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Abstract

We investigate the dynamic characteristics of Covid-19 daily infection rates in Taiwan during

its initial surge period, focusing on 79 districts within the seven largest cities. By employing

computational techniques, we extract 18 features from each district-specific curve, trans-

forming unstructured data into structured data. Our analysis reveals distinct patterns of

asymmetric growth and decline among the curves. Utilizing theoretical information measure-

ments such as conditional entropy and mutual information, we identify major factors of

order-1 and order-2 that influence the peak value and curvature at the peak of the curves,

crucial features characterizing the infection rates. Additionally, we examine the impact of

geographic and socioeconomic factors on the curves by encoding each of the 79 districts

with two binary characteristics: North-vs-South and Urban-vs-Suburban. Furthermore,

leveraging this data-driven understanding at the district level, we explore the fine-scale

behavioral effects on disease spread by examining the similarity among 96 age-group-spe-

cific curves within urban districts of Taipei and suburban districts of New Taipei City, which

collectively represent a substantial portion of the nation’s population. Our findings highlight

the implicit influence of human behaviors related to living, traveling, and working on the

dynamics of Covid-19 transmission in Taiwan.

1 Introduction

The emergence and global spread of coronavirus disease 2019 (COVID-19), caused by the

novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a

major public health crisis. This pandemic has resulted in a sudden and overwhelming strain

on hospitals, leading to an increased incidence of pneumonia with multi-organ disease and

millions of fatalities in numerous countries worldwide [1, 2]. Moreover, over the past three

years, COVID-19 has inflicted immeasurable economic losses upon nearly all nations, along

with psychological and financial hardships experienced by billions of individuals [3–5]. How-

ever, existing literature on COVID-19 lacks a comprehensive understanding of the spreading

dynamics of this infectious disease at a scale beyond private homes, crowded restaurants, or
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concert halls, such as within specific districts of a city. Analyzing this scale provides a certain

level of homogeneity from both geographical and socioeconomic perspectives, which facilitates

comparison to larger city or country scales. Although some studies have assessed the effects of

model-based emergency containment measures and non-pharmaceutical interventions at this

district scale [6–9], very few investigations have delved into the intrinsic nature of the spread-

ing dynamics, except for a limited number of studies [10]. Therefore, there is a crucial knowl-

edge gap in understanding the interplay between the spreading dynamics of infectious diseases

and human geographic and socioeconomic dynamics.

To fill the knowledge gap in COVID-19 literature, this paper focuses on studying the disease’s

spreading dynamics within Taiwan’s unique context. Taiwan’s distinctive role in the pandemic

stems from its island status and the strict policies implemented to regulate the entry of foreign-

ers, effectively creating a closed domain for this infectious disease. This closed system provides

an opportunity to investigate the spreading dynamics within a relatively homogeneous and con-

trolled environment. By unraveling the implicit human behaviors and their interplay with the

geographic and social constituents, this study aims to identify and understand the intricate

mechanisms underlying the pandemic crisis in Taiwan. This research sheds light on the impor-

tance of exploring uncharacterized and unobserved human behaviors that may have played a

crucial role in shaping the spread of the disease within this special and significant context.

The time period chosen for investigation spans from March 25 to August 19, 2022, aligning

with the emergence and prevalence of the Omicron variant (specifically, the ba.1 or ba.2 subli-

neage) in Taiwan. During this period, there was a significant upsurge in the number of

COVID-19 cases compared to previous phases of the pandemic. The selection of this specific

timeframe is driven by the need to understand the distinct dynamics and implications of the

Omicron variant in Taiwan’s fight against the disease. The Omicron variant is known for its

heightened transmissibility and potential evasion of immunity, contributing to the rapid esca-

lation of infection rates during this period. To illustrate the trend, Fig 1 displays Taiwan’s daily

infection rate curve from March to September 2022, calculated as the daily reported new cases

divided by the population.

In order to comprehensively understand human behavioral patterns in the context of the

COVID-19 pandemic, it is crucial to analyze data that reflects the entire population. However,

obtaining publicly available human behavioral data for Taiwan’s population of 23 million is

currently not feasible. Given the susceptibility of the entire population to the infectious disease,

collecting individual-level behavioral data on such a large scale remains a challenge. Therefore,

to gain insights into behavioral dynamics, we adopt an alternative approach by extracting

behavior-related information from geographic locations and social-economic statuses. In the

first example, we examine the distinction between northern and southern cities in Taiwan.

The six municipalities in Taiwan are divided into two groups: Taipei, New Taipei, Taoyuan,

and Keelung, considered northern cities. Keelung, although not a municipality itself, is closely

situated to the other three municipalities in northern Taiwan and has played a significant role

in the initial spread of infections. The remaining three cities, Taichung, Tainan, and Kaoh-

siung, are categorized as southern cities. By comparing the dynamics between these two

regions, we aim to shed light on potential behavioral differences driven by geographic loca-

tions and their impact on the spread of COVID-19. In the second example, we investigate the

influence of social-economic statuses by focusing on Taipei as an urban city and its surround-

ing cities, namely New Taipei, Taoyuan, and Keelung, which are considered suburban areas.

Taipei, as a city that houses a majority of government branches and large business corpora-

tions, exhibits a higher overall social-economic status compared to the surrounding cities. By

examining these social-economic differences, we aim to uncover potential behavioral effects

induced by variations in social-economic factors.
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The development of a simple computational framework is a crucial component of this

paper, as it enables the study of human behavioral patterns in the context of infectious disease

spreading dynamics. This framework is specifically designed to fill the gap in analytical meth-

odologies for analyzing population-wide spreading dynamics based on the curves of daily

infection rates observed in various administrative districts. The unstructured nature of curve

data presents a significant challenge in data analysis. To overcome this challenge, our frame-

work employs a comprehensive set of measurable features extracted from each curve. These

features are carefully selected to capture the growth and decline patterns embedded within

each curve. By utilizing this approach, we represent each curve with a structured vector, con-

sisting of measurements of these features. This structured representation allows for more effec-

tive analysis and characterization of the dynamics associated with the spread of infectious

diseases.

