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Abstract
Incorporating external data, such as external controls, holds the promise of improving the efficiency of 
traditional randomized controlled trials especially when treating rare diseases or diseases with unmet 
needs. To this end, we propose novel weighting estimators grounded in the causal inference framework. 
As an alternative framework, Bayesian methods are also discussed. From trial design perspective, 
operating characteristics including Type I error and power are particularly important and are assessed in our 
realistic simulation studies representing a variety of practical scenarios. Our proposed weighting estimators 
achieve significant power gain, while maintaining Type I error close to the nominal value of 0.05. An 
empirical application of the methods is demonstrated through a Phase III clinical trial in rare disease.
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1 Introduction
Randomized controlled trials (RCTs) are widely recognized as the gold standard for determining 
the effects of therapeutic products on specific outcomes. Yet, these trials are not without their lim
itations. Attaining adequate statistical power for hypothesis testing of the treatment effect at the 
primary endpoint may require sufficient number of patients, who are then assigned to either the 
treatment or control groups (Viele et al., 2014). Firstly, when the number of patients with any spe
cific disease is small, recruiting enough participants can be impractical or even unfeasible. 
Secondly, the prospect of being assigned to the control group in high likelihood can be unappeal
ing, or even ethically questionable, particularly in diseases with high unmet medical needs and no 
or limited effective treatments. These challenges often occur in the rare disease setting and result in 
smaller trial sizes, particularly affecting the size of the control arm, or in extreme cases, leading to 
the absence of a control arm in single-arm trials (Gross, 2021).

The concept of ‘external controls’ (Chen et al., 2021; Pocock, 1976; Yap et al., 2021), which 
involves using a comparison group of people external to the trial of interest who had not received 
the experimental treatment, is becoming more common (FDA, 2023) and industry (Burger et al., 
2021). The use of external controls aims to harness the RCTs with above mentioned limitations by 
either fully or partially substituting the trial control arms. These designs are considered innovative 
(CID, 2023). Although various sources of data can serve as external controls, they are primarily 
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derived from patient-level data from other clinical trials or from real-world data (RWD) sources, 
like the example in the FDA CID program. The use of a control group from other trials is feasible if 
the eligible population and endpoints align closely with the current study.

This paper focuses on methodologies to analyse hybrid controlled trials, where the control 
group is composed of both trial and external controls. Incorporating external controls into 
RCTs presents uniform statistical challenges, regardless of their sources. Pooling external controls 
to estimate treatment effects on the trial population is subject to bias, as the randomized trial sub
jects and the nonrandomized external control subjects are not exchangeable.

Currently, there is a growing interest in addressing this problem through the lens of causal in
ference, as advocated by recent research [Ho et al., 2023]. Though much research has been done in 
combining experimental and observational data, it has primarily focussed on different goals: 
generalizability (Buchanan et al., 2018; Dahabreh et al., 2019), representativeness (Campbell, 
1957), external validity (Stuart et al., 2018), transportability (Pearl & Bareinboim, 2011; 
Westreich et al., 2017), and data fusion (Bareinboim & Pearl, 2016). This line of research focuses 
on generalizing trial results to a target population for which the trial participants are not represen
tative of. In contrast, this paper focuses on utilizing an external control population, to increase the 
statistical efficiency and power of hypothesis testing for the treatment effect in the trial population. 
For this goal, Bayesian dynamic borrowing methods (Fu et al., 2023) has been a popular frame
work. Bayesian methods provide a natural mechanism for information borrowing through the 
use of informative priors: the power prior (Ibrahim & Chen, 2000; Ibrahim et al., 2015), the 
commensurate prior and the commensurate power prior (Hobbs et al., 2011), and the robust 
metaanalytic-predictive prior (Schmidli et al., 2014).

The objective of this paper is to address the gap in current research on causal inference meth
ods for hybrid controlled trials, aiming to enhance trial efficiency. The above mentioned 
Bayesian methods do not focus on using causal inference framework. By integrating trial 
data with external control data, the goal is to increase statistical power while maintaining 
the desired Type I error rate. When designing a future trial with external controls, fewer intern
al control subjects may be needed, which shortens the recruitment and possibly the duration the 
trial, and leads to more efficient medical product development and approval. In particular, we 
propose causal estimators based on weighting in two layers: the first layer tackles the distribu
tional shift in confounders, while the second layer synthesizes evidence from both trial and ex
ternal controls. Our focus is different from the literature in generalizability of trial results to 
another population. Instead, we focus on the reverse direction of using external data to enhance 
the efficiency of clinical trials. Our research work also establishes realistic data generating 
mechanisms likely encountered in actual clinical trials to support new study designs. Those sim
ulations allow trial designers to evaluate the trial operating characteristics by assumption vio
lation. Finally, all methodological and practical discussions are motivated and illustrated 
through a recent Phase III trial in a rare disease, illustrating the feasibility of the approach in 
practical applications.

The work is motivated by a recent study of the medicine risdiplam to treat spinal muscular at
rophy (SMA). Spinal muscular atrophy is a rare neuromuscular disorder that results in the loss of 
motor neurones and progressive muscle wasting. The SUNFISH Trial (NCT02908685) is a Phase 
III, randomized, double-blind, placebo-controlled study of the efficacy and safety of the risdiplam 
treatment among patients aged 2–25 years with confirmed 5q autosomal recessive Type II or Type 
III SMA recruited from 42 hospitals in 14 countries across Europe, North America, South 
America, and Asia. Risdiplam is an oral small molecule that modifies pre-mRNA splicing of the 
SMN2 gene to increase production of functional SMN. Patients were stratified by age and ran
domly assigned (2:1) to receive either daily oral risdiplam or daily oral placebo. Patients were 
scheduled for follow-up visits roughly every 6 months to have their motor function measure 
(MFM) measured along with other clinically relevant indicators. The primary endpoint was the 
change in the MFM from baseline to the end of month 12. The results in the primary endpoint 
have shown a significant improvement in motor function compared with placebo. More informa
tion about the trial can be found in Mercuri et al. (2022).

The olesoxime trial (NCT01302600) (Berry et al., 2010) is a randomized, double-blind, 
placebo-controlled, Phase II study for the same disease population as SUNFISH. The olesoxime 
trial shares the same set of measurements and follow-up visits as the SUNFISH study, but with 
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a control arm that spans over 2 years. The control subjects from this study can serve as external 
controls to augment the SUNFISH study (McIver et al., 2023).

The remainder of this paper is organized as follows. In Section 2, we introduce the notations, 
estimand, and causal identifiability assumptions that explicit ‘qualities’ of the external controls. 
In Section 3, we propose an identifying functional and its doubly robust counterpart, with a 
weighting parameter that permits investigator control of the influence of the external controls. 
The two functionals are used to develop a suite of weighting estimators. Consistency and asymp
totic normality are provided when parametric models are used to estimate nuisance parameters, 
given certain qualifying assumptions. In Section 4, we briefly discuss the power prior and commen
surate prior methods. Simulation studies in Section 5 illustrate the finite-sample performance of 
the proposed methods as well as the Bayesian methods, with realistic simulations mimicking the 
SUNFISH trial and its external controls. In Section 6, application of the methods is demonstrated 
through the SUNFISH trial with external controls. Finally, Section 7 summarizes and discusses key 
takeaways.

2 Notations and assumptions for causal identifiability
2.1 Notations
The notations and assumptions used in this work are grounded in the potential outcome frame
work (Imbens & Rubin, 2015). We assume to have two data sets at hand: 

• A RCT, denoted by R (for randomized), assessing the efficacy of a binary treatment A on lon
gitudinal outcomes Y = (Y1, . . . , YT) repeatedly measured on T time points (if only a single 
primary endpoint is of interest, T = 1), conducted on n subjects. Each subject i, labelled 
from 1 to n, is sampled from a distribution PR(X, A, Y(1), Y(0)) the current RCT trial popu
lation, and also the target population of interest. For any subject i, Xi is a p-dimensional vector 
of measured baseline covariates, and potential confounders, accounting for individual char
acteristics. Ai denotes the binary treatment assignment (with Ai = 1 if treated and Ai = 0 if un
treated), and Y(a) = (Y(a)

1 , . . . , Y(a)
T ) are the potential outcomes had the subject i been given 

treatment a (for a ∈ {0, 1}). Yi denotes the observed outcomes, by the Assumption 2, 
Yi = AiY

(1)
i + (1 − Ai)Y

(0)
i . Our interest is in those trials with small proportion of control sub

jects, hence the probability of treatment assignment πA = PR(A = 1), usually >1/2. Let n1 be 
the number of treated subjects and n0 be the number of control subjects.

• An external control sample, denoted by E (for external controls), containing m subjects 
sampled from a distribution PE(X, A = 0, Y(0)). The available external control sample size 
m could potentially be large. We assume observe the same set of baseline covariates Xi.

We assume that each trial subject i ∈ R is sampled from the current RCT trial population described 
by PR(X, A, Y(1), Y(0)) (also the target population of interest), while each external control subject 
i ∈ E is sampled from PE(X, A = 0, Y(0)), labelled from i = n + 1 to n + m. PE could represent the 
distribution of a larger disease population in the real world, or a population targeted by another tri
al. We use Si to denote trial participation status, with Si = 1 for i ∈ R and Si = 0 for i ∈ E.

Throughout the paper, we will use indices R and E to denote quantities (probability, expect
ation, variance, covariance) taken with respect to these populations, for example, ER() for an ex
pectation over PR.

