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Structure-Preserving Model Order Reduction

for Nonlinear DAE Models of Power Networks

Muhammad Nadeem and Ahmad F. Taha

Abstract—This paper deals with the joint reduction of the num-
ber of dynamic and algebraic states of a nonlinear differential-
algebraic equation (NDAE) model of a power network. The
dynamic states depict the internal states of generators, loads,
renewables, whereas the algebraic ones define network states such
as voltages and phase angles. In the current literature of power
system model order reduction (MOR), the algebraic constraints
are usually neglected and the power network is commonly mod-
eled via a set of ordinary differential equations (ODEs) instead
of NDAEs. Thus, reduction is usually carried out for the dynamic
states only and the algebraic variables are kept intact. This leaves
a significant part of the system’s size and complexity unreduced.
This paper addresses this aforementioned limitation by jointly
reducing both dynamic and algebraic variables. As compared to
the literature the proposed MOR techniques are endowed with
the following features: (i) no system linearization is required, (ii)

require no transformation to an equivalent or approximate ODE
representation, (iii) guarantee that the reduced order model to
be NDAE-structured and thus preserves the differential-algebraic
structure of original power system model, and (iv) can seamlessly
reduce both dynamic and algebraic variables while maintaining
high accuracy. Case studies performed on a 2000-bus power
system reveal that the proposed MOR techniques are able to
reduce system order while maintaining accuracy.

Index Terms—Model order reduction, Balanced truncation,
Nonlinear differential-algebraic equations models.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

P
Ower systems form large-scale, complex networks that usu-

ally require large state-space expressions for accurate mod-

eling. The complexity and size of power systems are even further

increasing with the integration of renewables and other (power-

electronics)-based distributed resources. Thus, the research area

of model order reduction (MOR) in power systems is becoming

highly crucial. Specifically, for the design of advanced feedback

controllers (e.g., H2, H∞, and LQR/LQG), the design of

reduced-order model (ROM) is of extreme importance. This

is because the order of these controllers matches the order of

the system, thus for a very large system with thousands of state

variables, the design of these controllers becomes intractable

[1]–[3].

The idea of model reduction is not new in power systems

research, and significant relevant research has been proposed in

the past two decades. Generally speaking, there are two main

MOR philosophies in the current literature of power systems.

The first philosophy divides the power system into study (inter-

nal) and external areas. The study area is represented in detail,

while the external area is simplified or approximated. This ap-

proach leverages coherency-based methods [4]–[7], which are

rooted in the identification of coherent generator groups within

the power system. The reduction process generally involves
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three steps: (i) identifying coherency among generators, (ii)
dynamically reducing the system by aggregating the network

and generators, and (iii) potentially aggregating excitation

controllers also in later stages. These coherency-based methods

are highly regarded for their reliability in achieving dynamic

equivalence in power systems. However, a notable limitation

is the potential inability to reduce specific parts of the power

network due to the inherent nature of coherency grouping [8].

The second philosophy draws from control theory literature,

focusing on input-output-based model reduction methodolo-

gies. These algorithms are theoretically robust and general

purpose, making them suitable for a wide range of applications

beyond traditional synchronous machines, including renewable

resources. Our work focuses on such input-output-oriented

MOR techniques. These types of MOR methods are further

classified into three main categories. The first category is

based on Krylov subspace or moment-matching-based methods,

which approximate the original system by matching moments

of the system’s transfer function. The second category relies on

modal truncation-based methods like proper orthogonal decom-

position (POD). These methods involve reducing the system by

truncating less significant modes, based on their contribution

to the system’s dynamics. The third category forms balanced

realizations or Gramian-based methods such as balanced-POD

(BPOD) and balanced truncation (BT). The aim herein is

to reduce the system by identifying and retaining the most

controllable and observable states—Gramians are matrices that

quantify observability and controllability of dynamic systems.

The readers are referred to [9], [10] for further details about

these techniques.

These MOR methodologies have also been widely applied

to power systems to construct various ROMs. For instance,

authors in [1], [11] have proposed moment matching-based

MOR techniques. In [12]–[14], researchers have proposed

balanced realization-based MOR algorithms for linear ODE-

based power system models. Later, these works have been ex-

tended in [8] to propose MOR for nonlinear ODE-based power

system models where instead of using Grammians, empirical

controllability and observability covariance matrices are used

to balance and truncate the system. Similarly, in [15]–[17]

various modal truncation-based reduction algorithms have been

proposed. Moreover, a Loewner matrix method-based approach

for efficient model order reduction and system identification in

power systems was recently proposed in [18]. Additionally, [19]

introduced a parametric MOR technique that preserves critical

device parameters while effectively reducing large-scale power

system models. Readers are referred to [20], [21] for a detailed

survey of the existing MOR approaches in power systems.

However, in most of the current MOR power system litera-

ture, the algebraic constraints (modeling power/current balance)

are usually neglected and the power system is modeled via
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a set of linear ODEs (or converted to linear ODEs) in order

to apply MOR concepts from linear system control theory.

The recent work in [8] has considered nonlinearity in their

design. Yet again, the algebraic constraints are neglected and

thus MOR is only carried out for dynamic variables while

keeping the algebraic variables intact. This is problematic as

algebraic variables often constitute a large portion of the model,

representing essential electrical quantities across the network.

Ignoring these in the reduction process means a significant part

of the system’s complexity and size remains untouched, limiting

the effectiveness of MOR. Also, considering the complete

nonlinear differential-algebraic (NDAE) dynamics is essential

because the linear/nonlinear ODE-based power system models

cannot capture the effects of topological changes (like the

tripping of transmission lines, etc.) [22].

The studies that focus on the DAE power system models

such as [13], [23] also require the conversion of power system

models to an equivalent ODE representation. This is done

by finding an explicit relationship of the algebraic variable

(through the algebraic constraint model) and substituting it back

into the dynamic system [13]. However, such equivalent ODE

representation is only possible for linear-DAE (LDAE) systems

and cannot be applied to NDAE power systems as there is no

explicit equation for algebraic variables because of the presence

of nonlinearity. Notice that the power system algebraic variables

are known to be highly nonlinear as the algebraic constraints

are power/current balance equations which are characterized

by trigonometric terms such as sines and cosines, reflecting

the physical laws of electrical networks. Thus, algebraic states

cannot be isolated (or expressed explicitly) and plugged back

into the dynamic system as done in the case of the LDAE system

in [13].

Some studies have been carried out using Krylov-based

methodology such as [1] which does not require the conversion

of system to an equivalent ODE and can directly be applied to

the DAE system. However, they are also limited to LDAE power

system models. Also, the MOR obtained using the Krylov-based

method can be of higher order. This is because the constructed

lower-order orthogonal basis depends on the number of system

inputs, for example to match the first l moments of the system,

the dimension of the reduced order orthogonal basis needs to

be l× nu (where nu are the number of inputs) [24]. Thus, in a

system with a large number of inputs (such as power systems),

the ROM can be of higher order.

Paper Contributions. In this paper, we present two MOR

techniques that can directly be applied to the NDAE represen-

tation (without requiring power system models to be converted

to equivalent ODE) of power systems and can reduce both

dynamic and algebraic variables simultaneously to construct the

corresponding ROM. The technical contributions are as follows:

• We propose two model reduction approaches for nonlinear

power system models. One approach offers reducing the

system order based on the modes (or the energy content) in

the time-domain transient simulation data while the second

approach, in contrast, offers designing ROM via balanced-

realization (using empirical controllability and observabil-

ity covariances). Since both proposed techniques adopt

distinct approaches to designing ROM, it is unclear how

they perform in terms of realizing full system dynam-

ics. As compared to [1], [13], the proposed methods do

not rely on system linearization and/or equivalent ODE

transformation—and as compared to [8], the proposed

techniques can simultaneously reduce algebraic variables

with dynamic variables.

• Due to the diagonal structure of the proposed coordinate

transformation matrix, the presented techniques ensure that

the ROMs are NDAEs similar to the original power system

model. This preserves the differential algebraic structure

of power networks. This also allows a seamless transition

from reduced order to the full order dynamic and algebraic

state variables.

• Thorough time-domain simulations under various transient

conditions have been conducted to evaluate the perfor-

mance of the proposed techniques. The test system in-

cludes: (1) a modified IEEE 39-bus system that models de-

tailed dynamics of conventional power plants, a solar plant

operating in grid-forming mode, and algebraic constraint

models, and (2) a 2000-bus Texas network incorporating

comprehensive 11th-order models of conventional power

plants. Additionally, to demonstrate the advantages of

the proposed MOR techniques, a comparison with the

commonly used linear ODE-based balanced truncation

method is presented.

