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ABSTRACT This paper presents a new approach to approximate the AC optimal power flow (ACOPF). By

eliminating the need to solve the ACOPF every few minutes, the paper showcases how a realtime feedback

controller can be utilized in lieu of ACOPF and its variants. By i) forming the grid dynamics as a system

of differential-algebraic equations (DAE) that naturally encode the non-convex OPF power flow constraints,

ii) utilizing DAE-Lyapunov theory, and iii) designing a feedback controller that captures realtime uncertainty

while being uncertainty-unaware, the presented approach demonstrates promises of obtaining solutions that

are close to the OPF ones without needing to solve the OPF. The proposed controller responds in realtime to

deviations in renewables generation and loads, guaranteeing improvements in system transient stability, while

always yielding approximate solutions of the ACOPF with no constraint violations. As the studied approach

herein yields slightly more expensive realtime generator controls, the corresponding price of realtime control

and regulation is examined. Cost comparisons with the traditional ACOPF are also showcased—all via case

studies on standard power networks.

INDEX TERMS Optimal power flow, load frequency control, power system differential algebraic equations,

robust control, lyapunov stability.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

It is not an overstatement that the OPF problem—and its many

variants—is arguably the most researched and solved opti-

mization problem in the world. OPF [1] refers to computing

setpoints of generators in a power network every few minutes,

allowing generation to meet the varying demand. In short, the

problem minimizes the cost of generation from mostly fossil

fuel-based power plants subject to power balance in transmis-

sion power lines (acting as equality constraints or h(x) = 0)

and thermal line, voltages, and generation limits (acting as

inequality constraints or g(x) ≤ 0). This optimization problem

can be written as

OPF : minimize f (x) subject to g(x)≤0, h(x)=0. (1)

Due to the nonconvexity in the power balance equality con-

straints h(x) = 0, the OPF is infamously non-convex. The

infamy is not because the nonconvexity is too insufferable

however insufferability is defined; it is because OPF has be-

come a textbook example of practical optimization problems

in operations research and systems engineering.

Brief Literature Review: In pursuit of overcoming this non-

convexity, hundreds of papers yearly investigate methods to

solve variants of OPF. The OPF can also make you a mil-

lionaire: The US department of energy and ARPA-E have a

competition, called grid optimization (GO) Competition [2],

[3], where academics and practitioners compete in solving

variants of the OPF with up to $3 million in prizes. To

solve the OPF, academics often resort to one of these four

approaches. i) Assume DC power flow and eliminate some
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variables, resulting in convex quadratic programs that can be

solved efficiently for large power systems [4], [5], [6], [7]. ii)

Derive semidefinite programming (SDP) relaxations of OPF

appended with methods to recover an optimal solution [8],

[9], [10], [11], [12], [13], [14], [15]. iii) Design global op-

timization methods with some performance guarantees under

various relaxations of nonconvex OPF [16], [17], [18]. iv) Ob-

tain machine learning-based algorithms that learn solutions to

OPF [19], [20], [21], [22], [23], [24]. A thorough description

of the OPF literature is outside the scope of this work.

Relevant to these approaches that only focus on ACOPF

are methods and algorithms that study stability-constrained

OPF where dynamic stability or optimal control metrics are

appended to the OPF problem [25], [26], [27], [28]. This

integration of system operating cost and dynamic stability

results in the merging of power system’s secondary and ter-

tiary control layers. This means that the five-minute generator

setpoints provided by the tertiary layer not only minimize the

system operating cost but also allow the system to be more

controllable or more stable. However, this does not circum-

vent the issues with the nonconvex equality constraints in the

ACOPF problem and still convex relaxation and linearization

are required. This direction of stability or control-constrained

OPF, while seemingly distinct, aligns closely with the method

we propose in our approach.

Furthermore, due to the increasing penetration of renew-

able energy resources, complex load demands, and other

power electronics-based devices in the future power grid,

the 5–10 minutes setpoints provided by the traditional OPF

may not be valid/optimal because of the time-separation and

slow update process [29]. With that in mind, this paper investi-

gates a new approach of solving the OPF problem in realtime.

This is done in a way by virtually ignoring (1) and dumping

the OPF problem into a feedback control problem that inher-

ently satisfies the constraint set in (1), while simultaneously

performing other tasks such as load frequency regulation and

realtime control. Next, we explain in detail how this approach

works. A more detailed discussion of the literature is omitted

from here (for brevity and clarity) and instead is given after

the formulation of the proposed controller (Section IV).

Main Idea: First, formulate a dynamic, differential alge-

braic equation (DAE) model of power systems. This model

incorporates algebraic equations that model power flows (the

nonconvex constraints in (1)) as well as generator dynam-

ics. Then, solve a control problem that computes (a) OPF

setpoints (i.e., generator output power) and (b) their devia-

tions in a feedback fashion by utilizing phasor measurement

units (PMUs) data in realtime, while forgoing the need to

solve for the power flow variables—yet still ensuring that

physical constraints are not violated. By formulating a re-

altime, feedback-driven control problem that solves for a

time-invariant feedback gain matrix, and feeding that gain into

a highly scalable differential algebraic equation (DAE) solver,

we avoid actually having to solve a nonconvex optimization

problem for the OPF variables.

In short, we address a robust feedback control problem

for the power system model, which not only incorporates the

key constraints found in the OPF problem but also delivers a

solution closely aligned with the OPF results. This approach

ensures optimal generator setpoints akin to those in the OPF,

while also enhancing system transient stability by introducing

damping to system oscillations.

The presented approach in this paper does not actually solve

the OPF with the generator’s cost curves—but as observed

later in the paper, we showcase using thorough simulations

how the proposed approach is very close to the optimality

under transient conditions similar to the OPF solution. Fur-

thermore, in a real-world setting, the DAE solver is replaced

with the actual system meaning that even the DAEs do not

have to be simulated. The DAEs already encode the noncon-

vex constraints (using constant system matrices) in OPF—a

key factor in the proposed method.