2.2 Causal estimand
We define the trial population (the target population) average treatment effect (ATE) as the causal 
estimand

τ W ER Y(1) − Y(0)􏼂 􏼃
(1) 

where τ = (τ1, . . . , τT) is a vector of time-indexed ATE. In contrast, the estimand in the related gen
eralizability literature would be the same expectation, except taken with respect to PE.
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2.3 Identification assumptions
The identification assumptions needed are similar to those in the generalizability literature 
(Dahabreh et al., 2019; Stuart et al., 2018).

Assumption 1 (No direct effect of trial participation). The only way through which trial 
participation affects the outcome is through the treatment itself and there is 
no direct effect of trial participation on the outcome. It implies that there is 
no dependency of potential outcomes under no treatment on trial partici
pation: Y(s,a=0) = Y(a=0) for s ∈ {0, 1}.

Assumption 2 [Stable unit treatment value {SUTVA}]. If i ∈ R, then Yi = Y(Ai)
i , and if 

i ∈ E, then Yi = Y(0)
i . That is, the observed outcome for ith subject in the 

RCT equals to that individual’s potential outcome under the treatment ac
tually received, and the observed outcome for an external control subject 
equals to that individual’s potential outcome under no treatment. Implicit 
in this notation is that there is a single version of ‘no treatment’ that is con
sistently defined across all subjects in the RCT and external controls.

Assumptions 1 and 2 assume that the outcomes for patients receiving no active treatment are 
assumed to be stable and not influenced by the specific conditions of the study they participate 
in. When external controls come from RWD, such a direct effect may arise if there are any substan
tial placebo effects. This assumption may be more reasonable when using external controls from a 
separate trial, as in our real data example. Then, it would be sufficient that the placebo effects are 
identical in the control groups for each trial.

Assumption 3 (Internal validity of the trial). (1) Treatment randomization holds for all 
subjects in the RCT: (Y(1)

i , Y(0)
i ) ⊥ Ai for Ai ∈ {0, 1}, i ∈ R; and (2) 

Positivity of treatment assignment: 0 < πA = P(Ai = 1 | Si = 1) < 1.

Assumption 4 (Conditional ignorability of trial participation). Given the measured cova
riates X, the potential outcome under no treatment is independent of trial 
participation, i.e. trial participation is conditionally ignorable or ex
changeable, Y(0)

i ⊥ Si ∣ Xi for i ∈ R ∪ E

Assumption 4 is analogous to the no unmeasured confounding or ignorability assumption com
monly used in causal inference literature, especially in the generalizability literature (Dahabreh 
et al., 2019; Stuart et al., 2018). In practical terms, this means both the trial and the external study 
must capture all risk factors of the outcomes that also influence study participation. This might 
include demographic, socioeconomic, and disease features.

Unlike the usual ignorability assumption based on counterfactual variables, Assumption 4 im
plies conditional independence among observed variables Yi ⊥ Si ∣ Xi, Ai = 0, i.e. the trial partici
pation is conditionally independent with outcomes given covariates among the trial controls and 
external controls. This assumption is falsifiable by testing for distributional differences in outcome 
given covariates between the trial controls and external controls. However, it is important to note 
that a violation of either Assumptions 1 or 4 (or both) could result in a discernible difference in 
outcomes that cannot be readily distinguished as being due to one specific assumption being 
violated.

Assumption 5 (Overlapping or positivity of trial participation). The support of the meas
ured covariates in the RCT population is contained within that of the ex
ternal control population: supp(PR(X)) ⊂ supp(PE(X)), or equivalently, 
Pr(S = 1 | X = x) < 1 for all x.

In contrast to positivity assumption in the generalizability literature (Buchanan et al., 2018; 
Dahabreh et al., 2019), which generally requires Pr(S = 1 | X = x) > 0 for all x, Assumption 5 re
quires that, in all areas of the covariate distribution, it is possible to have external controls. 
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Assumption 5 is empirically falsifiable by comparing the empirical distributions of the covariates 
in the trial sample and the external controls.

The Directed Acyclic Graph (DAG) in Figure 1a illustrates the possible mechanism of the set
ting, and the equivalent Single World Intervention Graph (SWIG) (Richardson & Robins, 
2013) in Figure 1b shows the relationship between covariates, interventions and potential out
comes under no treatment, where the dashed node and edges are assumed to be absent. The exist
ence of U would violate the Conditional Ignorability Assumption 4. Two mechanisms are assumed 
to be absent: (1) the arrow from trial participation S to outcome Y, and (2) unmeasured confound
ing U. (1) assumes that there is no direct effect of trial participation, it frees the dependency of po
tential outcomes on trial participation, which we formalize in Assumption 1. (2) is analogous to 
the no unmeasured confounding or ignorability assumption common in causal inference literature 
and we formalize it in Assumption 4.

3 Causal inference methods
Without external controls, ATE can be estimated from the trial data, via (covariate-adjusted) dif
ference in means, by internal validity.

A brute-force incorporation of the external controls, treating them equally as trial controls, 
could run the risk of introducing bias (see Section 3.2 for a discussion on bias), outweighing the 
benefit of gaining efficiency by accessing to additional data. Granting that Assumptions 1, 2, 3, 
4, 5 hold, we weight the external controls so that the weighted distribution of the confounder 
X in E is equal to that of the target trial population R. As a result, the weighted observed outcomes 
of the external controls can be thought of as a representative sample from the distribution of po
tential outcome under no treatment in the trial population, similar to the trial controls.

We are in possession of two representative samples to inform the potential outcome under no 
treatment in the trial population: (1) the trial control sample, and (2) the weighted external control 
sample, which is the augmented ‘control’ subjects to the trial without actually recruiting additional 
trial controls, with the goal to increase the precision and efficiency in the estimation of and infer
ence about the ATE in the trial population. The trial controls, from source (1), could give an un
biased estimate of ER[Y(0)], (assuming the internal validity), with limited samples, on the contrary, 
and the external controls, from source (2), give another estimate of ER[Y(0)] that could suffer from 
bias, but requires fewer resources to obtain. The intuitive idea to combine multiple sources of 
information to estimate the same quantity is a convex combination, that is, to assign a weight 
w (0 ≤ w ≤ 1) to the external controls, and synthesizes multiple estimates (here only two), by a 
convex combination as the hybrid control estimate of μ(0)

R .

3.1 Weighting estimators for external controls to enhance trial findings
In this work, we focus on the weighting strategy that weights samples in two layers, with the first 
layer of weights tackling the distribution shift between the external control population and the 

a b

Figure 1. Graphical model representing the pooled dataset. Here, we illustrate two repeated outcomes, in general, 
there could be arbitrary number of repeated outcomes, where the dashed node and edges are assumed to be 
absent. a) Directed Acyclic Graph (DAG); b) Equivalent Single World Intervention Graph (SWIG).
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trial population and can be thought of as a special case of the balancing weights in Li et al. (2018)
and similar to the inverse probability of sampling weighting estimators (Cole & Stuart, 2010; 
Stuart et al., 2011), and with the second layer of weights synthesizing the external controls esti
mate with that of the trial controls estimate to form a single hybrid estimate. We name the novel 
estimators External Controls Enhanced Inverse Probability Weighting (EC-IPW), and its doubly 
robust (DR) version External Controls Enhanced Augmented Inverse Probability Weighting 
(EC-AIPW), derived from identification formulae that share a general structure

τ = μ11 − [(1 − w)μ10 + wμ00]
􏽼�����������􏽻􏽺�����������􏽽

synthesis of external control and trial control

, 

for any w ∈ [0, 1], where μsa denote expectation of appropriately weighted outcome of the sub
jects in the sample s ∈ {0, 1} and received treatment a ∈ {0, 1} to be specified in Theorems 1
and 2.

Theorem 1 (Identification via EC-IPW). The estimand in equation (1) can be identified 
using the observed data, combining trial and external controls, for any 
w ∈ [0, 1],

τEC−IPW W
ER AYW11[ ]

ER AW11[ ]
􏽼������􏽻􏽺������􏽽

μ11

− (1 − w)
ER (1 − A)YW10[ ]

ER (1 − A)W10[ ]
􏽼����������􏽻􏽺����������􏽽

μ10

+w
EE YW00[ ]

EE W00[ ]
􏽼�����􏽻􏽺�����􏽽

μ00

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

(2) 

where the trial treated, trial control, and external control subjects receive 
weights W11 = 1

πA
, W10 = 1

1−πA
, and W00 = PR(X)

PE (X) = πS(X)(1−πS)
(1−πS(X))πS

. πS(X) = Pr(S = 
1 | X) denote the conditional probability of trial participation given covari
ates, πS = Pr(S = 1) denote the marginal probability of trial participation. 
The weights associated with the trial subjects, W11 and W00, based on cova
riates can increase the efficiency of the estimator (Tsiatis, 2006) and are op
tional in a completely randomized trial. W00 is the balancing weights as in 
Li et al. (2018) which weights the external control samples to represent the 
target trial population.

In practice, πS(X) is unknown, which suggests fitting a model for the prob
ability of trial participation πS(X) based on a logistic regression model 
logit{πS(X; α)} = α′

X with an unknown p-dimensional parameter α.
If the trial participation model πS(X; α) for πS(X) is correct,

τEC−IPW = τ, (3) 

see proof in Appendix A.
When w = 0, τEC−IPW reduces to the normalized inverse probability of treatment weighting 

(IPTW) estimator using only the trial data, i.e. the Hajek estimator, that is considered more stable 
than the unnormalized IPTW, i.e. the Horvitz–Thompson estimator (Horvitz & Thompson, 
1952).

Theorem 2 (Identification via EC-AIPW). To improve upon Theorem 1, τEC−IPW in equa
tion (2) be robustified similarly as the augmented IPW for estimating ATE 
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using observational data, by replacing Y with 􏽥Y, the residual after projection 
􏽥Y = Y − μ(X), where μ(X) = E[Y | X, A = 0].

