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Abstract—This paper deals with the joint reduction of the num-
ber of dynamic and algebraic states of a nonlinear differential-
algebraic equation (NDAE) model of a power network. The
dynamic states depict the internal states of generators, loads,
renewables, whereas the algebraic ones define network states such
as voltages and phase angles. In the current literature of power
system model order reduction (MOR), the algebraic constraints
are usually neglected and the power network is commonly mod-
eled via a set of ordinary differential equations (ODEs) instead
of NDAEs. Thus, reduction is usually carried out for the dynamic
states only and the algebraic variables are kept intact. This leaves
a significant part of the system’s size and complexity unreduced.
This paper addresses this aforementioned limitation by jointly
reducing both dynamic and algebraic variables. As compared to
the literature the proposed MOR techniques are endowed with
the following features: (i) no system linearization is required, (ii)
require no transformation to an equivalent or approximate ODE
representation, (iii) guarantee that the reduced order model to
be NDAE-structured and thus preserves the differential-algebraic
structure of original power system model, and (iv) can seamlessly
reduce both dynamic and algebraic variables while maintaining
high accuracy. Case studies performed on a 2000-bus power
system reveal that the proposed MOR techniques are able to
reduce system order while maintaining accuracy.

Index Terms—Model order reduction, Balanced truncation,
Nonlinear differential-algebraic equations models.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

ower systems form large-scale, complex networks that usu-
P ally require large state-space expressions for accurate mod-
eling. The complexity and size of power systems are even further
increasing with the integration of renewables and other (power-
electronics)-based distributed resources. Thus, the research area
of model order reduction (MOR) in power systems is becoming
highly crucial. Specifically, for the design of advanced feedback
controllers (e.g., Ho2, Hoo, and LQR/LQG), the design of
reduced-order model (ROM) is of extreme importance. This
is because the order of these controllers matches the order of
the system, thus for a very large system with thousands of state
variables, the design of these controllers becomes intractable
[11-[3].

The idea of model reduction is not new in power systems
research, and significant relevant research has been proposed in
the past two decades. Generally speaking, there are two main
MOR philosophies in the current literature of power systems.
The first philosophy divides the power system into study (inter-
nal) and external areas. The study area is represented in detail,
while the external area is simplified or approximated. This ap-
proach leverages coherency-based methods [4]-[7], which are
rooted in the identification of coherent generator groups within
the power system. The reduction process generally involves
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three steps: (7) identifying coherency among generators, (i)
dynamically reducing the system by aggregating the network
and generators, and (ii7) potentially aggregating excitation
controllers also in later stages. These coherency-based methods
are highly regarded for their reliability in achieving dynamic
equivalence in power systems. However, a notable limitation
is the potential inability to reduce specific parts of the power
network due to the inherent nature of coherency grouping [8].

The second philosophy draws from control theory literature,
focusing on input-output-based model reduction methodolo-
gies. These algorithms are theoretically robust and general
purpose, making them suitable for a wide range of applications
beyond traditional synchronous machines, including renewable
resources. Our work focuses on such input-output-oriented
MOR techniques. These types of MOR methods are further
classified into three main categories. The first category is
based on Krylov subspace or moment-matching-based methods,
which approximate the original system by matching moments
of the system’s transfer function. The second category relies on
modal truncation-based methods like proper orthogonal decom-
position (POD). These methods involve reducing the system by
truncating less significant modes, based on their contribution
to the system’s dynamics. The third category forms balanced
realizations or Gramian-based methods such as balanced-POD
(BPOD) and balanced truncation (BT). The aim herein is
to reduce the system by identifying and retaining the most
controllable and observable states—Gramians are matrices that
quantify observability and controllability of dynamic systems.
The readers are referred to [9], [10] for further details about
these techniques.

These MOR methodologies have also been widely applied
to power systems to construct various ROMs. For instance,
authors in [1], [11] have proposed moment matching-based
MOR techniques. In [12]-[14], researchers have proposed
balanced realization-based MOR algorithms for linear ODE-
based power system models. Later, these works have been ex-
tended in [8] to propose MOR for nonlinear ODE-based power
system models where instead of using Grammians, empirical
controllability and observability covariance matrices are used
to balance and truncate the system. Similarly, in [15]-[17]
various modal truncation-based reduction algorithms have been
proposed. Moreover, a Loewner matrix method-based approach
for efficient model order reduction and system identification in
power systems was recently proposed in [18]. Additionally, [19]
introduced a parametric MOR technique that preserves critical
device parameters while effectively reducing large-scale power
system models. Readers are referred to [20], [21] for a detailed
survey of the existing MOR approaches in power systems.

However, in most of the current MOR power system litera-
ture, the algebraic constraints (modeling power/current balance)
are usually neglected and the power system is modeled via
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a set of linear ODEs (or converted to linear ODEs) in order
to apply MOR concepts from linear system control theory.
The recent work in [8] has considered nonlinearity in their
design. Yet again, the algebraic constraints are neglected and
thus MOR is only carried out for dynamic variables while
keeping the algebraic variables intact. This is problematic as
algebraic variables often constitute a large portion of the model,
representing essential electrical quantities across the network.
Ignoring these in the reduction process means a significant part
of the system’s complexity and size remains untouched, limiting
the effectiveness of MOR. Also, considering the complete
nonlinear differential-algebraic (NDAE) dynamics is essential
because the linear/nonlinear ODE-based power system models
cannot capture the effects of topological changes (like the
tripping of transmission lines, etc.) [22].

The studies that focus on the DAE power system models
such as [13], [23] also require the conversion of power system
models to an equivalent ODE representation. This is done
by finding an explicit relationship of the algebraic variable
(through the algebraic constraint model) and substituting it back
into the dynamic system [13]. However, such equivalent ODE
representation is only possible for linear-DAE (LDAE) systems
and cannot be applied to NDAE power systems as there is no
explicit equation for algebraic variables because of the presence
of nonlinearity. Notice that the power system algebraic variables
are known to be highly nonlinear as the algebraic constraints
are power/current balance equations which are characterized
by trigonometric terms such as sines and cosines, reflecting
the physical laws of electrical networks. Thus, algebraic states
cannot be isolated (or expressed explicitly) and plugged back
into the dynamic system as done in the case of the LDAE system
in [13].

Some studies have been carried out using Krylov-based
methodology such as [1] which does not require the conversion
of system to an equivalent ODE and can directly be applied to
the DAE system. However, they are also limited to LDAE power
system models. Also, the MOR obtained using the Krylov-based
method can be of higher order. This is because the constructed
lower-order orthogonal basis depends on the number of system
inputs, for example to match the first [ moments of the system,
the dimension of the reduced order orthogonal basis needs to
be | X n, (where n,, are the number of inputs) [24]. Thus, in a
system with a large number of inputs (such as power systems),
the ROM can be of higher order.

Paper Contributions. In this paper, we present two MOR
techniques that can directly be applied to the NDAE represen-
tation (without requiring power system models to be converted
to equivalent ODE) of power systems and can reduce both
dynamic and algebraic variables simultaneously to construct the
corresponding ROM. The technical contributions are as follows:
« We propose two model reduction approaches for nonlinear
power system models. One approach offers reducing the
system order based on the modes (or the energy content) in
the time-domain transient simulation data while the second
approach, in contrast, offers designing ROM via balanced-
realization (using empirical controllability and observabil-
ity covariances). Since both proposed techniques adopt
distinct approaches to designing ROM, it is unclear how

they perform in terms of realizing full system dynam-
ics. As compared to [1], [13], the proposed methods do
not rely on system linearization and/or equivalent ODE
transformation—and as compared to [8], the proposed
techniques can simultaneously reduce algebraic variables
with dynamic variables.

o Due to the diagonal structure of the proposed coordinate
transformation matrix, the presented techniques ensure that
the ROMs are NDAE:s similar to the original power system
model. This preserves the differential algebraic structure
of power networks. This also allows a seamless transition
from reduced order to the full order dynamic and algebraic
state variables.

o Thorough time-domain simulations under various transient
conditions have been conducted to evaluate the perfor-
mance of the proposed techniques. The test system in-
cludes: (1) a modified IEEE 39-bus system that models de-
tailed dynamics of conventional power plants, a solar plant
operating in grid-forming mode, and algebraic constraint
models, and (2) a 2000-bus Texas network incorporating
comprehensive 11*"-order models of conventional power
plants. Additionally, to demonstrate the advantages of
the proposed MOR techniques, a comparison with the
commonly used linear ODE-based balanced truncation
method is presented.