In Section 2, we provide information on where to access the data used in this study. We

then outline the procedure for transforming the original data into curves representing the

daily infection rate and further converting these curves into structured data in Section 3. With

this structured data, we introduce a major factor selection protocol designed to identify impor-

tant features that capture the individual dynamics of response features, including peak-value

Fig 1. Taiwan’s curve of the daily infection rate from March to September 2022.

https://doi.org/10.1371/journal.pone.0298049.g001
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and curvature-at-peak. Major factors refer to a feature set that explains a significant proportion

of the uncertainty in the response variable. This data-driven computational protocol, based on

Theoretical Information Measurements such as conditional entropy and mutual information

[11], has been developed in previous works [12–15]. We will provide a brief introduction to

these key ideas in Section 4.

Our analysis in this study is structured as follows. In Section 5, we examine the associations

between variables using Theoretic Information and present them through network figures.

Section 6 focuses on the application of the major factor selection protocol to identify signifi-

cant factors related to peak-value and curvature-at-peak. Next, in Section 7, we investigate

whether the growth and decline patterns of daily infections exhibit geographic and social-eco-

nomic differences. We then delve into a more detailed analysis in Section 8, exploring the

effects of geography and social-economic factors at the district level and within different age

groups. Finally, our study concludes with remarks and findings in Section 9.

2 Data

The data used in this study comprises the daily COVID-19 case counts in Taiwan, which are

obtained from the Taiwan Centers for Disease Control (CDC). This data is publicly available

and can be downloaded from the following website: https://covid-19.nchc.org.tw/index.php?

language=en.

Population information data is sourced from the Department of Household Registration,

Ministry of the Interior, Taiwan. This data is also publicly available and can be downloaded

from the following website: https://www.ris.gov.tw/app/portal/346.

For transparency and reproducibility, all the data and codes used in this study can be

accessed on the following GitHub repository: https://github.com/CSDA2023/covid19.

It is important to note that all data used in this study does not contain or involve any forms

of information related to personal identification.

3 Data preprocessing

The data preprocessing stage is crucial for extracting relevant information from the unstruc-

tured curves of daily infection rate in administrative districts. These curves, resembling contin-

uous functions or images, hide essential details related to the growth and decline of COVID-19

cases. In this section, we present our approach to extracting this pertinent information from

each curve. The procedure begins by identifying measurable characteristics within the curve

and computing characteristic-specific features. Each feature represents a measurement of a

specific characteristic, encoding a distinct aspect of the curve’s information. By selecting a set

of these features, we aim to capture the intrinsic information embedded within the curves.

To begin the data preprocessing stage, we represent a curve of daily infection rate as a time

series denoted as Xt, where t represents the day-axis. Our initial step involves smoothing the

curve. As depicted in Fig 1, the daily reported infection cases exhibit a recurring weekly pattern

due to the weekend hospital closures. Therefore, it is appropriate to apply a 7-day moving aver-

age to remove this weekly pattern. Additionally, a second 7-day moving average is employed,

as the resulting curves may not consistently achieve the desired level of smoothness. Mathe-

matically, applying a 7-day moving average twice is equivalent to a 13-day weighted average,

expressed as:

~Xt ¼
X6

d¼�6

7 þ d
49

� �

� Xtþd:
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By applying this smoothing technique, we aim to achieve the desired level of smoothness while

effectively capturing the unique growth and decline patterns within the curve. Empirical obser-

vations indicate that the trajectory of ~Xt generally exhibits strict growth leading up to a distinct

peak, followed by a steady decline until the end of the study period on August 19. Fig 2 pro-

vides an illustrative example showcasing the smoothed curves of daily infection rate for five

districts in Taipei. Each curve exhibits a single mode, with sharp growth on the left side of the

peak and a more gradual decline on the right side. These uni-modal patterns, characterized by

sharp growth and gentle decline, serve as defining characteristics of the curves. In this section,

we will select and extract features that collectively capture these characteristic patterns.

Based on the smoothed curve ~Xt, we extract two peak-related features. Firstly, we identify

the date of the “peak” as tmax, which corresponds to the day-t when ~Xt reaches its maximum

value. Secondly, we extract the “peak value” denoted as ~Xtmax
. Additionally, we determine the

first time before tmax when ~Xt surpasses 90% of ~Xtmax
during its growth phase. We denote this

feature as t−0.1, and it is defined as follows:

t�0:1 ¼ infftj~Xt � 0:9 � ~Xtmax
g:

The negative sign in the subscript indicates that it is located to the left of tmax. Conversely, we

define t0.1 as the last time after tmax when ~Xt remains above 90% of ~Xtmax
:

t0:1 ¼ supft > tmaxj sup
s�t

~Xs � 0:9 � ~Xtmax
g:

Likewise, we extract 7 features t−0.8, t−0.7, . . ., t−0.2 on the left of t−0.1 and another 7 features

t0.2, t0.3, . . ., t0.8 on the right of tmax as well. Their precise definitions are given as follows: for

Fig 2. Five smoothed curves of Taipei’s 12 districts.

https://doi.org/10.1371/journal.pone.0298049.g002
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0.2 � α � 0.8,

t�a ¼ infft < tmaxj
~Xt � ð1 � aÞ � ~Xtmax

g;

ta ¼ supft > tmaxjsup
s�t

~Xs � ð1 � aÞ � ~Xtmax
g:

With the information derived from these 18 features of ~Xt, we can reconstruct ~Xt with rela-

tively high precision. For example, we can evaluate the positive slope of ~Xt on the interval

(t−0.3, t−0.2) and that on the interval (t0.2, t0.3), among others. However, we do not extract t−0.10

due to stability concerns, while t0.10 has not yet been reached by any districts.

In addition to the 18 features mentioned earlier, we derive two calculated features as fol-

lows. The first calculated feature is the “robust-peak” t0, which is defined as the largest integer

not exceeding the middle point of the interval [t−0.1, t0.1]. In most districts, t0 and tmax are

nearly equal. However, due to the observed asymmetry in the growth and decline of ~Xt, it is

evident that t0 � tmax. The second calculated feature is the “curvature-at-peak,” which is

defined as the length of the interval [t−0.1, t0.1]. This feature provides insight into the curvature

of ~Xt at t0. These calculated features play a crucial role in defining response variables and

investigating the underlying dynamics of the formation of curves of daily infection rates. For

illustrative examples of these defined quantities, refer to Fig 3.

