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Abstract
Without imposing prior distributional knowledge underlying multivariate time series of
interest, we propose a nonparametric change-point detection approach to estimate the
number of change points and their locations along the temporal axis. We develop a structural
subsampling procedure such that the observations are encoded into multiple sequences of
Bernoulli variables. A maximum likelihood approach in conjunction with a newly devel-
oped searching algorithm is implemented to detect change points on each Bernoulli process
separately. Then, aggregation statistics are proposed to collectively synthesize change-point
results from all individual univariate time series into consistent and stable location esti-
mations. We also study a weighting strategy to measure the degree of relevance for different
subsampled groups. Simulation studies are conducted and shown that the proposed change-
point methodology for multivariate time series has favorable performance comparing with
currently available state-of-the-art nonparametric methods under various settings with dif-
ferent degrees of complexity. Real data analyses are finally performed on categorical,
ordinal, and continuous time series taken from fields of genetics, climate, and finance.

Keywords Multivariate time series · Change point detection · Stability detection ·
Nonparametric

1 Introduction

Physical, biological, and social dynamic complex systems found in real-world and in many
sciences manifest transitions from a phase to another. That is, phase-transitional non-sta-
tionarity is natural and essential. Upon describing such a complex system via non-stationary
time series of any dimensions, abrupt distributional changes are ubiquitous patterns of great
interest for such phase-transitions, at least fundamentally.
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Change points as temporal locations of such occurrences and their multiplicity are key
parts of deterministic structures of the time series under study. Nowadays, change-point
analysis has well recognized in statistics literature and beyond as an essential scientific
methodology that aims to detect change points on the time-ordered observations and then
partition the whole time series into homogeneously distributional segments. Change-point
analysis can be traced back to 1950 s (Page, 1954; Chernoff & Zacks, 1964; Kander & Zacks,
1966). So far, it has been playing a crucial role in diverse fields including bioinformatics
(Picard et al., 2005; Muggeo & Adelfio, 2011), behavioural science (Rosenfield et al., 2010;
Hoover et al., 2012), neuroimage (Bosc et al., 2003), climate science (Robbins et al., 2011),
finance (Talih & Hengartner, 2005), and speech recognition (Malladi et al., 2013).

In general, such an analysis can be conducted under either parametric or nonparametric
settings. Parametric approaches rely heavily upon assumptions of underlying distributions
belonging to a known family. Likelihood or penalized likelihood functions are generally
involved (Yao, 1988; Chen & Gupta, 1997; Bai & Perron, 2003). In contrast, nonparametric
approaches make very few assumptions regarding stochasticity underlying the time series.
The likelihood principle is not directly applicable. Nonetheless, such approaches fit well in a
wider variety of applications. Such an advantageous feature has popularity and a vast
amount of research attention in the past decade.

In fact, the likelihood principle is still applicable under a rather mild independence
assumption that, at least, approximately endorses some distributional characters upon
observed or computed recurrent events occurring along with the time series. For instance,
Kawahara & Sugiyama (2011) and Liu et al. (2013) attempted to estimate the likelihood
ratio using KL divergence; Chen & Zhang (2015) proposed a graph-based approach and
applied it in multivariate non-Euclidean data. Zou et al. (2014) developed an empirical
likelihood approach to discover an unknown number of change-points via BIC. Haynes
et al. (2017) extended the empirical likelihood approach and introduced a nonparametric
invariant of the Pruned Exact Linear Time (PELT) (Killick et al., 2012) to improve com-
putational efficiency. Matteson and James (2014) present a U-statistic to quantify the dif-
ference between the characteristic functions of two segments. Lung-Yut-Fong et al. (2015)
generalized Mann–Whitney rank-based statistic to multivariate settings. Arlot et al. (2019)
improved the kernel-based method by Harchaoui and Cappe (2007) with a generalized
model-selection penalty.

However, most of the existing nonparametric research focused on the single change-point
problem and the extension of multiple change point detection is achieved via dynamic pro-
gramming (Harchaoui & Cappe, 2007; Lung-Yut-Fong et al., 2015; Arlot et al., 2019) or
bisection procedure (Vostrikova, 1981; Olshen & Venkatraman, 2004; Matteson & James,
2014). It is still scarce in the literature to efficiently discover multiple change points under
multivariate settings, especially when the covariance structure changes in chronological order.

In the paper, a new nonparametric approach is proposed to detect multiple distributional
changes. Our developments are anchored on independent time-ordered observations. The
basic idea is to systematically select a subset of the data points at each iteration, with which
we encode the continuous observations into a sequence of Bernoulli variables. The number
of change points & their locations are estimated by aggregating all the dynamic information
discovered from the collection of Bernoulli processes. Instead of working on the unknown
distribution directly, the proposed approach takes advantage of dividing the problem into
several easier tasks, so that the maximum likelihood approach can be applied to analyze the
Bernoulli processes, respectively. We demonstrate that this divide-and-conquer framework
is sensitive to detect any underlying distributions and can be implemented in conjunction
with other parametric approaches.
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Another important extension of the aggregation technique is the stability change-point detec-
tion. Such a stability selection introduced byMeinshausen and Buhlmann (2010) was designed to
improve the performance of variable selection and provide control for false discoveries. We
demonstrate that the idea of aggregating results by applying a procedure to subsamples of the data
can be well implemented under our framework. One can aggregate the estimation from the
Bernoulli sequences, and select the estimated change-point locations with votes beyond a pre-
determined threshold. To our limited knowledge, this could be the first method in the change-point
literature that holds both asymptotic property and finite-sample control of false discoveries.

The paper is organized as follows. In Sect. 2, the paper introduces an efficient algorithm
for detecting multiple change points within a change-in-parameter Bernoulli sequence. The
algorithm forms the basis of the proposed approach for handling change point detection in
univariate time series. Building upon the algorithm introduced in Sect. 2, Sect. 3 presents
the main divide-and-conquer framework to encode continuous observations into Bernoulli
processes and estimate the locations of change points in the multivariate setting. Section 4
discusses the application of the stability detection technique within the proposed change
point framework. In Sect. 5, the paper presents a weighting strategy to measure the rele-
vance of results from different sample sets in practical implementation. Numerical experi-
ments are shown in Sect. 6 to compare with other state-of-the-art nonparametric approaches.
Real data applications including categorical and continuous data in univariate and multi-
variate settings are reported in Sect. 7. We note that the proposed approach can be easily
generalized to multivariate categorical or ordinal time series data, though we mainly focus
on continuous data under the multivariate setting in this paper.

The main contributions of this paper can be summarized as follows: This paper

(1) Proposes a novel approach for detecting change points in time series data that does
not rely on any specific underlying distributions;

(2) Extends the Hierarchical Feature Selection (HFS) from single change-point detection
to scenarios with multiple change points for Bernoulli processes.

(3) Introduces a stability detection technique that enhances the accuracy of change point
estimation and provides finite-sample error control for false discoveries.

(4) Conducts numerical experiments to compare the proposed approach with other well-
known nonparametric methods and applies the proposed method to real data from
various fields.

2 Related work

2.1 Nonparametric change point analysis

The statistical literature on nonparametric changepoint analysis is comparably limited.
However, there have been valuable steps towards developing nonparametric approaches. In
the context of univariate data, Zou et al. (2014) developed an empirical likelihood-based
estimator with consistency guarantees. Haynes et al. (2017) extended the empirical likeli-
hood function and explored a non-parametric variant of PELT to enhance computational
efficiency. Pein et al. (2017) proposed the Heterogeneous Multiscale Change Point Esti-
mator to detect changes in mean and variance. Vanegas et al. (2022) focused on analyzing
serial data with an underlying quantile function consisting of constant segments. Padilla
et al. (2021) developed a change point detector by measuring the magnitude of the distri-
bution changes using the Kolmogorov-Smirnov statistic.
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In the context of multivariate nonparametric settings, Lung-Yut-Fong et al. (2015) pro-
posed a test statistic that generalized the Mann-Whitney Wilcoxon two-sample test to
multivariate settings. Matteson and James (2014) presented a U-statistic to quantify the
difference between the characteristic functions of two segments and demonstrated its con-
sistent estimations of the changepoints. In the context of multivariate nonparametric set-
tings, Arlot et al. (2019) conducted a penalized kernel least squares estimator and derived a
non-asymptotic oracle inequality. Cabrieto et al. (2018) performed kernel changepoint
detection and compared pairwise similarities between running statistics computed via the
Gaussian kernel. Padilla et al. (2022) studied the multivariate changepoint problem when
the underlying distributions are piecewise constant with Lipschitz densities.