Paper Organization. Sec. II presents the advanced power
system model considered in this study. Sec. III delineates the
problem formulation and scope. Sec. IV and V present the two
MOR algorithms for NDAE power system models. Case studies
are presented in Sec. VI while the paper is concluded in Sec.
VII.

Notation. Capital bold letters are used to represent matrices, as
in A while small capital bold letters, such as b, denote vectors.
All the sets are represented in calligraphic fonts, such as M or
R. The symbol R“*" represents a real-valued matrix of size
u X v, similarly, R* denotes a real-valued column vector with k
elements. The notations O and I denote zero and identity matrix
of appropriate dimensions, respectively. The union of two sets
is denoted by U. The symbol 7\ represents a square positive
definite matrix of size n X n while the notation e; represents
a column vectors of zeros with 1’s only at location j. Also, all
quantities are given in per unit (p.u) unless otherwise specified.

II. NONLINEAR DAE POWER SYSTEM MODEL

We consider a grid model with S solar power plants, G
conventional power plants, and Lj loads. The overall power
system is modeled as a graph with A" = {1,..., N} as the set
of nodes/buses and £ as the set of edges or transmission lines.
The set of buses are grouped into various types: R = {1, ..., R}
represents buses with PV power plants, G = {1, ..., G} denotes
buses connected to the conventional power plants, £ includes
buses that contain loads, while U/ collects non-unit buses that
are not connected to any elements.

The overall grid model is mathematically represented using
a set of NDAESs given as follows [2]:

&(t) = g(xa(t), @a(t), u(t), w(t))
0= h(x4(t), z.(t), u(t), wt)).

(1a)
(1b)
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In model (1), the set of differential equations (1a) encompasses
the dynamics of PV plants, conventional power plants, and
composite loads dynamics, while the algebraic constraint (1b)
models the current/power balance equations of the electri-
cal network. The vector x4(t) € R™ represents dynamic
states and it lumps the dynamic variables of conventional
power plants, PV plants, and composite load dynamics as
g = [zl =} :c—L'—]T where x ¢ are the states of con-
ventional power plants, xr denotes the states of PV plants,
and x;, represents the states of dynamic loads. The notation
xo(t) € R" denotes algebraic states and it contains the
states of the network (voltage and current phasors). The vector
wt) = [P} I ]T € R"™ contains load demand P
and sun irradiance I, while u(t) = [u/ uHT € R™
defines the system control inputs with us and uwg denoting
the control inputs of generators and solar farms, respectively.
Further detailed explanations of these vectors and complete
dynamical equations (set of differential equations) describing
the models of PV plants, conventional power plants, composite
load dynamics, and system algebraic constraint model used in
this study are given in Appendix A.

By considering z(t) = [z, xHT € R as the overall
state vector and y(t) € RP? as the system output we can rewrite
the electrical grid model (1) in the following compact format:

Ei = Ax + Byu+ f (z,u,w) + B,w (2a)
y=Cx (2b)

where E € R™*" is a singular binary matrix encoding system
algebraic model with rows of zeros, function f (x,u,w) rep-
resents the corresponding nonlinearity, C' € RP*" is the output
matrix, while the rest of the real-valued matrices B, € R"*"u,
A € R"™"™ B, € R"*"™ maps the system control inputs u,
state vector x, and the disturbance vector w in the power system
dynamics. Furthermore, throughout the paper, we assume that
in the NDAE model (2), the pair (E, A) is regular, and the
power system model is observable and controllable. These
assumptions are common and power system NDAEs are known
to be regular, controllable, and observable [2], [25].

III. PRELIMINARIES AND PROBLEM DESCRIPTION

Generally speaking, the model reduction process involves
transforming the original high-dimensional system into a new
coordinate system where the states are ordered based on their
importance (defined through balancing controllability and ob-
servability in the defined transformations or dominance in
mode-based MOR). This transformation enables the identifica-
tion and retention of the most significant states while discarding
those with minimal impact on the system’s input-output behav-
ior. The outcome is a reduced-order model that approximates
the behavior of the original system with far fewer states—
making the ROMs more amenable to real-time control and state
estimation.

Having said that, to perform MOR let x(t) = Wk(t) be
the coordinate transformation with W € R™*" representing
the non-singular transformation matrix and £ € R" as the new
set of coordinates where states are hierarchically ordered. Then
one can simpl}é truncate W as Wr = WT € R™*" with
T = [I O] € R™ " and thus choose the first 7 << n

dominant states of the transformed system while removing
the rest. This dramatically reduces the model’s complexity
while retaining most of the system input-output behavior. To
construct the reduced order model, the Galerkin projection [10]
is commonly used, which involves projecting the dynamics of
the original system onto the subspace spanned by the retained
states. For example, assuming appropriate Wx for the NDAE
model (2) has been determined then the corresponding ROM
using Galerkin projection can be constructed as:

E.z=A,z+ B,u+W,f (WgZ,u,w)+ B,,w (3a)
(3b)
where z € R” represents the state of the reduced system and

W, = W' € R™*" is the left side coordinate transformation
matrix. The rest of the matrices in (3) are given as follows:

Ar = WLAWR7 Bur = WLB, Bwr = WLBU) (43)
C, = CWg, E, = W,EWp. (4b)

Throughout this paper, the subscript r is used to represent
the parameters associated with ROM. Consequently, the main
objective of the paper is to design appropriate coordinate trans-
formation W and truncation matrix T" for the complete NDAE
power system (2), and then construct a structure-preserving
(meaning E, needs to be singular and thus the ROM (3) should
remain NDAE similar to the full order model) reduced model
that retains the same input-output behavior, while having sig-
nificantly fewer number of states or equations than the original
power system model (2). The proposed MOR techniques are
proposed in the next sections.

Yy = Crz

IV. STRUCTURE-PRESERVING POD (SP-POD) MOR

Here we introduce SP-POD-based methodology to construct
ROM for the NDAE power system model. Generally speaking,
the POD-based MOR commonly consists of three main steps.
Firstly, the system is simulated under transient conditions, and
data is collected. Then, POD is applied to this data set to extract
the most significant modes or features to construct a coordinate
transformation matrix W. These modes are orthogonal func-
tions that represent the system’s dynamics in descending order
of energy or variance. Essentially, POD seeks to find a basis that
captures the most significant patterns in the data. Then finally,
a reduced model of the system is constructed using Galerkin
projection as discussed in Sec. II1.

Having said that, to propose a POD-based MOR technique
for the NDAE power system models we do the following. First,
time domain simulation for 20sec of model (2) is carried out
under transient conditions (by adding a step disturbance in
load demand as discussed later in Sec. VI) and the dynamic
and algebraic states data are collected and stored separately as
follows:

I | |

X4 = (5a)

X, = (5b)

La, - Loy, Lay
| | | | ]

where X; € R™*? encapsulates the dynamic system data,
X, € R"*! contain the data for the algebraic variables while
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Zd,, Ta,, and so on represents the trajectories of dynamic and
algebraic states, respectively, at time step O to the final time step
t.