Paper Organization. Sec. II presents the advanced power

system model considered in this study. Sec. III delineates the

problem formulation and scope. Sec. IV and V present the two

MOR algorithms for NDAE power system models. Case studies

are presented in Sec. VI while the paper is concluded in Sec.

VII.

Notation. Capital bold letters are used to represent matrices, as

in A while small capital bold letters, such as b, denote vectors.

All the sets are represented in calligraphic fonts, such as M or

R. The symbol Ru×v represents a real-valued matrix of size

u×v, similarly, Rk denotes a real-valued column vector with k
elements. The notationsO and I denote zero and identity matrix

of appropriate dimensions, respectively. The union of two sets

is denoted by ∪. The symbol Sn×n
++ represents a square positive

definite matrix of size n × n while the notation ej represents

a column vectors of zeros with 1′s only at location j. Also, all

quantities are given in per unit (p.u) unless otherwise specified.

II. NONLINEAR DAE POWER SYSTEM MODEL

We consider a grid model with S solar power plants, G
conventional power plants, and Lk loads. The overall power

system is modeled as a graph with N = {1, ..., N} as the set

of nodes/buses and E as the set of edges or transmission lines.

The set of buses are grouped into various types: R = {1, ..., R}
represents buses with PV power plants, G = {1, ..., G} denotes

buses connected to the conventional power plants, L includes

buses that contain loads, while U collects non-unit buses that

are not connected to any elements.

The overall grid model is mathematically represented using

a set of NDAEs given as follows [2]:

ẋ(t) = g(xd(t), xa(t), u(t), w(t)) (1a)

0 = h(xd(t), xa(t), u(t), w(t)). (1b)
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In model (1), the set of differential equations (1a) encompasses

the dynamics of PV plants, conventional power plants, and

composite loads dynamics, while the algebraic constraint (1b)

models the current/power balance equations of the electri-

cal network. The vector xd(t) ∈ R
nd represents dynamic

states and it lumps the dynamic variables of conventional

power plants, PV plants, and composite load dynamics as

xd =
[
x¦
G x¦

R x¦
L

]¦
where xG are the states of con-

ventional power plants, xR denotes the states of PV plants,

and xL represents the states of dynamic loads. The notation

xa(t) ∈ R
na denotes algebraic states and it contains the

states of the network (voltage and current phasors). The vector

w(t) =
[
P¦

d I¦
s

]¦
∈ R

nw contains load demand Pd

and sun irradiance Is while u(t) =
[
u¦
G u¦

R

]¦
∈ R

nu

defines the system control inputs with uG and uR denoting

the control inputs of generators and solar farms, respectively.

Further detailed explanations of these vectors and complete

dynamical equations (set of differential equations) describing

the models of PV plants, conventional power plants, composite

load dynamics, and system algebraic constraint model used in

this study are given in Appendix A.

By considering x(t) =
[
x¦
d x¦

a

]¦
∈ R

n as the overall

state vector and y(t) ∈ R
p as the system output we can rewrite

the electrical grid model (1) in the following compact format:

Eẋ = Ax+Buu+ f (x,u,w) +Bww (2a)

y = Cx (2b)

where E ∈ R
n×n is a singular binary matrix encoding system

algebraic model with rows of zeros, function f (x,u,w) rep-

resents the corresponding nonlinearity, C ∈ R
p×n is the output

matrix, while the rest of the real-valued matrices Bu ∈ R
n×nu ,

A ∈ R
n×n, Bw ∈ R

n×nw maps the system control inputs u,

state vector x, and the disturbance vector w in the power system

dynamics. Furthermore, throughout the paper, we assume that

in the NDAE model (2), the pair (E,A) is regular, and the

power system model is observable and controllable. These

assumptions are common and power system NDAEs are known

to be regular, controllable, and observable [2], [25].

III. PRELIMINARIES AND PROBLEM DESCRIPTION

Generally speaking, the model reduction process involves

transforming the original high-dimensional system into a new

coordinate system where the states are ordered based on their

importance (defined through balancing controllability and ob-

servability in the defined transformations or dominance in

mode-based MOR). This transformation enables the identifica-

tion and retention of the most significant states while discarding

those with minimal impact on the system’s input-output behav-

ior. The outcome is a reduced-order model that approximates

the behavior of the original system with far fewer states—

making the ROMs more amenable to real-time control and state

estimation.

Having said that, to perform MOR let x(t) = Wx̃(t) be

the coordinate transformation with W ∈ R
n×n representing

the non-singular transformation matrix and x̃ ∈ R
n as the new

set of coordinates where states are hierarchically ordered. Then

one can simply truncate W as WR = WT ∈ R
n×r with

T =
[
I O

]¦
∈ R

n×r and thus choose the first r << n

dominant states of the transformed system while removing

the rest. This dramatically reduces the model’s complexity

while retaining most of the system input-output behavior. To

construct the reduced order model, the Galerkin projection [10]

is commonly used, which involves projecting the dynamics of

the original system onto the subspace spanned by the retained

states. For example, assuming appropriate WR for the NDAE

model (2) has been determined then the corresponding ROM

using Galerkin projection can be constructed as:

Erż = Arz +Buru+WLf (WRx̃,u,w) +Bwrw (3a)

y = Crz (3b)

where z ∈ R
r represents the state of the reduced system and

WL = W−1
R ∈ R

r×n is the left side coordinate transformation

matrix. The rest of the matrices in (3) are given as follows:

Ar = WLAWR, Bur = WLB, Bwr = WLBw (4a)

Cr = CWR, Er = WLEWR. (4b)

Throughout this paper, the subscript r is used to represent

the parameters associated with ROM. Consequently, the main

objective of the paper is to design appropriate coordinate trans-

formation W and truncation matrix T for the complete NDAE

power system (2), and then construct a structure-preserving

(meaning Er needs to be singular and thus the ROM (3) should

remain NDAE similar to the full order model) reduced model

that retains the same input-output behavior, while having sig-

nificantly fewer number of states or equations than the original

power system model (2). The proposed MOR techniques are

proposed in the next sections.

IV. STRUCTURE-PRESERVING POD (SP-POD) MOR

Here we introduce SP-POD-based methodology to construct

ROM for the NDAE power system model. Generally speaking,

the POD-based MOR commonly consists of three main steps.

Firstly, the system is simulated under transient conditions, and

data is collected. Then, POD is applied to this data set to extract

the most significant modes or features to construct a coordinate

transformation matrix W . These modes are orthogonal func-

tions that represent the system’s dynamics in descending order

of energy or variance. Essentially, POD seeks to find a basis that

captures the most significant patterns in the data. Then finally,

a reduced model of the system is constructed using Galerkin

projection as discussed in Sec. III.

Having said that, to propose a POD-based MOR technique

for the NDAE power system models we do the following. First,

time domain simulation for 20sec of model (2) is carried out

under transient conditions (by adding a step disturbance in

load demand as discussed later in Sec. VI) and the dynamic

and algebraic states data are collected and stored separately as

follows:

Xd =





| | | |
xd0

xd1
· · · xdt−1

xdt

| | | |



 (5a)

Xa =





| | | |
xa0

xa1
· · · xat−1

xat

| | | |



 (5b)

where Xd ∈ R
nd×t encapsulates the dynamic system data,

Xa ∈ R
na×t contain the data for the algebraic variables while



IEEE TRANSACTIONS ON POWER SYSTEMS, IN PRESS, NOVEMBER 2024 4

xd0
, xa0

, and so on represents the trajectories of dynamic and

algebraic states, respectively, at time step 0 to the final time step

t.