2.2 Multiple change points detection

The technique of single change point detection can be applied recursively to generalize to the
detection of multiple changes. For example, Binary Segmentation (Scott&Knott, 2022) and its
variants, such as Wild Binary Segmentation (Fryzlewicz, 2014), narrowest over threshold
(Baranowski et al., 2019), and SeededBinary Segmentation (Kovács et al., 2023), offer a greedy
approach to search different intervals and determine the best split points. Another general
approach is the dynamic programming approach, such as Segment Neighbourhood Search
(Auger& Lawrence, 1989), used to search for multiple change points. Alternatively, the pruned
dynamic programming (Rigaill, 2015) is employed to prune a set of change point candidates,
and a similar idea can also be found in the screening step in Zou et al. (2014). Additionally,
Pruned Exact Linear Time (PELT) (Killick et al., 2012) achieves linear computational com-
plexity but at the sacrifice of statistical consistency. UnlikeBinary Segmentation approaches that
locally fit subsets of samples, our proposed method takes a different approach. It focuses on
exploring the binary emerging pattern of each sample subset, which is obtained through clus-
tering. By using voting to aggregate change point candidates, ourmethod efficiently searches for
multiple change points over the Bernoulli sequences. This dynamic programming extension of
the Hierarchical Feature Selection (HFS) (Hsieh et al., 2012) provides a computationally
effective solution for change point detection, allowing us to accurately identify multiple change
points in multivariate time series without an exhaustive search.

3 Sequence of Bernoulli variables

3.1 Background

Consider a sequence of 0–1 independent Bernoulli variables fEtgNt¼1. Suppose that k change
points are embedded within the sequence at locations 0 ¼ s�0\s�1\:::\s�k\s�kþ1 ¼ N , so
the observations are partitioned into k þ 1 segments. Observations within segments are
identically distributed but observations between adjacent segments are not. Specially,

Et �iid BernðpiÞ for Et 2 fEs�i þ1; . . .;Es�iþ1
g, for i ¼ 0; . . .; k. Now, given the number of change

points k, one task of change point detection is to estimate the k locations. In the most general
case, both number of change points and their locations need to be estimated.

Change point analysis in a Bernoulli-variable sequence was well studied when k ¼ 1.
Hinkley and Hinkley (1970) provided asymptotic distributions of likelihood ratio statistics for
testing the existence of a change point. Pettitt (1980) introduced CUSUM statistics and showed
its asymptotical equivalence to themaximum likelihood estimator. Miller and Siegmund (1982)
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investigated maximally selected chi-square statistics for two-sample comparison in a form of
2� 2 table. Later on, Halpern (1999) advocated a statistic based on the minimum value of
Fisher’s Exact Test. Tatti (2019) demonstrated that the process of identifying the optimal
change-point split can be accelerated in logarithmic time. When k[ 1, Fu and Curnow (1990)
firstly attempted to search for optimal change points such that the likelihood function is max-
imized. However, it still lacks a computationally efficient algorithm especially when k is large.

In this section, we present a new algorithm to address the problem of performing multiple
change points detection within a Bernoulli-variable sequence. The idea is motivated by
Hierachical Feature Selection (HFS) (Hsieh et al., 2012) which was designed to detect a
shift pattern between low- and high-volatility phases under financial time series. By tracking
the recurrence of 1’s in a Bernoulli sequence, our algorithm is able to partition observations
into disjoint segments with different emergence intensities. Thus, the number and location
of change points can be estimated based on the resultant segmentation. It is noted that the
searching procedure is conducted in a fashion of dynamic programming, so the time
complexity keeps relatively feasible.

3.2 Multiple change points searching algorithm

For simplicity of computation, we only consider the situation in which change point locates
at the emergence position of 1’s. Suppose that the number of 1’s in the ith segment is Mi, so

the total number of 1’s is M ¼Pkþ1
i¼1 Mi and the total number of 0’s is N �M . By further

supposing that the recurrent time can be 0 if two 1’s appear consecutively, and R1 ¼ 0 if
E1 ¼ 1, and RMþ1 ¼ 0 if EN ¼ 1, the Bernoulli-variable sequence can be represent by a

sequence of recurrent time between consecutive 1’s, denoted as fRtgMþ1
t¼1 . Especially, there

are Mi þ 1 recurrent times in the ith segment where Rt �GeomðpiÞ. The task then becomes
to search for the change points within the recurrent-time sequence.

The searching procedure is done by iteratively taking off the smallest number Rmin from the
rest Rt’s and merge the time points within Rmin. For example, if Rmin is the recurrent time
between j and j0, we merge the locations from ðjþ 1Þ to j0 as a time window, denoted as wj!j0 .
Here, it is supposed that Ej ¼ 1, Ej0 ¼ 1, and Et ¼ 0 for t 2 ðj; j0Þ. In the next step, if the
smallest Rt is taken from the recurrent time between j0 and j00, a new time window is recorded
as from ðj0 þ 1Þ to j00, named wðj0þ1Þ!j00 . We can further combine the two consecutive time
windows wðjþ1Þ!j0 and wðj0þ1Þ!j00 into wðjþ1Þ!j00 . Indeed, we merge time locations between a
pair of nearest 1’s at each step and update the recorded time windows according to their
connectivity. It turns out that the recorded time windows contain recurrent time with relatively
smaller values, which corresponds to a period with high frequency of 1’s. Hence, the
boundaries of the time windows can be extracted as potential change point locations that
partition the observations into segments with low and high Bernoulli parameters.

So far, the algorithm works very similarly to the hierarchical clustering with a single-
linkage, by agglomerating two closest single 1’s or two location groups from bottom to top.
However, it is well known that this greedy algorithm does not guarantee global optimiza-
tion. Our remedy is to set a tuning parameter C� to control the minimal length of the
recorded segments. Additionally, we count the number of Rt absorbed within each recorded
time window. Continuing with the above example, the count of recurrent time in window
wðjþ1Þ!j0 and wðjþ1Þ!j00 is denoted as Cðjþ1Þ!j0 ¼ 1 and Cðjþ1Þ!j00 ¼ 2, respectively. The
recorded time window, for example, w:!:: can be regarded as a high-intensity segment only
if its count C:!:: is greater than the threshold C�. Now, hierarchical clustering with a single-
linkage is just a special case when C� ¼ 0. Another most extreme case is when C� ¼ M , so
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there is no period having a count number above C�, thus no change point exists. Without
any prior knowledge about the minimal length of the segments, we run over all the choice of
C� starting from 0 to M to generate all possible segmentation. The optimum is the one that
fit the Bernoulli or Geometric observations best.

Suppose the observations are partitioned into ~k þ 1 segments via ~k time window
boundaries or change points ~s1; . . .; ~s~k . The Bernoulli parameter ~pi between ~si�1 and ~si can

be estimated by MLE ~̂pi ¼ f# of 10s 2 ð~si�1;~siÞg
~si�~si�1

. To measure the goodness-of-fit, model

selection is done by maximizing log-likelihood function within each segment, while
penalizing the number of change points and related estimation parameters. The penalized
likelihood or loss function can be written by,

Lð~s1; . . .; ~s~kÞ ¼ �2
X~kþ1

i¼1

X
t2ð~si�1;~siÞ

½Etlog ~̂pi þ ð1� EtÞlogð1� ~̂piÞ� þ /ðNÞQ~k ð1Þ

where Qk is the total number parameters; /ðNÞ is the penalty coefficient; /ðNÞ ¼ 2 for AIC
and /ðNÞ ¼ logðNÞ for BIC.

Suppose that W(.) is a mapping that records the corresponding time window of Rt. For
example, W ðRtÞ ¼ wðjþ1Þ!j0 where Rt is the recurrent time between j and j0. Denote window
length jwj as the count of recurrent time within a window w, for example,
jW ðRtÞj ¼ Cðjþ1Þ!j0 . It is marked that the segmentation and the loss function can be updated
based on the results in the last step. After applying a big loop cycling through C� from 0 to
M, the total time complexity now becomes OðM2Þ. As a result, an optimal window set is
returned, so the change points locations are estimated based on the window boundaries. The
multiple change-point searching algorithm is fully described in Algorithm 1.
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4 MCP for multivariate time series

A large part of change point detection literature deals with continuous observation. In this
section, we firstly proposed an encoding approach to categorize continuous time series into
multiple Bernoulli sequences, and then analyze change points embedded within the mul-
tivariate process. The idea of categorizing real-value observations aims to extract more
relevant information and filter out noise. It is claimed that the proposed approach is sensitive
to encode any underlying distributions and is easily generalized to either categorical or
continuous observations.