Paper Contributions: The presented approach in this paper

is endowed with the following key properties and contribu-

tions. The OPF-controller: i) Circumvents the need to solve

or deal with the nonconvex equality constraints modeling

power flow. That is, we find generators’ setpoints in realtime

while knowing that these setpoints do satisfy and abide by

the power flow constraints. ii) Deals with the uncertainty

in renewables, loads, and parameters in a control-theoretic

way. In contrast with vintage robust optimization or the more

intricate distributionally robust optimization algorithms, the

developed approach here is truly uncertainty unaware. iii)

Utilizes realtime information from grid sensors such as PMU

via state estimators allowing for realtime micro-adjustments

of dispatchable generation. This is in contrast with OPF for-

mulations that do not utilize grid measurements for better

dispatch of generators. iv) Eliminates the need to separate

the OPF and the secondary control time scales: this approach

serves the purposes of both OPF and control, so the need to

separate the two becomes unnecessary. v) Seamlessly incor-

porates advanced models of renewables, resulting in setpoints

for fuel-based generators that are aware of the dynamics of

solar and wind farms, etc.

Notations: Bold lowercase and uppercase letters represent

vectors and matrices respectively, while all calligraphic letters

denote sets such as R, N, etc. The set of real-valued x by y ma-

trices is represented as Rx×y. Similarly positive definite matrix

of size x by y is denoted as S
x×y
++ . We represent identity and

zero matrices of appropriate dimension as I and O. For any

matrix A, symbols A⊥, AT , ‖A‖0, σ̄ [A], and ‖A‖2 denote its,

orthogonal complement, transpose, total number of non-zero

elements, largest singular value, and L2-norm, respectively.

We represent positive/negative definiteness as � 0/≺ 0 and

positive semi-definiteness by � 0. Symbol ∗ represents the

symmetric elements in a given symmetric matrix. We denote

the union (combination) of two sets via symbol ∪ such as

G ∪ R. We use diag to show a diagonal matrix. The set Rx

represents a column vector of x elements and R++ repre-

sents a positive scalar. Given a vector a(t ) in time interval
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t ∈ [0,∞), its L2-norm is represented as
√

∫ ∞

0 ‖a(t )‖2dt .

Also, for the sake of simplicity, we omit time dependency,

i.e., (t ) in representing some of the time-dependent vectors.

Paper Organization: The remainder of the paper is orga-

nized as follows: Section II summarizes the ACOPF problem

formulation. Section III presents the multi-machine NDAE

model of power networks. Section IV explains the proposed

methodology and its mathematical derivation. Numerical case

studies are performed in Section V while the paper is con-

cluded in Section VI.

II. ACOPF FORMULATION

In this section, we briefly present the ACOPF formulation.1

We consider a power network consisting N number of buses,

modeled by a graph (N, E) where N is the set of nodes and

E is the set of edges. Note that N consists of traditional

synchronous generator, renewable energy resources, and load

buses, i.e., N = G ∪ R ∪ L where G collects G generator

buses, R collects the buses containing R renewables, while

L collects L load buses. The generator’s supplied (real and

reactive) power is denoted by (PGi, QGi ) for bus i ∈ G, and

the bus voltages are depicted as vi. The bus angle is repre-

sented as θi and the angle difference in a line is θi j := θi − θ j .

The parameters (Gi j, Bi j ) respectively denote the conductance

and susceptance between bus i and j which can be directly

obtained from the network’s bus admittance matrix [30].

Furthermore, quantities (PRi, QRi ) denote the active and re-

active power generated by renewables for bus i ∈ R, while

(PLi, QLi ) denote the active and reactive power consumed by

the loads for bus i ∈ L. Essentially, renewables are modeled

as negative loads. If a bus does not have generation, load,

or a renewable source attached to it, the corresponding ac-

tive/reactive powers are equal to zero.

Given the above notation, the ACOPF can be written as [4]

min
PG,QG,θ,v

JOPF(PG ) =
∑

i∈G

aiP
2
Gi + biPGi + ci (2a)

subject to ∀i ∈ N : PGi + PRi + PLi

= vi

N
∑

j=1

v j

(

Gi j cos θi j + Bi j sin θi j

)

(2b)

∀i ∈ N : QGi + QRi + QLi

= vi

N
∑

j=1

v j

(

Gi j sin θi j − Bi j cos θi j

)

(2c)

∀i ∈ G : Pmin
Gi ≤ PGi ≤ Pmax

Gi (2d)

∀i ∈ G : Qmin
Gi ≤ QGi ≤ Qmax

Gi (2e)

∀i ∈ N : v
min
i ≤ vi ≤ v

max
i (2f)

∀i ∈ N : S fi ≤ Fmax (2g)

1We use ACOPF and OPF interchangeably in this paper.

∀i ∈ N : Sti ≤ Fmax. (2h)

The variables in the ACOPF are the active/reactive pow-

ers for generator buses and angles and voltages for all

buses (PG, QG, θ, v). In (2), the objective function JOPF(PG )

minimizes the generator’s convex quadratic cost function with

parameters ai, bi, and ci. The first two constraints model

power flow balance in the network—a nonlinear, non-convex

relation between the variables. The last five constraints repre-

sent upper and lower bounds on the generators’ power as well

as bus voltages and line flow constraints, with S fi , Sti repre-

senting from and to line flows and Fmax denoting maximum

rating of the transmission lines.

The ACOPF is usually solved every 5−10 minutes, al-

though the frequency at which it is solved depends on the

computational power and updated predictions of renewables

and loads. Ideally, a system operator would have all of the

constraints satisfied at each time step t , and one would solve a

realtime ACOPF that satisfies all constraints while optimizing

the cost function.

In the next section, we present the dynamics of the same

power system with a focus on the realtime control problem.

We then showcase that the proposed realtime controller inher-

ently satisfies some of the key ACOPF constraints.