Next, we find the POD modes of this data by computing the

singular value decomposition (SVD) of matrices Xd and Xa

separately as follows. For the dynamic system data applying

SVD we get Xd = WdΣdΛd, where Σd ∈ R
nd×nd is

a diagonal matrix that contains the Hankel singular values

(HSVs) in descending order while matrices Λd ∈ R
t×nd ,

Wd ∈ R
nd×nd contains the right and left singular vectors, re-

spectively. The columns of Wd are ordered hierarchically from

most dominant to least and are referred to as the POD modes as

they capture the most energetic patterns of the data. Similarly,

for Xa we get Xa = WaΣaΛa with matrices Wa ∈ R
na×na ,

Λa ∈ R
t×na containing the left and right singular vectors while

Σa ∈ R
na×na lumping the corresponding singular values. After

determining the POD modes, we construct the final non-singular

coordinate transformation matrix W as follows:

W = blkdiag(Wd, Wa) (6)

where blkdiag construct a block diagonal matrix. The designed

W can transform the NDAE system (2) to a new set of

coordinates where the states are ordered hierarchically from

most important/dominant to least. It is worth mentioning that

because of the block diagonal structure, the designed coordi-

nated transformation matrix W guarantees that the transformed

model is always an NDAE similar to the original system. Thus

preserving the essential structure of the original system and

hence one can easily move from one coordinate to another using

x = Wx̃ since W is non-singular. Now, as mentioned earlier

in the transformed coordinate the states are ordered, and then

to construct the ROM we need to truncate the least important

states. Hence, we construct the appropriate truncation matrix T

as follows:

Td=
[
Idr 0

]¦
,Ta=

[
Iar 0

]¦
,T =blkdiag(Td, Ta) (7)

where Td ∈ R
nd×nd , and Ta ∈ R

na×na . In (7) the dimension

of Idr can be determined by examining the magnitude of HSVs

contained in Σd, similarly Iar can be designed based on HSVs

in Σa. Notice that in case t << nd and/or t << na, then

to simplify complexity and save computational time one can

take eigenvalue decomposition (ED) of X¦
d Xd ∈ R

t×t and/or

X¦
a Xa ∈ R

t×t and then design W as follow: For X¦
d Xd

applying ED we getX¦
d XdVd = Vdλd, whereVd encapsulates

the corresponding eigenvectors andλd contains the eigenvalues.

Similarly, for X¦
a Xa we have XaX

¦
a Va = Vaλa with

matrices Va ∈ R
t×t and λa ∈ R

t×t lumping the eigenvectors

and eigenvalues, respectively. Then, we design the matrices

Wd = XdVdλ
−1

2

d andWa = XaVaλ
−1

2

a and finally plugging it

in (6) gives us the final transformation matrixW . The truncation

matrix T can be designed similarly to Eq. (7).

The final step in the proposed SP-POD is the handling of

the nonlinearity. Note that, using the designed T and W we

can express the corresponding ROM of model (2) as given in

Eq. (3). However, the computational complexity of mapping

the nonlinear function WLf (WRx̃,w,u) still depends on the

Algorithm 1: SP-POD for power system NDAE models

1 Input: NDAE (2) parameters A, Bu, Bw, E, f(·), and

x0

2 Output: ROM parameters Er, Ar, Br, Bwr, and fr(·)
3 Create snapshot matrices Xd (5a), Xa (5b), and Xf

(10)

4 if n << t then

5 Perform SVD as:

6 Xd = WdΣdΛd, Xa = WaΣaΛa

7 else

8 Perform eigenvalue decomposition:

9 X¦
d XdVd = Vdλd, X¦

a XaVa = Vaλa

10 Then design Wd and Wa as folows:

11 Wd = XdVdλ
−1

2

d , Wa = XaVaλ
−1

2

a

12 Construct W = blkdiag(Wd, Wa) as in (6)

13 Design Td, Ta (7) by examining HSVs in Σd and Σa

14 Construct T = blkdiag(Td, Ta) as in (7)

15 Design WR = TW and WL = W−1
R

16 SVD Xf (10) as: Xf = WfΣfΛf

17 Start greedy algorithm to design PM

18 Construct rank-p approximating basis

Wfr =
[
wf1 ,wf2 , · · · ,wfp

]

19 Choose the first index: [ρ, i1] = max(wf1)
20 Construct first measurement matrix

PM1
= ei1 , Wfr = [wf1 ]

21 for j = 2 : p do

22 calculate c using, P¦
MWfrc = PMwfj

23 compute residual, d = wfj −Wfrc

24 update PM and Wfr as follows:

25 [ρ, ij ] = max(d)
26 Wfr = [Wfr,wfj ], PM = [PM , eij ]

27 Calculate fr(·) (13) and Er, Ar, Bur, Bwr using (4)

dimension of full state vector x as:

WL
︸︷︷︸
r×n

f (WRx̃,u,w)
︸ ︷︷ ︸

n×1

. (8)

Therefore, we reduce the nonlinearity using the discrete em-

pirical interpolation method (DEIM) [10], [26], [27]. The

primary goal is to handle the nonlinear terms efficiently within

a reduced-dimensional space instead of the full-dimensional

space R
n. DEIM achieves this by selecting a subset of spatial

locations (interpolation points) where the nonlinear function

is evaluated. By measuring specific points in the state space

rather than the entire set of state variables, DEIM approximates

the nonlinear term through interpolation around these selected

points, this approximation can be expressed as [10]:

WLWfr
︸ ︷︷ ︸

r×p

fr (·)
︸ ︷︷ ︸
p×1

. (9)

The main aim is to project the original nonlinearity

f (WRx̃,u,w) onto Wfr such that f (WRx̃,u,w) ≈
Wfrfr (·) with WLWfr being precomputed offline.

To carry out such approximation for the nonlinear term we

start by storing the snapshots of the f (x,u,w) in a matrix
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given as:

Xf =





| | | |
f0 f1 · · · ft−1 ft

| | | |



 . (10)

Note that, to construct matrix Xf , the function f(x,u,w) is

evaluated for each time snapshot of xd, xa (stored in data

matrices Xd and Xa), and the corresponding u and w. For

example f0 = f(x0,u0,w0), f1 = f(x1,u1,w1), and

so on. Then we take SVD of this snapshot matrix, Xf =
WfΣfΛf with matrix Wf =

[
wf1 ,wf2 , · · · ,wfn

]
∈ R

n×n

containing the left singular vectors, matrix Λf ∈ R
t×n lumping

the right singular vectors, and Σf ∈ R
n×n being the diag-

onal matrix containing the HSVs. Next, we design Wfr =
[
wf1 ,wf2 , · · · ,wfp

]
∈ R

n×p as the first p columns of Wf .

Finally, we design a binary measurement matrixPM that selects

optimal points in the reduced subspace Wfr so that nonlinearity

can be reconstructed using the selected points efficiently. To

construct such PM we utilize residual-based greedy technique

[10], [27], which essentially puts a measurement (or a 1 in

matrix PM ) where residual/error is maximum (highlighting

measurement point is required). These points are chosen to

maximize the approximation accuracy. The greedy algorithm

proceeds as follows:

The algorithm selects the first measurement location based

on the maximum value in the first mode, wf1 . Selecting the

maximum value as the first measurement point ensures that the

initial point captures a critical aspect of the nonlinear term f(·).
After establishing the first measurement point, the algorithm

iterates to select additional points. In each iteration, it computes

the projection of the current modes onto the next ones as:

P¦
MWfrc = PMwfj (11)

where c denotes the projection of the current modes contained

in Wfr onto the next mode wfj . Then, the residual is computed

as:

d = wfj −Wfrc (12)

and the next measurement point is selected where the value of

d is maximum. By selecting points with the maximum residual,

the algorithm ensures that each new measurement location adds

the most significant new information about the nonlinear term

f(·). After completion of the iterations, the approximation to

the nonlinearity can be expressed as:

fr(·) = Wfr(P
¦
MWfr)

−1f
(
P¦

MWRx̃,u,w
)

(13)

We note that, if the approximation of the nonlinearity in

the projected basis using the presented DIEM is insufficient,

increasing the number of interpolation points can enhance

accuracy. Also, if the computational cost of mapping the non-

linearity is low (such as form most of power system models),

the DIEM step in the proposed algorithm may be omitted

entirely. Additionally, other greedy algorithms such as Q-DIEM

or EIM can also be utilized as effective substitutes for DIEM

to efficiently reduce the computational complexity of handling

the nonlinearity [10].

That said, the final ROM can be written as follows:

Erż = Arz +Buru+WLfr (·) +Bwrw (14a)

y = Crz. (14b)

The overall proposed SP-POD-based MOR algorithm is sum-

marized in Algorithm 1. In the following section, we present the

structure-preserving balanced POD-based (SP-BPOD) MOR

technique for the complete NDAE representation of power

systems.

V. STRUCTURE-PRESERVING BPOD MOR

The SP-POD presented in the previous section performs

model reduction based on the energy contents (or modes) in the

time-domain simulation data. While SP-POD is effective in cap-

turing the dominant behaviors of a system, it primarily focuses

on the energy content without directly considering the impact

of these modes on the system’s controllability or observability.