Next, we find the POD modes of this data by computing the
singular value decomposition (SVD) of matrices X; and X,
separately as follows. For the dynamic system data applying
SVD we get Xy = Wy, A4, where X; € R™*"d g
a diagonal matrix that contains the Hankel singular values
(HSVs) in descending order while matrices Ay € R!*",
W, € R"4*"4 contains the right and left singular vectors, re-
spectively. The columns of W, are ordered hierarchically from
most dominant to least and are referred to as the POD modes as
they capture the most energetic patterns of the data. Similarly,
for X, we get X, = W, 3, A, with matrices W, € R"*"a,
A, € RY*"a containing the left and right singular vectors while
¥, € R" X" lumping the corresponding singular values. After
determining the POD modes, we construct the final non-singular
coordinate transformation matrix W as follows:

W = blkdiag(W,, W,) (6)

where blkdiag construct a block diagonal matrix. The designed
W can transform the NDAE system (2) to a new set of
coordinates where the states are ordered hierarchically from
most important/dominant to least. It is worth mentioning that
because of the block diagonal structure, the designed coordi-
nated transformation matrix W guarantees that the transformed
model is always an NDAE similar to the original system. Thus
preserving the essential structure of the original system and
hence one can easily move from one coordinate to another using
x = W since W is non-singular. Now, as mentioned earlier
in the transformed coordinate the states are ordered, and then
to construct the ROM we need to truncate the least important
states. Hence, we construct the appropriate truncation matrix 7'
as follows:

T,= [Idr 0 7Ta: [Iar O}TaT:blkdiag(Tda Ta) (7N
where Ty € R"¢*"4_and T,, € R™*"a In (7) the dimension
of Iz, can be determined by examining the magnitude of HSVs
contained in X4, similarly I, can be designed based on HSVs
in X,. Notice that in case t << ng and/or t << ng, then
to simplify complexity and save computational time one can
take eigenvalue decomposition (ED) of X ] X4 € R?** and/or
X,/ X, € R and then design W as follow: For X X,
applying ED we get X | X,V = V4, where V; encapsulates
the corresponding eigenvectors and A contains the eigenvalues.
Similarly, for XJXQ we have XQXIV; = V,\, with
matrices V,, € R™*? and A, € R**? lumping the eigenvectors
and eigenvalues_,lrespectively. Then, we design the matrices
Wy =X VaA7 andW, = X,V A.® and finally plugging it
in (6) gives us the final transformation matrix W. The truncation
matrix 7' can be designed similarly to Eq. (7).

]T

The final step in the proposed SP-POD is the handling of
the nonlinearity. Note that, using the designed T' and W we
can express the corresponding ROM of model (2) as given in
Eq. (3). However, the computational complexity of mapping
the nonlinear function W, f (W&, w, u) still depends on the

Algorithm 1: SP-POD for power system NDAE models

1 Input: NDAE (2) parameters A, B,,, By, E, f(-), and
Lo

2 Output: ROM parameters E,., A,, B,., By, and f,.(-)

3 Create snapshot matrices X, (5a), X, (5b), and X
(10)

4 if n << t then

5 Perform SVD as:

6 Xd = WdEdAd, Xa = WQZQAQ

7 else
8 Perform eigenvalue decomposition:
9 | X/ XuVi=Vide, XX, V,=V,A,
10 Then design W, and W, as folows:
—1 —1
11 Wa=XaVar7, W= X, VA&
12 Construct W = blkdiag(W,, W,) as in (6)
13 Design Ty, T;, (7) by examining HSVs in 3; and X,
14 Construct T' = blkdiag(Ty, T,) as in (7)
15 Design Wr =TW and W, = ng
16 SVD Xf (10) as: Xf = WfEfAf
17 Start greedy algorithm to design Py,
18 Construct rank-p approximating basis
Wfr = [wfl y Wy e 7wfp]
19 Choose the first index: [p, i1] = max(wy, )
20 Construct first measurement matrix
PM1 = €y, WfT = [wfl]
21 for j =2:pdo
22 | calculate c using, Py, Wy,c = Pywy,

23 compute residual, d = wy, — Wy,.c
24 update Py; and W7, as follows:
55 | [p.ij) = max(d)

26 Wfr = [Wfr,'wf].], PM = [PM,eij}
27 Calculate f,-(-) (13) and E,, A,, By, By, using (4)

dimension of full state vector x as:
WL .f (WRiv u, ’lU) .
~N N——,—

TXn

®)
nx1

Therefore, we reduce the nonlinearity using the discrete em-
pirical interpolation method (DEIM) [10], [26], [27]. The
primary goal is to handle the nonlinear terms efficiently within
a reduced-dimensional space instead of the full-dimensional
space R™. DEIM achieves this by selecting a subset of spatial
locations (interpolation points) where the nonlinear function
is evaluated. By measuring specific points in the state space
rather than the entire set of state variables, DEIM approximates
the nonlinear term through interpolation around these selected
points, this approximation can be expressed as [10]:

WLWfr fr () .
——"

px1

€))

rXp

The main aim is to project the original nonlinearity

f (Wg&,u,w) onto Wy, such that f (Wi, u,w) =
Wy, fr (-) with W W, being precomputed offline.

To carry out such approximation for the nonlinear term we

start by storing the snapshots of the f (x,u,w) in a matrix
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given as:

| | |
Xr=\fo fr - fier fi
| | |

Note that, to construct matrix X, the function f(x,u,w) is
evaluated for each time snapshot of x4, x, (stored in data
matrices X4 and X,), and the corresponding v and w. For
example fo = f(xo,uo,wp), f1 = f(x1,ur,w;), and
so on. Then we take SVD of this snapshot matrix, X; =
W% Ay with matrix Wy = [wy, ,wy, ,--- ,wy, ] € R™"
containing the left singular vectors, matrix A y € R**™ lumping
the right singular vectors, and Xy € R"*" being the diag-
onal matrix containing the HSVs. Next, we design Wy, =
[wy, ,wy, ,--- ,wy, | € R™P as the first p columns of W.
Finally, we design a binary measurement matrix P) that selects
optimal points in the reduced subspace W, so that nonlinearity
can be reconstructed using the selected points efficiently. To
construct such P,; we utilize residual-based greedy technique
[10], [27], which essentially puts a measurement (or a 1 in
matrix Pps) where residual/error is maximum (highlighting
measurement point is required). These points are chosen to
maximize the approximation accuracy. The greedy algorithm
proceeds as follows:

The algorithm selects the first measurement location based
on the maximum value in the first mode, wy, . Selecting the
maximum value as the first measurement point ensures that the
initial point captures a critical aspect of the nonlinear term f(-).
After establishing the first measurement point, the algorithm
iterates to select additional points. In each iteration, it computes
the projection of the current modes onto the next ones as:

Py Wy,.c = Pywy, (11)
where ¢ denotes the projection of the current modes contained

in W, onto the next mode wy, . Then, the residual is computed
as:

(10)

d= 'wfj - Wf.,-C (12)
and the next measurement point is selected where the value of
d is maximum. By selecting points with the maximum residual,
the algorithm ensures that each new measurement location adds
the most significant new information about the nonlinear term
f(+). After completion of the iterations, the approximation to

the nonlinearity can be expressed as:
() = Wy (P Wp) " f (P WaE u,w)  (13)

We note that, if the approximation of the nonlinearity in
the projected basis using the presented DIEM is insufficient,
increasing the number of interpolation points can enhance
accuracy. Also, if the computational cost of mapping the non-
linearity is low (such as form most of power system models),
the DIEM step in the proposed algorithm may be omitted
entirely. Additionally, other greedy algorithms such as Q-DIEM
or EIM can also be utilized as effective substitutes for DIEM
to efficiently reduce the computational complexity of handling
the nonlinearity [10].

That said, the final ROM can be written as follows:

E.z= Arz + Byru + WL.f'r‘ () + B,,w
y=0C,z.

(14a)
(14b)

The overall proposed SP-POD-based MOR algorithm is sum-
marized in Algorithm 1. In the following section, we present the
structure-preserving balanced POD-based (SP-BPOD) MOR
technique for the complete NDAE representation of power
systems.

V. STRUCTURE-PRESERVING BPOD MOR

The SP-POD presented in the previous section performs
model reduction based on the energy contents (or modes) in the
time-domain simulation data. While SP-POD is effective in cap-
turing the dominant behaviors of a system, it primarily focuses
on the energy content without directly considering the impact
of these modes on the system’s controllability or observability.
This limitation can be critical in control applications, as modes
with lower energy levels might still substantially impact how the
system responds to controls and how well it can be monitored
or observed [10]. Therefore, here we also propose a structure-
preserving balanced POD-based MOR approach for the power
system NDAE dynamics. This approach involves reordering the
system states based on a balance criterion that accounts for
controllability and observability. Thus, only modes that are both
highly controllable and highly observable are retained while the
rest are truncated, making balanced models ideal for control
applications.

To design balanced models, we need to compute the con-
trollability and observability Gramians. Now, it is well-known
that solving the Lyapunov equations to compute Gramians for
a much larger system model can be very challenging [13].
Also, in our case, we have to solve the generalized Lyapunov
equation (since the considered system is DAE and not ODE)
which is even much harder to solve and becomes numerically
intractable [28]. Furthermore, using Lyapunov equations to
compute Gramians only considers the system’s linear part
(through the system matrices A, B,, etc.) and ignores the
accompanying nonlinear function f(-). Thus, the Gramians may
only be valid in the vicinity of the equilibrium point. Given these
challenges, in the literature, the idea of empirical covariance
matrices have been introduced in [29], [30], which approximate
the system Gramians from system impulse responses. It has
been shown that for linear time-invariant systems, empirical
covariances are exactly equal to the usual Gramians derived
from system matrices [29]. In the following sections, we briefly
introduce these covariance matrices and further details can be
found in [29], [30].