τEC−AIPW W
ER A􏽥YW11

􏽨 􏽩

ER AW11[ ]
􏽼������􏽻􏽺������􏽽

μ11

− (1 − w)
ER (1 − A)􏽥YW10

􏽨 􏽩

ER (1 − A)W10[ ]
􏽼����������􏽻􏽺����������􏽽

μ10

+w
EE

􏽥YW00

􏽨 􏽩

EE W00[ ]
􏽼�����􏽻􏽺�����􏽽

μ00

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦,

(4) 

In practice, both πS(X) and μ(X) are unknown, which suggests (i) fitting a 
model for the probability of trial participation Pr(S = 1 | X) based on a logistic 
regression model logit{πS(X; α)} = α′

X with an unknown parameter α, and (ii) 
fitting a parametric model μ(X; β) = g(β′

X) for μ(X) with g−1 a known link 
function and β is an unkown parameter. For continuous outcome, the canon
ical link function g−1 is identity so that μ(X; β) = β′

X.
If either the trial participation model πS(X; α) for πS(X) or the outcome 

model μ(X; β) for μ(X) is correct,

τEC−AIPW = τ, (5) 

see proof in Appendix A.
The identification formulae in Theorems 1 and 2, result in two novel estimators presented in 

Definitions 1 and 2 that share a common structure

τ̂ =􏽢μ11 − [(1 − w)􏽢μ10 + w􏽢μ00]
􏽼�����������􏽻􏽺�����������􏽽

synthesis of external control and trial control

, 

for any w ∈ [0, 1], where 􏽢μsa denote appropriately weighted average outcome of the subjects in the 
sample s ∈ {0, 1} and received treatment a ∈ {0, 1} to be specified in Definitions 1 and 2.

Definition 1 (EC-IPW Estimator). The EC-IPW estimator, when nuisance parameters are 
unknown and estimated, is given by

􏽢τEC−IPW
n,m W

􏽘

i∈R

AiYi
􏽢W11i

􏽘

i∈R

Ai
􏽢W11i

􏽼�������􏽻􏽺�������􏽽

􏽢μ11

− (1 − w)

􏽘

i∈R

(1 − Ai)Yi
􏽢W10i

􏽘

i∈R

(1 − Ai) 􏽢W10i

􏽼�����������􏽻􏽺�����������􏽽

􏽢μ10

+w

􏽘

i∈E

Yi
􏽢W00i

􏽘

i∈E

􏽢W00i

􏽼�����􏽻􏽺�����􏽽

􏽢μ00

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6) 

where a hat indicates an estimated quantity.
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Definition 2 (EC-AIPW Estimator). The EC-AIPW estimator, when nuisance parameters 
are unknown and estimated, is given by

􏽢τEC−AIPW
n,m W

􏽘

i∈R

Ai
􏽢􏽥Yi

􏽢W11i

􏽘

i∈R

Ai
􏽢W11i

􏽼�������􏽻􏽺�������􏽽

􏽢μ11

− (1 − w)

􏽘

i∈R

(1 − Ai)
􏽢􏽥Yi

􏽢W10i

􏽘

i∈R

(1 − Ai) 􏽢W10i

􏽼�����������􏽻􏽺�����������􏽽

􏽢μ10

+w

􏽘

i∈E

􏽢􏽥Yi
􏽢W00i

􏽘

i∈E

􏽢W00i

􏽼�����􏽻􏽺�����􏽽

􏽢μ00

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7) 

where a hat indicates an estimated quantity.

3.2 Bias-variance trade-off
The EC-IPW and EC-AIPW estimators in Definitions 1 and 2 indexed by a weight w ∈ [0, 1] are 
motivated by the need to combine an unbiased but small trial data, with a potentially biased but 
large external data, with the goal to improve efficiency in estimating ATE in the RCT. The synthe
sizing weight gives rise to a class of EC-IPSW estimators (similarly EC-AIPW), with infinitely many 
choices of weights. The weight represents the degree of trust we put on the external controls, where 
w < 1/2 amounts to discounting the influence of external controls on the final estimate. It is similar 
to the power parameter in the Bayesian power prior approach (essentially uses weighted likeli
hood), which assign weights through a power parameter to discount the external controls. 
Ideally, the choice of the synthesize weight should strike a balance between bias and variance 
trade-off of the final estimator: larger weight for external controls could potentially introduce 
more bias through 􏽢μ00 while reduce the variance of the hybrid estimate; smaller weight minimizes 
such bias but lost the gain of efficiency.

Since E[􏽢μ10] = ER[Y(0)], it is unbiased, but 􏽢μ00 could be biased, denote E[􏽢μ00] = ER[Y(0)] + B 
where B characterizes the bias of estimating ER[Y(0)] using the external control. Then the mean 
square error (MSE) indexed by weight

MSE(w) W E 􏽢τ(w) − τ
 􏼁2

􏽨 􏽩

= Var 􏽢μ11

􏼂 􏼃
+ (1 − w)2Var 􏽢μ10

􏼂 􏼃

+ w2 Var 􏽢μ00

􏼂 􏼃
+ B2 􏼁

− 2(1 − w)Cov 􏽢μ11, 􏽢μ10

􏼂 􏼃
− 2wCov 􏽢μ11, 􏽢μ00

􏼂 􏼃

+ 2w(1 − w)Cov 􏽢μ10, 􏽢μ00

􏼂 􏼃

(8) 

where 􏽢τ(w) is a generic representation of either 􏽢τ EC−IPW
n,m or 􏽢τ EC−AIPW

n,m in Definitions 1 and 2.
The MSE is quadratic in weight w, and the optimal weight minimizing equation (8) is

w∗ =

Var 􏽢μ10

􏼂 􏼃
+ Cov 􏽢μ11, 􏽢μ00

􏼂 􏼃

− Cov 􏽢μ11, 􏽢μ10

􏼂 􏼃
− Cov 􏽢μ10, 􏽢μ00

􏼂 􏼃

􏼒 􏼓

Var 􏽢μ10

􏼂 􏼃
+ Var 􏽢μ00

􏼂 􏼃

+ B2 − 2Cov 􏽢μ10, 􏽢μ00

􏼂 􏼃

􏼒 􏼓 (9) 

The optimal weight in equation (9) can be simplified when the nuisance components are known,

w∗ =
Var 􏽢μ10

􏼂 􏼃

Var 􏽢μ10

􏼂 􏼃
+ Var 􏽢μ00

􏼂 􏼃
+ B2

(10) 
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Note that the optimal weight depends on the variances of trial controls’ estimate Var[􏽢μ10] and ex
ternal controls’ estimate Var[􏽢μ00], as well as the bias term B: If the variance of the external control’ 
estimate is large relative to the external control’ estimate, or the bias is large, the optimal weight is 
close to 0, reflecting that the incorporation of external controls tends to inflate unnecessary bias 
that cannot be compensated by a decrease in variance; on the other hand, when the variance of 
external controls estimate is small relative to the external controls’ estimate, and its bias is negli
gible, then the optimal weight is larger, reflecting that the incorporation of external controls does 
not incur extra bias and can increase precision.

Bias could arise through the incorporation of external controls for several reasons: (1) When 
there is a direct effect of trial participation such that Assumption 1 is not satisfied. For example, 
patients in the clinical trial might be monitored more closely, receive better care, or simply be 
measured differently. (2) Assumption 4 is violated by the existence of unmeasured confounding. 
For example, rare disease patients may differ in terms of access to high-quality care, financial re
sources, or general living conditions, that might make some patients less likely to participate in the 
RCT, and coincidentally, these same conditions could exacerbate the progression of the disease. 
Therefore, the population participating in the trial could be self-selected in a way that differs 
from the external control population in manners that investigators are unaware of. (3) The correct 
models to estimate the nuisance parameters πS(X) and μ(X) are never known and subject to mis
specification. Though (1) and (2) are collectively falsifiable by testing for distributional differences 
in outcome between the trial controls and external controls given covariates, such tests are subject 
to limitation of Type I and Type II errors.

Additional simulations are presented in the Web-based online supplementary materials to dem
onstrate the role of the synthesizing weight w in the bias-variance trade-off, facing violations of the 
causal Assumptions 1, 4, and 5, as well as model misspecification for nuisance components.

3.3 The choice of weight
The weight w needs to be chosen at the design stage. Though desirable, the weight that minimizes 
MSE in equation (9) cannot be estimated without access to the outcome data. One option is to se
lect the weight at the design stage based on subjective knowledge about the size and quality of the 
external controls: if the sample size of the external controls is large and it is likely that the external 
controls are similar to the trial population, then a larger weight can be assigned; a smaller weight 
can be assigned if the opposite is true. However, this choice is subjective and vulnerable to miscon
ception that may end up with too much bias or no precision gain.

An alternative approach is to choose a weight that approximately minimizes the variability of 
the resulting estimator without access to the outcome data. This aligns with Rubin’s principles 
in designing observational studies (Rubin, 2008), that the design phase (refers to employing pro
pensity scores to help create distributional balance of covariates between the two treatment 
groups) should be done without access to any outcome data. With a few simplifying assumptions, 
equation (10) can be approximated by a ‘variance ratio’ (shown in Appendix B), which is estim
able without any outcome data.