This limitation can be critical in control applications, as modes

with lower energy levels might still substantially impact how the

system responds to controls and how well it can be monitored

or observed [10]. Therefore, here we also propose a structure-

preserving balanced POD-based MOR approach for the power

system NDAE dynamics. This approach involves reordering the

system states based on a balance criterion that accounts for

controllability and observability. Thus, only modes that are both

highly controllable and highly observable are retained while the

rest are truncated, making balanced models ideal for control

applications.

To design balanced models, we need to compute the con-

trollability and observability Gramians. Now, it is well-known

that solving the Lyapunov equations to compute Gramians for

a much larger system model can be very challenging [13].

Also, in our case, we have to solve the generalized Lyapunov

equation (since the considered system is DAE and not ODE)

which is even much harder to solve and becomes numerically

intractable [28]. Furthermore, using Lyapunov equations to

compute Gramians only considers the system’s linear part

(through the system matrices A, Bu, etc.) and ignores the

accompanying nonlinear function f(·). Thus, the Gramians may

only be valid in the vicinity of the equilibrium point. Given these

challenges, in the literature, the idea of empirical covariance

matrices have been introduced in [29], [30], which approximate

the system Gramians from system impulse responses. It has

been shown that for linear time-invariant systems, empirical

covariances are exactly equal to the usual Gramians derived

from system matrices [29]. In the following sections, we briefly

introduce these covariance matrices and further details can be

found in [29], [30].

A. Empirical Controllability Covariance

To state the empirical controllability covariance we first

define the following sets:

T c =
{
T c
1 , · · · ,T

c
q ;T

c
l ∈ R

nu×nu ,T c¦
l T c

l = I, l = 1, · · · , q
}

Mc = {cc1, · · · , c
c
s; c

c
m ∈ R, ccm > 0, m = 1, · · · , s}

Ec =
{
ec1, · · · , e

c
nu

; standard unit vectors in R
nu

}

where T c represents the set of excitation direction matrices

and it contains q orthogonal excitation matrices, each of size

nu × nu, the set Mc denotes the set of excitation magnitudes

and it comprises of s positive real numbers, each representing a

different magnitude of excitation to apply along the directions
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specified in T c, and the set Ec defines the control input to be

excited. Using the above sets, perturbations in the control input

for each time step k can be written as u(k) = cmT c
l eiu(k) +

u0(0) with cm specifying the magnitude, T c
l ei expressing the

direction, and u(k) representing the temporal shape of the

perturbation.

The empirical controllability covariance can then be ex-

pressed as follows:

Gc =

nu∑

i=1

q
∑

l=1

s∑

m=1

1

qsc2m

K∑

k=0

Ψ
ilm(k)∆t(k) (15)

whereK represents the number of points chosen to approximate

the covariance matrix, the notation Ψ
ilm(k) =

(
xilm(k)−

xilm
0

) (
xilm(k)− xilm

0

)¦
and it quantifies the change in the

system’s state from its initial state. The vector xilm
0 represents

the steady-state of the system while xilm(k) represents the state

of the system at time-step k influenced by an input u(k)

B. Empirical Observability Covariance

Similarly to as done previously, we define the following sets

for empirical observability covariance:

T o =
{
T o
1 , · · · ,T

o
q ;T

o
l ∈ R

n×n,T o¦
l T o

l = In, l = 1, · · · , q
}

Mo = {co1, · · · , c
o
s; c

o
m ∈ R, com > 0, m = 1, · · · , s}

Eo = {eo1, · · · , e
o
n; standard unit vectors in R

n}

where set T o represents the state excitation directions with total

q orthogonal excitation matrices, set Mo defines the excitation

magnitudes, and Eo defines the state to be excited. Then, we

can define the initial condition perturbation vector as: x(0) =
cmT o

l ei + x0, where cm dictates the perturbation magnitude

and T o
l ei decides the perturbation direction.

The empirical observability covariances is then expressed as

follows:

Go =

q
∑

l=1

s∑

m=1

1

qsc2m

K∑

k=0

T o
l Ψ

lm(k)T o¦
l ∆t(k) (16)

where Ψ
lm(k) ∈ R

n×n with Ψlm
ij (k) =

(
yilm(k)−

yilm
0

)¦
(

yjlm(k)− y
jlm
0

)

representing the change in the sys-

tem output from its equilibriumyilm
0 when influenced by change

in the system initial condition given by x(0) as defined above.

C. Empirical Balanced Model Synthesis

Given the empirical covariances, we now have the necessary

tools to transform the NDAE power system (2) to other coordi-

nates where the system states are ordered and balanced. To do

that, the system needs to be scaled first. This ensures that states

changing by orders of magnitude are appropriately accounted

for in their significance to the system’s dynamics, compared to

states with minimal changes. Therefore, we define the following

scaled/normalized vectors:

xs = S−1
x x, us = S−1

u u, ws = S−1
w w (17)

where Sx = diag(x0), Su = diag(u0), and Sw = diag(w0)
withx0,u0, andw0 representing the steady-state values of these

vectors. Then, the scaled representation of (2) can be written as

follows:

Eẋs=S−1
x ASxxs+S−1

x BuSuus+S−1
x f+S−1

x BwSwws

(18a)

ys = CSxxs. (18b)

where f = f (xs,us,ws). From now on, for the sake of sim-

plicity, with a little abuse of notation, we considerxs = x,us =
u, andws = w. Similarly, letA = S−1

x ASx,Bu = S−1
x BuSu,

Bw = S−1
x BwSw, and S−1

x f (xs,us,ws) = f (x,u,w).

The next step is to perform coordinate transformation such

as x̃ = Wx so that the system is balanced. Notice that, for

ODE systems using empirical covariance matrices, computing

coordinate transformation matrix W is straightforward and

well-documented, often involving Cholesky factorization or

similar techniques–see [29], [30]. However, for NDAE systems,

the presence of algebraic equations (which do not exhibit dy-

namic behavior and represent static constraints) complicates the

application of these techniques. The NDAE system evolves in a

subspace defined by the differential equations, while algebraic

equations restrict this evolution without contributing to the

system’s dynamics [28]. Hence, motivated by [31] we propose a

two-step approach to design a balanced model. In the first step,

we perform balancing for the dynamic variables and then in the

second step we perform coordinate transformation for algebraic

variables so that they can also be truncated, the details are given

in the subsequent sections.

D. Balancing Dynamic Variables

To perform balancing for the dynamic variables, we first need

to compute their covariance matrices. With that in mind, to

design controllability covariance the NDAE system (2) can be

excited by perturbations in the control inputs, and state trajec-

tories can be generated. From these trajectories, a covariance

matrix can be computed using the Eq. (15). This covariance

matrix includes the controllability covariance matrix for the

states governed by differential equations. Meaning the designed

Gc can be decomposed as follows:

Gc =

[
Gc11 Gc12

Gc21 Gc22

]

(19)

with Gc11 ∈ R
nd×nd , Gc12 ∈ R

nd×na , Gc21 ∈ R
na×nd ,

and Gc22 ∈ R
na×na . In (19) Gc11 is the symmetric positive-

definite controllability covariance for the dynamic variables

and similarly Gc22 is the covariance matrix for the algebraic

variables. Notice that, Gc22 does not represent controllability

in the traditional sense. Instead, it indicates correlations among

algebraic variables and can be useful for reducing their number

(which is discussed in detail in Sec. V-E).

Similarly, observability covariance matrix can be obtained

by introducing systematic perturbations in the system’s initial

conditions x0 as explained in the previous section. However,

limited information regarding the system’s observability can

be gathered. This is due to the fact that in a regular DAE

system, there are only as many degrees of freedom for selecting

consistent initial conditions as there are dynamic variables [31],

[32]. As such, once each dynamic variable has been perturbed

independently, no additional information regarding the system’s

observability can be obtained by perturbing the algebraic states

[32]. In reality, the perturbation of algebraic variables only

produces an initial condition that locally signifies a linear

combination of the perturbations that were previously applied

to the differential variables. Therefore, by solely perturbing
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dynamic states, the covariance matrix Go11 ∈ R
nd×nd is

determined using Eq. (16).