III. DYNAMICS OF MULTI-MACHINE POWER SYSTEMS

Here, we describe the transient dynamics of a power system

which by definition encodes the algebraic constraints (2b)

and (2c). For the same power network, we can write the

4th-order dynamics of synchronous generators as [30]:

δ̇i = ωi − ω0 (3a)

Miω̇i = TMi − PGi − Di(ωi − ω0) (3b)

T ′
d0iĖ

′
i = −

xdi

x′
di

E ′
i +

xdi−x′
di

x′
di

vi cos(δi − θi ) + Efdi (3c)

TCHiṪMi = −TMi − 1
RDi

(ωi − ω0) + Tri (3d)

δi, ωi, E ′
i , TMi denotes the generator’s rotor angle, frequency,

transient voltage, and mechanical input torque, respectively,

while Efdi, Tri are generator’s controllable inputs (exciter

field voltage and torque setpoint). The constant terms in (3)

are as follows: Mi is the rotor’s inertia constant (pu × s2),

Di is the damping coefficient (pu × s), xdi is the direct-axis

synchronous reactance (pu), x′
di is the direct-axis transient re-

actance (pu), T ′
d0i is the direct-axis open-circuit time constant

(s), TCHi is the chest valve time constant, RDi is the regu-

lation constant for the speed-governing mechanism, and ω0

denotes the rotor’s synchronous speed (rad/s). The mathemat-

ical model relating generator’s internal states (δi, ωi, E ′
i , TMi ),

generator’s supplied power (PGi, QGi ), and terminal voltage vi

is given by the generator’s internal algebraic constraint [30]

PGi=
1

x′
di

E ′
i vi sin(δi − θi )−

xqi−x′
di

2x′
di

xqi
v

2
i sin(2(δi − θi )) (4a)

QGi = 1
x′

di

E ′
i vi cos(δi − θi ) −

x′
di+xqi

2x′
di

xqi
v

2
i
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−
xqi−x′

di

2x′
di

xqi
v

2
i cos(2(δi − θi )). (4b)

The power flow equations, for all buses i ∈ N, representing

the distribution of real and reactive power are given by (2b)

and (2c), which are present in the ACOPF formulation. Hence,

the power flow constraints and the generator’s algebraic con-

straints essentially couple the rapidly varying dynamic states

and control variables with the ACOPF ones.

In order to construct the nonlinear state-space represen-

tation of the multi-machine power networks (2b), (2c), (3),

and (4), define xd as the vector populating all dynamic

states of the network such that xd :=
[

δ
�

ω
� E ′� T�

M

]�

in which δ := {δi}i∈G, ω := {ωi}i∈G, E ′ := {E ′
i }i∈G, T M :=

{TMi}i∈G. Furthermore, we can define the vector of algebraic

states (that overlap with some ACOPF variables) as xa :=
[

P�
G Q�

G v
�

θ
�
]�

. The controllable input of the power net-

work is defined as u :=
[

E�
fd T�

r

]�
where Efd := {Efdi}i∈G

and T r := {Tri}i∈G. In addition, define the vector w as w :=
[

P�
R Q�

R P�
L Q�

L

]�
where PR := {PRi}i∈R, QR := {QRi}i∈R,

PL := {PLi}i∈L, QL := {QLi}i∈L. Essentially, vector w lumps

all uncertain quantities from renewables and loads. The above

notations allow us to have a compact, nonlinear differential

algebraic equation (NDAE) state space model:

Dynamics : ẋd = Ad xd + f d (xd , xa) + Bd u (5a)

Constraints : 0 = Aaxa + f a (xd , xa) + Baw (5b)

where xd ∈ R
nd , xa ∈ R

na , u ∈ R
nu , and w ∈ R

nw . The func-

tions f d : Rnd × R
na → R

nd and f a : Rnd × R
na → R

na de-

fined the vector-valued mapping containing the nonlinearity

of generator dynamics as well as the power flow non-

linearity/nonconvexity. Matrices Ad ∈ R
nd×nd , Aa ∈ R

na×na ,

Bd ∈ R
nd×nd , and Ba ∈ R

na×na define the linear portion of

the dynamics and algebraic constraints. By defining x =

[xd xa]� ∈ R
nx and f (x) =

[

f d (xd , xa) f a(xd , xa)
]�

the

model (5) can also be rewritten as follows:

Eẋ = Ax + f (x) + Bu + Bww. (6)

Having defined the NDAE power network dynamics, we note

the following. i) Herein, we showcase a fourth-order gener-

ator model (i.e., each generator is modeled via four states)

but this can be extended to higher-order generator dynamics

as well as dynamic models of solar and wind. ii) In ad-

dition to modeling the algebraic constraints encoding lossy

power flows, the presented NDAE formulation also accounts

for the stator algebraic equation which is usually missing

from ACOPF formulation. iii) The controllable variable in the

ACOPF formulation, namely PG, is present in the dynami-

cal system model as an algebraic variable that is controlled

explicitly via u(t ). This entails the following. Solving a feed-

back control problem that generates realtime sequence u(t )

and subsequently extracting the ACOPF’s algebraic variables

xa(t ), while satisfying the ACOPF constraints and being close

to its optimal solution JOPF(PG ), could be specifically useful.

IV. SOLVING OPF VIA DAE CONTROL THEORY

We focus now on the control problem for the NDAE model

(5), which when solved will essentially solve a version of

the ACOPF (2). This control problem can simply be defined

as computing a constant gain matrix that can be used with

the control input u(t ) in a closed-loop fashion (via realtime

state/output information) such that it can drive the system

back to a stable equilibrium after a large disturbance. With

that in mind, let us define the closed-loop system dynamics as

follows:

Eẋ = Ax + f (x) + BuC + Bww (7)

where uC is the closed-loop control input and is defined as:

uC := uC (t ) = uk
ref + K

(

x(t ) − xk
)

(8)

in which uref is the reference or baseline setting for the control

input u, xk is the dynamic states information at previous time

step k, and K is the constant controller gain matrix. Notice

that, uref and xk can be determined numerically using power

flow studies. That being said, the key idea is to design K

such that using realtime state feedback information x(t ), the

closed-loop control input uC can make the system robust and

transiently stable against disturbances.