To enable a meaningful and comparative analysis of the shapes of all curves of daily infec-

tion rates, we define several variables based on the previously defined 18 features. These vari-

ables include the “peak” feature, calculated as tmax−t0, the “peakvalue” feature denoted as ~Xtmax
,

the “left90” feature represented by t0 − t−0.1, the “right90” feature indicated by t0.1 − t0, the

“left80” feature calculated as t0 − t−0.2, the “right80” feature defined as t0.2 − t0, and so on. By

utilizing these variables, we eliminate the calendar coordinate information from the features tα

Fig 3. Illustrative definitions and extractions of all features. The red dots represent the original data points Xi, while the black dots represent the

corresponding values of tα.

https://doi.org/10.1371/journal.pone.0298049.g003
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for −0.8 � α � 0.8 and retain only their shape information. Consequently, we can compare the

shapes of two curves of daily infection rates by examining the values of the 18 feature variables:

peak, peakvalue, left90, left80, . . ., left20, right90, right80, . . ., right20 as if they were aligned

with a common t0. The only feature variable that retains the calendar coordinate is the “peak-

date” feature, represented by tmax.

Measurements of these 18 feature variables across all potential district-specific or age-

group-specific curves are collected from 7 cities under study in Taiwan. These measurements

are of discrete data type and are stored in a structured data matrix format, where each row rep-

resents a curve and each column represents a feature variable. It is important to note that these

feature variables retain their mutual associations of various degrees. The variations in the

degrees of association are expected to be significantly heterogeneous. For instance, the feature

variables on the left, depicting growth patterns, are expected to be highly associated, while the

feature variables on the right, depicting decline patterns, are less so. This asymmetry in associ-

ation reveals their essential roles, among many other distinct roles, in characterizing the

dynamics underlying curves of daily infection rates, as discussed in Section 5.

4 Basic methods

In this section, we utilize the structured data matrix, consisting of measurements of the 18

selected features, to introduce computational concepts and methodologies based on Theoreti-

cal Information Measurement ([11]) that are necessary for the data analysis presented in this

paper. In the first subsection, we provide a brief review of the concepts of conditional entropy

and mutual information. The concept of conditional entropy will be employed to establish

directed and undirected association measurements between two features, as well as between

two feature sets of different sizes. In the second subsection, we provide a concise overview of

the major factor selection protocol used to examine the dynamics of a chosen response variable

with respect to a set of covariate features. This protocol, developed in [12–15], builds upon the

concepts of conditional entropy and mutual information.

4.1 Association based on theoretic information

In this paper, we analyze the association between two variables based on Theoretic Informa-

tion. There are various statistics that can measure such association, and in our analysis, we

employ Theoretic Information as the basis. The entropy of a variable X is defined as

HðXÞ ¼ Ep½�logðpðXÞÞ�, where p(X) represents the probability distribution of X. This entropy

value represents the amount of information or uncertainty associated with the variable X. To

investigate the association between two variables X and Y, we can examine their conditional

distributions X|Y, Y|X, or the joint distribution (X, Y). Through these distributions, we can

quantify the association between X and Y as

HðX;YÞ ¼ HðXÞ þ HðYjXÞ ð1Þ

¼ HðXjYÞ þ HðYÞ ð2Þ

¼ HðXjYÞ þ IðX;YÞ þ HðYjXÞ; ð3Þ

where

IðX;YÞ ¼ HðXÞ � HðXjYÞ ¼ HðYÞ � HðYjXÞ

is the mutual information of X and Y. The conditional entropy H(X|Y) measures the
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uncertainty of X given the knowledge of Y, or equivalently, the information in X that is not

explained by Y. To quantify the ratio of information in X that is not explained by Y, we define

the re-scaled conditional entropy as

EðXjYÞ ¼
HðXjYÞ

HðXÞ
:

This measure ranges from 0 to 1, where EðXjYÞ ¼ 0 indicates that Y can perfectly explain X,

while EðXjYÞ ¼ 1 indicates that knowing Y provides no information about X.

Using this statistic, we construct a network graph that represents the associations between

variables. Each variable corresponds to a vertex in the graph, and an edge is drawn between

two variables if their re-scaled conditional entropy is below a specified threshold. The width of

the edge is used to indicate the strength of the association between the two variables.

In addition to the network graph, we also visualize the associations between variables using

a heatmap. The heatmap displays the re-scaled conditional entropies between variables. To

enhance the interpretability, we rearrange the rows and columns of the heatmap based on a

Hierarchical Clustering Tree, which helps reveal the underlying structures of the variables.

4.2 Major factor selection

In the previous subsection, we discussed how the conditional entropy H(Y|X) represents the

information of the response variable Y not yet explained by the covariate variable X. When Y is

the response variable of interest, a lower value of H(Y|X) indicates that X plays a more crucial

role in explaining Y. Our objective in this context is to identify a subset F � X1;X2; . . . ;Xp

such that the conditional entropy HðYjFÞ is minimized. F represents the set of feature vari-

ables that serve as the major factors, as named in our previous work, in explaining the dynam-

ics between the response variable Y and the covariates.

In our previous work [12], we introduced a protocol for major factor selection. The algo-

rithm begins by examining the individual effect of each covariate by computing the condi-

tional entropies. Covariates that exhibit significantly lower conditional entropy are identified

as potential candidates for the major factors influencing the dynamics between the response

variable and the covariates (Re-Co dynamics).

Next, we proceed to calculate the conditional entropies for every pair of covariates. In the-

ory, we expect that H(Y|Xi) � H(Y|Xi, Xj), and in practice, this inequality is typically strict due

to the finite sample phenomenon. This suggests that adding another covariate to a feature set

can improve the explanation of the response variable. However, it is important to ensure that

the newly added covariate provides a significant improvement beyond independent noise. To

address this, we propose a fast algorithm to estimate the reduction in entropy caused by noise,

which serves as a standard for determining the significance of the entropy drop.