That being said, using Gc11 and Go11 we can balance the

dynamic variables. The main objective is to find a coordinate

transformation matrix that can make Gc11 and Go11 diagonal

and equal in a new state coordinates that are both observable

and controllable. To find such transformation, a technique

has been proposed in [30] which decouples the system into

controllable/uncontrollable as well as observable/unobservable

components similar to Kalman decomposition. The overall

procedure involves four main steps and are given as follows:

1) The first step is to isolate controllable states by transform-

ing the controllability covariance matrix Gc11 into a block

diagonal form. This is done by applying a Schur decom-

position to Gc11 using a unitary transformation matrix T1,

resulting in a block diagonal matrix that highlights the

rank (and hence the controllability) of the system. This

transformation is given as follows:

T1Gc11T
¦
1 =

[
I 0

0 0

]

(20)

where the identity matrix I represents the fully controllable

states.

2) In the second step, the transformation T1 computed in the

previous step is applied to the observability covariance

Go11 as:

(
T¦
1

)−1
Go11T

−1
1 =

[
G̃1 G̃2

G̃3 G̃4

]

. (21)

Then a Schur decomposition of the upper block G̃1 is

carried out to isolate observable states as:

L1G̃1L
¦
1 =

[
Γ1

2
0

0 0

]

(22)

The resulting unitary matrix L1 from this decomposition

forms the basis of the second transformation matrix given

as:
(
T¦
2

)−1
=

[
L1 0

0 I

]

(23)

3) In the third step, the combined transformations T1 and T2

are applied to the original observability covariance matrix

Go11 to further isolate observable and controllable states

and to construct the third transformation matrix T3 as

follows:

(
T¦
2

)−1 (
T¦
1

)−1
Go11T

−1
1 T−1

2 =





Γ1
2

0 Ĝ2

0 0 0

Ĝ2
¦

0 Ĝ4





and T3 is given as:

(
T¦
3

)−1
=





I 0 0

0 I 0

−Ĝ2
¦
Γ1

−2
0 I



 . (24)

4) In the final fourth step, we apply a sequence of transfor-

mations (T1 through T3) to the observability covariance

matrix. Then, we perform Schur decomposition on the

element of the last column and row of the resultant matrix

to construct the final transformation matrix T4 as follows:
(
T¦
3

)−1 (
T¦
2

)−1 (
T¦
1

)−1
Go11T

−1
1 T−1

2 T−1
3

=





Γ1
2

0 0

0 0 0

0 0 G̃4 − Ĝ2
¦
Γ1

−2Ĝ2





and

L2(G̃4 − Ĝ2
¦
Σ1

−2Ĝ2)L
¦
2 =

[
Γ3 0

0 0

]

(
T¦
4

)−1
=





Γ
−1/2
1 0 0

0 I 0

0 0 L2



 . (25)

Finally, the complete coordinate transformation matrix Wd that

leads to the balanced forms ofGc11 andGo11 can be constructed

by multiplying all the individual transformations (T1 through

T4), as follows:

Wd = T1T2T3T4 (26)

and the corresponding balanced covariance matrices are given

as:

WdGc11W
¦
d =







Γ1 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0







(27)

(
W−1

d

)¦
Go11(Wd)

−1 =







Γ1 0 0 0

0 0 0 0

0 0 Γ3 0

0 0 0 0






. (28)

The final transformation matrix Wd decomposes the dynamic

variables into four separate categories, states that are (1) both

controllable and observable, (2) controllable but not observable,

(3) observable but not controllable, and (4) neither observable

nor controllable. In particular, the diagonal matrix Γ1 (with

diagonal entries representing the HSVs) signifies the states

that are both controllable and observable, the identity matrix I

depicts the states that are only controllable, the diagonal matrix

Γ3 denotes the states that are observable but not controllable,

while zeros represent the states that are neither controllable

nor observable. The above-balanced form facilitates system

simplification by eliminating states that contribute little to the

system’s dynamic behavior.

E. Coordinate Transformation of Algebraic Variables

In the above section we performed coordinate transformation

for dynamic states such that they are balanced and hierarchically

ordered and thus suitable for reduction. Here, we perform

transformation for the algebraic variables so that they can also

be ordered and later on truncated. This can simply be done by

taking the SVD of covariance matrix Gc22 (which is computed

in Eq. 19) as follows:

Gc22 = WgcΣgcΛgc (29)

where Σgc is a diagonal matrix and contains the HSVs in

descending order while matrices Λgc and Wgc contain the right

and left singular vectors, respectively. The columns of Wgc

are ordered hierarchically from most dominant to least and

are referred to as the modes of Gc22 . Hence, the coordinate

transformation matrix Wa for the algebraic variables can be set

to be equal to Wgc, i.e. Wa = Wgc.

The final non-singular coordinate transformation matrix W

and the truncation matrix T for the SP-BPOD can be expressed
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Algorithm 2: SP-BPOD for power system NDAE models

1 Input: NDAE (18) parameters A, Bu, Bw, E, f(·),
and x0

2 Output: ROM parameters Ar, Bur, Bwr, Er, and

fr(·)
3 Compute matrices Gc11 and Go11 using (15) and (16)

4 Compute T1 (20), T2 (23), T3 (24), and T4 (25)

5 Construct Wd = T1T2T3T4 as in (26)

6 Perform SVD of Gc22 as: Gc22 = WgcΣgcΛgc (29)

7 Select Wa = Wgc

8 Compute W = blkdiag(Wd, Wa) as in (6)

9 Design Ta, Td by examining HSVs in Σgc (29) and Γ1

(27)

10 Design matrix T = blkdiag(Td, Ta) as in (7)

11 Design WL = WT and WR = W−1
L

12 Construct Xf (10) and SVD it as: Xf = WfΣfΛf

13 Start greedy algorithm to design PM

14 Construct rank-p approximating basis

Wfr =
[
wf1 ,wf2 , · · · ,wfp

]

15 Choose the first index: [ρ, i1]=max(wf1)
16 Initialize measurement matrix

PM1
=ei1 , Wfr=[wf1 ]

17 for j = 2 : p do

18 calculate c using, P¦
MWfrc = PMwfj

19 compute residual, d = wfj −Wfpc

20 update PM and Wfr as follows:

21 [ρ, ij ] = max(d)
22 Wfr = [Wfr,wfj ], PM = [PM , eij ]

23 Calculate fr(·) (13) and Er, Ar, Bur, Bwr using (4)

similarly as in (6) and (7). While the dimensions of identity

matrices Idr and Iar here can be designed by examining

the magnitude of HSVs in Γ1 and Σgc, respectively. The

corresponding matrices WR and WL for the SP-BPOD can

then constructed as WL = TW and WR = W−1
L .

Now as discussed in the previous section, mapping the

nonlinearity using WR and WL as WLf (WRx̃,w,u) still

depends on the dimension of full state vector x and thus can be

computationally expensive. Then again, one can use the DEIM-

based hyper-reduction approach to measure specific points in

the state-space and then efficiently interpolate the nonlinearity

around the selected points (as done in Eq. 9 of SP-POD-based

MOR technique). Having said that, the overall proposed SP-

BPOD-based MOR algorithm for the complete NDAE power

system model is summarized in Algorithm 2. It is worth men-

tioning here that in both the proposed SP-POD and SP-BPOD

model reduction techniques, the final reduced order model is

guaranteed to be an NDAE. In both proposed techniques, the

number of dynamic states in the ROM is determined by the

dimensions of Idr; similarly, the number of algebraic variables

is controlled by the dimension of user-defined identity matrix

Iar.

VI. CASE STUDIES

To assess the effectiveness of the proposed methods we

perform thorough simulation studies on various power system

models, namely, the modified IEEE 39-bus and the 2000-bus

Texas networks [33]. The details about these test systems are

given in the below sections and Appendix A. All the numerical

simulations are performed on MATLAB R2023a running on a

personal laptop with an Intel-i9 processor. The NDAE power

system models are simulated using MATLAB index-1 DAEs

solver ode15s. The system volt-ampere base is chosen to

be Sb = 100MVA while the frequency base is selected as

wb = 120πrad/s. To carry out the time-domain simulations

the system’s initial conditions are determined using power flow

studies carried out in MATPOWER.

To implement the proposed SP-POD-based MOR technique,

the snapshot data matrices Xd, Xa, and Xf need to be

computed. This is done by carrying out time domain simula-

tions under step disturbance in overall system load demand

as follows. Initially, the system operates under steady-state

conditions, meaning load demand is exactly equal to generation

and thus there are no transients. Then, right at t > 0 an

abrupt disturbance in load demand is applied to the system as:

P e
d +jQe

d = (I+∆d)(P
0
d +jQ0

d), where P 0
d and Q0

d represent

the initial active/reactive load demand and P e
d and Qe

d are

their respective values after the disturbances. The parameter ∆d

denotes the severity of the disturbances. The overall simulation

time period is set to be 20sec and the system transients dynamic

and algebraic states data is saved in matrices Xd, Xa, and Xf .