To that end, notice that, if we can compute K in a way such

that it encodes (5b) also along with (5a) (meaning determining

K for the whole NDAE system instead of eliminating (5b) and

converting it to an ODE system), then the determined feed-

back controller K will inherently satisfy the key constraints

appearing in the OPF formulation (2). This is because (5b)

includes power balance equations (2b), (2c) of ACOPF and

generators stator algebraic constraints (4a),(4b) which indi-

rectly encode the constraints (2d),(2e) of the ACOPF. As for

the other constraints such as limits on generators’ capacities,

these can be encoded via saturation dynamics in the differen-

tial equations. Admittedly, other constraints such as thermal

limits of lines cannot be modeled in this approach, and to

that end we thoroughly investigate any constrained violations

incurred in Section V.

With that in mind, we name the computation of such feed-

back controller gain K which includes (5b) in its control

architecture as control-OPF feedback controller design. This

is because such K ensures system transient stability after

a large disturbance and also fully abides by the key OPF

constraints as discussed above. To that end, we present the

following results to compute such K which is based on Lya-

punov stability theory as follows:

(CONTROL-OPF) minimize
F,S,X ,λ,ε,μ,κ

a1λ + a2μ + a3ε1 + a4ε2

subject to LMI (9), LMIs (10),

λI − X�EX � 0,

X � 0, λ > 0, γ > 0,

ε1 > 0, ε2 > 0, κ > 0
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where
� a1, a2, a3, and a4 are known weighting constants.
� The variables in control-OPF are matrices S ∈ R

na×nx ,

F ∈ R
nu×nx , X ∈ S

nx×nx
++ , and scalars λ,μ, κ, ε1, ε2 ∈

R++.
� LMI (9) is defined as

£

¤
¤
¤
¤
¤
¤
¥

T�A�
c +AcT Bw I T�

�
� κ

1
2 αT�

B�
w

−μI O D�
w

O

I O −κI O O

�T Dw O −I O

κ
1
2 αT O O O −I

¦

§
§
§
§
§
§
¨

≺ 0

(9)

where T = XE� + E⊥S and E⊥ ∈ R
nx×na represent the

orthogonal complement of matrix E.
� LMIs (10) are defined as:

[

−ε1I F�

F −I

]

≺ 0,

[

−ε2I I

I −T − T�

]

≺ 0 (10)

� The corresponding controller gain matrix K can be ob-

tained as

K = FT−1 (11)

� The designed control-OPF is a convex semi-definite op-

timization problem and thus can easily be solved via

various optimization solvers.

It is worth mentioning here that the designed control law

uC (t ) of the proposed control-OPF requires that all the state

variables (both xd and xa) are known in realtime. This require-

ment can easily be satisfied these days because of the recent

developments in synchronized measurement technologies and

highly efficient state estimation algorithms [31], [32], [33],

[34], [35]. These modern state estimation algorithms only

require measurements from a few PMUs (placed optimally

such that the system is observable) and can efficiently esti-

mate all the states of the network including the states of solar

plants [36], [37].

In the following sequel, we present a detailed explanation of

each variable and the mathematical derivation of the proposed

control-OPF formulation.

A. MATHEMATICAL DERIVATION OF CONTROL-OPF

To begin with, let us assume there is an unknown disturbance

in the system and the new value of the vector w is w
′. This

disturbance will move the states of the power network from

its initial equilibrium to a new equilibrium x′. With that in

mind, the perturbed closed loop dynamics i.e �x = x − x′ of

(7) can be written as:

E�ẋ= (A+BK )�x + � f (�x)+Bw�w. (12)

Now the main idea is to design in K such that the perturbed

dynamics (12) converge asymptotically to zero. With that in

mind, to compute such controller gain matrix K we utilize

the robust H∞ notion [38]. The core idea in H∞-based con-

troller design is that the controller makes sure that the norm

of the performance index is always less than constant times

the norm of disturbance i.e ‖z1‖
2
L2

< γ 2‖w‖2
L2

, where z is

the user-defined performance index and γ is optimization

variable commonly known as performance level in the control

theocratic literature. To that end, let us consider the perfor-

mance index for the perturbed closed loop system (12) to be:

�z1 = C�x + D�u + Dw�w ∈ R
nx which can also be writ-

ten as: �z1 = (C + DK )�x + Dw�w, where the matrices

C ∈ R
nx×nx , D ∈ R

nx×nu , and Dw ∈ R
nx×nw are user-defined

penalizing matrices (meaning how much weight should be

given to each state and control inputs in response to the

disturbance) similar to the Q, R matrices in LQR type con-

troller. From now on for the sake of notation simplicity with

little abuse of notation, we will consider �x = x, �w = w,

and �z = z.

That being said, we now utilize Lyapunov stability theory

to design the controller gain K which guarantees H∞ stability

of the closed loop system (12). To that end, let us consider

a Lyapunov function V (x) = x�E�Px, with P ∈ R
nx×nx and

V : Rnx → R+. Now assuming that the well-known Kalman-

Popov-Yakubovich (KYP) lemma [39] E�P = P�E � O sat-

isfies, then the derivative of V along system trajectories x can

be written as follows:

V̇ (x) = (Eẋ)�Px + (Px)�(Eẋ).

Now H∞ criterion can be written as V̇ (x) + z�
1 z1 −

γ 2
w

�
w < 0, then by plugging the value of Eẋ from (12) in it

and doing simplifications we get the following quadratic form

�
�
ϒ� < 0, with � =

[

x w � f
]�

and

ϒ =

£

¤
¥

A�
c P + �

�
� + P�Ac �

�Dw + P�Bw P�

D�
w
� + B�

w
P D�

w
Dw − γ 2I O

P O O

¦

§
¨

where Ac = A + BK and � = C + DK. Notice �
�
ϒ� <

0 holds if ϒ ≺ 0. Now assuming � f to be quadratically-

bounded with known constant α such that

‖� f (x)‖2 ≤ ‖α(x)‖2 (13)

⇔ � f (x)�� f (x) − α2x�x ≤ 0 (14)

which can be written as �
�
�� ≤ 0, where

� = diag
([

−α2 O I

])

.