In addition to identifying redundant covariates in a feature set, we also examine the 2nd-

order effect, which arises when both covariates are present together. This occurs when the

2-feature effect is significantly larger than the sum of the individual 1-feature effects. The 2-fea-

ture effect is quantified by H(Y) −H(Y|Xi, Xj), while the individual 1-feature effects are given

by H(Y) −H(Y|Xi) and H(Y) −H(Y|Xj), respectively. To check

HðYÞ � HðYjXi;XjÞ � HðYÞ � HðYjXiÞ þ HðYÞ � HðYjXjÞ;

it suffices to check

HðYjXiÞ � HðYjXi;XjÞ � HðYÞ � HðYjXjÞ:
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Successive conditional entropy (SCE) drop is defined as

SCE � dropðFÞ ¼ min
Xi2F

HðYjF n XiÞ � HðYjFÞ:

Therefore, we check whether the 2-order effect exists from

SCE � dropðXi;XjÞ � minfSCE � dropðXiÞ; SCE � dropðXjÞg:

Higher-order effects are checked by similar formulas.

5 Associative relationships among all feature-variables

In this section, we investigate the associative relationships among the 18 feature variables,

which are designed to capture the growth and decline patterns observed in the curves of daily

infection rates over a fixed study period. These associations are visually demonstrated in Fig 3

and can also be observed in Fig 2. To further examine and quantify these associations, we uti-

lize measurements such as conditional entropy and mutual information.

We begin by categorizing each of the 18 feature variables into four categories. This categori-

zation serves two purposes: reducing noise and enabling the detection of potentially nonlinear

associative patterns using contingency tables. Specifically, we construct a 4 × 4 contingency

table for each pair of these 18 features. Using this contingency table framework, as explained

in Section 4, we calculate the re-scaled conditional entropy to assess the directional associa-

tions of row-variable-to-column-variable and column-variable-to-row-variable.

We construct two versions of directed association networks using different threshold val-

ues, which are presented in the two panels of Fig 4. By comparing these two networks, we can

observe the overall associative relationships among the 18 feature variables in terms of their

strength. In panel (A), the feature variables on the left side exhibit mutual associations, while

Fig 4. Directed associative network of all features with thresholding at: (A) 0.6; (B) 0.7.

https://doi.org/10.1371/journal.pone.0298049.g004
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the feature variables on the right side do not demonstrate strong mutual associations. The net-

work in panel (A) consists of two separate cliques. Although these cliques become connected

in panel (B), the two groups of feature variables still do not exhibit high mutual associations.

The mutual conditional entropy (MCE) is computed by averaging the two directional asso-

ciations, providing a nondirectional measure of association for each pair of feature variables.

Using the MCE values, we create a heatmap of the MCE matrix by rearranging rows and col-

umns using a Hierarchical clustering algorithm. This rearrangement places similar rows or

columns closer together, resulting in a clearer visual structure. The heatmap and its corre-

sponding network are presented in Fig 5. From the heatmap, we observed a clear structure

consisting of two blocks, with one block representing variables from the left side and the other

block representing variables from the right side. Consistent with our previous analysis, we

observe that the feature variables on the left side form a cohesive network, indicating strong

mutual associations among them. However, the feature variables on the right side do not

exhibit strong mutual associations in the network.

Both Figs 4 and 5 provide clear evidence of the asymmetric associations between the feature

variables on the left side, which depict the growth pattern, and the feature variables on the

right side, which depict the decline pattern. This observation has important implications for

understanding the dynamics of infectious diseases within a closed system like Taiwan. It sug-

gests that the constraints on the growth dynamics are more rigid compared to the constraints

on the decline dynamics. This result indicates that there is limited variation in the growth pat-

terns once the infectious disease enters a new domain. The shape of the growth pattern

remains relatively fixed, with only variations in slope and peak value. In contrast, during the

decline phase, there is greater freedom for the shape of the curve to vary. This shape asymme-

try between growth and decline patterns suggests that behavioral impacts are also expected to

be asymmetric, as we will demonstrate in the next section.

Fig 5. Associative heatmap (A) and network (B) of all features.

https://doi.org/10.1371/journal.pone.0298049.g005
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6 Major factors underlying dynamics of daily infection rate

In this section, we focus on computing and uncovering the major factors that contribute to

two key characteristics of the daily infection rate curve: the peak value and the curvature-at-

peak. The peak value serves as a measure of the intensity of Covid-19 infection within a dis-

trict, while the curvature-at-peak indicates the duration during which the disease remains at

its peak strength. We aim to determine whether the features related to the growth phase (Left)

or the decline phase (Right) exhibit stronger associations with the peak value and curvature-

at-peak. In this section, we explore these questions and present some surprising findings.

Before delving into the analysis of district-level data, it is beneficial to visualize the spread of

Covid-19 at the city scale in order to provide a visual context for our discussions on the

dynamics of the disease. Fig 6 displays the dates of the peak infection rates across various cities

in Taiwan. It is evident that the outbreak originated in Taipei (TP) and subsequently spread to

its surrounding cities, including New Taipei City (NT), Keelung (KL), and Taoyuan (KY).

Moving towards the west side of the island, which is densely populated, the southward spread

coincides with cities that host major stations of the high-speed railway, such as Taichung (TC),

Tainan (TN), and Kaohsiung (KS). The spread then extends to the suburbs of these three cities.

In contrast, the east side of the island, home to smaller cities known for their tourist attractions,

such as Yilan (YN) and Hualien (HL), experienced earlier instances of Covid-19 infections.

The Fig 7 shows that Taipei has a smaller cumulative infection rate at its peak than its sub-

urban cities of New Taipei, Keelung, and Taoyuan. Further, cities immediately south of these

suburban cities are small in population size and less-densely populated. The varying cumula-

tive rates in the three major cities: Taichung, Tainan, and Kaohsiung, are primarily due to

averaging heterogeneous rates from their urban and suburban districts.

6.1 Exploring peakvalue

The height of the peak in the daily infection rate curve is a prominent characteristic that

attracts attention. It is reasonable to assume that a district’s growth pattern plays a significant

Fig 6. Visualization of the peak dates of all the cities in Taiwan.

https://doi.org/10.1371/journal.pone.0298049.g006
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role in determining the height of its peak. Additionally, it is anticipated that the height of the

peak can have a substantial impact on the subsequent decline pattern. To investigate these

assumptions and expectations, we employ conditional entropy (CE) evaluations to identify the

covariate features or feature sets that can influence the response variable “peakvalue”. The

results of the CE calculations are summarized in Table 1, which provides insights into the fac-

tors associated with the height of the peak.