A. Empirical Controllability Covariance

To state the empirical controllability covariance we first
define the following sets:
T¢={Tf, - T8 T € RwXnu Tl =T 1 =1, .4}
M =A{ct, %
E° = {ei’ e
where T¢ represents the set of excitation direction matrices
and it contains ¢ orthogonal excitation matrices, each of size
Ty X My, the set M€ denotes the set of excitation magnitudes

and it comprises of s positive real numbers, each representing a
different magnitude of excitation to apply along the directions

¢, €ER, o, >0, m=1,---,s}

, €, ; standard unit vectors in R"“}
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specified in 7¢, and the set £¢ defines the control input to be
excited. Using the above sets, perturbations in the control input
for each time step k can be written as u(k) = ¢, T e;u(k) +
u(0) with ¢,,, specifying the magnitude, T°e; expressing the
direction, and u(k) representing the temporal shape of the
perturbation.

The empirical controllability covariance can then be ex-
pressed as follows:

Ny g s K
Ge=> > > L S W (k)ALk)  (15)

i=1 1=1 m=1 1°“m 5y
where K represents the number of points chosen to approximate
the covariance matrix, the notation W™ (k) = (x'™(k)—
xi™) (™ (k) — w@lm)T and it quantifies the change in the
system’s state from its initial state. The vector /™ represents
the steady-state of the system while *" (k) represents the state

of the system at time-step & influenced by an input u(k)

B. Empirical Observability Covariance

Similarly to as done previously, we define the following sets
for empirical observability covariance:
7—0 = {Tloa 7qu;1110 € IRn><TL?CZ—"lO—rCI-'lO = Invl = 17 ,Q}
Mo — {c?’ v e
50 = {e‘{’ DY
where set 7 ° represents the state excitation directions with total
q orthogonal excitation matrices, set M defines the excitation
magnitudes, and £° defines the state to be excited. Then, we
can define the initial condition perturbation vector as: x(0) =
cmTe; + xg, where ¢, dictates the perturbation magnitude
and T}’e; decides the perturbation direction.

The empirical observability covariances is then expressed as
follows:

q s K
Go= 30 3" o S TP T Ad(E)

2 ¢2 R, 0, >0, m=1,---,s}

,es standard unit vectors in R"}

(16)

=1 m=1 4%“m ;=
WhereT\Illm(k) € R”X" with Wim(k) = (y"™(k)—
yi™) (yj Im (k) — yélm) representing the change in the sys-

tem output from its equilibrium y¢'™ when influenced by change

in the system initial condition given by 2(0) as defined above.

C. Empirical Balanced Model Synthesis

Given the empirical covariances, we now have the necessary
tools to transform the NDAE power system (2) to other coordi-
nates where the system states are ordered and balanced. To do
that, the system needs to be scaled first. This ensures that states
changing by orders of magnitude are appropriately accounted
for in their significance to the system’s dynamics, compared to
states with minimal changes. Therefore, we define the following
scaled/normalized vectors:

a7
where S, = diag(zo), Sy, = diag(up), and S,, = diag(wy)
with x(, ug, and wy representing the steady-state values of these
vectors. Then, the scaled representation of (2) can be written as
follows:
Ei,=S;'AS,x.+S,'B,S,us+S,'f+S,'B,S,w,
(18a)

xs =8z, u,=8,'u, w,=8,"w

ys = CS,x,. (18b)
where f = f (x5, us, ws). From now on, for the sake of sim-
plicity, with a little abuse of notation, we consider s = ¢, us; =
u,and w, = w. Similarly,let A = S 'AS,, B, = S;'B,S..
B, = S;'B, S, and S, 'f (z,, us,ws) = f (x,u,w).

The next step is to perform coordinate transformation such
as € = W so that the system is balanced. Notice that, for
ODE systems using empirical covariance matrices, computing
coordinate transformation matrix W is straightforward and
well-documented, often involving Cholesky factorization or
similar techniques—see [29], [30]. However, for NDAE systems,
the presence of algebraic equations (which do not exhibit dy-
namic behavior and represent static constraints) complicates the
application of these techniques. The NDAE system evolves in a
subspace defined by the differential equations, while algebraic
equations restrict this evolution without contributing to the
system’s dynamics [28]. Hence, motivated by [31] we propose a
two-step approach to design a balanced model. In the first step,
we perform balancing for the dynamic variables and then in the
second step we perform coordinate transformation for algebraic
variables so that they can also be truncated, the details are given
in the subsequent sections.

D. Balancing Dynamic Variables

To perform balancing for the dynamic variables, we first need
to compute their covariance matrices. With that in mind, to
design controllability covariance the NDAE system (2) can be
excited by perturbations in the control inputs, and state trajec-
tories can be generated. From these trajectories, a covariance
matrix can be computed using the Eq. (15). This covariance
matrix includes the controllability covariance matrix for the
states governed by differential equations. Meaning the designed
G can be decomposed as follows:

G G
Gc — C11 C12 (19)
|:G621 G022:|
with ch c R"dxnd’ GCIZ c Rndxna’ G621 c [Rnaxnd7
and G.,, € R"*"_ In (19) G, is the symmetric positive-

definite controllability covariance for the dynamic variables
and similarly G.,, is the covariance matrix for the algebraic
variables. Notice that, G.,, does not represent controllability
in the traditional sense. Instead, it indicates correlations among
algebraic variables and can be useful for reducing their number
(which is discussed in detail in Sec. V-E).

Similarly, observability covariance matrix can be obtained
by introducing systematic perturbations in the system’s initial
conditions xy as explained in the previous section. However,
limited information regarding the system’s observability can
be gathered. This is due to the fact that in a regular DAE
system, there are only as many degrees of freedom for selecting
consistent initial conditions as there are dynamic variables [31],
[32]. As such, once each dynamic variable has been perturbed
independently, no additional information regarding the system’s
observability can be obtained by perturbing the algebraic states
[32]. In reality, the perturbation of algebraic variables only
produces an initial condition that locally signifies a linear
combination of the perturbations that were previously applied
to the differential variables. Therefore, by solely perturbing
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dynamic states, the covariance matrix G,,, € R"*"¢ is
determined using Eq. (16).

That being said, using G.,, and G,,, we can balance the
dynamic variables. The main objective is to find a coordinate
transformation matrix that can make G.,, and G,,, diagonal
and equal in a new state coordinates that are both observable
and controllable. To find such transformation, a technique
has been proposed in [30] which decouples the system into
controllable/uncontrollable as well as observable/unobservable
components similar to Kalman decomposition. The overall
procedure involves four main steps and are given as follows:

1) The first step is to isolate controllable states by transform-
ing the controllability covariance matrix G.,, into a block
diagonal form. This is done by applying a Schur decom-
position to G, using a unitary transformation matrix 77,
resulting in a block diagonal matrix that highlights the
rank (and hence the controllability) of the system. This
transformation is given as follows:

I 0
TG, T = {0 o] (20)
where the identity matrix I represents the fully controllable

states.

2) In the second step, the transformation 77 computed in the
previous step is applied to the observability covariance
G,,, as:

011

2y

A e

G; Gy
Then a Schur decomposition of the upper block G, is
carried out to isolate observable states as:

~ 2 o
[G[T_ 1
1 [0 0]

The resulting unitary matrix L; from this decomposition
forms the basis of the second transformation matrix given

as:
T —1 Ll 0
@) =g
3) In the third step, the combined transformations T3 and 7%
are applied to the original observability covariance matrix

(22)

(23)

G,,, to further isolate observable and controllable states
and to construct the third transformation matrix T3 as
follows:
r?2 0 G
(1) (1) G, T7' T3 = 0 0 0
G.T 0 Gy
and T3 is given as:
1 0 0
(@) '=| 0o I (24)
-G,'I1™2 0 I

4) In the final fourth step, we apply a sequence of transfor-
mations (1} through T3) to the observability covariance
matrix. Then, we perform Schur decomposition on the
element of the last column and row of the resultant matrix
to construct the final transformation matrix T as follows:

— — —1 _ _ _
(T?:r) ' (TQT) ' (TlT) G011T1 11—'2 1T3 !