Notice that it is common in the power system feedback con-

trol literature to assume some sort of boundedness (such

as norm or quadratic boundedness or Lipschitz continuity

assumption) on the structure of the nonlinearity to design

feedback controllers in a tractable fashion [37], [40], [41].

These assumptions are applicable to power systems models

since the system states have specific upper and lower limits.

For instance, the voltage is constrained to lie within a range

from 0.95 pu to 1.05 pu. That being said, we proceed with the

derivation of the control-OPF formulation. By S-Lemma [42],
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if there exists a scalar κ ≥ 0 then ϒ − (κ )� ≺ 0 holds, which

can be written as:
£

¤
¥

A�
c P+�

�
�+P�Ac +κα2I �

�Dw +P�Bw P�

D�
w
�+B�

w
P D�

w
Dw −γ 2I O

P O −κI

¦

§
¨ .

Now applying congruence transformation with diag([T�

I I]) where T = P−1, then the above matrix inequality can

be written as follows:
£

¤
¥

	 T�
�

�Dw +Bw I

D�
w
�T +B�

w
D�

w
Dw −γ 2I O

I O −κI

¦

§
¨ (15)

with 	 = T�A�
c +T�

�
�
�T +AcT +κα2T�T . Using

Schur complement lemma [43] on (15) we get
£

¤
¤
¤
¤
¤
¤
¥

T�A�
c +AcT Bw I T�

�
� κ

1
2 αT�

B�
w

−γ 2I O D�
w

O

I O −κI O O

�T Dw O −I O

κ
1
2 αT O O O −I

¦

§
§
§
§
§
§
¨

(16)

Now to get a strict LMI for controller design we have to elimi-

nate the KYP lemma, this can be done as detailed in [40], [44].

That being said, let us assume there exist matrices U ∈ R
nx×nx

and V ∈ R
nx×nx such that

UEV =

[

I O

O O

]

, (U−1)�PV =

[

P1 P2

P3 P4

]

. (17)

Then from (17) we get

E�P = (V −1)�

[

P1 O

O O

]

V −1 (18a)

P�E = (V −1)�

[

P�
1 O

P�
2 O

]

V −1. (18b)

Then we can see from (18) that P�E and E�P can be made

equal only if P2
� = O and P1 = P1

�. Hence, P can be updated

as

P = U�

[

P1 O

P3 P4

]

︸ ︷︷ ︸

P̄

V −1.

and T = P−1 can be written as

T = V

[

P′
1 O

P′
3 P′

4

]

︸ ︷︷ ︸

P̄
−1

(U−1)�

Then, for any X ∈ S
nx×nx
++ it is straightforward to show

T = XE� + E⊥S (19)

where S ∈ R
na×nx and E⊥ ∈ R

nx×na is the orthogonal com-

plement of matrix E. Finally, by defining F = KT , μ = γ 2,

and plugging the value of T from (19) into (16) we get the

LMI (9). Notice that one can minimize the maximum eigen-

values of the assumed candidate Lyapunov function to ensure

quick convergence, which can be written as λI − X�EX � 0

with λ being an optimization variable that should be min-

imized as shown in the proposed control-OPF formulation.

Furthermore, as K = FT−1 then one can limit the size of

controller gain K by constraining F and T as: H�H ≺ ε1I

and T−1 ≺ ε2I. Which in LMI formulation (via applying the

Schur complement) can equivalently be written as LMIs (10).

This ends the derivation of control-OPF.

By solving control-OPF we can determine an appropriate

time-invariant gain matrix K as given in (11) which can be

plugged into (8) to design a feedback control law that guaran-

tees the stability of the system after a large disturbance. Notice

that the computation of K is carried out offline.2 Furthermore,

the design control law uC acts in realtime based on the system

state/output information provided by PMUs in power systems.

Notice that, the overall proposed controller design in this

work is different than [44], [45], [46], [47], as here we are

utilizing robust H∞ notion, considering nonlinearities also

in controller design, and also engineering the overall con-

troller architecture as an efficient optimization problem which

ensures quick convergence of state variables with optimal

controller gain matrix K.

B. CONTROL-OPF NOVELTY, PROPERTIES, AND

LITERATURE DISCUSSION

We want to emphasize here that the control-OPF gain matrix

K has been derived in a way such that it satisfies the algebraic

constraints (5b) of the NDAE power system model. This can

also be verified by looking at the structure of the proposed

LMI (9), we can observe that it is dependent on the singular

matrix E and the whole system matrices A, B and Bw (which

encodes the algebraic constraints matrices Aa Ba) of (5b). This

means that K inherently satisfies some of the key constraints

appearing in ACOPF formulation (2). Although the rest of the

ACOPF constraints such as line thermal limits and voltage

limits are not explicitly modeled in the presented control-OPF

architecture, through extensive numerical case studies under

various conditions we show that these constraints are also

indeed satisfied. This is because the control-OPF also makes

sure that the system is transiently stable after a large distur-

bance.

Furthermore, notice that matrix D is a penalizing matrix on

the control inputs, meaning how much control effort needs to

be performed by each generator in response to the disturbance.

In this way, we can control how much active power needs to be

2This matrix gain is computed offline as it does not depend on the state of
the system and only relies on the system’s parameters and topology. Hence,
its computation is performed offline. In case topological changes happen in
the system, this gain matrix K should ideally be recomputed, but feedback
control gains are known to be robust to minor changes in system parameters
and topology.
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extracted from a particular generator to meet the varying load

demand. Thus by appropriately designing D (i.e., by putting

more penalty on those generators that are expensive), one can

ensure that after a large disturbance, the system operating cost

is optimal. In this work, as the control inputs are field voltage

Efd and governor reference valve position T r and since T r

directly control active power output from the generators, then

in designing D matrix a larger penalty has been added to the

T r of those generators which are expensive (by looking at the

quadratic cost function of each generator).