Upon examining Table 1, we can observe the top 5 ranked features and feature pairs. The

most influential 1-feature turns out to be “right20”, which corresponds to the very end of the

daily infection rate curve. The relationship between “right20” and “peakvalue” can be

explained as follows: a higher value of “peakvalue” indicates that it will take a larger number of

days for the infection rate to decrease by 20%. The second ranked 1-feature is “right30”, which

represents the declining speed at 30% of the peak. It is worth noting that “right30” is highly

correlated with “right20”. The third ranked feature is “left50”, which captures the growth slope

at 50% of the peak. Additionally, the fourth ranked 1-feature is “peakdate”. The association

between “peakdate” and “peakvalue” reflects an important aspect of spreading dynamics: the

surge in Covid-19 infection rate originated from districts in Northern Taiwan, and there is a

tendency that earlier surges correspond to higher “peakvalue” values.

Fig 7. Visualization of the cumulative infection rates of all the cities at their peak dates in Taiwan.

https://doi.org/10.1371/journal.pone.0298049.g007

Table 1. Top 5 and the bottom-ranked CEs of “peakvalue” as the response variable.

1-feature CE SCE-drop 2-feature CE SCE-drop

right20 0.7202 0.4531 peakdate_right20 0.4647 0.2555

right30 0.8518 0.3215 left70_right20 0.5255 0.1947

left50 0.8707 0.3026 left20_right20 0.5261 0.1941

peakdate 0.8766 0.2967 left30_right20 0.5276 0.1926

right70 0.8816 0.2916 peakdate_right30 0.5331 0.3187

peak 1.0047 0.1686 left20_left40 0.9043 0.0407

https://doi.org/10.1371/journal.pone.0298049.t001
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In the 2-feature setting, the feature pair (“peakdate”, “right20”) achieves the lowest CE, indi-

cating that the combination of “peakdate” and “right20” provides the most informative repre-

sentation of the “peakvalue” variable. It is expected to see pairs involving “right20” have low

CEs, as “right20” itself has a low CE. Similarly, the feature pair (“peakdate”, “right30”) also

achieves a low CE, which is in line with their individual rankings. However, it is interesting to

note that the feature pair (“right20”, “right30”), despite being individually ranked first and sec-

ond, does not exhibit a significantly lower CE when considered together. This suggests that the

high correlation between “right20” and “right30” limits the additional information gained

from their joint pair.

6.2 Exploring curvature-at-peak

The curvature at the robust-peak t0 plays a significant role in characterizing the smoothed

curve of daily infection rate for each district. A large curvature corresponds to a small

“right90” value and signifies a rapid growth followed by a steep decline. On the other hand, a

small value of curvature-at-peak indicates that the district’s infection rate is sustained by the

“full infection force” for an extended period centered at the robust-peak t0. This leveling-off

pattern is considered unfavorable for the community within the district.

We examine the dynamics of the curvature-at-peak t0 by considering “right90” as the

response variable, while excluding its close counterpart, “left90”, as a covariate feature. We

present the top 5 and bottom 2 ranked CEs in both the 1-feature and 2-feature settings in

Table 2. In the 1-feature setting, it is somewhat unexpected to find that the feature “left80” is

ranked at the top, while “right80” is ranked fifth. There is a notable difference in the drops of

their CEs. The high ranking of “left80” can be attributed to its strong association with “left90”,

which is nearly equivalent to “right90”. However, what is surprising is the fifth position of the

feature “right80” after “left50”. This asymmetric outcome further highlights the distinction

between the growth and decline patterns in the curves of the daily infection rate.

In the 2-feature setting, we observe that the feature pair (“left80”, “right80”) achieves the

lowest CE. However, it is noteworthy that the reduction in CE for the joint pair is smaller than

the sum of the reductions for the individual features. It is expected to find that pairs involving

“left80” have low CEs, but this is only the case when “left80” is paired with a “right” variable.

When “left80” is paired with a “left” variable, the reduction in CE is not as significant due to

the high correlations between them.

7 Geographic and social-economic effects

In this section, we aim to investigate whether the growth and decline patterns of the daily

infection rate exhibit geographic and social-economic differences across the 79 districts con-

sidered in our study. Specifically, we focus on the top 12 districts in population for each of the

Table 2. Top 5 and bottom 2 ranked CEs of “right90” as the response variable for curvature.

1-feature CE SCE-drop 2-feature CE SCE-drop

left80 0.5046 0.7138 left80_right80 0.2440 0.2606

left70 0.6386 0.5798 left80_right20 0.3071 0.1975

left60 0.6957 0.5228 left80_right70 0.3307 0.1739

left50 0.7128 0.5056 left80_right50 0.3480 0.1566

right80 0.7644 0.4540 left80_peakdate 0.3651 0.1395

peakvalue 0.9991 0.2193 peakvalue_right40 0.8287 0.1474

right30 1.1000 0.1014 right40_right30 0.9016 0.0746

https://doi.org/10.1371/journal.pone.0298049.t002
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six municipalities and all seven districts in Keelung. To analyze these effects, we introduce two

new binary features: “North-vs-South” to capture the geographic effect and “urban-vs-subur-

ban” to capture the social-economic effect. We will employ conditional entropy computations

using these two binary features as response variables to investigate the geographic and social-

economic effects on the daily infection rate patterns.

7.1 Exploring geographic effects

In the context of geographic effects, we classify districts into two categories: North and South,

based on the cities they belong to. The North category comprises districts from Taipei (TP),

New Taipei City (NT), Keelung (KL), and Taoyuan (TY). Conversely, the South category con-

sists of districts from Taichung (TC), Tainan (TN), and Kaohsiung (KH). By employing this

binary feature, we can investigate whether there are discernible variations in the growth and

decline patterns between districts located in the northern and southern regions of Taiwan.

For the growth pattern analysis, we employ the K-means clustering algorithm with K = 4 to

merge a set of sequentially dependent features into a single fused feature. This technique helps

alleviate the curse of dimensionality. Specifically, we consider a district’s 5-dimensional vector

(left30, left40, left50, left60, left70) and assign it to one of the four clusters based on its charac-

teristics. We denote this clustering-based growth feature as “left30to70”. Additionally, we have

two more growth features named “left30to50” and “left30to60”. Similarly, for the decline pat-

terns, we introduce three fused features: “right30to50”, “right30to60”, and “right30to70”.