=10 O 0

and

(25)
0 0 L
Finally, the complete coordinate transformation matrix W that
leads to the balanced forms of G, and G,,,, can be constructed
by multiplying all the individual transformations (7} through
Ty), as follows:
Wi =T\ TT5T, (26)

and the corresponding balanced covariance matrices are given
as:

_I‘l 0 0 O

0 I 0O
WiGe, Wi =10 0 0 o 27)

|0 0 00O

—1"1 0O 0 o0

T _ 0O 0 O o
(Wd 1) Gou(Wd) t= 0 0T; 0 (28)

0O 0 o o

The final transformation matrix W, decomposes the dynamic
variables into four separate categories, states that are (1) both
controllable and observable, (2) controllable but not observable,
(3) observable but not controllable, and (4) neither observable
nor controllable. In particular, the diagonal matrix I'y (with
diagonal entries representing the HSVs) signifies the states
that are both controllable and observable, the identity matrix I
depicts the states that are only controllable, the diagonal matrix
I'3 denotes the states that are observable but not controllable,
while zeros represent the states that are neither controllable
nor observable. The above-balanced form facilitates system
simplification by eliminating states that contribute little to the
system’s dynamic behavior.

E. Coordinate Transformation of Algebraic Variables

In the above section we performed coordinate transformation
for dynamic states such that they are balanced and hierarchically
ordered and thus suitable for reduction. Here, we perform
transformation for the algebraic variables so that they can also
be ordered and later on truncated. This can simply be done by
taking the SVD of covariance matrix G,, (which is computed
in Eq. 19) as follows:

Geyy = WyeSgeAge (29)

where ¥,. is a diagonal matrix and contains the HSVs in
descending order while matrices A 4. and W, contain the right
and left singular vectors, respectively. The columns of W,
are ordered hierarchically from most dominant to least and
are referred to as the modes of G,,. Hence, the coordinate
transformation matrix W, for the algebraic variables can be set
to be equal to Wy, i.e. W, = W,.

The final non-singular coordinate transformation matrix W
and the truncation matrix 1" for the SP-BPOD can be expressed

C22
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Algorithm 2: SP-BPOD for power system NDAE models

1 Input: NDAE (18) parameters A, B,,, By, E, f(-),
and x
2 Qutput: ROM parameters A,., By, By, E,, and
f T()
Compute matrices G,, and G,,, using (15) and (16)
Compute T3 (20), T (23), T3 (24), and Ty (25)
Construct W, = T ToT3T) as in (26)
Perform SVD of G,, as: G¢,, = Wy Aqc (29)
Select W, = W,
Compute W = blkdiag(W,, W,) as in (6)
Design T,,, T,; by examining HSVs in 3. (29) and T’y
(27
10 Design matrix T' = blkdiag(Ty, T,) as in (7)
11 Design Wy, = WT and Wp = W, *
12 Construct X (10) and SVD it as: Xy = W XAy
13 Start greedy algorithm to design Py,
14 Construct rank-p approximating basis
Wi = [wy, wp, - wy |
15 Choose the first index: [p, i1] =max(wy, )
16 Initialize measurement matrix
PMlzeiU WfT = [wfl]
17 for j =2:pdo
18 | calculate c using, Py, Wy,c = Pywy,
19 compute residual, d = wy, — Wy,c
20 update Py; and Wy, as follows:
21 [p, i;] = max(d)
22 WfT:[Wfrvwfj]’PM:[PM’eij}

23 Calculate f,.(-) (13) and E,, A,, By, By, using (4)

o e N N R W

similarly as in (6) and (7). While the dimensions of identity
matrices Iy and I, here can be designed by examining
the magnitude of HSVs in I'y and X, respectively. The
corresponding matrices Wx and W, for the SP-BPOD can
then constructed as Wy, = TW and Wi = W L

Now as discussed in the previous section, mapping the
nonlinearity using Wgr and Wi, as Wi f (WgrZ, w,u) still
depends on the dimension of full state vector x and thus can be
computationally expensive. Then again, one can use the DEIM-
based hyper-reduction approach to measure specific points in
the state-space and then efficiently interpolate the nonlinearity
around the selected points (as done in Eq. 9 of SP-POD-based
MOR technique). Having said that, the overall proposed SP-
BPOD-based MOR algorithm for the complete NDAE power
system model is summarized in Algorithm 2. It is worth men-
tioning here that in both the proposed SP-POD and SP-BPOD
model reduction techniques, the final reduced order model is
guaranteed to be an NDAE. In both proposed techniques, the
number of dynamic states in the ROM is determined by the
dimensions of I,.; similarly, the number of algebraic variables
is controlled by the dimension of user-defined identity matrix
I,.

VI. CASE STUDIES

To assess the effectiveness of the proposed methods we
perform thorough simulation studies on various power system

models, namely, the modified IEEE 39-bus and the 2000-bus
Texas networks [33]. The details about these test systems are
given in the below sections and Appendix A. All the numerical
simulations are performed on MATLAB R2023a running on a
personal laptop with an Intel-i9 processor. The NDAE power
system models are simulated using MATLAB index-1 DAEs
solver odel5s. The system volt-ampere base is chosen to
be S, = 100MVA while the frequency base is selected as
wp = 1207rad/s. To carry out the time-domain simulations
the system’s initial conditions are determined using power flow
studies carried out in MATPOWER.

To implement the proposed SP-POD-based MOR technique,
the snapshot data matrices X4, X,, and Xy need to be
computed. This is done by carrying out time domain simula-
tions under step disturbance in overall system load demand
as follows. Initially, the system operates under steady-state
conditions, meaning load demand is exactly equal to generation
and thus there are no transients. Then, right at ¢ > 0 an
abrupt disturbance in load demand is applied to the system as:
P5+35Q5 = (I+A4)(P)+;7QY), where P)) and QU represent
the initial active/reactive load demand and PJ and Q¢ are
their respective values after the disturbances. The parameter A,
denotes the severity of the disturbances. The overall simulation
time period is set to be 20sec and the system transients dynamic
and algebraic states data is saved in matrices X4, X, and X.
These snapshot data is then used in SP-POD Algorithm 1 to
design the corresponding ROM.

For the SP-BPOD-based MOR algorithm the empirical co-
variances matrices G. and G,,, are computed for the scaled
system (18) over the time period [0, 5s] with At(k) set to be
0.01s. To design the covariances matrices using Egs. (15) and
(16) systematic perturbations in the control inputs w or initial
conditions x( are added right at £ > 0 by defining the following
sets:

Tc = {Inuxnua_Inanu}a TO = {Ian,—Ian}. (30)
The sets 7¢ and T° represent the decision to apply both
positive and negative unit perturbations to each input (for con-
trollability covariance) and state (for observability covariance),
respectively. This choice ensures that the system’s response
to both increases and decreases in inputs or initial states is
evaluated, providing a comprehensive view of its dynamic
behavior. Similarly, the sets M¢ and M? are chosen to be:

ME = OZUM(), M = amMo (31)
where My = {0.25,0.5,0.75,1.0} is a linearly scaled set
and offers a structured approach to varying the magnitude of
perturbations. The set M ensures that the system’s response is
observed under perturbations ranging from subtle to substantial
[29], [34]. In (31) an extra user-defined scaling constants a,
and o, are also included to make the perturbation magnitude
in the control input and states reasonable and to make sure
the odel5s solver is able to simulate the system under those
conditions. Notice that if the perturbation magnitude is too large,
then the power system will lose synchronism, and the time-
domain simulation will not be performed for those transient
conditions. Thus, o, and «, need to be adjusted to make
sure the system runs smoothly with odel5s solver. Given
that, here we select the value for both of these constants to



IEEE TRANSACTIONS ON POWER SYSTEMS, IN PRESS, NOVEMBER 2024

1 e
S
10° .
- W
S r =05
10 E
1070 I
A I B Ll 0 A O O |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
ng nd
1
10° c
sl
< e
S o051
N
10710 I
< b
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Ng Ng
Figure 1. HSVs and their cumulative sum contained in 34 (above) while

below is for 3,; 39-bus system. The first r; = 7 HSVs in 34 contain 99%
of the cumulative sum, similarly for 3, the first r, = 3 HSVs contain 97%
of the cumulative sum. Thus, the size of ROM is selected to be » = 10.
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Figure 2. Comparison of FOM and ROM for 39-bus system; rotor angle of
Gen. at Bus 35 (top-left), frequency of Gen. at Bus 35 (top-right), relative
angle of solar plant (bottom left), and overall error norm (bottom right).

be o, = a, = 0.05, which works well in our case.