4.1 Encoding continuous time series

In the analysis of single stock returns, Hsieh et al. (2012) utilized a pair of thresholds to
mark absolutely large stock returns as 1 and 0 otherwise, then revealed the volatility pattern
behind the resultant 0–1 sequence. The encoding process is written as

Et ¼
1 Xt � a; Xt �b

0 Otherwise

�
ð2Þ

where fEtgt is an excursion process after marking a sequence of stock returns. Later, Wang
and Hsieh (2021) proposed an encoding method to explore the local dependence of
observations when Xt 2 Rp. Following up the idea, we firstly partition Rp space into V
disjoint subarea, denoted as BðvÞ for v ¼ 1; 2; . . .;V , then transform the continuous obser-

vations fXtgNt¼1 into V Bernoulli sequences or a V-dimensional multinominal process

fðEð1Þ
t ;Eð2Þ

t ; . . .;EðV Þ
t ÞgNt¼1, such that

EðjÞ
t ¼ 1 Xt 2 BðjÞ

0 Otherwise

(
ð3Þ

Here, subarea BðjÞ plays an important role in reserving the change-point pattern into a

Bernoulli process. Denote the Bernoulli parameter in the ith segments of fEðjÞ
t g as pðjÞi . So,

pðjÞi ¼
Z
BðjÞ

dFi ð4Þ

where Fi corresponds to the CDF of fXtgt in the ith time segments. There is actually a
tradeoff between the size and the total number of the subareas. Larger number of subareas
with smaller size can discover the distributional difference more precisely but sacrifice
statistical power due to the reduced sample size. In the following subsections, we would
assume that V is fixed and BðjÞ’s are predetermined. Besides, the degree of relevance should
be measured given a BðjÞ. Especially, it is easier to detect the change point in between the ith

and iþ 1th segments if pðjÞi is far apart from pðjÞiþ1, and vice versa. We leave the practical
issues in implementing the encoding procedure in Sect. 5.

4.2 Single change point detection

Starting with the simplest setting, let’s assume that there exists a single change point at s�.

Specifically, fXtgs
�
t¼1 �iid F1 and fXtgNt¼s�þ1 �iid F2 where F1 and F2 are two unknown CDFs.
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The goal is to test the homogeneity between the two sample sets. Following the encoding

procedure above, we obtain a multinomial process fðEð1Þ
t ;Eð2Þ

t ; . . .;EðV Þ
t Þ0gNt¼1 where

fEðjÞ
t gs�t¼1 �BernðpðjÞ1;s� Þ and fEðjÞ

t gNt¼s�þ1 �BernðpðjÞ2;s� Þ.
Robbins et al. (2011) extent the multivariate CUSUM statistics with uncorrelated com-

ponents to the multinomial settings and derived its asymptotic distributions under the null
hypothesis. The estimators of Bernoulli parameters at a hypothesized time location s is
defined by

p̂ðjÞ1;s ¼
Xs
t¼1

1fEðjÞ
t ¼ 1g=s ð5Þ

and

p̂ðjÞ2;s ¼
XN
t¼sþ1

1fEðjÞ
t ¼ 1g=ðN � sÞ ð6Þ

for j ¼ 1; 2; . . .;V. Then, a chi-square statistic proposed by Robbins et al. (2011) is written
as,

v2s ¼
XV
j¼1

ðPs
t¼1 1fEðjÞ

t ¼ 1g � p̂ðjÞ1;sÞ2

p̂ðjÞ1;s
þ ðPN

t¼sþ1 1fEðjÞ
t ¼ 1g � p̂ðjÞ2;sÞ2

p̂ðjÞ2;s

Moreover, if there exists no change point under the null hypothesis, the maximally selected
chi-square statistics v2ŝ converges to a Brownian motion asymptotically.

4.3 Multiple change points detection

Now, we consider multiple change point detection when the number of change points k is
known. Suppose the change point locations are 0 ¼ s�0\s�1\:::\s�k\s�kþ1 ¼ N . Specifi-

cally, fXtgs
�
iþ1
t¼s�i

�iid Fi for i ¼ 0; 1; . . .; k, and consecutive CDFs Fi and Fiþ1 are different. A

naive method to search for OðNkÞ possible change point locations is computationally
intractable. Bisection procedure as in Vostrikova (1981) and Olshen and Venkatraman
(2004), dynamic programming in Harchaoui and Cappe (2007), or the one we proposed in
Sect. 2 can work for the purpose. It is claimed that the proposed algorithm outperforms
others in searching for the global optima but only adapts to a single-dimensional Bernoulli-
variable sequence.

A divide-and-concur approach is proposed as a remedy to the multivariate problem.

Denote fEðjÞ
t gNt¼1 as the jth Bernoulli process after encoding the observations via BðjÞ, and

pðjÞi as the true parameters of EðjÞ
t defined by (4). We firstly apply Algorithm 1 to estimate the

change point locations within fEðjÞ
t g, for j ¼ 1; 2; . . .;V , respectively. Suppose the estimated

change point locations in the jth sequence are 0 ¼ ŝðjÞ0 \ŝðjÞ1 \ŝðjÞ2 \:::\ŝðjÞ
k̂
ðjÞ\ŝðjÞ

k̂
ðjÞþ1

¼ N .

So, the observations are partitioned into k̂
ðjÞ þ 1 homogeneous segments. Note that the

number of change points k̂
ðjÞ

does not necessarily equal k. The estimation should depend on
the subarea by which we encode the observations and the loss function in (1). After that, a
vector of length N is generated to record the estimated Bernoulli parameter, denoted as
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fr̂ðjÞt gNt¼1. Let p̂
ðjÞ
i be the estimated parameter when t is between ŝðjÞi�1 and ŝðjÞi , so

p̂ðjÞi ¼
PŝðjÞiþ1

t¼ŝðjÞi þ1
1fEðjÞ

t ¼ 1g
ŝðjÞiþ1 � ŝðjÞi

for i ¼ 0; 1; . . .; k̂
ðjÞ

and j ¼ 1; 2; . . .;V . Thus, there are ŝðjÞi � ŝðjÞi�1 duplicates of p̂ðjÞi in

fr̂ðjÞt gNt¼1, especially, r̂
ðjÞ
t ¼ p̂ðjÞi , for t 2 ðŝðjÞi�1; ŝ

ðjÞ
i �. Repeating the above procedure through

the V sequences, we can eventually obtain a sequence of V-dimensional estimated param-

eters, denoted as fr̂tgt ¼ fðr̂ð1Þt ; r̂ð2Þt ; . . .; r̂ðV Þt Þ0gt.
Generated by encoding observations from subarea BðjÞ, the Bernoulli-variable sequence

EðjÞ
t can partially reserve the distributional changes from the raw observations. Indeed, some

r̂ðjÞt ’s reflect the dynamic pattern, while others or at least some subsequences of r̂ðjÞt may
work as irrelevant noise, for example, when

R
BðjÞ dFi ffi

R
BðjÞ dFiþ1. An aggregation statistic is

further present to combine all pieces of information from j ¼ 1; 2; . . .;V , and weighting

each fEðjÞ
t gNt¼1 according to its degree of relevance. In this section, we would treat every

sequence equally for theoretical proof. The weighting procedure is described in Sect. 5.
Different from the CUSUM statistics, here the within-group variance in fr̂tgt is con-

sidered. Given k hypothesized change point locations s1; s2; . . .; sk , the statistic is written as,

Ĝðs1; s2; . . .; skÞ :¼
Xk
i¼0

Xsiþ1

t¼siþ1

kr̂t � �rik2
siþ1 � si

ð7Þ

where �ri ¼
Psiþ1

t¼siþ1 r̂t=ðsiþ1 � siÞ for i ¼ 0; 1; . . .; k. Change point locations are then esti-
mated as the ones that minimize the within-group variance, so

ŝ1; ŝ2; . . .; ŝk ¼ argmin
s1;s2;...;sk

Ĝðs1; s2; . . .; skÞ ð8Þ

It is shown in the next section that consistency holds for the statistic when N goes into
infinity. Moreover, it is computationally easier to search for multiple change point locations
when k[ 1.

We firstly stack the estimated parameters fr̂tgNt¼1 in a N � Vdesign matrix denoted asM,
in other words,

MN�V ¼ ½Mðt; jÞ�t;j ¼ ½r̂ðjÞt �t;j for t ¼ 1; . . .;N ; j ¼ 1; . . .;V

A time-order-kept agglomerate hierarchical clustering algorithm is applied upon M to
cluster time locations (rows) with comparable V-dimensional covariables. The classical
hierarchical clustering algorithm is modified so that only consecutive time points or groups
are agglomerated at each iteration, so the original time order is kept. A Wald’s type of
linkage is applied for the purpose of minimizing the within-group variance. The agglom-
eration algorithm terminates when k þ 1 consecutive time point clusters get returned, so k
change point locations are estimated correspondingly.
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4.4 Consistency

We present the consistency of the estimated change point locations obtained from our
statistics. It shows that if a part of the likelihood-based estimators from Bernoulli sequences
are consistent, then the estimators derived by the aggregation statistic in (7) can converge to
the true change point locations asymptotically. We firstly demonstrate the consistency
property for the single change point case and then do the same in the multiple change points
setting.