These snapshot data is then used in SP-POD Algorithm 1 to

design the corresponding ROM.

For the SP-BPOD-based MOR algorithm the empirical co-

variances matrices Gc and Go11 are computed for the scaled

system (18) over the time period [0, 5s] with ∆t(k) set to be

0.01s. To design the covariances matrices using Eqs. (15) and

(16) systematic perturbations in the control inputs u or initial

conditions x0 are added right at t > 0 by defining the following

sets:

T c = {Inu×nu
,−Inu×nu

} , T o = {In×n,−In×n} . (30)

The sets T c and T o represent the decision to apply both

positive and negative unit perturbations to each input (for con-

trollability covariance) and state (for observability covariance),

respectively. This choice ensures that the system’s response

to both increases and decreases in inputs or initial states is

evaluated, providing a comprehensive view of its dynamic

behavior. Similarly, the sets Mc and Mo are chosen to be:

Mc = αuM0, Mo = αxM0 (31)

where M0 = {0.25, 0.5, 0.75, 1.0} is a linearly scaled set

and offers a structured approach to varying the magnitude of

perturbations. The set M0 ensures that the system’s response is

observed under perturbations ranging from subtle to substantial

[29], [34]. In (31) an extra user-defined scaling constants αu

and αx are also included to make the perturbation magnitude

in the control input and states reasonable and to make sure

the ode15s solver is able to simulate the system under those

conditions. Notice that if the perturbation magnitude is too large,

then the power system will lose synchronism, and the time-

domain simulation will not be performed for those transient

conditions. Thus, αu and αx need to be adjusted to make

sure the system runs smoothly with ode15s solver. Given

that, here we select the value for both of these constants to
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Figure 1. HSVs and their cumulative sum contained in Σd (above) while
below is for Σa; 39-bus system. The first rd = 7 HSVs in Σd contain 99%

of the cumulative sum, similarly for Σa the first ra = 3 HSVs contain 97%

of the cumulative sum. Thus, the size of ROM is selected to be r = 10.
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Figure 2. Comparison of FOM and ROM for 39-bus system; rotor angle of
Gen. at Bus 35 (top-left), frequency of Gen. at Bus 35 (top-right), relative
angle of solar plant (bottom left), and overall error norm (bottom right).

be αu = αx = 0.05, which works well in our case.

A. Case Study on IEEE 39-bus Systems

Here, we perform MOR on a modified IEEE 39-bus systems.

The 39-bus system consists of 9 conventional power plants

(steam and hydro-based) and one solar farm. The conventional

power plants are modeled via detailed 9th-order dynamics

modeling; generator swing equations, turbine and governor

models, and excitation system dynamics. The solar power plant

is acting in grid-forming mode and is modeled via 12th-order

dynamical model. Further details about the dynamics of the

considered power system model are given in Appendix A. The

original full 39-bus system consists of 97 dynamic states and

120 algebraic variables, i.e nd = 97, na = 120, and n = 217.

To design appropriate ROM for the considered test system,

first we observe the HSVs contained in Σd, Σa for SP-POD

and Γ1, Σgc for SP-BPOD. The results for Σd and Σa are

shown in Fig. 1. From these figures we can see that the HSVs

of Σd decay quickly to zero. Thus, 99% system energy for the

dynamic states in the transformed coordinates can be captured

by choosing only the first rd = 7 states and truncating the rest
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Figure 3. Comparison of algebraic variables between FOM and ROM for the
39-bus system; Bus 5 real and imaginary current (above), and Bus 5 real and
imaginary voltage (below).

of them. Hence the dimension of identity matrix Idr is chosen

to be Idr ∈ R
7×7. Similarly, from Fig. 1 by looking at the

HSVs contained in Σa we can see that the number of algebraic

variables in the transformed coordinates can be truncated to 3 (as

again 97% of system input-output energy can be captured using

first three states) by setting Iar ∈ R
3×3. This truncation of both

dynamic and algebraic variables in the transformed coordinates

effectively reduced the dimension of the system by retaining

much of the system input-output behavior while truncating those

with little to no contribution to system dynamics.

Similar observations have been carried out for the SP-BPOD-

based MOR technique and the dimensions of ROM have been

determined to be rd = 8, ra = 3, and r = 11. After determining

suitable dimensions for reduced models, the corresponding

ROMs are constructed using the proposed SP-POD and SP-

BPOD-based techniques as given in Algorithms 1 and 2. A

comparison with BT-based MOR has also been presented in

Tabs. I and II, as proposed in [13], [35] to showcase the

effectiveness of the proposed methodologies. Notice that BT-

MOR is applied to LODE systems as it cannot handle NDAE

dynamics.

To access the performance of the proposed MOR techniques

time-domain simulations are carried out under transient condi-

tions. The dynamic response of the power system is generated

by adding step disturbance in load demand right at the start of the

simulation. The disturbance in load demand has been added by

choosing ∆d = 0.005 as discussed in the previous section. Both

the full-order model (FOM) and ROMs are simulated under

these transient conditions and system responses are recorded.

To compare the performance between FOM and ROMs the data

generated from ROMs are transformed backed and original state

vectors are recovered. The results are given in Fig. 2 and 3. For

brevity, a couple of dynamic and algebraic variables are shown,

we can see the recovered dynamic states (rotor angle and speed

of synchronous generator at Bus 35 and relative angle of solar

plant) are close to the original system responses. Similarly, for

the algebraic variables shown in Fig. 3 we can see that the

original and recovered states are close and accurate to each
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Figure 4. Comparison of FOM and ROM for 39-bus system under fault; solar
power plant voltage (top-left), relative angle (top-right), reactive power output
(bottom left), and rotor angle of Gen. at Bus 30 (bottom right).

other. To further evaluate the performance of the proposed MOR

techniques, we also compute the root mean square error (RMSE)

between the original and the recovered states. Accordingly, the

RMSE value for SP-POD is determined to be 0.038, while

for the SP-BOPD-based ROM, it is 0.0019. We can see that

RMSE values are small and thus the ROMs can accurately

approximate the full-order system dynamics. These results are

also corroborated by Fig. 2 where the error norm is plotted, we

can see that the error is close to zero.

Moreover, to assess the simulation accuracy between the

FOM and ROMs separately for state variables of conventional

power plants, solar plant, and algebraic states, we define the

following index:

εs =

√
√
√
√

∑N
j=1

∑tf
t=1

(
xr
j,t − xFOM

j,t

)2

Ntf
(32)

where tf is the overall time period and N is the number of

state variables whose accuracy needs to be determined. These

results are shown in Tab. I, we can see that the proposed methods

can accurately approximate both the dynamic and algebraic

variables of the full-order system dynamics.

Here, we also asses the performance of the proposed tech-

nique under fault. To that end, we added a line to ground fault

at t = 4sec on transmission line 4-14 which is then cleared

at 50 msec and 200 msec from the near and remote end. The

simulation results are illustrated in Fig. 4 and we can see that

both proposed techniques still yield accurate outcomes.

B. Case Study on 2000-bus Texas System

In this section, we discuss the performance of the proposed

MOR techniques on a much larger power system model,

namely, the 2000-bus Texas system. The static network data

(topology and parameters) on this system is taken from [33]

while the dynamic data (the generator parameters) is generated

synthetically. The overall system consists of 282 synchronous

machines modeled via a detailed 11th-order dynamical model.

The dynamics consist of 6th-order generator swing equations,

excitation system models, and turbine/governor dynamics. The

original full-order system consists of 3102 dynamic variables

and 564 algebraic variables, i.e., nd = 3102, na = 564, and

n = 3666.

Now, similarly to as done in the previous section, to design

ROM, we first determine the appropriate size of the dynamic and

algebraic variables in the reduced order model NDAE. For the

SP-POD this can be done by observing the HSVs in Σd and Σa

as presented in Fig. 5. We see that the dynamic variables in ROM

for the SP-POD-based technique can be set to be rd = 10 (as this

captures almost 99.99% cumulative sum), similarly the number

of algebraic variables in the ROM can chosen to be ra = 30.

This gives us the overall dimension for the SP-POD-based ROM

as r = 40. Similarly, for the SP-BPOD by observing HSVs in

Γ1 and Σgc we get rd = 8, ra = 25, and r = 33.