􏽢w∗ =

􏽘

i

Si(1 − Ai) 􏽢W2
10i

􏽘

i

Si(1 − Ai) 􏽢W10i

􏼠 􏼡2

􏽘

i

Si(1 − Ai) 􏽢W2
10i

􏽘

i

Si(1 − Ai) 􏽢W10i

􏼠 􏼡2 +

􏽘

i

(1 − Si) 􏽢W2
00i

􏽘

i

(1 − Si) 􏽢W00i

􏼠 􏼡2

(11) 

Equation (11) can be interpreted as the proportion of variance in covariate balancing weights as
sociated with the trial controls relative to the total variance in these weights across both trial and 
external controls. Intuitively, a greater disparity in the covariate distribution X leads to increased 
variability in the covariate balancing weights for the external controls, consequently elevating the 
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variability of the hybrid estimator. A higher value of 􏽢w suggests a smaller weight assigned to the 
external controls. Conversely, if the external controls have a covariate distribution similar to that 
of the trial subjects, the variability in their covariate balancing weights decreases. In such cases, 􏽢w 
would indicate a larger weight assigned to the external controls, effectively treating them almost 
on par with the trial data in terms of influence and relevance.

We will refer to estimators with weight 􏽢w∗ as the Optimally weighted EC-IPW-OPT and 
Optimally weighted EC-AIPW-OPT, respectively.

3.4 Large-sample properties of the weighting estimators
The results of the section provide the asymptotic distributions of the EC-IPSW and EC-AIPSW es
timators, which is necessary for carrying out inference tasks. To study the (asymptotic) behaviour 
of the weighting estimators (EC-IPW and EC-AIPW) presented in Section 3.1, we express them as 
the solutions to corresponding estimating equations to establish asymptotic normality and to pro
vide consistent sandwich estimators for the variances (Tsiatis, 2006).

We consider the practical case when the nuisance parameters πS(X) and μ(X) are estimated via 
parametric models that satisfy Assumption 6. These requirements are standard and satisfied when 
the outcome regression and propensity score models are estimated by maximum likelihood methods.

Assumption 6 g(X) = g(X; θ) is a parametric model, where θ ∈ Θ ⊂ Rk, Θ is compact; (ii) 
g(X; θ) is a.s. continuous at each θ ∈ Θ; (iii) there exists a unique pseudo- 
true parameter θ∗ ∈ int (Θ); (v) the estimator 􏽢θ is consistent for θ∗.

Theorem 3 (Asymptotics of 􏽢τEC−IPW
n,m ). Let θ∗ = (μ11, μ10, μ00, α∗), 􏽢θ = (􏽢μ11, 􏽢μ10, 􏽢μ00, 􏽢α), 

and note that 􏽢θ is the solution for θ∗ of the estimating equation
􏽘

i∈R∪E

Ψ(Oi; θ) = 0, 

where Oi = (Xi, Si, Ai, Yi), with the influence function

Ψ(Oi; θ)
􏽼���􏽻􏽺���􏽽
(3T+p)×1

=

Ψ1(Oi; θ)
Ψ2(Oi; θ)
Ψ3(Oi; θ)
Ψ4(Oi; θ)

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ =

SiAi(Yi − μ11)
πSπA

Si(1 − Ai)(Yi − μ10)
πS(1 − πA)

(1 − Si)W00i(Yi − μ00)
1 − πS

Si −
eXT

i α

1 + eXT
i α

􏼠 􏼡

Xi

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

that satisfies E[Ψ(O; θ)] = 0 .
Then as n, m → ∞, 􏽢θ converges in probability to θ∗, and 

�������
n + m

√
(􏽢θ − θ∗) 

converges in distribution to N(0, ΣEC−IPW
θ ), where

Σ1
􏽼􏽻􏽺􏽽

(3T+p)×(3T+p)

= A−1
1 B1A−T

1

A1􏽼􏽻􏽺􏽽
(3T+p)×(3T+p)

= E
∂

∂θ
Ψ O; θ∗

 􏼁
􏼔 􏼕

=

−IT 0 0 0

0 −IT 0 0

0 0 −EE[W00]IT E
1 − S( )πS X( )

1 − πS X( )( )πS
Y − μ00

 􏼁
XT

􏼔 􏼕

0 0 0 E[ −πS(X)(1 − πS(X))XXT]

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

B1􏽼􏽻􏽺􏽽
(3T+p)×(3T+p)

= Var[Ψ O; θ∗
 􏼁

] = E Ψ O; θ∗
 􏼁

Ψ O; θ∗
 􏼁T

􏽨 􏽩

(12) 
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Assuming that the logistic regression model πS(X; α) for πS(X) is correct, 
then by equation (3), Slusky’s theorem and the delta method, 􏽢τEC−IPW

n,m is a 
consistent estimator of τ, for any fixed w ∈ [0, 1], meaning that 
1. As n, m → ∞, 􏽢τEC−IPW

n,m converges in probability to τ.

2.
�������
n + m

√
(􏽢τEC−IPW

n,m − τ) converges in distribution to N (0, ΣEC−IPW), where 

ΣEC−IPW = Σ1
11 + (1 − w)2Σ1

22 + w2Σ1
33 and Σ1

11, Σ1
22, and Σ1

33 are block ma
trices in Σ1 corresponding to the var-covariance of 􏽢μ11, 􏽢μ10, and 􏽢μ00, re
spectively. A consistent estimate of the variance can be obtained by 
plugging in sample analogue of population expectations into the expres
sion for matrices A1 and B1:

􏽤Var τ̂EC−IPW􏼂 􏼃
=

1
n + m

(􏽢Σ1
11

+ (1 − w)2􏽢Σ1
22 + w2􏽢Σ1

33)
(13) 

We can use this result to build Gaussian confidence intervals:

P τ ∈ 􏽢τEC−IPW
n,m ± z1−α/2

􏽤Var τ̂EC−IPW􏼂 􏼃1/2
􏽮 􏽯􏽨 􏽩

→ 1 − α (14) 

Next we show that 􏽢τEC−AIPW
n,m is DR or doubly protected in that it remains consistent when either 

the trial participation model or the outcome model is correctly specified.

Theorem 4 (Asymptotics of 􏽢τEC−AIPW
n,m ). Let θ∗ = (μ11, μ10, μ00, α∗, β∗), 

􏽢θ = (􏽢μ11, 􏽢μ10, 􏽢μ00, 􏽢α, 􏽢β), and note that 􏽢θ is the solution for θ∗ of the esti
mating equation

􏽘

i∈R∪E

Ψ(Oi; θ) = 0, 

where Oi = (Xi, Si, Ai, Yi), with the influence function

Ψ(Oi; θ) =

Ψ1(Oi; θ)
Ψ2(Oi; θ)
Ψ3(Oi; θ)
Ψ4(Oi; θ)
Ψ5(Oi; θ)

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

=

SiAi(􏽥Yi − μ11)
πSπA

Si(1 − Ai)(􏽥Yi − μ10)
πS(1 − πA)

(1 − Si)W00i(􏽥Yi − μ00)
1 − πS

Si −
eXTα

1 + ezTα

􏼠 􏼡

X

1−Ai
1−πA

(Y − XTβ)X

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

that satisfies E[Ψ(O; θ)] = 0
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Then as n, m → ∞, 􏽢θ converges in probability to θ∗, and 
�������
n + m

√
(􏽢θ − θ∗) 

converges in distribution to N (0, ΣEC−AIPW
θ ), where    

Σ2
􏽼􏽻􏽺􏽽

(3T+p+q)×(3T+p+q)

= A−1
2 B2A−T

2

A2􏽼􏽻􏽺􏽽
(3T+p+q)×(3T+p+q)

= E
∂

∂θ
Ψ(O; θ)

􏼔 􏼕

=
A1(θ)

−E SA
πSπA

XT
􏽨 􏽩

−E S(1−A)
πS(1−πA) XT

􏽨 􏽩

−E 1−S
1−πS

W00XT
􏽨 􏽩

0

0 0 0 0 −E 1−Ai
1−πA

XXT
􏽨 􏽩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B2􏽼􏽻􏽺􏽽
(3T+p+q)×(3T+p+q)

= Var[Ψ O; θ
 􏼁

] = E Ψ O; θ
 􏼁

Ψ O; θ
 􏼁T

􏽨 􏽩

(15) 

where A1(θ) is defined in Theorem 3
Assuming that either the logistic regression model πS(X; α) for πS(X) or the 

outcome model μ(X; β) for μ(X) is correct, then by equation (5), Slusky’s the
orem and the delta method, 􏽢τEC−AIPW

n,m is a consistent estimator of τ, for any 
fixed w ∈ [0, 1], meaning that 
1. As n, m → ∞, 􏽢τEC−AIPW

n,m converges in probability to τ.

2.
�������
n + m

√
(􏽢τEC−AIPW

n,m − τ) converges in distribution to N (0, ΣEC−AIPW), 

where ΣEC−AIPW = Σ2
11 + (1 − w)2Σ2

22 + w2Σ2
33 and Σ2

11, Σ2
22, and Σ2

33 are 
block matrices in Σ2 corresponding to the var-covariance of 􏽢μ11, 􏽢μ10, 
and 􏽢μ00, respectively. A consistent estimate of the variance can be ob
tained by plugging in sample analogue of population expectations into 
the expression for matrices A2 and B2:

􏽤Var τ̂EC−AIPW􏼂 􏼃
=

1
n + m

(􏽢Σ2
11

+ (1 − w)2􏽢Σ2
22 + w2􏽢Σ2

33)
(16) 

We can use this result to build Gaussian confidence intervals:

P τ ∈ 􏽢τEC−AIPW
n,m ± z1−α/2

􏽤Var τ̂EC−AIPW􏼂 􏼃1/2
􏽮 􏽯􏽨 􏽩

→ 1 − α (17) 

4 Other methods: Bayesian dynamic borrowing
The goal of Bayesian methods, similar to our proposal, is to increase precision when external con
trols are ‘compatible’ and simultaneously control bias when not ‘compatible’. In this work, we do 
not intend to do an exhaustive study of the Bayesian methods, instead, we compare the perform
ance of two widely used approaches from this category with our proposed methods.

