balancing weights
in Li et al. (2018), and with second layer as a weighted combination of the external control evi-
dence with the trial evidence. Through simulations representing a variety of practical scenarios,
we have shown that the proposed weighting estimators achieve significant power gain, while main-
taining Type I error close to the nominal value of 0.05, when certain assumptions are met. In par-
ticular, EC-AIPW-OPT has ‘doubly robust’ property about statistical model misspecifications
similarly as other double robust estimators, and shows the most efficiency gain. In addition, the
proposed weighting estimators are computationally less intensive compared to Bayesian methods,
as the former have closed-form analytic expressions for both the point estimates and their confi-
dence intervals, while the latter require intensive posterior sampling.

Whether the efficiency of the randomized trials can be improved by incorporating external con-
trols hinges upon the ‘compatibility’ of external controls and the specification of statistical models
for nuisance components in the proposed estimators. ‘Compatibility’ here refers to: (1) no direct
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Figure 4. Comparisons of the distributions of the estimated probability of trial participation and age between
SUNFISH and external control subjects. a) Unweighted distributions of the estimated probabilities of trial
participation, c) weighted distributions of the estimated probabilities of trial participation, b) unweighted
distributions of age, and d) weighted distributions of age.

effect of trial participation Assumption 1: a patient’s potential outcome under no treatment would
be the same, regardless of whether this patient is in the trial control group or the external control
group (2) conditional ignorability Assumption 4: the outcome of trial controls and the external con-
trols are exchangeable if they share the same characteristics, and (3) overlapping Assumption 5: for
each trial subject, there is positive probability to have some external controls sharing the same char-
acteristics. Therefore, the selection of suitable external controls is important when considering our
approach. One may consider the Pocock criteria (Pocock, 1976) which has been used to evaluate the
comparability between external controls and current trials. Food and Drug Administration’s guide-
line on ‘Choice of control group and related issues in clinical trials’ (FDA, 2021) and ‘Considerations
for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products
Guidance for Industry’ (FDA, 2023) provide discussion on the choice and data quality of external
controls. When using external controls from a separate trial, as in our real data example, it might
be reasonable to accept the assumptions if the placebo effects are similar or have low impact in
both control groups and there is no unobserved selection bias between the two trials.

The practical implications of conditional ignorability Assumption 4 are essential during the de-
sign phase of externally controlled trials. The incorporation of external controls face significant
concerns regarding the potential for differences in patient attributes that could impact outcomes
between the external control group and the trial treated arm. Examples of such baseline attributes
include demographic and related factors like age, sex, race, socioeconomic status, and geographic
region. Other attributes that may differ but are often more difficult to address encompass disease
features, such as severity, duration, specific signs and symptoms, comorbidities, and previous and
ongoing treatments. These confounding factors should be consistently measured and captured in
both sources of data. This is the conditional ignorability Assumption 4, upon which the validity of
our proposed weighting estimators can be established.

In practice, it is important to note that the recorded data may not always be comprehensive enough.
For instance, it might be the case that SMA patients differ in terms of economic conditions and access
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Table 2. The estimated average treatment effect of risdiplam in motor function measure change from baseline and
corresponding 95% Cls

Method T at primary endpoint 95% CI CI width
Within trial MMRM 1.672 (0.293, 3.051) 1.379
Power prior 1.650 (0.271, 3.034) 1.381
Commensurate prior 1.527 (0.198, 2.820) 1.311
EC-IPW-OPT 1.712 (0.529, 2.895) 1.183
EC-AIPW-OPT 1.522 (0.343,2.702) 1.179

Estimated ATE and 95% Cls

3 —_—
24 -6~ Within Trial MMRM

+o

Power Prior
| o
L 4 / :/’
- =©~- Commensurate Prior
) <rf
-~ EC-IPW-OPT
L -©- EC-AIPW-OPT
o++------ F—-]- - -5 - == === - =
Baseline Visit 1 Visit 2:Primary Endpoint

Figure 5. Estimated average treatment effect of risdiplam in motor function measure change from baseline and
corresponding 95% Cls.

to quality care, which might prevent disadvantaged patients entering the SUNFISH trial, and those
conditions tend to worsen the disease progression. That is, the trial population may be systematically
different with the external controls in ways that are never known to investigators. Depending on the
severity of unmeasured confounding, the ability to boost statistical power while maintain desirable
Type I error might be limited. In our simulation Setting 5, we showed a case of weak unmeasured con-
founding, where ‘weak’ is suggested by the association in the real data. In future research, we could
consider analytic methods that can accommodate unmeasured confounding bias.