A. Case Study on IEEE 39-bus Systems

Here, we perform MOR on a modified IEEE 39-bus systems.
The 39-bus system consists of 9 conventional power plants
(steam and hydro-based) and one solar farm. The conventional
power plants are modeled via detailed 9*"-order dynamics
modeling; generator swing equations, turbine and governor
models, and excitation system dynamics. The solar power plant
is acting in grid-forming mode and is modeled via 12¢"-order
dynamical model. Further details about the dynamics of the
considered power system model are given in Appendix A. The
original full 39-bus system consists of 97 dynamic states and
120 algebraic variables, i.e ng = 97, n, = 120, and n = 217.

To design appropriate ROM for the considered test system,
first we observe the HSVs contained in ¥4, ¥, for SP-POD
and I'y, 34 for SP-BPOD. The results for 33 and X, are
shown in Fig. 1. From these figures we can see that the HSVs
of X, decay quickly to zero. Thus, 99% system energy for the
dynamic states in the transformed coordinates can be captured
by choosing only the first 74 = 7 states and truncating the rest

—-=SP-BPOD
SP-POD

24 —FOM

Ilm (pu)

VIHL (pu)

0 5 10 15 20 0 5 10 15 20
t (sec) t (sec)
Figure 3. Comparison of algebraic variables between FOM and ROM for the
39-bus system; Bus 5 real and imaginary current (above), and Bus 5 real and
imaginary voltage (below).

of them. Hence the dimension of identity matrix I, is chosen
to be I;. € R7*7. Similarly, from Fig. 1 by looking at the
HSVs contained in 33, we can see that the number of algebraic
variables in the transformed coordinates can be truncated to 3 (as
again 97% of system input-output energy can be captured using
first three states) by setting I,,,, € R3*3. This truncation of both
dynamic and algebraic variables in the transformed coordinates
effectively reduced the dimension of the system by retaining
much of the system input-output behavior while truncating those
with little to no contribution to system dynamics.

Similar observations have been carried out for the SP-BPOD-
based MOR technique and the dimensions of ROM have been
determined tobe rqy = 8,7, = 3, and r = 11. After determining
suitable dimensions for reduced models, the corresponding
ROMs are constructed using the proposed SP-POD and SP-
BPOD-based techniques as given in Algorithms 1 and 2. A
comparison with BT-based MOR has also been presented in
Tabs. 1 and II, as proposed in [13], [35] to showcase the
effectiveness of the proposed methodologies. Notice that BT-
MOR is applied to LODE systems as it cannot handle NDAE
dynamics.

To access the performance of the proposed MOR techniques
time-domain simulations are carried out under transient condi-
tions. The dynamic response of the power system is generated
by adding step disturbance in load demand right at the start of the
simulation. The disturbance in load demand has been added by
choosing A; = 0.005 as discussed in the previous section. Both
the full-order model (FOM) and ROMs are simulated under
these transient conditions and system responses are recorded.
To compare the performance between FOM and ROMs the data
generated from ROMs are transformed backed and original state
vectors are recovered. The results are given in Fig. 2 and 3. For
brevity, a couple of dynamic and algebraic variables are shown,
we can see the recovered dynamic states (rotor angle and speed
of synchronous generator at Bus 35 and relative angle of solar
plant) are close to the original system responses. Similarly, for
the algebraic variables shown in Fig. 3 we can see that the
original and recovered states are close and accurate to each
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Figure 4. Comparison of FOM and ROM for 39-bus system under fault; solar
power plant voltage (top-left), relative angle (top-right), reactive power output
(bottom left), and rotor angle of Gen. at Bus 30 (bottom right).

other. To further evaluate the performance of the proposed MOR
techniques, we also compute the root mean square error (RMSE)
between the original and the recovered states. Accordingly, the
RMSE value for SP-POD is determined to be 0.038, while
for the SP-BOPD-based ROM, it is 0.0019. We can see that
RMSE values are small and thus the ROMs can accurately
approximate the full-order system dynamics. These results are
also corroborated by Fig. 2 where the error norm is plotted, we
can see that the error is close to zero.

Moreover, to assess the simulation accuracy between the
FOM and ROMs separately for state variables of conventional
power plants, solar plant, and algebraic states, we define the
following index:

- Z;v:1 Z§f=1 (Z‘E',t - xE?M)Q
° Nty
where ¢y is the overall time period and N is the number of
state variables whose accuracy needs to be determined. These
results are shown in Tab. I, we can see that the proposed methods
can accurately approximate both the dynamic and algebraic
variables of the full-order system dynamics.

Here, we also asses the performance of the proposed tech-
nique under fault. To that end, we added a line to ground fault
at t = 4sec on transmission line 4-14 which is then cleared
at 50 msec and 200 msec from the near and remote end. The
simulation results are illustrated in Fig. 4 and we can see that
both proposed techniques still yield accurate outcomes.

(32)

B. Case Study on 2000-bus Texas System

In this section, we discuss the performance of the proposed
MOR techniques on a much larger power system model,
namely, the 2000-bus Texas system. The static network data
(topology and parameters) on this system is taken from [33]
while the dynamic data (the generator parameters) is generated
synthetically. The overall system consists of 282 synchronous
machines modeled via a detailed 11*"-order dynamical model.
The dynamics consist of 6"-order generator swing equations,
excitation system models, and turbine/governor dynamics. The
original full-order system consists of 3102 dynamic variables

and 564 algebraic variables, i.e., ng = 3102, n, = 564, and
n = 3666.

Now, similarly to as done in the previous section, to design
ROM, we first determine the appropriate size of the dynamic and
algebraic variables in the reduced order model NDAE. For the
SP-POD this can be done by observing the HSVs in 3; and 3,
as presented in Fig. 5. We see that the dynamic variables in ROM
for the SP-POD-based technique can be set to be 4 = 10 (as this
captures almost 99.99% cumulative sum), similarly the number
of algebraic variables in the ROM can chosen to be r, = 30.
This gives us the overall dimension for the SP-POD-based ROM
as r = 40. Similarly, for the SP-BPOD by observing HSVs in
T'y and X, we get rq = 8, 7, = 25, and r = 33.

We want to point out here that while applying SP-BPOD
for this case study, the computation of observability covariance
Gy,, can become computationally expensive. This is because
to compute G, , as discussed earlier, we have to perturb each
dynamic state independently, and thus, we need to perform ng
number of simulation studies. Which can become computation-
ally expensive for the given Texas system with ng = 3102.
However, this can be avoided, as discussed in [36]. The idea is
only to perturb the dominant POD modes instead of all the
dynamic states to approximate Gy,,. Additionally, one can
consider bypassing the observability covariance computation
altogether, relying on controllability alone to derive the ROM
as in [32].

Having said that, to assess the performance of the proposed
technique, we again do time-domain simulations under transient
conditions. To generate system dynamic response here, we
create a generator side disturbance by adding a 10% reduction
in the mechanical power output of one of the synchronous
generators at ¢ = 1s that last for 1s. Both the FOM and
ROMs are simulated under this transient condition and system
responses are recorded. These results are shown in Fig. 6.
We can see that the response of both dynamic and algebraic
variables from the ROMs closely matches that of the FOM. This
can also be corroborated from the plot of error norm (presented
in Fig. 6 (bottom right)) and from the RMSE value which is
determined to be 0.0037 for SP-POD and 0.0027. We can see
that the error norm and the RMSE values are small, showing
that the response from ROMs is accurate.