Suppose the true change point location is s�, so fEðjÞ
t gs�t¼1 �BernðpðjÞ1;s� Þ and

fEðjÞ
t gNt¼s�þ1 �BernðpðjÞ2;s� Þ. By definition,

r̂ðjÞt ¼
p̂ðjÞ
1;ŝðjÞ

; t 2 ½1; ŝðjÞ�
p̂ðjÞ
2;ŝðjÞ

; t 2 ðŝðjÞ;N �

8<
: ð9Þ

where ŝðjÞ is the estimated change point locations in fEðjÞ
t gt. To prove the consistency, it is

typical to assume that the sizes of the two half time sequence cut by s� go into infinity as
N ! 1, and the proportion of the first half converges to a constant c� 2 ð0; 1Þ, a.k.a.
s�=N ! c� ðN ! 1Þ. The within-group variance of (7) at any proportion cut c can be
written as,

ĜðcÞ ¼
PbNcc

t¼1 kr̂t � �r1k2
bNcc þ

PN
t¼bNccþ1 kr̂t � �r2k2

N � bNcc
ð10Þ

where �r1 ¼
PbNcc

t¼1
r̂t

bNcc and �r2 ¼
PN

t¼bNccþ1
r̂t

N�bNcc . The estimated change point location now becomes

ŝ ¼ argmin
s

Ĝðs=NÞ ð11Þ

in the finite-sample situation.

The theorem below shows that if some of the estimators ŝðjÞ are consistent, then ŝ
converges to s� asymptotically. Suppose that there exist at least one encoded Bernoulli

sequence such that pðjÞ1;s� 6¼ pðjÞ2;s� . Without loss of the generalization, we suppose that a

change point exists in fEðjÞ
t gt for j ¼ 1; 2; . . .; u, and no change point exists for j ¼

ðuþ 1Þ; . . .;V where 1� u�V .

Theorem 1 Assume that if pðjÞ1;s� 6¼ pðjÞ2;s� , then ŝðjÞ=N converges to c� asymptotically;

otherwise, ŝðjÞ=N converges to 0 or 1 meaning that no change point exists in fEðjÞ
t gt . Then,

for any �[ 0,

Pðjŝ=N � c�j\�Þ ! 1

as N ! 1.

Theorem 1 assumes that ŝðjÞ is a consistent estimator if a change point exists in fEðjÞ
t gt. So

long as u� 1, the distributional discrepancy can be captured by ŝ. For a Bernoulli-variable
sequence, the change point analysis is relatively easier. One can test the existence of a single
change point and plug in a consistent estimator if the null is rejected.
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In a more general case of multiple change points detection, suppose that observations are

independent and distributed from k þ 1 distributions fFigki¼0. Let s
�
i =N ! c�i as N ! 1,

and 0 ¼ c�0\c�1\:::\c�k\c�kþ1 ¼ 1. Since fEðjÞ
t gt may only reserve partial information of

the distributional discrepancy, the number of change points in fEðjÞ
t gt could be smaller than

k and varies for different j. By further assuming the existence of consistent estimator in the
Bernoulli-variable sequence, the theorem below shows that the consistency still holds when
the number of change point k[ 1.

Theorem 2 Define that Ci ¼ fj : ŝðjÞi =N ! c�i as N ! 1g. Suppose that the following
assumptions hold,

A1 jCij � 1 and ŝðjÞi is none if j 2 f1; . . .;Vg=Ci

A1 fi þ fiþ1\s�iþ1 � s�i where fi ¼ maxj2Ci jŝðjÞi � s�i j, for i ¼ 1; . . .; k

Then, for any �[ 0,

Pð max
i¼1;...;k

jŝi=N � c�i j\�Þ ! 1

as N ! 1.

Theorem 2 requires that the change point estimator is consistent if it exists, and there exists
at least one estimator over the V Bernoulli sequences pertaining to a true change point. With
such a strong assumption, it actually transforms the change point detection for unknown
underlying distributions into the analysis of Bernoulli-variable sequence. The task becomes
easier since an explicit likelihood function exists without further assuming any family of
distributions. So, parametric approaches can get involved and fitted well under the frame-
work. In practice, the searching algorithm advocated in Sect. 2 is employed to detect the
change points for each Bernoulli process. Another advantages by applying the encoding-
and-aggregation algorithm is that the error rate of change point detection can get controlled
theoretically, which is present in the next section.

5 Stability change point analysis

Finally, it comes to the most general case that the number of change points and their
locations are unknown. The current approaches can be divided into two types: model
selection and multi-stage testing. A searching algorithm is usually applied in conjunction
with a model selection procedure to explore a possible number of change points from 1 to a
large number. Multi-stage testing is conducted to insert an additional change point at each
stage and test the existence of the change point. However, the estimation results are not
stable to the objective function or to the significance level in multi-stage testing. None of the
approaches above provides a control for the discovery error of change point detection.

5.1 The stability detection method

In this section, we borrow the idea of stability variable selection and propose a robust
change point detection framework, named stability detection. Stability selection was firstly
advocated by Meinshausen and Buhlmann (2010) to enhance the robustness and control the
false discovery rate of variable selection. By iteratively selecting half of the samples to feed
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into a base model, the relevant variables are ultimately discovered based on the votes
aggregated over all the variable selection results. Later, Beinrucker et al. (2016) extent the
stability selection by sampling disjoint subsets of samples.

Similar to the strategy of subsampling, we select a pre-determined subset of samples in
BðjÞ to generate a Bernoulli sequence, and then estimate the number and locations of change
points under the encoded Bernoulli sequences, respectively. By treating each time location
as a variable, the stability selection framework is employed here to aggregate the estimated
change points over BðjÞ for j ¼ 1; 2; . . .;V. The successive change points are the ones with
votes or selected probability above a predetermined threshold. However, it could be unre-
alistic to break down the chronological order and treat each time point separate from others.
The points around the true change point locations could also be considered as
acceptable results.

Denote that SðjÞ is a set of change points detected based on Bernoulli sequence fEðjÞ
t gt,

and pðjÞðtÞ is the probability that a time location t is selected, i.e. pðjÞðtÞ ¼ Pðt 2 SðjÞÞ. After
aggregating all the change points sets SðjÞ for j ¼ 1; 2; . . .;V , the probability of selection for
location t is defined by

PV ðtÞ ¼
PV

j¼1 1ft 2 SðjÞg
V

ð12Þ

The valid change points are ultimately detected if the probability PV ðtÞ is above a threshold
p 2 ð0; 1Þ,

SV
p ¼ ft : PV ðtÞ�pg ð13Þ

5.2 Error control

To evaluate the false discovery rate, we need to define the noisy time points that we should
exclude from the admissible set. Especially, we suppose that time locations around the true
change point s� are admissible change points and locations far away from s� are noise.
Define A ¼ ft : t 2 ðs�i � wA; s�i þ wAÞ; i ¼ 1; 2; :::g as a set of admissible change points
including true change points and their close neighbors. Here, wA is an admissible window
width and it can change over i. Similarly, define N ¼ ft : t 62 ðs�i � wN ; s�i þ wN Þ; i ¼
1; 2; :::g as a set of noisy time points which is outside from the neighbors of the true change
points where wN is a noisy window width. Note the window width wA can be narrower than

wN such that A 
 N
C .

Theorem 3 Suppose that the following assumptions hold for wA and wN ,

A1
PV

j¼1 p
ðjÞðtÞ=V are identical for any t 2 N

A2
PV

j¼1 p
ðjÞðtÞ=V are identical for any t 2 A

Under the assumptionA1 and A2, denote pVN ¼PV
j¼1 p

ðjÞðtÞ=V for t 2 N and pVA ¼PV
j¼1 p

ðjÞðtÞ=V for t 2 A. Let p 2 ð0; 1Þ be the selection threshold.

For any 0\n\1=pV
N
� 1, if p[ ð1þ nÞpV

N
we have
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E½jSV
p \N j�
jN j � 1� ð1þ nÞpVN

p� ð1þ nÞpV
N

exp � n2V
nþ 2

pVN

� �
ð14Þ

For any 0\n\1, if p\ð1� nÞpVA we have

E½jðSV
p ÞC \Aj�
jAj � ð1� nÞpVA

ð1� nÞpVA � p
exp � n2V

nþ 2
pVA

� �
ð15Þ

Here, we assume that the noisy locations have the same expected probability to be selected,
and so do the admissible locations. Under these assumptions, the theorem above is shown to
bound the expectation of false positive rate or false negative rate of change point detection,
depending on the choice of threshold p.

While the bound of false positive rate or false negative rate decays with V, it fails to
choose the number of iterations as large as possible since a larger V would reduce the
sample size at each iteration. In order to control the false discovery rate from both sides, one
should increase the signal-selection rate pVA and decrease the noise-selection rate pVN . It is

ideal to set threshold in between, ð1þ nÞpV
N
\p\ð1� nÞpVA. Recall the definition of the

selection set SðjÞ :¼ fŝðjÞi ; i ¼ 1; . . .; k̂
ðjÞg where ŝðjÞi is the ith estimator of the jth Bernoulli

sequence. pVA can be simplified by
PV

j¼1 PðŝðjÞi 2 ðs�i � wA; s�i þ wAÞÞ=V. Thus, with a fixed
width of wA, a good estimator ŝðjÞi is favored in the sense that it is close the true change point
location with high probability.

Another way to increase pVA is to sightly expand the selection set SðjÞ, that is to say,

selecting the estimators and their neighbors. So, SðjÞ ¼ ft : t 2 neigðŝðjÞi Þ; i ¼ 1; . . .; k̂
ðjÞg.