Let θ denote model parameters (regression parameters for the relation between covariates X and 
the outcomes) and L(θ ∣ S) denote a general likelihood function associated with a given outcome 
model [such as linear and generalized linear model (GLM)], and a population (S = 1 for trial popu
lation, S = 0 for external control population).
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Formulation of the power prior. Following (Ibrahim & Chen, 2000), the power prior is formu
lated as

π θ ∣ S = 0, a0
 􏼁

∝ L θ ∣ S = 0
 􏼁a0 π0(θ0) (18) 

where 0 ≤ a0 ≤ 1 is a discounting parameter for the external controls data likelihood, and 
π0(θ) is the initial prior for θ. The parameter a0 allows researchers to control the influence 
of the external controls: with a0 = 0, external control information is discarded, and with 
a0 = 1, the external controls contribute equally as the trial data to the likelihood. Priors can 
be specified for a0, such as the beta distribution, and the choice is discussed in Ibrahim 
et al. (2015).

Formulation of the commensurate priors. Following (Hobbs et al., 2011), the informative prior 
is constructed using a hierarchical model that incorporates commensurate priors as the primary 
mechanism for weighting the influence of prior information relative to its consistency with the trial 
data. Specifically, the informative prior is constructed in a hierarchical model by specifying the pri
or for the trial parameters θ to be ‘centred’ at the external control parameters θ0 with precision 
τ > 0, where τ is the commensurability parameter that quantifies the ‘similarity’ among the external 
controls and the trial controls in terms of model parameters θ and θ0,

π θ ∣ S = 0, θ0, τ
 􏼁

∝ L θ0 ∣ S = 0
 􏼁

π θ ∣ θ0, τ
 􏼁

π0(θ) (19) 

As τ → 0, the external controls data is discarded. On the other hand, as τ → ∞, the external con
trols are treated equivalently as the trial data.

5 Simulations
In choosing a simulation to comparison the finite-sample performance of the methods discussed in 
Sections 3 and 4, we design our simulations to have a few properties. First, the data generating 
mechanism should reflect the particular problem under study. Second, an important property of 
the simulation is the realism of the relationship between the confounding variables and the out
come, as well as a realistic level of confounding. Third, as all methods require either an outcome 
model or propensity score model (or both), important aspect of these estimators to comparison is 
how they respond to possible model misspecifications.

The simulations are based on the following data generating processes that is consistent with the 
DAG in Figure 1:

S = Bernoulli πS(W)( )

A =
Bernoulli πA( ), if S = 1
0, if S = 0

􏼚

Yt(a) = μ(W, t) + aτt + ϵt, a ∈ 0, 1{ }, t ∈ [0, T]

⎧
⎪⎨

⎪⎩
(20) 

where τt represents the true time dependent ATE.
Let W denote a vector of baseline covariates that includes both the measured (X) and unmeas

ured (U) confounders. We simulate W based on the empirical distribution of the measured baseline 
covariates in the combined SUNFISH and external controls data set. There are five baseline cova
riates that X and U emulate: scoliosis (binary, yes or no) as W1 , SMN2 copy number (binary, 2, 3, 
or 4) as W2, baseline MFM (continuous) as W3, age at enrolment (continuous) as W4, and SMA 
type (binary, Type II or III) as W5. Different subsets of (W1, . . . , W5) are designated as measured X 
and unmeasured U based on the needs of each simulation setting. We then sample the trial partici
pation on the basis of a propensity score model learned from fitting a logistic regression model on 
the real data. The treatment assignment is based on the trial participation and 2:1 
treatment-to-control ratio for trial participants. Lastly, the outcome is sampled based on a linear 
model learned from the real data. The sample sizes are set to be similar as the real data, with total 
n + m to be 220, with n1 : n0 : m roughly equals to 2 : 1 : 1 ratio, resulting in 
n1 ≈ 110, n0 ≈ 55, m ≈ 55. This approach ensures that the joint distribution of 
(W, S, A, Y(0), Y(1)) are as realistic as possible, coming directly from real data.
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To demonstrate the performance of proposed methods in different practical scenarios, we simu
late five settings with various levels of selection bias due to unobserved U (ranging from the most 
ideal case where U does not exist, the more practical case where U exist) and various levels of dif
ficulty in modelling the nuisance components: (1) No causal assumption violated, models for both 
nuisance parameters well-specified, (2) outcome model misspecified, (3) propensity score model 
misspecified, (4) both outcome model and propensity score model misspecified, and (5) No un
measured confounding assumption violated.

To simulate these settings, the true models are

logit{πS(W)} =
α′

(W1, W2, W3, W4, W5), for Settings 1, 2, 5

α′

(W1, W2, W3, W4, W2
4, W5), for Settings 3, 4

􏼨

μ(W, t) =
β

′

(W1, W2, W3, W4, W5), for Settings 1, 3, 5

β′

(W1, W2, W3, W4, W2
4, W5), for Settings 2, 4

􏼨

The observed and omitted confounding variables are

X =
(W1, W2, W3, W4, W5), for Settings 1, 2, 3, 4

(W1, W2, W3, W4), for Setting 5

􏼚

U =
None, for Settings 1, 2, 3, 4

W5, for Setting 5

􏼚

We then specify the propensity of trial participation model and the component of the outcome 
model related to measured confounders as

logit{πS(W)} =
α′

(W1, W2, W3, W4, W5), for Settings 1, 2, 3, 4

α′

(W1, W2, W3, W4) for Setting 5

􏼨

μ(W, t) = β′

(W1, W2, W3, W4, W5), for Settings 1, 2, 3, 4

β′

(W1, W2, W3, W4), for Setting 5

􏼨

For each design, we perform 3,000 Monte Carlo simulations.

Bayesian specifications:. The power prior and commensurate prior for generalized linear models 
accommodating our simulation setup is presented in Appendix C.

5.1 Results
At the trial design stage, operating characteristics including Type I error rate, power, and coverage 
are important. Theoretically, if two estimators are consistent and their variances are correctly spe
cified, then at least for large samples, both should have well-controlled Type I error, the one with 
smaller standard error (SE) should have higher power. It has been shown in Theorem 3 that, when 
the probability of trial participation model is correctly specified, EC-IPW is consistent, and when 
either the probability of trial participation or the outcome model is correctly specified, EC-AIPW is 
consistent (doubly robust). Generally, DR estimators also enjoy the benefit of variance reduction 
and therefore efficiency gain. We expect to see more variance reduction with EC-AIPW as a DR 
estimator. This supports the validity of our proposed estimators towards the goal of trial design 
with correct Type I error control and power boost, especially the EC-AIPW estimator.

We compare methods in terms of bias, SE, MSE, 95% coverage probability, power (at a specific 
nonnull treatment effect similar to the observed effect in SUNFISH) and Type I error (at null treat
ment effect), estimated empirically across 3,000 simulations. We use the mixed models for 
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repeated measures on trial data (within trial MMRM) as the reference to compare methods in 
Sections 3 and 4, as it is the standard method of reporting trial results with only RCT data.

The degree of borrowing from external controls is indicated by the ‘weight’ column in Table 1; 
however, the values are not directly comparable across methods. In the power prior method, the 
weight represents the posterior mean of the discounting parameter in equation (19). For the com
mensurate prior method, it corresponds to the posterior mean of the commensurability parameter 
in equation (20). In the case of EC-IPW-OPT and EC-AIPW-OPT, the weight w is defined in 
Definitions 1 and 2, respectively. Across all settings, the power prior method exhibits minimal bor
rowing from external controls, as its power parameters have posterior distributions centred 
around a value close to zero. The commensurate prior method displays varying degrees of borrow
ing, with more significant borrowing in Settings 1–4 and less borrowing in Setting 5. A larger com
mensurability parameter implies greater agreement between trial controls and external controls in 
terms of parameter values, resulting in increased borrowing. For EC-IPW-OPT and 
EC-AIPW-OPT, the weight ŵ∗ is determined in a data-driven manner without using outcome 
data. Greater weight is given to external controls when they offer more precise estimates, which 
occurs when a large number of similar external controls are available in terms of observed con
founders. In Settings 1 and 2, larger weights result in minimal bias and significant efficiency gains 
from incorporating external controls. In Settings 3 and 4, smaller weights lead to minor bias in
creases and still notable power gains. In Setting 5, where an unmeasured confounder is present, 
larger weights are assigned because external controls are similar to trial subjects in terms of meas
ured attributes. This still leads to efficiency gains that outweigh the bias introduced by the unmeas
ured confounder.

The bias column in Table 1 displays the estimated bias across 3,000 simulations. Generally, 
both the weighting estimators and the Bayesian methods effectively control the additional bias in
troduced by utilizing external controls under various mechanisms.

Figure 2 and the SE column in Table 1 show the potential benefit of incorporating external con
trols using the proposed estimators as well as the Bayesian methods, which is to increase the pre
cision or reduce the variability. For EC-IPW-OPT, and EC-AIPW-OPT, SEs were estimated using 
the asymptotic sandwich variance estimators given in Section 3.4, and for the power prior and 
commensurate prior methods, although no frequentist SE is defined, we use the standard deviation 
of the posterior sampling to make the comparison. The EC-IPW-OPT and EC-AIPW-OPT estima
tors show greater reduction across all settings, with EC-AIPW-OPT having the greatest reduction.

The last column in Table 1 shows the empirical Type I error rates, for testing the null hypothesis 
H0 : τ = 0 versus alternative H0 : τ ≠ 0. For EC-IPW-OPT, and EC-AIPW-OPT, 95% Wald confi
dence intervals were constructed based on the estimated SEs and the asymptotic normality results 
established in Section 3.4. For the power prior and commensurate prior methods, the posterior 
95% posterior credible intervals were constructed. The confidence or credible intervals were 
used to perform inference. We notice that both the Bayesian methods and our proposed weighting 
estimators have Type I error close to the nominal value of 0.05.