We want to point out here that while applying SP-BPOD

for this case study, the computation of observability covariance

G011 can become computationally expensive. This is because

to compute G011 as discussed earlier, we have to perturb each

dynamic state independently, and thus, we need to perform nd

number of simulation studies. Which can become computation-

ally expensive for the given Texas system with nd = 3102.

However, this can be avoided, as discussed in [36]. The idea is

only to perturb the dominant POD modes instead of all the

dynamic states to approximate G011 . Additionally, one can

consider bypassing the observability covariance computation

altogether, relying on controllability alone to derive the ROM

as in [32].

Having said that, to assess the performance of the proposed

technique, we again do time-domain simulations under transient

conditions. To generate system dynamic response here, we

create a generator side disturbance by adding a 10% reduction

in the mechanical power output of one of the synchronous

generators at t = 1s that last for 1s. Both the FOM and

ROMs are simulated under this transient condition and system

responses are recorded. These results are shown in Fig. 6.

We can see that the response of both dynamic and algebraic

variables from the ROMs closely matches that of the FOM. This

can also be corroborated from the plot of error norm (presented

in Fig. 6 (bottom right)) and from the RMSE value which is

determined to be 0.0037 for SP-POD and 0.0027. We can see

that the error norm and the RMSE values are small, showing

that the response from ROMs is accurate.

We also present the simulation accuracy for the dynamic and

algebraic variables separately for this case study in Tab. II.

Again, we can verify that the proposed MOR techniques can

simultaneously reduce both dynamic and algebraic variables

(from nd = 3102, na = 564, and n = 3666 to rd = 10,

ra = 30, and r = 40 in case of SP-POD and to rd = 11,

ra = 31, and r = 42 for SP-BPOD) while maintaining very

good accuracy. A comparison with state-of-the-art BT-based

MOR has also been provided in Tab. II. Notice that to apply

BT the system has first been linearized and then converted to

an equivalent ODE as in [13]. From Tab. II we can see that the

proposed MOR techniques are superior in terms of accuracy

and the size of corresponding ROM as compared to BT-LODE.

Notice that the reason BT-LODE is providing poor results is

because it is designed based on linearized system dynamics,

while the proposed techniques consider the complete nonlinear

system. Also, BT-LODE cannot reduce the algebraic variables
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Table I
COMPARISON OF SIMULATION ACCURACY OF THE PROPOSED METHODS

FOR VARIOUS STATE VARIABLES, 39-BUS SYSTEM. THE NOTATION rd

REPRESENTS DYNAMIC STATES IN THE ROM, SIMILARLY ra ARE THE

ALGEBRAIC VARIABLES IN THE ROM, WHILE r DENOTES THE OVERALL

DIMENSION OF ROM NDAE.

Variables
εs =

√

∑

N
j=1

∑tf
t=1

(

xr
j,t

−xFOM
j,t

)

2

Ntf

SP-POD
rd = 7, ra = 3

r = 10

SP-BPOD
rd = 8, ra = 3,

r = 11

BT-LODE [13]
rd = 12

Conventional
Power plant States

1.62× 10−2 2.15× 10−3 1.8813

Solar Farm
States

1.01× 10−3 3.12× 10−4 1.9412

Algebric
States

4.01× 10−3 1.58× 10−4 Not
Applicable

Table II
COMPARISON OF SIMULATION ACCURACY OF THE PROPOSED METHODS

FOR VARIOUS STATE VARIABLES, 2000-BUS TEXAS SYSTEM.

Variables
εs =

√

∑

N
j=1

∑tf
t=1

(

xr
j,t

−xFOM
j,t

)

2

Ntf

SP-POD
rd = 10, ra = 30

r = 40

SP-BPOD
rd = 11, ra = 31

r = 42

BT-LODE [13]
rd = 54

Conventional
Power Plant States

2.13× 10−4 5.91× 10−5 4.0828

Algebric
States

7.91× 10−4 0.87× 10−5 Not
Applicable

as it is applicable to ODE dynamics only, while the proposed

MOR techniques can simultaneously reduce both dynamic and

algebraic variables as presented in Tab. II.

Finally, here we would like to compare and summarize the

pros and cons of the two proposed MOR techniques. Notice

that, both the proposed SP-POD and SP-BPOD are general

input-output-based MOR techniques that can be applied to any

NDAE power system model represented in state-space format.

Both techniques provide accurate ROMs but have their own

advantages and limitations.

SP-POD is effective in capturing the dominant behaviors

of a system by focusing on the energy content of the modes.

However, it does not directly consider the impact of these modes

on the system’s controllability or observability. This can be a

critical limitation in control applications, as modes with lower

energy levels might still significantly influence the system’s

response to controls and its observability. On the other hand,

SP-BPOD accounts for the controllability and observability of

the modes. However, computing the empirical controllability

and observability Gramians (as detailed in Eqs. (15) and (16)

can be very challenging, requiring systematic perturbation of

control inputs (for the controllability Gramian) and states (for

the observability Gramian) with fine-tuning, as explained in Sec.

VI. That being said, if the overall aim is to perform realtime

scalable feedback control and monitoring, SP-BPOD may be

the better option. Otherwise, SP-POD could be chosen due to

its lesser computational complexity.

VII. CONCLUDING REMARKS

In this paper, we propose two MOR approaches, namely the

SP-POD and SP-BPOD, to simultaneously reduce both dynamic

and algebraic variables of NDAE power system models. The

SP-POD offers reducing the system order based on the POD
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Figure 5. HSVs and their cumulative sum contained in Σd (above) while
below is for Σa, 2000-bus Texas system. The first rd = 10 HSVs in Σd

contain 99.99% of the cumulative sum, similarly for Σa the first ra = 30

HSVs contain 99.99% of the cumulative sum. Thus, the size of ROM is
selected to be r = 40.
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Figure 6. Comparison of FOM and ROM for 2000-bus Texas system;
Generator 10 rotor angle (top-left), frequency (top-right), current output
(bottom left), and overall error norm (bottom right).

modes in the transient simulation data, while in contrast,

the SP-BPOD offers designing ROM via balanced-realization.

Because of the diagonal structure of the designed coordinate

transformation matrix, the corresponding ROMs from both the

proposed methods are guaranteed to be NDAE similar to the

original power system model. Thus, the proposed techniques

preserve the essential differential-algebraic structure of power

system models while allowing a smooth transition from reduced

order to the full order dynamic and algebraic state variables.

Regarding the limitations of the proposed work we want to

mention here that both the presented MOR techniques operate

in a data-driven manner and require system transient data of

all the state variables from time-domain simulations. Thus, to

maintain a refined and accurate reduced model representation

it needs to be updated with every power flow or optimal

power flow cycle. Also, in this study, we only considered the

dynamics of PV power plants while the models of wind and

other renewable resources are neglected. Furthermore, in the

proposed SP-BPOD method, the sets Mc and M0, along with

the scalars αu and αx, can be considered hyper-parameters
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that need to be tuned according to the specific test system and

operator expertise, as there is no systematic method provided

for selecting their values.

To verify the accuracy of the proposed techniques, simula-

tions on modified IEEE 39-bus and 2000-bus Texas systems are

carried out. The results show that the proposed techniques can

significantly reduce the size of NDAE power system models

while providing state trajectories close to those directly com-

puted from running the full power system model. Future work

will focus on using the ROMs to design scalable robust state-

feedback controllers and state estimation algorithms, making

control algorithms more amenable to large-scale power systems.
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APPENDIX A

DETAILS OF THE POWER SYSTEM DYNAMICS

Borrowing from [2], here we present comprehensive details

about the dynamics of power system model used in this paper.
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In particular, we present the dynamics of conventional power

plants, dynamics of grid-forming solar power plants, load

dynamics, and the algebraic power flow equations.

A. Dynamics of Conventional Power Plants

We model the conventional power plants via 9th-order dy-

namical model. The overall dynamics consist of synchronous

machines swing equations, steam/hydro turbine and governor

differential equations, and IEEE-type DC1 excitation system

model, presented as follows [2], [37]:

• Swing equations:

δ̇gi = ωgi − ω0

ω̇gi =
1

2Hi
(TMi

− Tei) with Tei = Edi
idi

+ Eqi
iqi

Ėqi
= −

1

tqoi
(Eqi

− (x′
qi

− xqi
)idi

)

Ėdi
= −

1

tdoi
(Edi

+ (x′
di

− xdi
)iqi

− Efdi
).