These six fused features are investigated using our major selection protocol to examine their

explanabilities on the binary response variable representing “North” or “South”. The condi-

tional entropies (CEs) and the corresponding significant conditional entropy (SCE) drops for

these features are reported in Table 3.

Based on the findings presented in Table 3, the fused growth feature “left30to70” achieves

the lowest conditional entropy (CE), followed by “left30to60” and “left30to50”. Notably, the

CE-drops for these growth features are five times or more significant than the CE-drops

observed for the three fused decline features: “right30to70”, “right30to60”, and

“right30to50”. Interpreting these CE-drops as measures of mutual information between each

individual fused feature and the geographic response feature (North-vs-South), we can con-

clude that geographic effects are prominently reflected through growth patterns rather than

decline patterns.

In the 2-feature setting, we observe that the pair of fused features (left30to70, right30to70)

achieves the lowest conditional entropy (CE), indicating a strong ecological effect. Notably, the

significant conditional entropy drop (SCE-drop) of 0.1017 for this pair is larger than the CE-

drop of “right30to70” alone. This result provides assurance that the combined growth and

decline patterns can indeed better capture the geographic effect underlying the dynamics of

the Covid-19 daily infection rate. On the other hand, combinations of growth-and-growth and

Table 3. Testing North-vs-South for geographic effect.

1-feature CE SCE-drop 2-feature CE SCE-drop

left30to70 0.27619 0.4130 left30to70_right30to70 0.1744 0.1017

left30to60 0.2955 0.3936 left30to50_right30to70 0.1819 0.1167

left30to50 0.2986 0.3905 left30to70_right30to60 0.2100 0.0661

right30to70 0.6059 0.0832 left30to60_left30to70 0.2699 0.0062

right30to60 0.6144 0.0747 right30to50_right30to70 0.5269 0.0789

right30to50 0.6300 0.0591 right30to50_right30to60 0.6104 0.0039

https://doi.org/10.1371/journal.pone.0298049.t003
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decline-and-decline patterns do not exhibit any significant effects beyond their individual

effects.

7.2 Exploring social-economic effect

In the context of exploring the social-economic effect, it is important to consider the distinc-

tion between urban and suburban areas. Taipei, being the capital city of Taiwan, has several

factors that contribute to its higher social-economic status compared to districts in New Taipei

City, Keelung, and Taoyuan. These factors include housing prices, availability of open public

spaces, and various others. As a result, we classify the 12 districts in Taipei as urban. On the

other hand, the 31 districts in the surrounding cities of New Taipei City, Keelung, and

Taoyuan are classified as suburban. In the case of Taichung, Tainan, and Kaohsiung, these cit-

ies include both urban and suburban districts due to recent expansions of their city adminis-

trations to incorporate districts from the surrounding counties with the same names.

Therefore, for this particular example, we exclude districts from these three cities.

We utilize the same set of six fused feature variables as in the previous subsection to exam-

ine the social-economic effect. The explanabilities based on CEs are presented in Table 4. Our

analysis reveals several significant findings. In the 1-feature setting, individual fused features

exhibit limited urban-vs-suburban effects. However, in the 2-feature setting, we observe

remarkable interactive phenomena. The pair (left30to60, right30to70) achieves an SCE-drop

of 0.1504, which is more than seven times the CE-drop of “right30to70”. This effect is also evi-

dent in Table 5, where the majority of columns have very low or even zero CEs. Similar strong

interactive effects are observed for the pairs (left30to70, right30to50) and (left30to50,

right30to70). In contrast, pairs consisting of two growth features or two decline features do

not exhibit such effects.

These remarkable interactive effects of growth and decline patterns strongly suggest that

curves of daily infection rates derived from urban districts are fundamentally distinct from

curves derived from suburban districts. These findings align with our observations that urban

curves have lower peak values and smaller curvatures-at-peak.

In summary, we have successfully examined the geographic and social-economic effects

underlying the spreading dynamics of Covid-19 daily infection rates. Additionally, in this sec-

tion, we have demonstrated a methodology for mitigating the curse of dimensionality using

clustering algorithms.

Table 4. Testing urban-vs-suburban for social-economic effect.

1-feature CE SCE-drop 2-feature CE SCE-drop

left30to60 0.6338 0.0359 left30to60_right30to70 0.4833 0.1504

left30to50 0.6387 0.0310 left30to70_right30to50 0.4864 0.1590

left30to70 0.6454 0.0243 left30to50_right30to70 0.4943 0.1444

right30to70 0.6507 0.0190 left30to60_right30to60 0.5731 0.0607

right30to50 0.6510 0.0187 left30to50_left30to70 0.6326 0.0061

right30to60 0.6616 0.0081 right30to50_right30to60 0.6503 0.0006

https://doi.org/10.1371/journal.pone.0298049.t004

Table 5. Contingency table of (left30to60, right30to70) vs urban-vs-suburban for testing urban-vs-suburban for social-economic effect.

U-S/L_R 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3

urban 1 1 2 1 0 1 7 7 2 4 1 0 1 1 2

suburban 0 0 2 0 9 4 11 10 0 0 5 1 2 1 3

https://doi.org/10.1371/journal.pone.0298049.t005
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8 Growth and decline similarity detailed

Based on the non-directed and directed networks illustrated in Figs 4 and 5, we observe that

the feature variables belonging to the Left group are highly correlated with each other, while

the feature variables in the Right group exhibit weaker associations. The associations between

these two groups are also not significant, except for the pair “left90” and “right90”. Addition-

ally, the calculated conditional entropies (CEs) for testing the geographic effect of North-vs-

South indicate that the Left feature variables are more informative than the Right feature

variables.

Given this understanding, we proceed to evaluate the degree of similarity among all districts

and age groups based on the Left and Right feature variables separately. We employ the Euclid-

ean distance as a similarity measure, as it allows us to consider all feature variables together. It

is expected that the resulting patterns of similarity among district- or age-group-specific curves

of daily infection rates will neither be completely blurred nor clearly distinct. These consider-

ations motivate us to compute the degree of similarity based on the Left and Right feature vari-

ables separately.