A wider neighbor set neig() tend to comprise more admissible change points but endure the
risk of involving more noise. In the analysis of a Bernoulli sequence, it is supposed in
Sect. 2 that a change point is located exactly at the position of 1’s. A conservative way in
expanding the selection set is to also contain the 0’s locations between the last and the next
1’s.

6 Subsampling and weighting strategy

From an application perspective, there are still two real problems to be addressed. Firstly,
how to generate a series of subarea fBðjÞgj¼1;...;V in the encoding phase. Secondly, how to

weighting the contribution for each encoded Bernoulli sequence fEðjÞ
t gt based on its degree

of relevance. A follow-up question is that how to measure the goodness-of-fit for each

fEðjÞ
t gt and weighting their contributions accordingly. In this section, we resolve both

problems via a subsampling weighting technique.
To address the first one, a natural way is to apply clustering analysis to obtain V disjoint

clusters as fBðjÞg. But it raises another problem related to how to choose a certain number of
clusters and the second question becomes even hard due to the unbalanced cluster size.
Model selection criterion in (1) can be reused to measure the goodness-of-fit if the cluster
sizes are balanced. To ensure robustness and efficiency, we attempt to generate a larger
number of clusters but with fixed cluster size, so overlappings are expected. Our numerical
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experiments show that the result is not sensitive to the choice of V. We advocate that V ¼ 50
is large enough and subsampling proportion can be fixed at M=N ¼ 0:1, so a sample is
selected 5 times on average.

Denote X ¼ ½X1;X2; . . .;XN �
0
as a N � p matrix recording the time series fXtgNt¼1 where

Xt 2 Rp. The subsampling algorithm is described as follows. We firstly apply K-Means
upon X to get V cluster centroids. Then, cycle through each centroid to search for its M
nearest neighbors in X. We mark the M samples as 1 and the other N �M as 0 at each
iteration, so V Bernoulli sequences are encoded. If without confusion, let’s denote the M
marked samples in the jth step as BðjÞ.

Since the degree of relevance is inversely proportional to the model selection criterion
values or loss in (1), one can consider a mapping function F : R 7!R to scale the quantity,

FðxÞ ¼ 1� x�minðxÞ
maxðxÞ �minðxÞ

so, the weight wðjÞ measuring the importance of jth Bernoulli sequence is defined by,

wðjÞ ¼ FðLðjÞÞPV
j¼1 FðLðjÞÞ ð16Þ

where LðjÞ ¼ LðŝðjÞ1 ; ŝðjÞ2 ; :::Þ is the loss of the jth sequence. Thus, a N � V weighted design

matrix Mweighted is fed into the time-order-kept hierarchical clustering algorithm mentioned
in Sect. 3.3,

Mweighted ¼ MN�V � diagðwð1Þ; . . .;wðV ÞÞ ð17Þ
Another weighting technique is based on the iterative weighting algorithm proposed in
Wang and Hsieh (2021). In a simple case that only one change point exists in a Bernoulli
sequence, it is complicated or even impossible to detect the parameter change if the Ber-
noulli parameters are too close. Indeed, one can qualify the goodness-of-fit via the differ-

ence between pðjÞ1;s� and pðjÞ2;s� or the estimated delta jp̂ðjÞ1;ŝ � p̂ðjÞ2;ŝj in practice. The estimated

delta can be further approximated by the proportion of two recovered segments in BðjÞ. The
more purity of BðjÞ, the better EðjÞ

t can be fitted. It enlightens us to measure the Shannon
entropy in BðjÞ as an approximation when k[ 1.

Denote the weight of the jth sequence at the current step as wðjÞ
c and the entropy of set BðjÞ

at the current step as HcðBðjÞÞ. We iteratively apply clustering algorithm upon the weighted
matrix in (17) and update the the entropy HcðBðjÞÞ based on the recovered segments in the
last step. So, the weight in the next step can be updated by

wðjÞ
cþ1 ¼ 0:5 wðjÞ

c þ 0:5
FðHcðBðjÞÞÞPV
j¼1 FðHcðBðjÞÞÞ ð18Þ

until convergence. Here, 0.5 is set to smooth the learning curve and to make the sum of
weights equal 1.
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7 Numerical experiment

In this section, we conduct simulation experiments to evaluate the performance of our model
on various univariate and multivariate distributions with both known and unknown numbers
of change points.

When the number of change points k is known, we implement the time-order-kept
hierarchical clustering algorithm with the proposed weighting techniques from Eqs. (16) and
(18). To distinguish between the two weighting techniques, we refer to (16) as “Simp
Weight” and (18) as “Iter Weight”. When k is unknown, the stability detection is imple-
mented by aggregating the estimated change points over the Bernoulli sequences via
weighted voting. We compare the performance of our approaches with other nonparametric
methods such as Multiscale Quantile Segmentation (MQS) by Vanegas et al. (2022), non-
parametric PELT (np PELT) by Haynes et al. (2017), and Narrowest-Over-Threshold (NOT)
by Baranowski et al. (2019), specifically in the univariate settings. For both univariate and
multivariate scenarios, we also evaluate the performance of E-Divisive by Matteson and
James (2014), Kernel Multiple Change Point (KernelMCP) by Arlot et al. (2019), and
MultiRank by Lung-Yut-Fong et al. (2015).

Our method was implemented with V ¼ 50, cluster proportion M=N ¼ 0:1, and /ðNÞ ¼
2 (AIC) for the iterative weighting. In the iterative process, we set the iteration number to
R ¼ 150 and used a stop criterion that stops the iterations when the weights do not change
for 10 consecutive steps. For comparison, we implemented MQS and nonparametric PELT
using the official R packages mqs and changepoint.np, respectively, with their tuning
parameters set to the default values. NOT was implemented using the not package with a
prefixed contrast function chosen to best fit the simulation scenario. E-Divisive was
implemented using the ecp package with the tuning parameter a ¼ 1 and R ¼ 499 as
advocated by the authors. KernelMCP was implemented using the Python package named
Chapydette with the default settings, including a Gaussian kernel with Euclidean distance, a
bandwidth of 0.1, and a ¼ 2. For MultiRank, we used the R codes provided in the sup-
plementary file of Matteson and James (2014).

To compare the performance of change point detection result, we calculate the Adjusted
Rand Index (ARI) (Hubert & Arabie, 1985) between the recovered segments and the true
segments. Rand Index (RI) (Rand, 1971) was originally used to measure the similarity
between two data clustering results. Suppose that A ¼ fA1;A2; . . .;Aag and B ¼
fB1;B2; . . .;Bbg are two different partitions for a sequence of observations of length N with
cluster number a and b, respectively. Let u be the number of pairs of observations that are in
the same subset in both A and B, and v be the number of pairs of observations that are in
different subsets in both A and B. The Rand Index (RI) is then defined by

RI ¼ uþ v

NðN � 1Þ=2 ð19Þ

The Rand Index measures the number of agreements between A and B over the total pairs of
observations. In the context of segmentation detection, we can consider A as the ground
truth segmentation and B as the predicted one. The Rand Index represents the accuracy of
the algorithm’s decisions. To account for chance grouping, the Adjusted Rand Index (ARI)
is commonly used. It corrects the Rand Index by comparing it with a baseline that represents
the expected similarity of all pairwise comparisons. An ARI value of 1 indicates a perfect
result, while negative or 0 values imply that the recovered segment is significantly different
from the underlying segment.
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7.1 Known number of change points

In the simulation study, we generated univariate distributions with different variance or
tailedness. Three segments were sequentially generated with distributions N ð0; 1Þ, G, and
N ð0; 1Þ, respectively. For changes in variance, G�N ð0; r2Þ; for changes in tailedness,
G� tdf ð0; 1Þ. The segments were unbalanced with time lengths n, 2n, and n, respectively,
where n varied at n ¼ 100; 200; 300, while the proportion of the three segments remained
the same.

We measured the accuracy of change point detection using the Adjusted Rand Index
(ARI) values for our methods, E-Divisive, KernelMCP, and MultiRank, given the number of
change points. In the setting of Gaussian distribution with variance changes, E-Divisive
performed the best as shown in Table 6 in the Appendix. The overall performance was
worse in the setting of changes in tailedness (see Table 1), but our iterative weighting
approach performed slightly better than others. KernelMCP performed well when G was
Gaussian distributed but failed otherwise, indicating sensitivity to the choice of kernel. As a
nonparametric approach designed particularly for changes in mean, MultiRank consistently
failed in the simulation settings.

In the next part of the numerical experiment, we generated multivariate observations with
distributions from N dð0; IÞ, N dð0;RÞ, and N dð0; IÞ, respectively. The observations were
simulated in dimensions d ¼ 2; 3; 5; 10. Two types of covariance matrices, R1 and R2, were
used for the generation. R1 was set with diagonal elements of 1 and off-diagonal elements of
q; R2 was set with diagonal elements of 1 and �1 for off-diagonal elements of q. Since
KernelMCP is not easily adaptive when the dimension is higher, we only compared the
performance of our method with that of E-Divisive as a baseline in Table 2. A full com-
parison between our method and KernelMCP in binormal settings is available in Table 7 in
the Appendix.