To that end, since the control-OPF acts in realtime

and provides stability guarantees while also satisfying

ACOPF conditions then the need for running ACOPF after

5−10 minutes in the tertiary layer of the power system can be

eliminated. Thus, we essentially dumped the ACOPF problem

in a feedback control architecture. It is worthwhile to mention

that in the presented control-OPF we do not even need to solve

the power system NDAE model. In a real-world application,

the NDAE (5) is replaced by the actual power system model.

Thus the control-OPF is essentially carried out offline and

then K is used online, knowing that K satisfies system alge-

braic constraints.

It is worth mentioning here that, as compared to the lit-

erature where authors have tried to merge system optimality

and secondary control (as in [26], [48], [49], [50], [51], [52])

this work differs in the following ways. Here, in response to

the system transients, the controller adjusts the power output

of all the generators optimally (via properly setting design

matrices C and D) through realtime information received from

the PMUs while also satisfying the algebraic constraints. Fur-

thermore, the proposed controller in this work can directly be

actuated through the primary layers controllers, for example

in the case of 4th-order generator model as used in this paper,

the proposed controller is actuated through turbine dynamics

(via torque setpoint T r) and by directly controlling the gen-

erator field voltage E f d . In the case of higher-order generator

dynamics (which include automatic voltage regulator (AVRs)

dynamics) the proposed controller can adjust the setpoint of

AVRs and turbine dynamics.

Furthermore, the studies [50], [51] design cost-optimal fre-

quency controller; however, the optimality of the controller is

not clear as no-cost comparison with OPF has been carried

out. In addition, the designed controller requires controllable

loads to improve system performance, and without control-

lable loads, the proposed controller works exactly the same as

AGC. Similarly in [26], [48], [49] the economic dispatch layer

(or the OPF layer) has been merged with the AGC layer via

formulating an optimization problem that solves them simul-

taneously, however the design methodology cannot improve

system transient stability (by adding damping to the system

oscillations) and can only remove steady-state error in the

frequency (similar to the AGC but optimally). These method-

ologies are not capable of incorporating generator dynamics

and realtime PMUs data in their proposed methodologies.

We also want to point out here that the proposed approach

in this work is based on linear matrix inequalities and is

hence convex. However, it is completely different than the

methods in the literature that solve ACOPF using convex

relaxation or linearization. This is because to find a solu-

tion for ACOPF problem convex relaxation or linearization

is commonly carried out for the highly nonlinear nonconvex

AC power flow equations [16], [17], [18]. While on the other

hand, the proposed approach does not carry out any convex

relaxation or linearization and directly encodes the alge-

braic constraint model (which models these nonlinear power

flow equations) in its design. Furthermore, notice that the

conventional ACOPF does not consider the load/renewable

uncertainty and assumes that the forecasted operational con-

ditions used in the OPF formulations are exactly the same

as the actual conditions, which is unrealistic. This is mainly

because of the increasing penetration of stochastic renew-

able resources, often observed as substantial fluctuations in

load demand caused by behind-the-meter PV power plants.

Thus, resulting in significant deviations between the actual

operating conditions and the original forecasted conditions

used in the OPF formulations. These forecast errors can have

consequences, potentially leading to violations of critical op-

erational limits and jeopardizing the system’s steady-state

stability [53]. In this regard, recently many robust AC-OPF

formulations have also been proposed—see [54], [55], [56],

[57]. However, to solve the power flow equation most of these

studies again use linearization and convex relaxations. This is

because guaranteeing a solution to the AC power flow equa-

tion is particularly challenging because of the highly nonlinear

relationship between the decision variables. Satisfying the

power balance equations is important because it is a necessary

condition for system stability.

Furthermore, most of the literature in robust OPF consid-

ers a deterministic uncertainty, meaning disturbance realiza-

tion/set is considered to be known, which is unrealistic. Such

as in [53] robust OPF is proposed with uncertainty in load

demand to be in a known deterministic set. This uncertainty

in load demand is first modeled in the power balance equation

and then various relaxations and restrictions are carried out

to reach the final convex robust AC-OPF formulation. Also,

albeit convex robust OPF can give feasible solutions (meaning

the solutions satisfy the power balance equations and the op-

erational constraints) against uncertainty in power injections

and load demand, they cannot make the system transiently

stable after large disturbance as they are control unaware. On

the other hand, the proposed control-OPF is truly uncertainty-

unaware and can also make the system transiently stable by

providing damping to the system oscillations and bringing the

system back to its equilibrium after a large disturbance.

V. NUMERICAL CASE STUDIES

To evaluate the performance of the proposed methodology, we

test various magnitudes of disturbances in load and renewable

energy resources. We also compare the overall cost of the

system with the control-OPF and by just running ACOPF.

Notice that the control-OPF provides us time-varying vectors

of PG and QG as shown in Fig. 2 while ACOPF gives static
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FIGURE 1. Overall integrated framework of the proposed control-OPF.

FIGURE 2. Time-varying active/reactive power set-points provided by
control-OPF and static set-points from ACOPF for three random step
disturbances in load demand; above figures are for case 39 and below
figures are for case 9 test system.

set-points for the generator power outputs. This is because

when a disturbance is applied to the system the control-OPF

also commands all the generators to increase or decrease

power in order to mitigate the effect of the disturbance on

the system dynamics. To compute the cost of the system

with control-OPF, we evaluate the quadratic cost equation of

the generator for the vector PG (generated from running the

control law u(t )), and then computing the mean of the total

cost vector, given as follows:

JOPF

(

Pcontrol-OPF
G

)

=
1

T

T
∑

t=1

∑

i∈G

aiP
2
Gi(t ) + biPGi(t ) + ci

With that in mind, two case studies are carried out as dis-

cussed in the below sections. In the first case study, we apply

random step uncertainty in load demand with Gaussian noise

and evaluate the system total cost and compare it with ACOPF

cost. A similar comparison has been carried out in the second

case study. However, here we also assume high uncertainty in

the power generated by renewables as shown in Fig. 8. In both

case studies, we also check if with the control-OPF the system

violates any ACOPF constraints or not.