8.1 Geographic effect via similarity among districts

In this subsection, we examine the similarity among districts within each of the seven cities.

Each district is identified by a three-letter code name. The cities are represented by a two-capi-

tal-letter code, as illustrated in Figs 6 and 7. For example, “TP” represents Taipei and “NP” rep-

resents New Taipei. The two-capital-letter code is followed by a lowercase letter from “a to l,”

which corresponds to one of the 12 districts within the city.

Within these 79 code-named districts, we assess the degree of similarity based on the Left

feature variables using the Euclidean distance metric. To construct a clustering tree, we employ

the Hierarchical clustering (HC) algorithm with the Ward-d2 module. The resulting HC-tree

consists of 79 tree leaves, which are grouped and located based on their similarity. Code-

named districts that share a common branch in the tree are considered to be similar to a cer-

tain degree, determined by the level of the tree where the branch is situated. For example, if

two code-named leaves are grouped together in a branch at the lowermost level, it indicates a

high degree of similarity between those districts. The quantification of this visible similarity

can be further evaluated using the tree geometry of the HC-tree. This evaluation is performed

using a binary coding scheme proposed and developed in [16].

The HC-tree follows a binary structure, where each internal node splits into two sub-

branches. Hence, we can employ a simple binary coding scheme, using “left” to represent 0

and “right” to represent 1, to encode each tree leaf (or code name) from the top level to the bot-

tom level of the tree. This binary coding scheme allows us to locate each tree leaf by utilizing a

segment of binary codes. The length of the binary coding segment shared by two tree leaves

directly reflects their level of similarity. The longer the common coding segment, the higher

the degree of similarity between the corresponding tree leaves. We create a heatmap based on

the tree-distance matrix derived from this coding scheme, as illustrated in Fig 8. The code-

named districts are arranged along the row and column axes of the matrix according to the

structure of the HC-tree.

The heatmap presented in Fig 8 exhibits distinct block patterns of two sizes: large and

medium. There are eight medium-sized blocks denoted by capital letters from “A” to “F”.

Additionally, there are two large blocks. The upper-right large block encompasses the {D, E, F}

medium blocks, which correspond precisely to the districts of four cities in the northern

region: Taipei (TP), New Taipei (NP), Taoyuan (TY), and Keelung (KL). Among these three

medium blocks, the medium block labeled as D exclusively comprises 13 districts, including

PLOS ONE Unraveling implicit human behavioral effects on dynamic characteristics of Covid-19 daily infection rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0298049 February 12, 2024 16 / 24

https://doi.org/10.1371/journal.pone.0298049


10 districts from Taipei (TP) and 2 districts from New Taipei City (NT). All other 10 districts

from New Taipei City are in the medium block E. 9 out of 12 districts of Taoyuan (TY) are in

the medium block F.

On the other hand, the lower-left large block comprises three medium blocks: {A, B, C}.

The majority of districts from Tainan (TN) are found in median-block-B, which also includes

some districts from Taichung (TC). On the other hand, the districts in median-block-A are

predominantly from Taichung (TC) and Kaohsiung (KH). This suggests that the decline

Fig 8. Growth similarity among 79 districts.

https://doi.org/10.1371/journal.pone.0298049.g008
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patterns of districts in Taichung (TC) exhibit similarities to both Tainan (TN) and Kaohsiung

(KH). However, it is worth noting that geographically, Tainan (TN) is situated between Tai-

chung (TC) and Kaohsiung (KH).

The clear separation between the North and South regions observed in the heatmap is

mainly attributed to the feature variables of the Left, which represent the growth pattern of the

daily infection rate curve. These findings align with the geographic effects testing results dis-

cussed in the previous section.

Similarly, we investigate the similarity among the 79 districts based on the decline perspec-

tive using the feature variables of the Right. We construct an HC-tree with 79 tree leaves repre-

senting the districts. Using the binary coding scheme, we create a tree-distance matrix of size

79 × 79, which is then visualized as a heatmap in Fig 9. Once again, we observe a clear separa-

tion between the North and South regions. The big block representing the North consists of

the median blocks {D, E, F, G, H}, while the big block representing the South consists of the

median blocks {A, B, C}. Among these five medium blocks, the medium block labeled as D

exclusively comprises eight out of twelve districts from Taipei, while the remaining four

medium blocks contain a mixed composition of districts primarily from New Taipei (NP),

Taoyuan (TY), and Keelung (KL).

The smallest medium block, C, exclusively consists of four districts from Kaohsiung. How-

ever, it is interesting to observe that the medium blocks A and B do not exhibit a clear mixture

of district memberships from Taichung (TC), Tainan (TN), and Kaohsiung (KH). The

medium block A primarily includes districts from Tainan (TN) and some districts from Tai-

chung (TC). In contrast, the medium block B consists of districts mainly from Taichung (TC)

and Kaohsiung (KH). It is worth noting that Tainan (TN) is geographically situated between

Taichung (TC) and Kaohsiung (KH).

In summary, our analysis of the growth and decline patterns reveals multiscale patterns of

similarity among the 79 city-districts. These patterns are reflected in the block structures

observed in the heatmaps of tree distances and shared coding segments. These findings align

with the geographic effects discussed earlier. Importantly, our approach to quantifying degrees

of similarity using HC-trees offers a new method for pattern recognition. It is noteworthy that

the resulting pattern information is visible and interpretable, providing valuable insights into

the dynamics of the Covid-19 infection rates at the district level.

8.2 Social-economic effect via similarity among age groups

In this subsection, we explore the social-economic effect by examining the similarity among

age groups based on the curves of daily infection rates. We hypothesize that the similarity

among age groups reflects the social-economic effect, as different age groups are associated

with distinct social and economic factors that shape their behaviors and interactions.

For example, different school-age groups are connected to specific school districts that

implement different Covid-19 regulations. Young adults and middle-aged individuals residing

in different districts may commute to work using different transportation modes and frequent

different locations of companies. Additionally, different senior age groups have access to vari-

ous public open spaces and facilities with diverse conditions. Therefore, we anticipate that the

social-economic effect, particularly in terms of urban-vs-suburban statuses, will be evident

through the similarity observed among age groups.