The power column in Table 1 shows the estimated power at one specific alternative that is most 
relevant to the SUNFISH trial τ = 1.5, for testing the null hypothesis H0 : τ = 0 versus alternative 
H0 : τ ≠ 0. Again, the confidence or credible intervals were then used to perform inference. The with
in trial MMRM are powered slightly over 70% depending on settings. The ‘power gain’ column 
shows the power increase using the within trial MMRM as the reference. The four methods can 
be ranked by their power gain as follows: the EC-AIPW-OPT has the highest power gain, followed 
by the EC-IPW-OPT as the second-highest, then the commensurate prior method as the third-highest 
power gain, and finally, the power prior method shows little to no power gain. In addition, the esti
mated power curves over a range of nonnull treatment effects are shown in Figure 3 to augment 
Table 1. The pattern of relative power performance remains consistent across a variety of nonnull 
treatment effects, encompassing the specific alternative that holds the most relevance for the 
SUNFISH trial. In summary, the proposed causal weighting estimators, particularly 
EC-AIPW-OPT, exhibit a more substantial and consistent power gain compared to other methods.

The coverage column in Table 1 shows the empirical 95% CI coverage probabilities. Due to our 
use of 3,000 simulations, empirical coverage rates between 0.943 and 0.957, can be considered 
close to 0.95. EC-IPW-OPT and EC-AIPW-OPT have slight under coverage in Settings 3 and 4, 
while the Bayesian posterior credible intervals achieve the frequentist nominal coverage rate.
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Taking together, from the trial design perspective, the proposed causal weighting estimators 
have the advantage of significant power boost that are consistent across a range of favourable 
or unfavourable scenario, while maintaining the nominal Type I error.

6 Application: SUNFISH trial
In this section, the methods described in Sections 3 and 4 are applied to reanalyse the SUNFISH 
trial with the incorporation of an appropriately chosen external control group introduced in 
Section 1.

Table 1. Estimated bias, standard error (SE), root mean square error (RMSE), 95% coverage probability, power (at 
nonnull treatment effect 1.5), power gain using the ‘within trial MMRM’ as reference, and Type I error (at null 
treatment effect), across 3,000 simulationsc

Method Weighta Bias SE RMSE Coverage 
(%)

Power 
(%)

Power 
gainb (%)

Type I 
error (%)

Setting 1

Within trial MMRM – −0.007 0.591 0.591 94.3 72.6 0.0 4.7

Power prior 0.001 −0.010 0.578 0.579 95.3 72.4 −0.1 4.7

Commensurate prior 2.370 0.018 0.547 0.547 95.1 78.9 6.3 4.7

EC-IPW-OPT 0.402 0.002 0.536 0.536 95.0 81.0 8.4 4.7

EC-AIPW-OPT 0.404 −0.003 0.493 0.493 94.7 85.9 13.4 5.1

Setting 2

Within trial MMRM – 0.002 0.586 0.586 94.8 73.5 0.0 5.6

Power prior 0.001 0.006 0.573 0.573 95.5 73.4 −0.1 6.9

Commensurate prior 2.363 0.003 0.544 0.544 95.4 78.0 4.5 5.5

EC-IPW-OPT 0.404 0.007 0.548 0.549 93.7 79.8 6.3 4.5

EC-AIPW-OPT 0.403 0.002 0.497 0.497 94.7 85.2 11.7 4.0

Setting 3

Within trial MMRM – −0.008 0.578 0.578 94.7 72.0 0.0 4.9

Power prior 0.001 −0.004 0.577 0.577 94.4 71.6 −0.4 5.0

Commensurate prior 2.349 −0.015 0.534 0.535 95.6 76.6 4.6 4.3

EC-IPW-OPT 0.404 0.006 0.530 0.530 94.9 81.2 9.2 5.0

EC-AIPW-OPT 0.403 −0.002 0.505 0.505 94.0 84.9 12.9 5.1

Setting 4

Within trial MMRM – 0.004 0.597 0.597 94.8 72.7 0.0 5.8

Power prior 0.001 0.004 0.577 0.577 94.5 73.6 0.8 3.6

Commensurate prior 2.350 −0.006 0.548 0.548 94.8 77.8 5.0 4.2

EC-IPW-OPT 0.402 0.004 0.529 0.529 94.9 80.4 7.7 4.4

EC-AIPW-OPT 0.403 −0.011 0.506 0.507 94.4 84.3 11.6 5.1

Setting 5

Within trial MMRM – 0.004 0.565 0.565 95.7 73.8 0.0 5.6

Power prior 0.001 −0.026 0.574 0.575 94.9 71.9 −1.9 5.8

Commensurate prior 2.245 0.014 0.536 0.537 95.1 78.6 4.8 4.6

EC-IPW-OPT 0.415 0.006 0.527 0.527 95.3 81.4 7.6 5.2

EC-AIPW-OPT 0.413 0.006 0.506 0.506 93.6 85.9 12.1 5.1

a The weight column represents different parameters for the four methods: for the power prior, it is posterior mean of 
discounting parameter in equation (19); for the commensurate prior, it is posterior mean of commensurability parameter 
in equation (20); and for EC-IPW-OPT and EC-AIPW-OPT, it is the weight w in Definitions 1 and 2, respectively. 
b Power gain is calculated as the difference of power between the corresponding method and the within trial MMRM. 
c The best number among the Bayesian methods and our proposed methods in each column (except for weight) is bolded.
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The EC-IPW-OPT and EC-IPW-OPT, along with the power prior and commensurate prior 
methods are employed to assess the ATE of risdiplam on MFM change from baseline, at months 
6 and 12 (primary endpoint) for the SUNFISH trial population, using the olesoxime trial control 
subjects as the external controls. Whenever the propensity score model is needed (for 
EC-IPW-OPT and EC-AIPW-OPT), a logistic regression model was used, the outcome was trial 
participation and the possible covariates including Age at enrolment, SMA Type (II or III), 
SMN2 copy number (2,3,4), Scoliosis (Yes or No), and baseline MFM. Whenever the outcome 
model is needed (for power prior, commensurate prior, and EC-AIPW-OPT), a linear model 
was used, the outcome was MFM change from baseline and the possible covariates including 
time (categorical), Age at enrolment, SMA Type (II or III), SMN2 copy number (2,3,4), 
Scoliosis (Yes or No), and baseline MFM.

The distributions of the propensity of trial participation for the SUNFISH and external control 
subjects comparisons are shown in Figure 4 (a: Unweighted probability of trial participation). The 
slight imbalance in the two ends of the distributions is an indication of some covariate imbalance. 
The weighted comparison (c: Weighted probability of trial participation) in Figure 4 illustrates the 
improved balance by weighting the external controls using the EC-IPW and EC-AIPW weighting 
scheme. Figure 4b and d provides a closer look at one of the covariates, age at enrolment showing 
the unweighted and weighted age distributions under the EC-IPW and EC-AIPW weighting 
scheme. There is a group of relatively older patients in the external controls in the unweighted sam
ple, but improved balance is achieved by weighting down this group.

The estimated ATE of risdiplam MFM change from baseline and corresponding 95% CIs, from 
different methods are given in Table 2 and visualized in Figure 5, along with the within trial 
MMRM as the reference which can be viewed as unbiased estimate of the true treatment effect. 
All four estimators show similar ATE as the within trial estimate at both time points. In addition, 
the EC-IPW-OPT and EC-AIPW-OPT estimators have noticeably narrower confidence intervals, 
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Figure 2. Boxplots of standard errors (SEs). For EC-IPW-OPT, and EC-AIPW-OPT, SEs were estimated using the 
asymptotic sandwich variance estimators given in Section 3.4, and for the power prior and commensurate prior 
methods, although no frequentist SE is defined, we use the standard deviation of the posterior sampling to make the 
comparison. a) No causal assumption violated, models for both nuisance parameters well-specified; b) Outcome 
model mis-specified; c) Propensity score model mis-specified; d) Both outcome model and propensity score model 
mis-specified; e) No unmeasured confounding assumption violated.

J R Stat Soc Series A: Statistics in Society                                                                                                17
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnae075/7742118 by guest on 21 N
ovem

ber 2024



compared with within trial MMRM as well as the Bayesian methods. This shows that using data 
outside of the trial with effective adjustment methods have the potential to improve the efficiency 
of medical product approval by reducing the required trial subjects and shorten the length of the 
study.

7 Discussion
The primary aim of this work is to suggest methods based on causal inference for augmenting trial 
data with external control data to increase statistical power while preserving the desired Type I 
error rate. We have proposed two estimators, EC-IPW-OPT and its DR version EC- 
AIPW-OPT, that weight the trial and external controls combined data in two layers: the first layer 
of weights assigned to the external controls tackling the distribution shift between external control 
population and the trial population and can be thought of as a special case of the balancing weights 
in Li et al. (2018), and with second layer as a weighted combination of the external control evi
dence with the trial evidence. Through simulations representing a variety of practical scenarios, 
we have shown that the proposed weighting estimators achieve significant power gain, while main
taining Type I error close to the nominal value of 0.05, when certain assumptions are met. In par
ticular, EC-AIPW-OPT has ‘doubly robust’ property about statistical model misspecifications 
similarly as other double robust estimators, and shows the most efficiency gain. In addition, the 
proposed weighting estimators are computationally less intensive compared to Bayesian methods, 
as the former have closed-form analytic expressions for both the point estimates and their confi
dence intervals, while the latter require intensive posterior sampling.