We also present the simulation accuracy for the dynamic and
algebraic variables separately for this case study in Tab. II.
Again, we can verify that the proposed MOR techniques can
simultaneously reduce both dynamic and algebraic variables
(from ngy = 3102, n, = 564, and n = 3666 to vy = 10,
rqe = 30, and r = 40 in case of SP-POD and to r4 = 11,
rq = 31, and r = 42 for SP-BPOD) while maintaining very
good accuracy. A comparison with state-of-the-art BT-based
MOR has also been provided in Tab. II. Notice that to apply
BT the system has first been linearized and then converted to
an equivalent ODE as in [13]. From Tab. II we can see that the
proposed MOR techniques are superior in terms of accuracy
and the size of corresponding ROM as compared to BT-LODE.
Notice that the reason BT-LODE is providing poor results is
because it is designed based on linearized system dynamics,
while the proposed techniques consider the complete nonlinear
system. Also, BT-LODE cannot reduce the algebraic variables



IEEE TRANSACTIONS ON POWER SYSTEMS, IN PRESS, NOVEMBER 2024

Table I
COMPARISON OF SIMULATION ACCURACY OF THE PROPOSED METHODS
FOR VARIOUS STATE VARIABLES, 39-BUS SYSTEM. THE NOTATION r4
REPRESENTS DYNAMIC STATES IN THE ROM, SIMILARLY 7, ARE THE
ALGEBRAIC VARIABLES IN THE ROM, WHILE r DENOTES THE OVERALL
DIMENSION OF ROM NDAE.

_[E s (s —aEoM)?
Variables B Nig
SP-POD [ SP-BPOD - 1p1) 0pE [13]
rqg="7,1q =3rqg =8, 1rq =3, ro=12
r=10 r=11 4=
Conventional -2 =3
Power plant States 1.62x10 21510 oS
Solar Farm 1.01 x 10-3 | 3.12 x 10—4 1.9412
States
Algebric -3 —4 Not
States 4.01 x 10 1.58 <10 Applicable
Table II

COMPARISON OF SIMULATION ACCURACY OF THE PROPOSED METHODS
FOR VARIOUS STATE VARIABLES, 2000-BUS TEXAS SYSTEM.

t 2
AT

Variables s Nty

SP-POD SP-BPOD

g =10, 70 = 30|rg = 11, 74 = 31 BT'LOPI:E_)L{B]
r =40 r =42 d =
Conventional 4 _5
Power Plant States 2.13 x 10 5.91 x 10 4.0828
Algebric 4 _5 Not
States 791 x 10 0.87x 10 Applicable

as it is applicable to ODE dynamics only, while the proposed
MOR techniques can simultaneously reduce both dynamic and
algebraic variables as presented in Tab. II.

Finally, here we would like to compare and summarize the
pros and cons of the two proposed MOR techniques. Notice
that, both the proposed SP-POD and SP-BPOD are general
input-output-based MOR techniques that can be applied to any
NDAE power system model represented in state-space format.
Both techniques provide accurate ROMs but have their own
advantages and limitations.

SP-POD is effective in capturing the dominant behaviors
of a system by focusing on the energy content of the modes.
However, it does not directly consider the impact of these modes
on the system’s controllability or observability. This can be a
critical limitation in control applications, as modes with lower
energy levels might still significantly influence the system’s
response to controls and its observability. On the other hand,
SP-BPOD accounts for the controllability and observability of
the modes. However, computing the empirical controllability
and observability Gramians (as detailed in Egs. (15) and (16)
can be very challenging, requiring systematic perturbation of
control inputs (for the controllability Gramian) and states (for
the observability Gramian) with fine-tuning, as explained in Sec.
VI. That being said, if the overall aim is to perform realtime
scalable feedback control and monitoring, SP-BPOD may be
the better option. Otherwise, SP-POD could be chosen due to
its lesser computational complexity.

VII. CONCLUDING REMARKS
In this paper, we propose two MOR approaches, namely the
SP-POD and SP-BPOD, to simultaneously reduce both dynamic
and algebraic variables of NDAE power system models. The
SP-POD offers reducing the system order based on the POD
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Figure 5. HSVs and their cumulative sum contained in 3, (above) while
below is for 3, 2000-bus Texas system. The first r4; = 10 HSVs in X4
contain 99.99% of the cumulative sum, similarly for 3, the first 7, = 30
HSVs contain 99.99% of the cumulative sum. Thus, the size of ROM is
selected to be r» = 40.
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Figure 6. Comparison of FOM and ROM for 2000-bus Texas system;
Generator 10 rotor angle (top-left), frequency (top-right), current output
(bottom left), and overall error norm (bottom right).

modes in the transient simulation data, while in contrast,
the SP-BPOD offers designing ROM via balanced-realization.
Because of the diagonal structure of the designed coordinate
transformation matrix, the corresponding ROMs from both the
proposed methods are guaranteed to be NDAE similar to the
original power system model. Thus, the proposed techniques
preserve the essential differential-algebraic structure of power
system models while allowing a smooth transition from reduced
order to the full order dynamic and algebraic state variables.
Regarding the limitations of the proposed work we want to
mention here that both the presented MOR techniques operate
in a data-driven manner and require system transient data of
all the state variables from time-domain simulations. Thus, to
maintain a refined and accurate reduced model representation
it needs to be updated with every power flow or optimal
power flow cycle. Also, in this study, we only considered the
dynamics of PV power plants while the models of wind and
other renewable resources are neglected. Furthermore, in the
proposed SP-BPOD method, the sets M€ and M, along with
the scalars «, and «,, can be considered hyper-parameters
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that need to be tuned according to the specific test system and
operator expertise, as there is no systematic method provided
for selecting their values.

To verify the accuracy of the proposed techniques, simula-
tions on modified IEEE 39-bus and 2000-bus Texas systems are
carried out. The results show that the proposed techniques can
significantly reduce the size of NDAE power system models
while providing state trajectories close to those directly com-
puted from running the full power system model. Future work
will focus on using the ROMs to design scalable robust state-
feedback controllers and state estimation algorithms, making
control algorithms more amenable to large-scale power systems.
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APPENDIX A
DETAILS OF THE POWER SYSTEM DYNAMICS

Borrowing from [2], here we present comprehensive details
about the dynamics of power system model used in this paper.
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In particular, we present the dynamics of conventional power
plants, dynamics of grid-forming solar power plants, load
dynamics, and the algebraic power flow equations.

A. Dynamics of Conventional Power Plants

We model the conventional power plants via 9t"-order dy-

namical model. The overall dynamics consist of synchronous
machines swing equations, steam/hydro turbine and governor
differential equations, and IEEE-type DCI1 excitation system
model, presented as follows [2], [37]:

« Swing equations:

6gi = Wg; —Wo

1
wgi = 2H, (TM1 - Tei) with Tei = Ediidi + ECIiiQi
. 1 .
EQi - (qu - (méh - ‘TQi)Zdi)
tqoi
Ed'i = - B (Edi + ('rél - 'rdi)z(h' - Efdi)'

(33a)
o Turbine and governor dynamics:

Tog — 1 11 - (T, — Py,) if thermal
M 7t121,, (T, — Po, + tchipvi) if hydro
. 1 1
Pv‘ S P P* wi .
¢ tvi( vi Rdi )
(33b)
« Excitation system dynamics:
. -1 .
Exq, ?(kei + SeiEra, — va;) with Se; = aieszfdl
di
1 ki
- I''p
Tf; i (rf, — s )
. 1
Vgi = - (Vai — kaiVei)-
N (33¢)

In the above model, i € G, w,, represents generator speed,
dg, denotes generator rotor angle, wy is synchronous speed
of the generator, Edl, E,, are the generator transient voltages
along dg-axis, x,, zy;, represents synchronous generator tran-
sient reactance whlle Zq;,Td, are the reactances along dg-axis,
respectively, tqo,, tqo, denotes the dq-axis open circuit time con-
stants, i,, ¢q, represents synchronous machine currents along
dqg-axis, Th;, 7%, are the mechanical torque and the electrical
torque of generator, respectively, P,, is hydro/steam turbine
valve position, P, is the operator set point for the turbine
valve position, v,; denotes amplifier voltage, Fq, represents
synchronous machine field voltage, 7y, denotes the stabilizer
output, Ry; is the droop constant for the governor (Hz/pu), H;
represents inertia constant (pu x sec) of the generator, and k,;,
kei, ki, are the amplifier, exciter, and stabilizer constant gains,
respectively.