We focus on four age groups identified using a 4th digital code: 1 for 0-19, 2 for 20-34, 3 for

35-54, and 4 for 55+. These codes are linked to the 3-letter codes representing each district.

We specifically examine these age groups within the 12 districts of Taipei (TP) and the 12 dis-

tricts of New Taipei City (NT). Our objective is to assess the similarity among the 96 curves
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representing the daily infection rates within these age groups and districts, similar to the previ-

ous subsection.

The heatmap of coding segment lengths, constructed by overlaying the HC-tree with 96

leaves onto the row and column axes, reveals distinct multiscale block patterns from the

growth perspective of Left features. In Fig 10, we observe visible multiscale block patterns. For

simplicity, we label two median blocks within each big block with capital letters A to D. The

lower-left big block shows a clear division between median-block-A and median-block-B.

Fig 9. Decline similarity among 79 districts.

https://doi.org/10.1371/journal.pone.0298049.g009
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Median-block-B primarily consists of code-IDs representing age groups 1, 2, and 3 in Taipei

(TP), while median-block-A consists of code-IDs representing age group 4 in New Taipei City

(NT) and Taipei (TP). In contrast, median-block-C has a mixed composition of code-IDs in

terms of age groups and TP vs. NT, while median-block-D primarily consists of code-IDs rep-

resenting age groups 1, 2, and 3 in New Taipei City (NT).

Similarly, from the decline perspective of Right features, the heatmap of coding segment

lengths is constructed by overlaying the HC-tree with 96 leaves onto the row and column axes,

Fig 10. Growth similarity among age groups in two Taipei and New-Taipei cities.

https://doi.org/10.1371/journal.pone.0298049.g010
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as shown in Fig 11. This heatmap exhibits clear block structures with two scales: the big-block

scale in the lower-left and upper-right regions, displaying a distinct separation. In addition, we

label 3 median blocks within the lower-left big block and 4 median blocks within the upper-

right big block with capital letters A to G, respectively. Median-block-A consists of 15 mem-

bers, primarily code IDs representing age groups 1 and 2 from districts in both Taipei (TP)

and New Taipei City (NT). Similarly, median-block-C also consists of 17 members primarily

representing age groups 1 and 2. On the other hand, median-block-B consists of 13 members

Fig 11. Decline similarity among age groups in two Taipei and New-Taipei cities.

https://doi.org/10.1371/journal.pone.0298049.g011
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primarily representing age group 4, as does median-block-E with its 14 members. Median-

blocks F and G have a mixture of code IDs representing age groups 1, 2, and 3 from both

cities.

In summary, based on our analysis of the heatmaps and the corresponding growth/decline

curves, we observe a distinct separation between suburban New Taipei City (NT) and urban

Taipei (TP) in terms of growth patterns among age groups. However, this separation is not as

apparent when considering decline patterns. These findings highlight the influence of social-

economic factors on the growth patterns among age groups and indicate that the relationship

between geographic location and decline patterns may be less pronounced.

9 Conclusions

This paper examines the dynamics of Covid-19 infection in Taiwan, focusing on the spreading

characteristics and human behavioral effects. The study period was carefully selected to cap-

ture the early stages of the outbreak when Taiwan had relatively low infection rates and was

considered a controlled environment for analyzing the disease’s dynamics. By analyzing struc-

tured data from 79 curves of daily infection rates across 79 districts in 7 cities, we employ The-

oretical Information measurements to identify the major factors that determine two key

characteristics of the curves: peak values and curvature-at-peak. Additionally, we investigate

how geographic and socio-economic factors related to human behavior influence the growth

and decline patterns of the curves. To further validate our findings, we utilize the hierarchical

clustering algorithm to construct tree-distance based heatmaps for both overall growth and

decline patterns, as well as age-group-specific curves. These heatmaps provide an alternative

approach to confirm the effects of North-vs-South and Urban-vs-Suburban factors in shaping

the spread of the virus.

In summary, this paper makes several key contributions. Firstly, we successfully extract 18

features from unstructured curves of daily infection rates at two different scales: the city’s dis-

trict level and the district’s age group level. This structured data format allows us to compre-

hensively characterize the growth and decline patterns of all curves across these two scales.

The extraction of these features provides a natural and effective approach for analyzing func-

tional data associated with the spread of the virus.

The second contribution of this paper lies in the analytical presentations of the asymmetry

between the growth and decline patterns of the curves. This is achieved by employing a major

factor selection protocol based on conditional entropy. By considering the “peakvalue” and

“curvature-at-peak” as separate response variables, we are able to identify distinct sets of major

factors that underlie the dynamics of each variable. Specifically, the “peakvalue” is found to be

highly associated with features on the Left that capture the growth patterns, while the “curva-

ture-at-peak” is strongly associated with features on the Right that characterize the decline pat-

terns. These computational results provide quantitative insights into the asymmetry observed

in the visible growth and decline patterns of the infection curves. Moreover, the major factor

selection protocol demonstrates a data-driven approach to understanding complex dynamics

without relying on pre-defined structures or assumptions.

The third contribution of this paper is the identification of geographic and social-economic

effects through binary encodings of all districts. Specifically, we examine the North-vs-South

geographic effect and the urban-vs-suburban social-economic effect. Remarkably, these effects

are determined solely based on the binary encoding of districts, without the need for individ-

ual-level geographic or social-economic data. Furthermore, we validate these behavioral-ori-

ented effects by analyzing the similarity between district-specific and age-group-specific

curves, focusing on regions of growth and decline, respectively. It is worth emphasizing that
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our novel approach of using coding-length-based tree-distance heatmaps provides an effective

visualization tool for representing hierarchical clustering trees, offering a fresh perspective on

analyzing and interpreting the results.

In conclusion, our findings converge to a key take-home message: human behaviors play a

significant and computable role in shaping the dynamics of Covid-19 infection spread.

Through our study in Taiwan, we provide a fresh perspective on understanding not only the

dynamics of Covid-19 but also the spreading dynamics of other infectious diseases. By shed-

ding light on the impact of human behaviors, we aim to contribute to the broader field of

infectious disease research and inspire further investigations in this area. Our hope is that this

message from Taiwan will stimulate new avenues of inquiry and facilitate a deeper under-

standing of the complex interplay between human behaviors and the spread of infectious

diseases.
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