The results show that the two weighting techniques are comparable in identifying the
change point locations in the case of R1. In the more complicated case of R2, the iterative
weighting performs the best among the methods compared.

Table 1 ARI values in univariate student-t setting

n df Univariate distribution with changes in tailedness

Simp Weight (our) Iter weight (our) E-divisive KernelMCP MultiRank

100 1 0.55 (0.22) 0.64 (0.17) 0.68 (0.25) 0.27 (0.16) 0.32 (0.11)

2 0.37 (0.15) 0.49 (0.19) 0.45 (0.18) 0.29 (0.14) 0.29 (0.09)

5 0.30 (0.13) 0.39 (0.13) 0.37 (0.11) 0.25 (0.13) 0.31 (0.12)

200 1 0.76 (0.15) 0.77 (0.14) 0.84 (0.21) 0.33 (0.20) 0.32 (0.08)

2 0.43 (0.21) 0.60 (0.18) 0.50 (0.22) 0.26 (0.16) 0.32 (0.09)

5 0.28 (0.12) 0.36 (0.16) 0.36 (0.12) 0.24 (0.16) 0.28 (0.12)

300 1 0.83 (0.09) 0.82 (0.10) 0.89 (0.17) 0.46 (0.28) 0.33 (0.10)

2 0.50 (0.24) 0.66 (0.21) 0.65 (0.25) 0.30 (0.19) 0.32 (0.11)

5 0.31 (0.12) 0.42 (0.17) 0.34 (0.12) 0.26 (0.14) 0.28 (0.11)

The best ARI values for each setting are indicated in bold
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7.2 Unknown number of change points

In our simulation study, we addressed the scenario where the number of change points is
unknown. Unlike manually selecting different values of the predetermined number of
change points k, our proposed stability detection approach estimates the probability of
selecting each time stamp directly. By searching for the local maxima time stamps with
probabilities above a threshold, we can effectively estimate the change point locations
without exhaustive searching or predefined candidate values of k. This is achieved by
encoding the continuous observations into V Bernoulli sequences, resulting in V voting sets,
and computing the probability of selection for each time stamp as a weighted sum of the
voting results using the simple weighting technique (16).

The simulation involved generating observations with a time axis containing a
total of k ¼ 6 change points. Each segment had a fixed length of data points (=100),
and adjacent segments followed different distributions, denoted as
fN ;G;N ;G;N ;G;N g where N �N ð0; 1Þ and G�mþ tdf ð0; 1Þ. We evaluated our
approach using the Adjusted Rand Index (ARI) and the absolute error of the estimated

number of change points (jk̂ � kj) as metrics. In addition to our proposed approach, we
compared our results with six other nonparametric change point detection methods:

Table 2 ARI values in d-dim Gaussian setting

n d d-dim Gaussian with off-diagonal q ¼ 0.5 d-dim Gaussian with ±1-off-diagonal q ¼ 0.5

Simp weight
(our)

Iter weight
(our)

E-
divisive

Simp weight
(our)

Iter weight
(our)

E-
divisive

100 2 0.36 (0.15) 0.46 (0.15) 0.39
(0.13)

– – –

3 0.40 (0.19) 0.55 (0.18) 0.45
(0.17)

0.38 (0.15) 0.52 (0.20) 0.43
(0.16)

5 0.56 (0.20) 0.63 (0.17) 0.47
(0.20)

0.40 (0.19) 0.51 (0.18) 0.42
(0.15)

10 0.78 (0.15) 0.71 (0.17) 0.57
(0.25)

0.39 (0.14) 0.53 (0.19) 0.43
(0.16)

200 2 0.39 (0.18) 0.53 (0.19) 0.39
(0.15)

– – –

3 0.50 (0.22) 0.65 (0.20) 0.42
(0.19)

0.50 (0.22) 0.58 (0.18) 0.40
(0.18)

5 0.80 (0.13) 0.77 (0.16) 0.60
(0.26)

0.45 (0.20) 0.59 (0.21) 0.44
(0.18)

10 0.88(0.09) 0.83 (0.12) 0.78
(0.26)

0.41 (0.19) 0.62 (0.19) 0.44
(0.19)

300 2 0.51 (0.23) 0.58 (0.22) 0.38
(0.16)

– – –

3 0.61 (0.24) 0.74 (0.18) 0.51
(0.22)

0.62 (0.24) 0.63 (0.21) 0.47
(0.21)

5 0.86 (0.07) 0.83 (0.10) 0.80
(0.26)

0.56 (0.25) 0.68 (0.20) 0.54
(0.23)

10 0.89 (0.07) 0.86 (0.10) 0.91
(0.17)

0.55 (0.24) 0.71 (0.17) 0.49
(0.22)

The best ARI values for each setting are indicated in bold
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nonparametric PELT, MQS, NOT, E-Divisive, Multirank, and KernelCPA. The mean and
standard deviation of the evaluation results are presented in Table 3.

Our proposed method exhibits robustness and outperforms other nonparametric
approaches in various simulation settings. It accurately estimates both the number and
location of change points, even in challenging scenarios with small changes in mean and
variance. The nonparametric PELT performs exceptionally well in cases of abrupt changes
in mean or variance, highlighting its capability to capture significant distribution changes.

In the multivariate setting, we conducted an experiment with observations generated
from a d-dimensional normal distribution with 6 change points. The segments with indices
[1,100], [201,300], [401,500], and [601,700] followed the distribution N dð0; IÞ, while the
remaining observations had changes in either the mean or the covariance matrix. Specifi-
cally, the mean was set as N dðm1;RÞ, where 1 is a d-dimensional vector with all elements
equal to 1, and R had diagonal elements equal to 1 and off-diagonal elements equal to q.

To evaluate the performance of different change point detection methods, including E-
Divisive, MultiRank, KernelMCP, and our proposed method, we measured their accuracy in
detecting the change point locations. The results are presented in Table 4, where each
column represents a different dimension (ranging from 2 to 10). E-Divisive performed best
in detecting change points with only mean changes, while KernelMCP showed promising
results for lower dimensions but struggled when the dimension exceeded 5. In cases of
changes in the covariance matrix, the other methods failed to detect the change points,
whereas our proposed method consistently demonstrated good performance. This highlights
the robustness of our approach in handling various settings of distributional changes.

7.3 Ablation study of the number of clusters

In the ablation study, we explored the influence of varying the number of clusters V on the
performance of our proposed method in segmenting the dimensional space. To assess the
performance, we used the Adjusted Rand Index (ARI) as a measure. In the scenario where
there were changes in covariance, we found that the ARI was not significantly affected by
the number of clusters as shown in Table 5. However, slightly improved results were
obtained when V was set to 50 or greater. Based on these findings, we chose to use V ¼ 50
as the parameter for practical implementation of our method.

7.4 Consistency as sample size increases

As the sample size N increases in the 6-change-point simulation scenario, we observe that
the probability of selection curve becomes more pronounced with prominent spikes. The
local maxima in the curve align more closely with the ground truth change points, indicating
improved accuracy in estimating the change point locations. This trend is consistently

Table 5 Number of clusters
No. of cluster q ¼ 0:7, dim ¼ 3 q ¼ 0:7, dim ¼ 5

jk̂ � kj ARI jk̂ � kj ARI

25 0.53 (1.43) 0.57 (0.12) 0.23 (1.17) 0.66 (0.06)

50 0.27 (1.18) 0.64 (0.11) 0.33 (1.16) 0.67 (0.07)

75 0.77 (1.12) 0.62 (0.10) 0.37 (1.02) 0.67 (0.07)

100 0.43 (1.09) 0.64 (0.10) 0.77 (0.99) 0.66 (0.07)
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observed, as shown in Fig. 1. Moreover, the Adjusted Rand Index (ARI) metric, which
measures the similarity between the estimated change points and the ground truth, increases
from 0.75 in (A) to 0.88 in (C) as the sample size N increases. This demonstrates that our
proposed method achieves consistently higher accuracy with larger sample sizes.

7.5 Penalty coefficient study

We generate observations independently from three binormal distributions: N 2ð0; IÞ,
N 2ð0; ½½1; 0:7�; ½0:7; 1��Þ, andN 2ð0; IÞ, with sample sizes of 300, 600, and 300, respectively.
In the change point analysis, we employ a model selection criterion with a penalty coef-
ficient /ðNÞ, where /ðNÞ varies from 2, corresponding to AIC, to log(N), corresponding to
BIC. The time axis is divided into evenly-sized, disjoint time bins, and the probability of
selection is computed based on the accumulated votes within each time bin.