Furthermore, in model (33), t., tchis tvis t 45> tas> and tgq; are
the time constants for generator field voltage, hydro/steam tur-
bine valve position, amplifier, and stabilizer, respectively while
the notation S.; denotes saturation function of synchronous
generator field voltage with scalar constants a;, b; as given in
[37]. Similarly, v.; in the exciter dynamics (33c) is the voltage

control error given as: ve; = V,* — Vi + 1y — %Efdi with V;

representing the synchronous machine terminal voltage and V;*
denoting grid operator voltage set point.

The input and overall state vectors for the conventional power
plant models can then be expressed as follows:

— [P*T V*T]T c RQG
xro=|w, 6, E] E] E, Tyi P r{ v }

(34a)
€RC. (34b)

B. Dynamics of Grid-Forming Solar Power Plants

We model the solar plant dynamics via 12¢"-order dynamical
model as given in [38], [39]. The overall model describes a
solar power plant acting in grid-forming (GFM) mode and
the dynamics include; DC side differential equation (dynamic
equations describing PV array DC link models), AC side dy-
namics (DC/AC inverter and LCL filter differential equations),
and current/voltage regulators dynamical models presented as
follows with i € R:

« DC side dynamics:

. 1
Eqe, = E (vai — PC,L,) . (35a)
o AC side dynamics:
. Wy . .
= (=rpiar, +we, Xpiqr, +va, — Vo, )
. Wy . .
iqf, = X— ( Tfiqf, + We, X f,8df; + Vgf, — qui)
’[]dCi = (wC7 BCi’Uin + Z'dfi - idgz‘)
. b . .
Yac; = g (wCLBCiUdCi +iqf, — qui)
e
50,3 = wp(we; —wp) with we, =1— kpi(fz’ei — P;)
Pei = 7(_1—3@ + Pei)
Ts;
2 1 ~
Qei = 7(_Qei + Qei)-
Ts,;
(35b)
« Voltage regulator dynamics:
Kpv, . .
2}d0i = U (vgoi - Udoi) with U:ioi, = ‘/L* + kdi lqg;
v;
. _ Kfpvi ith *
Zqo0, = - (Vso, = Vao,) With w5, = 0.
(35¢)
o Current regulator dynamics:
. Kp; ;. )
zar, = —(ige, — tar,)
Tii
iZfi = Kpv, (’U:ioi — VUdo, + Zdo; + ldg, T ide;) (35d)

K
. Pi /-
Zof, =
qr; Tii(qf

qul)

ZZfL = K:PVi (U;oi - qui + zqoi + iqgi + iqci)'
In Eq. (35a), B¢, denotes the capacitance of the DC link
capacitor while Eqc, represents the energy stored in it, Py,
denotes the DC power supplied by the PV array while P,
represents the power extracted by the solar inverter.
Similarly, in AC side dynamics (35b), Xy,, ry, denotes the
reactance and resistance of the AC side LCL filter, iqt,, iqf,
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represents the current flowing through the LCL filter along dg-
axis, B, ¢, denotes the capacitance and resistance of the LCL
filter capacitor, iqc,, iqc,> Vdc;» Vqc, T€presents the current and
voltages of the LCL filter capacitor along dg-axis, respectively,
idg,> iqg, are the dg-axis current output to the main grid, wp
represents the base speed while w,., denotes the angular speed
of the inverter, P.,, ()., are the real and reactive power output
of the solar plant to the main grid, P.,, Q., are the phasor
representations of P,,, ()., after passing through low pass filter
(which are later used in the droop control of the GFM inverter),
Ts, represents the time constant of the low pass filter, kp,
denotes the droop constant of the solar inverter, and finally P,
represents the grid operator active power set-point command.

Furthermore, in voltage and current regulator dynamics given
in (35¢) and (35d), V;* represents the grid operator voltage set
point command, k4, denotes the voltage droop constant, and
Kpys Kpv,» Tiz» To; T€ the constants gains and corresponding time
constants of current and voltage regulators of the solar plants,
respectively. Note that, current and voltage regulation in the
presented GFM inverter is simply achieved by a proportional-
integral (PI) type controller with zg4f, 24f, 240, Zdo T€presenting
the states of integral compensators along dg-axis, respectively,
as detailed in [38], [39].

Therefore, the overall input and state vector for the solar
power plant model used in this study can be expressed as:

up = [P*T V*T]T c R2R

T pT pT T ;T T T T 17 12R
[5C Edc Pe Qe quf vdqc quo quf] €R .

LR

C. Power System Algebraic Equations and Loads Dynamics

Here, we present the algebraic constraints and the load mod-
els of the considered test power system. We consider various
types of loads dynamics ¢ € £ such as constant impedance,
constant power, and motor type loads detailed as follows [2].

The differential equations for the motor-based loads are given
as:
1

2Hw,
where H);, denotes the inertia constant of the motor, wyy,
represents the speed of the motor-based load, and T¢,, Thy,
denotes the electromagnetic and mechanical torque of the motor,

respectively.

WM, = (Te, — T\1,) (36)

Constant impedance and constant power types loads satisfy
the following relationships [2]:

1,2, +V,, =0 (37a)

P,, + Qp, + conj(I,,)V,, =0 (37b)

where conj denotes complex conjugate operator, and F,,,

Qp,s Vp,, Ip, are the real power, reactive power, voltage, and

current phasors of buses connected to constant power loads,

respectively. Similarly, I,,, V,, are the current and voltage

phasors of the buses connected to the constant impedance loads
Z;.

The algebraic constraints are the current balance equations
and are given as follows:

Ir Yre Yrr Yre| |Vr
Ig| - |Yse Yor Ygr| [Ve| =0 (38)
I Y Yir Yor| |Vi
——
1(t) Y V()

where I(t) denotes the net injected current, V' (¢) represents
bus voltages, and Y is the power network admittance matrix.
Moreover, I={Ige, }icg +i{lim,}ticg. VG ={Vhe ticg+
3{Vrm, }icg represents current and voltage phasors at the
terminal of buses connected with conventional power plants.
Similarly, Ir, Iy, and V g, V1 are the current and voltage
phasors of solar plants and load buses, respectively.

Having said that, the overall state vectors for loads and system
algebraic constraints can be written as follows:

T = [wm] S RL"'

T
ma:[‘[;e IITm Vlére ‘/I—In] €R4N'

(392)
(39b)

Muhammad Nadeem was born in Nilore, Islam-
abad, Pakistan. He received the B.E. and M.S. de-
grees in Electrical Engineering Power from Air Uni-
versity and the National University of Science and
Technology (NUST) Islamabad Pakistan in 2017 and
2020. He is currently a graduate research assistant
pursuing a Ph.D. degree in civil and environmental
engineering at Vanderbilt University, Nashville, Ten-
nessee, USA. His research interests include control
theory, reinforcement learning, system identification,
and state estimation for renewables integrated power
systems.

Ahmad F. Taha is an associate professor with the
Department of Civil and Environmental Engineering
at Vanderbilt University in Nashville, Tennessee. He
has a secondary appointment in Electrical and Com-
puter Engineering. He received his B.E. and Ph.D.
degrees in Electrical and Computer Engineering
from the American University of Beirut, Lebanon
in 2011 and Purdue University, West Lafayette,
Indiana in 2015. Prior to joining Vanderbilt. Taha
was an assistant professor with the ECE department
at the University of Texas, San Antonio (UTSA).
Dr. Taha is interested in understanding how complex cyber-physical, urban
infrastructure operate, behave, and occasionally misbehave. His research focus
includes optimization, control, monitoring, and security of infrastructure with
applications to power, water, and transportation systems. Dr. Taha is an
associate editor of IEEE Transactions on Control of Network Systems.



	Introduction and Paper Contributions
	Nonlinear DAE Power System Model
	Preliminaries and Problem Description
	Structure-Preserving POD (SP-POD) MOR
	Structure-Preserving BPOD MOR
	Empirical Controllability Covariance
	Empirical Observability Covariance
	Empirical Balanced Model Synthesis
	Balancing Dynamic Variables
	Coordinate Transformation of Algebraic Variables

	Case Studies
	Case Study on IEEE 39-bus Systems
	Case Study on 2000-bus Texas System

	Concluding Remarks
	References
	Appendix A: Details of the power system dynamics
	Dynamics of Conventional Power Plants
	Dynamics of Grid-Forming Solar Power Plants
	Power System Algebraic Equations and Loads Dynamics

	Biographies
	Muhammad Nadeem
	Ahmad F. Taha