To that end, in this section, the following high-level re-

search questions are investigated.

� Q1. Given that the control-OPF strategy does not ex-

plicitly take into account generators’ cost curves and

the ACOPF cost function JOPF(PACOPF
G ), how far are

the generators’ varying setpoints and their correspond-

ing aggregate costs JOPF(Pcontrol-OPF
G ) from the ACOPF

solutions?
� Q2. Can we quantify the price of realtime control and

regulation of the grid’s dynamic states?
� Q3. The control-OPF approach does not take into ac-

count inequality constraints modeling thermal line lim-

its. Does this approach result in any constraint violations

of the ACOPF?
� Q4. Is the comparison between ACOPF and control-OPF

fair? While the former know exact values for all uncer-

tain loads and renewables (needed to compute ACOPF

setpoints), the latter is truly uncertainty-unaware.

All the simulation studies are carried out in MATLAB

2022b and using MATPOWER software. Optimal power flow

for all the case studies is carried out by running runopf

command in MATPOWER [58]. The control-OPF gain is

computed via YALMIP [59] and using MOSEK [60] solver,

while the power system NDAEs (5) are simulated using MAT-

LAB DAEs solver ODE15i. The overall architecture of the

control-OPF can be seen in Fig. 1.

A. SCENARIO A: UNCERTAINTY IN LOAD DEMAND

In this section, we analyze the overall system cost with the

control-OPF and compare it with the cost obtained by run-

ning ACOPF under random disturbances in load demand. To

that end, the simulations are carried out as follows: Initially,

the system operates under steady-state conditions, meaning

the overall demand is exactly equal to the power generated

by load and renewables. Thus there are no transients in the

system and the system rests in an equilibrium state. Then

right after t > 0 ten random (with varying uncertainty) step

disturbances in load demand have been added as follows:

P′
d + Q′

d = (1 + δd )(P0
d + Q0

d ) + wd (t ), where δd represent

the amount of the disturbance, wd (t ) is a Gaussian noise with

zero mean and variance of 0.01(P0
d + Q0

d ), P0
d , Q0

d are the

initial active and reactive load demand, and P′
d , Q′

d is the

new load demand after the disturbances has been applied. For

every ten simulations, the value for δd is selected randomly

in [0.01,0.08] for case 9 and case 14, for case 39 the range

is chosen in [0.001,0.02], while for case 57 δd is randomly

picked in [0.001,0.01].

After the disturbance, the power system is stabilized via

control-OPF, and the gain K which is computed offline. Notice

that for every load disturbance, we get time-varying genera-

tor power output vector PG and QG. The vector PG is then

plugged into the quadratic cost equation of the generators

(given in MATPOWER) and finally average is taken to com-

pute the final cost. In this way, we get the overall cost of the

system with the control-OPF acting in realtime to redistribute

the power from the generator in response to the disturbances.

For similar uncertainties in load demand, OPF is also carried
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TABLE 1. Cost comparison for the control-OPF and ACOPF for scenario A.

TABLE 2. Cost comparison for the control-OPF and ACOPF for scenario B.

out ten times, and an average of the overall cost is computed

to determine the system cost for random loads with OPF.

To that end, a comparison of the overall system cost with

control-OPF and OPF for this case study is presented in

Table 1. We can note that for different test networks, the aver-

age cost of system operation under various load disturbances

is close to the average cost computed via just running OPF.

This can also be corroborated from Fig. 6 from which we can

see that the cost of control-OPF is close to the cost obtained

from OPF for case 9 and case 14 test systems. The extra cost

incurred in the case of control-OPF can be seen as the system

regulation cost. As seen from Table 1 with the control-OPF

there is around 10 − 30% improvement in the frequency nadir

for various test systems resulting in improved system transient

stability. This is because the proposed approach makes sure

that the power system quickly converges to its equilibrium

conditions and is H∞-stable after a large disturbance.

Fig. 2 also illustrate the time-varying power generation set-

points (for the first three simulations) generated by control-

OPF and static set-points received via solving OPF and we

can observe that both of them are not far away from each other.

Moreover, in Fig. 3 we present active and reactive power from

all the generators, line flows, and modulus of bus voltages for

the case 9 test system. Notice that, line flows are computed

from the state vectors as follows:

S f = [C f V ]Y ∗
f V

∗, St = [CtV ]Y ∗
t V ∗

where S f , St are apparent power flows from both ends (from

bus and to bus) of the transmission line respectively, V are the

bus voltages, Y ∗
f , Y ∗

t represent the conjugate of from and to

FIGURE 3. Active and reactive power generated by all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario A.

bus admittance matrices, while C f , Ct are binary matrices and

it generates all from and to end buses of the transmission lines.

With that in mind, we can clearly see from Fig. 3 that all

the line flows, bus voltages, and generator’s power outputs

are within their prescribed limits and thus the control-OPF

successfully satisfies all the system constraints that are usu-

ally modeled in OPF. Similarly for all the other test systems,

we can see from Table 3 that the maximum instantaneous

value for the line flows, and active and reactive power genera-

tions are less than their respective maximum limits. Thus the

proposed control-OPF satisfies the constraints of the system—

and no ACOPF constraint violations are incurred.
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TABLE 3. Summary of ACOPF constraints for different test systems with control-OPF for scenario A.

FIGURE 4. Active and reactive power of a couple of generators and their
respective limits, line flows, and their maximum rating, and the overall
modulus of all buses voltages for case 39 bus test system for Scenario B.

B. SCENARIO B: UNCERTAINTY IN RENEWABLE POWER

GENERATION

Here we analyze the cost of operating the system with control-

OPF and compare it with OPF under random uncertainty in

renewable power generations. To that end, the simulations

in this section are performed as follows: Initially, the power

generation from renewables is P0
R, Q0

R, then right after t > 0,

a random disturbance has been added and the power out-

put from renewables are given as: P′
R + Q′

R = (1 + δR)(P0
R +

Q0
R) + wR(t ), where δR represent the severity of the distur-

bance, wR(t ) is the random noise as shown in Fig. 8, and P′
R,

Q′
R are the updated power output from renewables after the

disturbance. With that in mind, we carry out ten simulations

and for each simulation, the value for δR is selected randomly

in [−0.01, 0.03] for case 9 and case 14, for case 39 it is in

[−0.001, 0.01], while for case 57 it is chosen randomly in

[−0.01, 0.02].