The results indicate that the selected time bins have relatively high probabilities
regardless of the choice of penalty term. These selected time bins, marked in Fig. 2, include
the first and second bins (320, 360) and (360, 400), which are close to the first change point
located at 300, as well as the third and fourth bins (280, 320) and (880, 920), which cover

Fig. 1 Simulation setting: covariance R changes with q ¼ 0:7 and d ¼ 2. Probability of selection curve with
sample size (A) N ¼ 200� 7; (B) N ¼ 300� 7; (C) N ¼ 400� 7

Fig. 2 Probability of selection with different penalty coefficient /ðNÞ; different time bins are plotted in
different curves
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the true change point locations. The visualization of detection results is shown in Fig. 6 in
the Appendix. The two prominent spikes in the plots indicate that the number of change
points is 2. By applying a threshold of 0.1, we can identify two consecutive time windows
that cover the true change point locations.

7.6 Time complexity analysis

In the univariate setting, the Pruned Exact Linear Time (PELT) algorithm has been suc-
cessful in reducing the computational cost of change detection to O(N) under certain
assumptions. However, in the multivariate setting, the time complexity of change detection
has traditionally been on the order of OðKN2Þ, where K is the maximum number of change
points. The proposed approach in this paper addresses this limitation by leveraging the
encoding of observations into multiple Bernoulli sequences. The voting results from these
Bernoulli sequences are then aggregated to obtain the final change point estimations.
Importantly, this aggregation can be efficiently performed in parallel using modern parallel
programming techniques. As a result, the time complexity can be reduced to OðN2Þ, making
the approach scalable and efficient in scenarios with a high number of change points.

8 Real data application

8.1 Genome data

CpG dinucleotide clusters or ‘CpG islands’ are genome subsequences with a relatively high
number of CG dinucleotides (a cytosine followed by a guanine). They are observed close to
transcription start sites (Sxonov et al., 2006) and play a crucial role in gene expression
regulation and cell differentiation (Bird, 2002). There were developed many computational
tools for CpG island identification. A sliding window is typically employed to scan the
genome sequence to figure out CpG islands based on some filtering criteria. However, the

Fig. 3 Encoded DNA sequence-CG dinucleotides patterns; the CpG islands discovered by CpGIE are marked
by angle brackets; the estimated change point locations are marked by vertical bars

123

4154 Machine Learning (2024) 113:4133–4163



criteria are set with subjective choice (Gþc proportion, observation versus expectation ratio,
etc) and it has evolved over time. It commonly happens that different CpG island finders
would provide various results.

In this section, we implement our change point detection approach in the categorical
nucleotide sequence. It is demonstrated that the proposed algorithm is able to detect an
abrupt change in C-G patterns, and the estimated change point locations may help
researchers to identify potential CpG islands. A contig (accession number NT 000874:1) on
human chromosome 19 was taken as an example for CpG island searching. The dataset is
available on the website of National Center for Biotechnology Information(NCBI).

Denote the genome sequence as fXtgNt¼1 with Xt 2 fA;G; T ;Cg. In the encoding phase, a
0–1 sequence fEtgt is generated such that Et ¼ 1 if Xt ¼ C&Xtþ1 ¼ G and Et ¼ 0 other-
wise, for t ¼ 1; . . .;N � 1. Algorithm 1 is implemented to search for multiple change points
in the Bernoulli sequence. Results from a CpG island searching software CpGIE (Wang &
Leung, 2004) are shown as a benchmark for comparison. Criteria advocated by the authors
are employed in the usage of CpGIE (length � 500 bp, G þ C content � 50% and CpG O/E
ratio � 0:60). Note that our algorithm does not need any tuning parameter. The result in
Fig. 3 shows that there is a high proportion of overlapping segments between ours and
CpGIE’s. Our approach can also find extra genome subsequence with a higher number of
C-Gs which are misspecified by CpGIE.

8.2 Hurricane data

It was widely recognized that the global temperature has risen due to anthropogenic factors,
such as increased carbon dioxide emissions and other human activities. According to
NOAA’s 2020 global climate report, the annual temperature has increased globally at an
average rate of 0.14 degrees Fahrenheit per decade since 1880 and over twice that rate (0.32
degrees Fahrenheit) since 1981. It was argued by climatologists that the warmer sea surface
leads to an increasing number of stronger tropical cyclones (Emanuell, 2005; Saunders &
Lee, 2008). However, Landsea et al. (2010) believes that the warmer sear surface increases
only weak cyclones which are short and even hard to be detected. In this section, we studied
the number of cyclones between 1851 and 2019. We are interested to detect potential change
points embedded within the tropical cyclone history.

Fig. 4 A monthly hurricane counts in Atlantic basin from year 1851 to 2019; estimated change points are
plotted in vertical lines. B probability of selection for all the time points; local maximas are plotted in vertical
lines
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The dataset HURDAT2 recording the activities of cyclones in the Atlantic basin is
available on the website of National Oceanic Center(NHC). NHC tracked the intensity of
each tropical cyclone per 6 h every day (at 0, 6, 12, and 18). The intensity level is
categorized based on wind strength in knots, such as hurricane (intensity greater than 64
knots), tropical storm (intensity between 34 and 63 knots), and tropical depression
(intensity less than 34 knots). Different from Robbins et al. (2011) in categorizing
cyclones, we summarize the number of time units for which a category is observed, so
the count is at most 4� 31 in a month. The monthly frequency of tropical storm-level
and higher-level cyclones is reported in Fig. 4A. If we apply 5 change points which is
detected by the local maxima of stability detection in Fig. 4B, the time range is then
partitioned based on the variation of storm count. Figure 4A shows that storms are more
active in the 1880 s, 1960 s and after 2000. Though the global temperature trends to go
upward since 1980, the storms are relatively sparse between 1980 and 2000. Thus, our
analysis result challenges the original supposition that higher temperatures would
increase the number of hurricanes.

8.3 Financial data

Lastly, the proposed approach is applied to detect the abrupt time-varying dependence
within bivariate stock log returns. CTSH and IBM are chosen as representative of IT
Consulting subcategories of S &P500 based on Global Industrial Classification Standard
(GICS). The first and last hours in the transaction time are filtered out (so it is from 10am to
4pm), and the hourly price returns are calculated in the business days of the year 2006. A
constant is added to the returns of CTSH for a better visualization in Fig. 5(A). It was noted
that the lagged correlation statistics are not significant based on the sample autocorrelation
function of stock returns. Conditional heteroskedasticity can be studied by a more com-
plicated time series model, like GARCH, but it is out of our concentration.

We encode the bivariate time series and apply stability detection techniques. Figure 5B
shows that there exist 3 or 4 change points within the returns. The top3 change point
locations with the highest probability are marked by vertical lines in Fig. 5A. It shows that
the returns are partitioned into segments with different volatility levels. If we further look
into the scatterplot between CTSH and IBM under different time partitions (left, middle,

Fig. 5 A hourly index returns of CTSH and IBM in 2006; top3 change points with the highest probability of
selection are plotted in vertical lines. B probability of selection for all time points
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right segments) in Fig. 7 in the Appendix, both returns in the middle phase are relatively
high, and their correlation is much stronger.

9 Conclusion

In this paper, we have presented a robust and efficient solution for change point detection in
time series data without requiring strong distributional assumptions. It involves encoding
continuous observations into Bernoulli processes and utilizing aggregation techniques to
estimate the number and locations of change points. Our approach is applicable to both
univariate and multivariate settings, and it can handle scenarios with known or unknown
numbers of change points.

The theoretical analysis of our method demonstrates that it holds both asymptotic
properties and finite-sample error control, ensuring its reliability and accuracy in practical
applications. The numerical experiments conducted on simulated data have shown that our
approach outperforms existing nonparametric methods, especially in situations with com-
plex distributional changes. Furthermore, the real-world data analyses on various types of
time series, including continuous, categorical, and ordinal data, have further confirmed the
versatility and effectiveness of our method.

We acknowledge that the subsampling strategy based on K-means clustering may make
the results less interpretable. In the future, we aim to explore alternative sampling strategies
to enhance the interpretability of the results. For instance, in the univariate scenario, instead
of relying solely on K-means clustering, we can consider modifying the encoding process
by applying quantile thresholds to identify extreme observations, as discussed in Wang and
Hsieh (2022). Moreover, we plan to investigate other encoding techniques that are more
tailored to specific data characteristics. For multivariate data, alternative clustering algo-
rithms or dimensionality reduction techniques may be explored to improve the efficiency
and interpretability of the encoding process.