The connection with platform trials is worth mentioning. Platform trials involve examining
multiple experimental treatments that can join and leave the trial at different times, sharing a com-
mon control group. This sharing and borrowing of a control group to enhance statistical efficiency
is also seen in hybrid controlled trials that use external controls, which is the focus of our work.
This issue of borrowing from nonconcurrent controls is also relevant when using external controls
(e.g. historical controls), which can introduce ‘calendar time bias’ as discussed in (Burger et al.,
2021). If present, this time bias would violate the Conditional Ignorability Assumption 4.

A limitation of the proposed methods is their reliance on the validity of working models for nuis-
ance parameters. Here, we assume those are parametric, which is a practical starting point, as
parametric models are commonly used in clinical trials and practice, particularly when dealing
with small sample sizes and low-dimensional covariates. On the other side, as shown in scenario
E of the web-based supporting material, model misspecification can introduce bias when incorp-
orating external controls, with the severity depending on the discrepancy between the working and
true models. An alternative, more flexible approach might involve employing nonparametric
methods for estimating nuisance parameters in DR estimators, such as EC-AIPW, as used in

$20Z JaquianopN |z uo 1sanb Aq g1 1212 //S . 08eub/esssil/es01 01 /1op/ejonie-aoueApe/esss.il/woo dno-olwapeoe//:sdiy Woll papeojumo(]



J R Stat Soc Series A: Statistics in Society 21

this work. The double/debiased machine learning (Chernozhukov et al., 2018) and the targeted
maximum likelibood estimation (Van Der Laan & Rubin, 2006) are two general approaches in
this framework. These can be avenues for future research, particularly in terms of large-sample
asymptotic results, and importantly, assessing how well theoretical results translate into practice,
especially in small sample regime, within the context of hybrid controlled trials.

In this work, our focus is not on the Bayesian approach. The Bayesian dynamic borrowing meth-
ods (noncausal) integrate external controls via the use of informative priors. This is the major dis-
tinction with our proposed weighting-type estimators grounded in (frequentist) causal potential
outcome framework. Nevertheless, it is worth mentioning the growing body of literature that ex-
plores the incorporation of propensity scores into Bayesian dynamic borrowing methods. The pro-
pensity score serves as a means to select external controls that are similar to trial subjects during
the study’s design phase. This can be achieved through various strategies, including propensity
score stratification, regression adjustment for propensity scores, or matching based on propensity
scores (Fu et al., 2023; Lewis et al., 2019; Li & Yue, 2023). This synthesis of Bayesian and pro-
pensity score methodologies offers a promising avenue. Future research can consider exploring
Bayesian causal inference framework that fully takes into account the design and analysis stages.

The example of the SUNFISH trial incorporating external controls from the olesoxime trial is
representative of the rare disease setting, where a randomized control group is less desirable or
feasible due to limited alternative treatments and/or scarcity of patients. Spinal muscular atrophy
is a rare neuromuscular disorder that results in the loss of motor neurones and progressive muscle
wasting. A total of 180 patients with SMA enrolled in SUNFISH between 2017 and 2018 across 14
countries (Mercuri et al., 2022), which puts a limitation on the statistical power of the trial results.
These participants were randomly assigned to receive either risdiplam or placebo in a 2:1 ratio to
increase the likelihood of receiving risdiplam and to encourage the enrolment of patients who have
limited alternative treatment options. Such design considerations are common in rare disease trials
(Gross, 2021). The simulation studies, motivated by the real data example presented in Section 6,
demonstrate the statistical efficiency gain of incorporating external controls using the proposed
weighting estimators. Our example showcases that with appropriately chosen external controls
and statistical methods, the challenges associated with relying on a randomized control arm can
be alleviated. This is important given that the number of FDA drug approvals that used external
control data (Jahanshahi et al., 2021) and rare disease trials (Gross, 2021) is increasing.