Whether the efficiency of the randomized trials can be improved by incorporating external con
trols hinges upon the ‘compatibility’ of external controls and the specification of statistical models 
for nuisance components in the proposed estimators. ‘Compatibility’ here refers to: (1) no direct 
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Figure 3. Estimated power at a range of treatment effects. a) No causal assumption violated, models for both nuisance 
parameters well-specified; b) Outcome model mis-specified; c) Propensity score model mis-specified; d) Both outcome 
model and propensity score model mis-specified; e) No unmeasured confounding assumption violated.
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effect of trial participation Assumption 1: a patient’s potential outcome under no treatment would 
be the same, regardless of whether this patient is in the trial control group or the external control 
group (2) conditional ignorability Assumption 4: the outcome of trial controls and the external con
trols are exchangeable if they share the same characteristics, and (3) overlapping Assumption 5: for 
each trial subject, there is positive probability to have some external controls sharing the same char
acteristics. Therefore, the selection of suitable external controls is important when considering our 
approach. One may consider the Pocock criteria (Pocock, 1976) which has been used to evaluate the 
comparability between external controls and current trials. Food and Drug Administration’s guide
line on ‘Choice of control group and related issues in clinical trials’ (FDA, 2021) and ‘Considerations 
for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products 
Guidance for Industry’ (FDA, 2023) provide discussion on the choice and data quality of external 
controls. When using external controls from a separate trial, as in our real data example, it might 
be reasonable to accept the assumptions if the placebo effects are similar or have low impact in 
both control groups and there is no unobserved selection bias between the two trials.

The practical implications of conditional ignorability Assumption 4 are essential during the de
sign phase of externally controlled trials. The incorporation of external controls face significant 
concerns regarding the potential for differences in patient attributes that could impact outcomes 
between the external control group and the trial treated arm. Examples of such baseline attributes 
include demographic and related factors like age, sex, race, socioeconomic status, and geographic 
region. Other attributes that may differ but are often more difficult to address encompass disease 
features, such as severity, duration, specific signs and symptoms, comorbidities, and previous and 
ongoing treatments. These confounding factors should be consistently measured and captured in 
both sources of data. This is the conditional ignorability Assumption 4, upon which the validity of 
our proposed weighting estimators can be established.

In practice, it is important to note that the recorded data may not always be comprehensive enough. 
For instance, it might be the case that SMA patients differ in terms of economic conditions and access 
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Figure 4. Comparisons of the distributions of the estimated probability of trial participation and age between 
SUNFISH and external control subjects. a) Unweighted distributions of the estimated probabilities of trial 
participation, c) weighted distributions of the estimated probabilities of trial participation, b) unweighted 
distributions of age, and d) weighted distributions of age.
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to quality care, which might prevent disadvantaged patients entering the SUNFISH trial, and those 
conditions tend to worsen the disease progression. That is, the trial population may be systematically 
different with the external controls in ways that are never known to investigators. Depending on the 
severity of unmeasured confounding, the ability to boost statistical power while maintain desirable 
Type I error might be limited. In our simulation Setting 5, we showed a case of weak unmeasured con
founding, where ‘weak’ is suggested by the association in the real data. In future research, we could 
consider analytic methods that can accommodate unmeasured confounding bias.

The connection with platform trials is worth mentioning. Platform trials involve examining 
multiple experimental treatments that can join and leave the trial at different times, sharing a com
mon control group. This sharing and borrowing of a control group to enhance statistical efficiency 
is also seen in hybrid controlled trials that use external controls, which is the focus of our work. 
This issue of borrowing from nonconcurrent controls is also relevant when using external controls 
(e.g. historical controls), which can introduce ‘calendar time bias’ as discussed in (Burger et al., 
2021). If present, this time bias would violate the Conditional Ignorability Assumption 4.

A limitation of the proposed methods is their reliance on the validity of working models for nuis
ance parameters. Here, we assume those are parametric, which is a practical starting point, as 
parametric models are commonly used in clinical trials and practice, particularly when dealing 
with small sample sizes and low-dimensional covariates. On the other side, as shown in scenario 
E of the web-based supporting material, model misspecification can introduce bias when incorp
orating external controls, with the severity depending on the discrepancy between the working and 
true models. An alternative, more flexible approach might involve employing nonparametric 
methods for estimating nuisance parameters in DR estimators, such as EC-AIPW, as used in 

Table 2. The estimated average treatment effect of risdiplam in motor function measure change from baseline and 
corresponding 95% CIs

Method 􏽢τ at primary endpoint 95% CI CI width

Within trial MMRM 1.672 (0.293, 3.051) 1.379

Power prior 1.650 (0.271, 3.034) 1.381

Commensurate prior 1.527 (0.198, 2.820) 1.311

EC-IPW-OPT 1.712 (0.529, 2.895) 1.183

EC-AIPW-OPT 1.522 (0.343, 2.702) 1.179

0

1

2

3

Baseline Visit 1 Visit 2:Primary Endpoint

Within Trial MMRM

Power Prior

Commensurate Prior

EC−IPW−OPT

EC−AIPW−OPT

Estimated ATE and 95% CIs

Figure 5. Estimated average treatment effect of risdiplam in motor function measure change from baseline and 
corresponding 95% CIs.
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this work. The double/debiased machine learning (Chernozhukov et al., 2018) and the targeted 
maximum likelihood estimation (Van Der Laan & Rubin, 2006) are two general approaches in 
this framework. These can be avenues for future research, particularly in terms of large-sample 
asymptotic results, and importantly, assessing how well theoretical results translate into practice, 
especially in small sample regime, within the context of hybrid controlled trials.

In this work, our focus is not on the Bayesian approach. The Bayesian dynamic borrowing meth
ods (noncausal) integrate external controls via the use of informative priors. This is the major dis
tinction with our proposed weighting-type estimators grounded in (frequentist) causal potential 
outcome framework. Nevertheless, it is worth mentioning the growing body of literature that ex
plores the incorporation of propensity scores into Bayesian dynamic borrowing methods. The pro
pensity score serves as a means to select external controls that are similar to trial subjects during 
the study’s design phase. This can be achieved through various strategies, including propensity 
score stratification, regression adjustment for propensity scores, or matching based on propensity 
scores (Fu et al., 2023; Lewis et al., 2019; Li & Yue, 2023). This synthesis of Bayesian and pro
pensity score methodologies offers a promising avenue. Future research can consider exploring 
Bayesian causal inference framework that fully takes into account the design and analysis stages.

The example of the SUNFISH trial incorporating external controls from the olesoxime trial is 
representative of the rare disease setting, where a randomized control group is less desirable or 
feasible due to limited alternative treatments and/or scarcity of patients. Spinal muscular atrophy 
is a rare neuromuscular disorder that results in the loss of motor neurones and progressive muscle 
wasting. A total of 180 patients with SMA enrolled in SUNFISH between 2017 and 2018 across 14 
countries (Mercuri et al., 2022), which puts a limitation on the statistical power of the trial results. 
These participants were randomly assigned to receive either risdiplam or placebo in a 2:1 ratio to 
increase the likelihood of receiving risdiplam and to encourage the enrolment of patients who have 
limited alternative treatment options. Such design considerations are common in rare disease trials 
(Gross, 2021). The simulation studies, motivated by the real data example presented in Section 6, 
demonstrate the statistical efficiency gain of incorporating external controls using the proposed 
weighting estimators. Our example showcases that with appropriately chosen external controls 
and statistical methods, the challenges associated with relying on a randomized control arm can 
be alleviated. This is important given that the number of FDA drug approvals that used external 
control data (Jahanshahi et al., 2021) and rare disease trials (Gross, 2021) is increasing.

In order to generalize the proposed methods to accommodate broader studies using external con
trols, several directions can be undertaken. First, the weighting estimators offer a level of versatility 
that allows for potential extensions to accommodate other types of endpoints, such as time-to-event 
data. Second, sensitivity analysis could be developed to quantify how the estimates from the pro
posed methods vary as a function of the magnitude of unknown placebo effects (violating 
Assumption 1) and selection bias (violating Assumption 4). Third, extension of the proposed meth
ods for examining heterogeneity treatment effect (HTE) is possible and would be useful especially 
for trials underpowered for HTE (Yang et al., 2023). Lastly, the weighting estimators can be adapted 
to include multiple external control samples originating from different sources. These potential ex
tensions present promising avenues for future research in a broader range of contexts.
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Appendix A

Proof of Theorem 1. (a) The ATE for the trial population with respect to base measure μ 
is defined as

τ = ∫ E Y(1) − Y(0) ∣ X = x
􏼂 􏼃

pR(x)μ(dx)

= ∫ E Y(1) ∣ X = x
􏼂 􏼃

pR(x)μ(dx)
􏽼�����������������􏽻􏽺�����������������􏽽

I

− ∫ E Y(0) ∣ X = x
􏼂 􏼃

pR(x)μ(dx)
􏽼�����������������􏽻􏽺�����������������􏽽

II 

Using the randomized trial data, both I and II can be easily iden
tified through the (normalized) inverse propensity of treatment 
weighting:

I =
ER

YA
πA

􏼔 􏼕

ER

A
πA

􏼔 􏼕

II =
ER

Y(1 − A)
1 − πA

􏼔 􏼕

ER

(1 − A)
1 − πA

􏼔 􏼕
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In addition, the external controls also provide another identifi
cation of II, provided that Assumptions 2, 3, 4, and 5 hold.