Appendix A: Proof of theorem in 3.4

Proof of Theorem 1 Let ĉðjÞ ¼ ŝðjÞ=N . For any c 2 ð0; 1Þ, rewrite

ĜðcÞ ¼
XV
j¼1

gðĉðjÞ; cÞðp̂ðjÞ
1;ŝðjÞ

� p̂ðjÞ
2;ŝðjÞ

Þ2

where

gðĉðjÞ; cÞ ¼ ĉðjÞ

c
1� ĉðjÞ

c

 !
1fc� ĉðjÞg þ 1� ĉðjÞ

1� c
1� 1� ĉðjÞ

1� c

 !
1fc\ĉðjÞg

For j ¼ 1; . . .; u, with the consistency of ŝðjÞ, we can have

gðĉðjÞ; cÞðp̂ðjÞ
1;ŝðjÞ

� p̂ðjÞ
2;ŝðjÞ

Þ2 ! gðc�; cÞðpðjÞ1;s� � pðjÞ2;s� Þ2

While for j ¼ ðuþ 1Þ; . . .;V , it shows
gðĉðjÞ; cÞðp̂ðjÞ

1;ŝðjÞ
� p̂ðjÞ

2;ŝðjÞ
Þ2 ! 0

since gð0; cÞ ¼ gð1; cÞ ¼ 0. Therefore,
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ĜðcÞ !
Xu
j¼1

gðc�; cÞðpðjÞ1;s� � pðjÞ2;s� Þ2 ¼ gðc�; cÞkpu1;s� � pu2;s�k2 ¼ GðcÞ

as N ! 1, uniformly in c. Let ĉ ¼ ŝ=N . It follows that

ĜðĉÞ\Ĝðc�Þ
Additionally, the minimum value of gðc�; cÞ is attained when c ¼ c�. For any �[ 0, there
exists g[ 0, such that GðcÞ � Gðc�Þ[ g, for all c with jc� c�j � �. Therefore,

Pðjĉ� c�j[ �Þ�PðGðĉÞ � Gðc�Þ[ gÞ
¼ PðGðĉÞ � ĜðĉÞ þ ĜðĉÞ � Gðc�Þ[ gÞ
�PðGðĉÞ � ĜðĉÞ þ Ĝðc�Þ � Gðc�Þ[ gÞ
�PðjGðĉÞ � ĜðĉÞj[ g=2Þ þ PðjĜðc�Þ � Gðc�Þj[ g=2Þ ! 0

as N goes into infinity. h

Proof of Theorem 2 Denote s�i ¼ Nc�i . Consider a group of change point locations that ~si ¼ s�i þ fi, for
i ¼ 1; 2; . . .; k. By the definition of fi, it follows that

Ĝð~s1; . . .; ~skÞ�
Xk�1

i¼0

X
j2Ciþ1

2jŝðjÞi � s�i j
s�iþ1 � s�i

1� 2jŝðjÞi � s�i j
s�iþ1 � s�i

Þðp̂ðjÞiþ1 � p̂ðjÞi

 !2

�
Xk�1

i¼0

jCiþ1j 2fi=N
c�iþ1 � c�i

1� 2fi=N
c�iþ1 � c�i

� �

Then, denote H ¼ fðs1; . . .; skÞ : maxi¼1;...;k jsi=N � c�i j � �g. It shows that, for any �[ 0,

Pð max
i¼1;...;k

jŝi=N � c�i j � �Þ�PðGðŝ1; . . .; ŝkÞ� min
ðs1;...;skÞ2H

Gðs1; . . .; skÞÞ ð�Þ

Moreover, since fi is consistent to 0, uniformly in i, by the assumption. So,

Pð max
i¼1;...;k

fi [ �Þ ! 0

Therefore,

ð�Þ �PðGðŝ1; . . .; ŝkÞ� min
ðs1;...;sk Þ2H

Gðs1; . . .; sk jmax
i

fi\�ÞPðmax
i

fi\�Þ

þ PðGðŝ1; . . .; ŝkÞ� min
ðs1;...;skÞ2H

Gðs1; . . .; sk jmax
i

fi � �ÞPðmax
i

fi � �Þ

�PðGðŝ1; . . .; ŝkÞ�Gð~s1; . . .; ~skÞÞ þ Pðmax
i

fi � �Þ

! PðGðŝ1; . . .; ŝkÞ� 0Þ þ 0 ¼ 0

as N goes into infinity. h

123

4158 Machine Learning (2024) 113:4133–4163



Appendix B: Proof of theorem in 4.2

Proof of Theorem 3 For any 0\n\V=
PV

j¼1 p
ðjÞðtÞ � 1, denote pN ¼ ð1þ nÞPV

j¼1 p
ðjÞðtÞ=V , so that

pN 2 ð0; 1Þ.
It is easy to show that PV ðtÞ� ð1� pN Þ1fPV ðtÞ� pN g þ pN for a fix t 2 f1; 2; . . .;Ng. Thus,

PðPV ðtÞ�pÞ�Pðð1� pN Þ1fPV ðtÞ� pN g þ pN � pÞ

¼ P 1fPV ðtÞ�pN g� p� pN
1� pN

� �

� 1� pN
p� pN

PðPV ðtÞ� pN Þ

¼ 1� pN
p� pN

P
XV
j¼1

1ft 2 SðjÞg� ð1þ nÞ
XV
j¼1

pðjÞðtÞ
 !

The last inequality holds based on Markov’s inequality and the condition that p[pN .
Moreover, 1ft 2 SðjÞg are independent for j ¼ 1; 2; . . .;V. It holds because that we select disjoint samples to

make up fEðjÞ
t gt so for a fixed time t, its selection does not reply on the iteration index j. The resultant

probability can be further bounded via Chernoff upper bound,

Pð
XV
j¼1

1ft 2 SðjÞg� ð1þ nÞ
XV
j¼1

pðjÞðtÞÞ� exp � n2

nþ 2

XV
j¼1

pðjÞðtÞ
 !

Hence,

E½jSV
p \N j�
jN j ¼

P
t2N PðPV ðtÞ�pÞ

jN j

�
X
t2N

1� pN
p� pN

exp � n2

nþ 2

XV
j¼1

pðjÞðtÞ
 !

= jN j

By further assuming identical
PV

j¼1 p
ðjÞðtÞ for t 2 N , we can cancel N for both numerator

and denominator, so the inequality (14) is obtained. Inequality (15) can be proved similarly
via the lower bound of Chernoff’s. h

Appendix C: Tables and figures

See Tables 6, 7 and Figures 6, 7.

123

Machine Learning (2024) 113:4133–4163 4159



Table 6 ARI values in univariate Gaussian setting

n r Univariate distribution with changes in variance

Simp weight (our) Iter weight (our) E-divisive KernelMCP MultiRank

100 1.5 0.42 (0.16) 0.53 (0.18) 0.51 (0.21) 0.31 (0.18) 0.33 (0.10)

2 0.62 (0.19) 0.64 (0.16) 0.82 (0.19) 0.52 (0.32) 0.32 (0.08)

4 0.81 (0.13) 0.76 (0.12) 0.97 (0.03) 0.95 (0.07) 0.32 (0.07)

200 1.5 0.58 (0.22) 0.68 (0.19) 0.66 (0.27) 0.43 (0.26) 0.30 (0.10)

2 0.77 (0.13) 0.76 (0.13) 0.95 (0.06) 0.89 (0.15) 0.32 (0.08)

4 0.91 (0.04) 0.88 (0.08) 0.98 (0.01) 0.98 (0.01) 0.32 (0.07)

300 1.5 0.73 (0.17) 0.76 (0.15) 0.79 (0.23) 0.60 (0.31) 0.34 (0.09)

2 0.83 (0.10) 0.81 (0.10) 0.97 (0.02) 0.96 (0.03) 0.34 (0.08)

4 0.94 (0.03) 0.92 (0.04) 0.99 (0.00) 0.98 (0.00) 0.34 (0.08)

Table 7 ARI values in 2-dim Gaussian setting

n q 2-dim Gaussian with changes in correlation

Simp weight (our) Iter weight (our) E-divisive KernelMCP

100 0.5 0.36 (0.15) 0.46 (0.15) 0.39 (0.13) 0.28 (0.14)

0.7 0.47 (0.19) 0.55 (0.18) 0.43 (0.16) 0.28 (0.14)

0.9 0.69 (0.18) 0.66 (0.18) 0.59 (0.25) 0.34 (0.20)

200 0.5 0.39 (0.18) 0.53 (0.19) 0.39 (0.15) 0.27 (0.15)

0.7 0.71 (0.17) 0.65 (0.19) 0.50 (0.23) 0.29 (0.14)

0.9 0.83 (0.14) 0.76 (0.14) 0.86 (0.21) 0.69 (0.28)

300 0.5 0.51 (0.23) 0.58 (0.22) 0.38 (0.16) 0.28 (0.14)

0.7 0.82 (0.10) 0.73 (0.15) 0.70 (0.28) 0.31 (0.14)

0.9 0.87 (0.11) 0.81 (0.12) 0.94 (0.14) 0.93 (0.14)

Given a moderate q value, it shows that our weighting procedures have comparable ARI values and out-
perform E-Divisive and KernelMCP. When q is extremely large and sample size is greater, the binormal
distribution actually degrades to an univariate Gaussian, which explains why the ARIs of E-Divisive and
KernelMCP come from behind at q ¼ 0:9 and n ¼ 300

Fig. 6 A probability of selection with /ðNÞ ¼ 2 as AIC; B probability of selection with /ðNÞ ¼ logðNÞ as
BIC. True change point locations are plotted in vertical lines
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