In order to generalize the proposed methods to accommodate broader studies using external con-
trols, several directions can be undertaken. First, the weighting estimators offer a level of versatility
that allows for potential extensions to accommodate other types of endpoints, such as time-to-event
data. Second, sensitivity analysis could be developed to quantify how the estimates from the pro-
posed methods vary as a function of the magnitude of unknown placebo effects (violating
Assumption 1) and selection bias (violating Assumption 4). Third, extension of the proposed meth-
ods for examining heterogeneity treatment effect (HTE) is possible and would be useful especially
for trials underpowered for HTE (Yang et al., 2023). Lastly, the weighting estimators can be adapted
to include multiple external control samples originating from different sources. These potential ex-
tensions present promising avenues for future research in a broader range of contexts.
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Appendix A

Proof of Theorem 1. (a) The ATE for the trial population with respect to base measure u
is defined as

t=JE[YD = Y| X =x]pr(x)u(dx)
=[E[Y" | X =x]pr(x)u(dx)
I
—JE[Y? | X = x]pr(x)u(dx)
I

Using the randomized trial data, both I and Il can be easily iden-
tified through the (normalized) inverse propensity of treatment
weighting:
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In addition, the external controls also provide another identifi-
cation of I, provided that Assumptions 2, 3, 4, and 5 hold.

1= [E[Y? | X =x]pr(x)u(dx)

(0) _ pr(x)
_ TE[Y® | X=x] pe(x)
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If the outcome model is u(X; B) for u(X) is correct,
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Appendix B

A simplifying approach is to consider baseline covariates, trial participation, treatment assign-
ment, and propensity score as fixed at the design stage. Then

Var[p,] = Var[,,[X, S, A]
Y Sl - AW,
= 5 Var(Y|X,$=1,A=0)
(Z Si(1— Ai)\/f/loi) Residual variance of trial control outcomes
i

Var[fig] = Var[fig|X, S, A]
> (1= 8) Wy,

: 5 Var(Y|X, $=0)
—_—
(Z (1 _ Sz) @00i> Residual variance of external control outcomes

1

Since there is no straightforward way to estimate the bias term without accessing outcome data, if
we are willing to accept that no bias arises due to the violation of causal assumptions outlined in
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Section 2.3 and the validity of nuisance parameter models, i.e. assuming that the bias is negligible,
we can then set B ~ 0. Additionally, if we assume that the residual variances of the trial control
outcome and the external control outcome are the same, these two unknown terms can be can-
celled out. Consequently, equation (10) can be approximated by the ‘variance ratio’ in equation
(11) which is estimable without any outcome data.

Appendix C

We used the GLM for longitudinal data as the working model Y; = X;8+ Z;z + ¢; for subjects
i € R, where the within-subject correlation over repeated measures is accounted by the
variance—covariance matrix of ¢;s by assuming ¢; ~ MVN(0, ). We assume unstructured covari-
ance matrix ¥ that allows the correlation to be different for each pair of time points. Here,
X = (1, SMN2 Copy Number, SMA Type, Scoliosis, Time), Z= (A, Time x A) where both
treatment indicator A and visit indicator Time are binary variables (since we only consider
T =2). The coefficients 7 = (r1, 12) represent the treatment effects for postintervention outcomes.
Similarly, the external controls subjects i € & follow the same outcome model Y; = X, + €, with
¢ ~ MVN(0, ).

C.1 Power prior specification for simulation
We assume prior:

(B8 =0, ap) x L(B|S = 0)"mo(B)mo(ao)
7(2) ~ Inverse-Wishart (v, I71)
7(Z¢) ~ Inverse-Wishart (ve, [71)

7o(z7) ~ Gamma(1, 1)

where L(8|S=0) = [],c¢ (27;)‘1/2|2£|‘1/26—%(y1—x,ﬂ)T22'(yoz—xoﬁ); v=vy=p+2and T and Z¢ as iden-
tity matrix to represent weak prior belief.
The data for RCT subjects i € R is distributed as

yil By 7, Zr ~ N(xiff + Zit, Zr)

The conditional posteriors can be derived and sampled due to conjugate prior specification
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C.2 Commensurate prior specification for simulation

Here, we adopt the approach proposed in Hobbs et al. (2012). We assume priors that incorporates
likelihood for B, from external controls, a prior for # that centred around g, with variance equals
to the inverse of commensurability parameter, the higher the commensurability, more borrowing
from external controls.

1
{815 =0,a0) % LIS =0) X N(B1fos 1) )
(%) ~ Inverse-Wishart (v, 1)
(Z¢) ~ Inverse-Wishart (ve, igl)

where prior for commensurability is assumed 7 () ~ Gamma(1, 1).
The data for RCT subjectsi € R

Vil By Z ~ MVN(XiB + Aifyy, Z)
The conditional posteriors can be derived and sampled due to conjugate prior specification

B Burs Bo» T T ~ N'(A'b, A7)
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