II = ∫ E Y(0) ∣ X = x
􏼂 􏼃

pR(x)μ(dx)

=
∫ E Y(0) ∣ X = x

􏼂 􏼃 pR(x)
pE(x)

pE(x)μ(dx)

∫
pR(x)
pE(x)

pE(x)μ(dx)

=
EE Y(0) ∣ X = x

􏼂 􏼃 pR(x)
pE(x)

pE(x)

EE

pR(x)
pE(x)

pE(x)
􏼔 􏼕

=
EE Y(0)W00

􏼂 􏼃

EE W00[ ]

=
EE YW00[ ]

EE W00[ ]
, by SUTVA 

Therefore, τEC−IPW = τ. If the trial participation model πS(X; α) 
for πS(X) is correct, then τEC−IPW = τEC−IPW = τ.

(b) If the trial participation model πS(X; α) for πS(X) is correct, then

􏽥τEC−AIPW = τEC−IPW

−
ER

μ(X; β)A
πA

􏼔 􏼕

ER

A
πA

􏼔 􏼕 − (1 − w)
ER

μ(X; β)(1 − A)
1 − πA

􏼔 􏼕

ER

(1 − A)
1 − πA

􏼔 􏼕

⎡

⎢
⎢
⎣

−w
EE μ(X; β)W00

􏼂 􏼃

EE W00[ ]

􏼕

= τEC−IPW

− EE μ(X; β) − (1 − w)μ(X; β) + wμ(X; β)
􏼂 􏼃

􏽼��������������������������􏽻􏽺��������������������������􏽽
=0

= τ 
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If the outcome model is μ(X; β) for μ(X) is correct,

􏽥τEC−AIPW =
ER

ỸA
πA

􏼢 􏼣

ER

A
πA

􏼔 􏼕

− (1 − w)

ER

Ỹ(1 − A)
1 − πA

􏼢 􏼣

ER

(1 − A)
1 − πA

􏼔 􏼕 − w
EE Ỹ

πS(X; α)(1 − πS)
(1 − πS(X; α)πS

􏼔 􏼕

EE

πS(X; α)(1 − πS)
(1 − πS(X; α)πS

􏼔 􏼕

=
ER E[Y(1) − μ(X) ∣ X = x]

􏼂 􏼃

ER

A
πA

􏼔 􏼕

− (1 − w)

ER E[Y(0) − μ(X) ∣ X = x]
􏽼�������������􏽻􏽺�������������􏽽

=0

⎡

⎣

⎤

⎦

ER

(1 − A)
1 − πA

􏼔 􏼕

− w

EE E[Y(0) − μ(X) ∣ X = x]
􏽼�������������􏽻􏽺�������������􏽽

=0

πS(X; α)(1 − πS)
(1 − πS(X; α)πS

⎡

⎣

⎤

⎦

EE

πS(X; α)(1 − πS)
(1 − πS(X; α)πS

􏼔 􏼕

=
ER E[Y(1) − Y(0) ∣ X = x]

􏼂 􏼃

ER

A
πA

􏼔 􏼕

= ER Y(1) − Y(0)􏼂 􏼃
, by Assumption 3

= τ 

□

Appendix B
A simplifying approach is to consider baseline covariates, trial participation, treatment assign
ment, and propensity score as fixed at the design stage. Then

Var 􏽢μ10

􏼂 􏼃
= Var 􏽢μ10|X, S, A

􏼂 􏼃

=

􏽘

i

Si(1 − Ai) 􏽢W2
10i

􏽘

i

Si(1 − Ai) 􏽢W10i

􏼠 􏼡2 Var(Y|X, S = 1, A = 0)
􏽼��������������􏽻􏽺��������������􏽽

Residual variance of trial control outcomes

Var 􏽢μ00

􏼂 􏼃
= Var 􏽢μ00|X, S, A

􏼂 􏼃

=

􏽘

i

(1 − Si) 􏽢W2
00i

􏽘

i

(1 − Si) 􏽢W00i

􏼠 􏼡2 Var(Y|X, S = 0)
􏽼���������􏽻􏽺���������􏽽

Residual variance of external control outcomes 

Since there is no straightforward way to estimate the bias term without accessing outcome data, if 
we are willing to accept that no bias arises due to the violation of causal assumptions outlined in 
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Section 2.3 and the validity of nuisance parameter models, i.e. assuming that the bias is negligible, 
we can then set B ≈ 0. Additionally, if we assume that the residual variances of the trial control 
outcome and the external control outcome are the same, these two unknown terms can be can
celled out. Consequently, equation (10) can be approximated by the ‘variance ratio’ in equation 
(11) which is estimable without any outcome data.

Appendix C
We used the GLM for longitudinal data as the working model Yi = Xiβ + Ziτ + ϵi for subjects 
i ∈ R, where the within-subject correlation over repeated measures is accounted by the 
variance–covariance matrix of ϵis by assuming ϵi ∼ MVN(0, Σ). We assume unstructured covari
ance matrix Σ that allows the correlation to be different for each pair of time points. Here, 
X = (1, SMN2 Copy Number, SMA Type, Scoliosis, Time)′, Z = (A, Time × A) where both 
treatment indicator A and visit indicator Time are binary variables (since we only consider 
T = 2). The coefficients τ = (τ1, τ2) represent the treatment effects for postintervention outcomes. 
Similarly, the external controls subjects i ∈ E follow the same outcome model Yi = Xiβ + ϵ0,i with 
ϵi ∼ MVN(0, ΣE).

C.1 Power prior specification for simulation
We assume prior:

π(β | S = 0, a0) ∝ L(β | S = 0)a0 π0(β)π0(a0)

π(Σ) ∼ Inverse-Wishart (ν, I−1)

π(ΣE) ∼ Inverse-Wishart (νE , I−1)

π0(τ) ∼ Gamma(1, 1) 

where L(β | S = 0) =
􏽑

i∈E (2π)−1/2|ΣE|−1/2e−1
2(yi−xiβ)TΣ−1

E
(y0i−x0iβ); ν = ν0 = p + 2 and 􏽢Σ and 􏽢ΣE as iden

tity matrix to represent weak prior belief.
The data for RCT subjects i ∈ R is distributed as

yi | β, τ, ΣR ∼ N (xiβ + Ziτ, ΣR) 

The conditional posteriors can be derived and sampled due to conjugate prior specification

β | βtrt, Σ, ΣE ∼ N (A−1b, A−1)

A =
􏽘

i∈R

xiΣ−1xT
i + a0

􏽘

i∈E

xiΣ−1
E xT

i

􏼠 􏼡

b =
􏽘

i∈R

xiΣ−1(yi − Siβtrt) + a0

􏽘

i∈E

xiΣ−1
E yi

􏼠 􏼡

βtrt | β, Σ, ΣE ∼ N
􏽘

i∈R

xT
i Σ−1xi

􏼠 􏼡−1
􏽘

i∈E

xT
i Σ−1(yi − xiβ)

􏼠 􏼡

,

⎛

⎝

􏽘

i∈R

xT
i Σ−1xi

􏼠 􏼡−1
⎞

⎠

Σ | β, βtrt, ΣE ∼ Inverse-Wishart (ν + n, (􏽢Σ + S1)−1)

S1 =
􏽘

i∈E

(yi − xiβ − Ziβtrt)(yi − xiβ − Siβtrt)
T

ΣE | β, βtrt, Σ ∼ Inverse-Wishart (ν0 + m, (􏽢Σ + S0)−1)

S0 =
􏽘

i∈E

(yi − xiβ)(yi − xiβ)T 
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C.2 Commensurate prior specification for simulation
Here, we adopt the approach proposed in Hobbs et al. (2012). We assume priors that incorporates 
likelihood for β0 from external controls, a prior for β that centred around β0 with variance equals 
to the inverse of commensurability parameter, the higher the commensurability, more borrowing 
from external controls.

π(β | S = 0, a0) ∝ L(β | S = 0) × N β | β0,
1
τ

􏼒 􏼓

× π0(τ)

π(Σ) ∼ Inverse-Wishart (ν, 􏽢Σ−1)

π(ΣE) ∼ Inverse-Wishart (νE, 􏽢Σ−1
E ) 

where prior for commensurability is assumed π0(τ) ∼ Gamma(1, 1).
The data for RCT subjects i ∈ R

yi | β, Σ ∼ MVN(Xiβ + Aiβtrt, Σ) 

The conditional posteriors can be derived and sampled due to conjugate prior specification

β | βtrt, β0, Σ, ΣE ∼ N (A−1b, A−1)

A =
􏽘

i∈R

xiΣ−1xT
i + diag(τ)−1

􏼠 􏼡

b =
􏽘

i∈R

xiΣ−1(yi − Siβtrt) + diag(τ)−1β0

􏼠 􏼡

β0 | β, βtrt, Σ, ΣE ∼ N (A−1
0 b0, A−1

0 )

A0 =
􏽘

i∈E

xiΣ−1xT
i + diag(τ)−1

􏼠 􏼡

b0 =
􏽘

i∈E

xiΣ−1(yi − Siβtrt) + diag(τ)−1β

􏼠 􏼡

τ ∼ Gamma 1 +
1
2

, 1 +
1
2

‖β − β0‖2
􏼒 􏼓

βtrt | β, Σ, ΣE ∼ N
􏽘

i∈R

xT
i Σ−1xi

􏼠 􏼡−1
􏽘

i∈E

xT
i Σ−1(yi − xiβ)

􏼠 􏼡

,

⎛

⎝

􏽘

i∈R

xT
i Σ−1xi

􏼠 􏼡−1
⎞

⎠

Σ | β, βtrt, ΣE ∼ Inverse-Wishart (ν + n, (􏽢Σ + S1)−1)

S1 =
􏽘

i∈E

(yi − xiβ − Siβtrt)(yi − xiβ − Siβtrt)
T

ΣE | β, βtrt, Σ ∼ Inverse-Wishart (ν0 + m, (􏽢Σ + S0)−1)

S0 =
􏽘

i∈E

(yi − xiβ)(yi − xiβ)T 
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