To that end, from Fig. 7 and Table 2 we can see that the

difference between system operating cost with control-OPF

and by just running OPF are close to each other. Again the

extra cost observed in the case of control-OPF is the sys-

tem regulation cost and results in the improvement of system

transient stability for all the test systems. This means that

control-OPF not only ensures transient stability of the system

via realtime feedback—which can also be verified from Fig. 5,

we can see that all the generator frequencies quickly converge

to their equilibrium after large disturbance, but also makes

sure that the power redistribution from the generators after a

disturbance is such that it is close to OPF cost. In Figs. 4 and

FIGURE 5. Generator frequencies under ten random disturbances in load
and renewables for case 9, case 14, case 39, and case 57 test systems
respectively.

FIGURE 6. Comparison of the operating cost of the system with
control-OPF and OPF under Scenario A, case 9, case 14, case 39, and case
57, respectively.

9 we also illustrate the active and reactive power output of

generators, line flows of transmission lines, and the modulus

of bus voltages for all ten simulations. We can clearly see that

for every random renewable uncertainty, the generator power

output, line flows, and bus voltages are within their prescribed

limits. Thus ensuring that the system constraints are satisfied.

These results can also be corroborated from Table 4, from

which we can observe that for all test systems, the in-

stantaneous active/reactive power outputs and transmission

to and from line flows are less/greater than their respective

maximum/minimum limits. Notice that the reason it satisfies

all the system constraints is because the proposed control-OPF
262 VOLUME 3, 2024



TABLE 4. Summary of ACOPF constraints for different test systems with the control-OPF for scenario B.

FIGURE 7. Comparison of the operating cost of the system with control-
OPF and OPF under Scenario B, case 9, case 14, case 39, and case 57,
respectively.

FIGURE 8. Random uncertainty in renewable power generations.

FIGURE 9. Active and reactive power generated by all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario B.

FIGURE 10. The generator frequencies for 9-bus (top-left), 14-bus
(top-right), 39-bus (bottom-left), and 57-bus (bottom-right) test systems,
for disturbance in load demand and renewable power.

makes sure that the system is stable (in terms of H∞ and

Lyapunov stability) and it inherently encodes the algebraic

constraints (power balance and generator stator constraints)

of power system in its feedback control architecture.

Furthermore, it is worth mentioning here that besides im-

proving frequency nadir, the control-OPF also makes the

power system more robust toward various uncertainties from

load and renewables. To verify this, we further increased the

severity of load and renewable uncertainty by increasing the

value of δd and δR, respectively, and we simulated the systems

without and with control-OPF under these disturbances. The

results are presented in Fig. 10. We can see that for all the test

systems, without control-OPF the system becomes unstable

and loses its synchrony while with the proposed control-OPF

the system remains stable and synchronized.

To that end, since the proposed control-OPF, ensures guar-

anteed stability, satisfies all the system constraints, and the

overall system cost after a large disturbance in load and re-

newable is close to the cost obtained from OPF. Then the

need to solve OPF after 5−10 minutes in the tertiary layer

(or economic dispatch layer) of the power system can be

eliminated. This is because the control-OPF acts in realtime

through feedback provided by the PMUs and it also ensures

system stability as discussed in Sec. IV.

VI. PAPER SUMMARY, LIMITATIONS, AND FUTURE WORK

In this work, we propose a new method to approximate the

OPF problem using feedback control theory. The proposed

algorithm namely control-OPF is based on Lyapunov stabil-

ity and it explicitly models the algebraic constraints of the
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power system in the controller architecture. These algebraic

constraints (especially the power balance equations) are part

of the OPF problem, since the control-OPF inherently sat-

isfies these constraints then the need for solving OPF after

5−10 minutes in the tertiary layer of the power system can be

rethought or potentially eliminated.

Given the case studies, we present preliminary answers to

the posed research questions Q1–Q4 posed in Section V.
� A1: We observe that control-OPF approach yields a

cost function that is on average slightly higher than the

ACOPF under transient conditions. The extra cost in-

curred can be seen as system regulation cost.
� A2: The control-OPF produces more than just time-

varying, realtime generator setpoints and deviations; it

produces realtime regulation of the grid’s voltages and

frequencies. The slight extra cost of control-OPF results

in on average 10−30% improvement in frequency nadir,

depending on the studied system and the assumed condi-

tions.
� A3: The control-OPF approach results in no constraint

violations for all studied power systems under different

realizations of renewables, loads, and initial conditions.
� A4: While the OPF knows exact values for all un-

certain loads and renewables (needed to compute OPF

setpoints), the control-OPF is truly uncertainty-unaware.

The former needs vectors of uncertainty from renewables

and loads; the latter hedges against it. Hence one could

argue that the cost comparison is objectively unfair to

the control-OPF. A fairer comparison would be with a

stochastic OPF, which is also uncertainty-aware.

The limitations of the presented work are as follows:
� As compared to ACOPF the proposed method herein

does not take into account the inequality constraints and

the quadratic cost equations of synchronous generators.
� The control-OPF formulation does not include theoreti-

cal near-optimality guarantees. It is only under compu-

tationally feasible conditions, such as the existence of

an NDAE feedback controller gain matrix K, that the

near-optimality performance of the proposed method can

be empirically evaluated.
� The near-optimality performance of the control-OPF

method can potentially deteriorate and can also result in

some operational constraint violations under potentially

different operating conditions.

Future work will focus on addressing the above limita-

tions, comparing this framework with a robust version of

ACOPF, extending the dynamic model to incorporate power-

electronics-based models of renewable energy resources such

as wind and solar farms, and investigating the performance

of robust H2- or L∞-based controllers in terms of costs and

response to uncertainty.
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