(33a)

• Turbine and governor dynamics:

ṪMi
=

{
− 1

tchi
(TMi

− Pvi
) if thermal

− 2
twi

(TMi
− Pvi + tchiṖvi

) if hydro

Ṗvi = −
1

tvi
(Pvi

− P ∗
vi +

ωi − 1

Rdi
).

(33b)

• Excitation system dynamics:

Ėfdi
=

−1

tfdi
(kei + SeiEfdi

− vai) with Sei = aie
biEfdi

ṙfi = −
1

tfi
(rfi −

kfi
tfi

Efdi
)

v̇ai = −
1

tai
(vai − kaivei).

(33c)

In the above model, i ∈ G, ωgi represents generator speed,

δgi denotes generator rotor angle, ω0 is synchronous speed

of the generator, Edi
, Eqi

are the generator transient voltages

along dq-axis, x′
qi
, x′

di
represents synchronous generator tran-

sient reactance while xqi
, xdi

are the reactances along dq-axis,

respectively, tdoi , tqoi denotes the dq-axis open circuit time con-

stants, iqi
, idi

represents synchronous machine currents along

dq-axis, TMi
, Tei are the mechanical torque and the electrical

torque of generator, respectively, Pvi
is hydro/steam turbine

valve position, P ∗
vi

is the operator set point for the turbine

valve position, vai denotes amplifier voltage, Efdi
represents

synchronous machine field voltage, rfi denotes the stabilizer

output, Rdi is the droop constant for the governor (Hz/pu), Hi

represents inertia constant (pu× sec) of the generator, and kai,
kei, kfi, are the amplifier, exciter, and stabilizer constant gains,

respectively.

Furthermore, in model (33), twi, tchi, tvi, tfi, tai, and tfdi are

the time constants for generator field voltage, hydro/steam tur-

bine valve position, amplifier, and stabilizer, respectively while

the notation Sei denotes saturation function of synchronous

generator field voltage with scalar constants ai, bi as given in

[37]. Similarly, vei in the exciter dynamics (33c) is the voltage

control error given as: vei = V ∗
i − Vi + rf −

kfi
tf

Efdi
with Vi

representing the synchronous machine terminal voltage and V ∗
i

denoting grid operator voltage set point.

The input and overall state vectors for the conventional power

plant models can then be expressed as follows:

uG =
[
P ∗¦

v V ∗¦
]¦

∈ R
2G (34a)

xG=
[
ω¦

g δ¦g E¦
q E¦

d E¦
fd T¦

M P¦
v r¦f v¦

a

]¦
∈R9G. (34b)

B. Dynamics of Grid-Forming Solar Power Plants

We model the solar plant dynamics via 12th-order dynamical

model as given in [38], [39]. The overall model describes a

solar power plant acting in grid-forming (GFM) mode and

the dynamics include; DC side differential equation (dynamic

equations describing PV array DC link models), AC side dy-

namics (DC/AC inverter and LCL filter differential equations),

and current/voltage regulators dynamical models presented as

follows with i ∈ R:

• DC side dynamics:

Ėdci =
1

BCi

(
Ppvi

− Pci

)
. (35a)

• AC side dynamics:

i̇dfi =
ωb

Xfi

(
−rfiidfi + ωciXfiiqfi + vdfi − vdoi

)

i̇qfi =
ωb

Xfi

(
−rfiiqfi + ωciXfiidfi + vqfi − vqoi

)

v̇dci =
ωb

Bci

(
ωciBcivqci + idfi − idgi

)

v̇qci =
ωb

Bci

(
ωciBcivdci + iqfi − iqgi

)

δ̇ci = ωb(ωci − ω0) with ωci = 1− kpi
(P̃ei − P ∗

ei)

˙̃Pei =
1

τsi
(−P̃ei + Pei)

˙̃Qei =
1

τsi
(−Q̃ei +Qei).

(35b)

• Voltage regulator dynamics:

żdoi =
κpvi

τvi
(v∗doi − vdoi) with v∗doi = V ∗

i + kdi
iqgi

żqoi =
κpvi

τvi
(v∗qoi − vqoi) with v∗qoi = 0.

(35c)

• Current regulator dynamics:

żdfi =
κpi

τii
(i∗dfi − idfi)

i∗dfi = κpvi
(v∗doi − vdoi + zdoi + idgi

+ idci)

żqfi =
κpi

τii
(i∗qfi − iqfi)

i∗qfi = κpvi
(v∗qoi − vqoi + zqoi + iqgi

+ iqci).

(35d)

In Eq. (35a), BCi
denotes the capacitance of the DC link

capacitor while Edci represents the energy stored in it, Ppvi

denotes the DC power supplied by the PV array while Pci

represents the power extracted by the solar inverter.

Similarly, in AC side dynamics (35b), Xfi , rfi denotes the

reactance and resistance of the AC side LCL filter, idfi , iqfi
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represents the current flowing through the LCL filter along dq-

axis, Bci , rci denotes the capacitance and resistance of the LCL

filter capacitor, idci , iqci , vdci , vqci represents the current and

voltages of the LCL filter capacitor along dq-axis, respectively,

idgi
, iqgi

are the dq-axis current output to the main grid, ωb

represents the base speed while ωci denotes the angular speed

of the inverter, Pei , Qei are the real and reactive power output

of the solar plant to the main grid, P̃ei , Q̃ei are the phasor

representations of Pei , Qei after passing through low pass filter

(which are later used in the droop control of the GFM inverter),

τsi represents the time constant of the low pass filter, kpi

denotes the droop constant of the solar inverter, and finally P ∗
ei

represents the grid operator active power set-point command.

Furthermore, in voltage and current regulator dynamics given

in (35c) and (35d), V ∗
i represents the grid operator voltage set

point command, kqi denotes the voltage droop constant, and

κpi
, κpvi

, τii , τvi are the constants gains and corresponding time

constants of current and voltage regulators of the solar plants,

respectively. Note that, current and voltage regulation in the

presented GFM inverter is simply achieved by a proportional-

integral (PI) type controller with zdf , zqf , zqo, zdo representing

the states of integral compensators along dq-axis, respectively,

as detailed in [38], [39].

Therefore, the overall input and state vector for the solar

power plant model used in this study can be expressed as:

uR =
[
P ∗¦ V ∗¦

]¦
∈ R

2R

xR =
[
δ¦c E¦

dc P¦
e Q¦

e i¦dqf v¦
dqc z¦

dqo z¦
dqf

]¦
∈ R

12R.

C. Power System Algebraic Equations and Loads Dynamics

Here, we present the algebraic constraints and the load mod-

els of the considered test power system. We consider various

types of loads dynamics i ∈ L such as constant impedance,

constant power, and motor type loads detailed as follows [2].

The differential equations for the motor-based loads are given

as:

ω̇Mi
=

1

2HMi

(Tei − TMi
) (36)

where HMi
denotes the inertia constant of the motor, ωMi

represents the speed of the motor-based load, and Tei , TMi

denotes the electromagnetic and mechanical torque of the motor,

respectively.

Constant impedance and constant power types loads satisfy

the following relationships [2]:

IziZi + Vzi = 0 (37a)

Ppi
+Qpi

+ conj(Ipi
)Vpi

= 0 (37b)

where conj denotes complex conjugate operator, and Ppi
,

Qpi
, Vpi

, Ipi
are the real power, reactive power, voltage, and

current phasors of buses connected to constant power loads,

respectively. Similarly, Izi , Vzi are the current and voltage

phasors of the buses connected to the constant impedance loads

Zi.

The algebraic constraints are the current balance equations

and are given as follows:




IR

IG

IL





︸ ︷︷ ︸

I(t)

−





YRG YRR YRL

YGG YGR YGL

YLG YLR YLL





︸ ︷︷ ︸

Y





V R

V G

V L





︸ ︷︷ ︸

V (t)

= 0 (38)

where I(t) denotes the net injected current, V (t) represents

bus voltages, and Y is the power network admittance matrix.

Moreover, IG={IRei}i∈G+j{IImi
}i∈G , V G = {VRei}i∈G+

j{VImi
}i∈G represents current and voltage phasors at the

terminal of buses connected with conventional power plants.

Similarly, IR, IL, and V R, V L are the current and voltage

phasors of solar plants and load buses, respectively.

Having said that, the overall state vectors for loads and system

algebraic constraints can be written as follows:

xL =
[
ωm

]
∈ R

Lk (39a)

xa =
[
I¦
Re I¦

Im V ¦
Re V ¦

Im

]¦
∈ R

4N . (39b)
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