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ABSTRACT This paper presents a new approach to approximate the AC optimal power flow (ACOPF). By
eliminating the need to solve the ACOPF every few minutes, the paper showcases how a realtime feedback
controller can be utilized in lieu of ACOPF and its variants. By i) forming the grid dynamics as a system
of differential-algebraic equations (DAE) that naturally encode the non-convex OPF power flow constraints,
ii) utilizing DAE-Lyapunov theory, and iii) designing a feedback controller that captures realtime uncertainty
while being uncertainty-unaware, the presented approach demonstrates promises of obtaining solutions that
are close to the OPF ones without needing to solve the OPF. The proposed controller responds in realtime to
deviations in renewables generation and loads, guaranteeing improvements in system transient stability, while
always yielding approximate solutions of the ACOPF with no constraint violations. As the studied approach
herein yields slightly more expensive realtime generator controls, the corresponding price of realtime control
and regulation is examined. Cost comparisons with the traditional ACOPF are also showcased—all via case
studies on standard power networks.

INDEX TERMS Optimal power flow, load frequency control, power system differential algebraic equations,
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robust control, lyapunov stability.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

It is not an overstatement that the OPF problem—and its many
variants—is arguably the most researched and solved opti-
mization problem in the world. OPF [1] refers to computing
setpoints of generators in a power network every few minutes,
allowing generation to meet the varying demand. In short, the
problem minimizes the cost of generation from mostly fossil
fuel-based power plants subject to power balance in transmis-
sion power lines (acting as equality constraints or h(x) = 0)
and thermal line, voltages, and generation limits (acting as
inequality constraints or g(x) < 0). This optimization problem
can be written as

OPF : minimize f(x) subject to g(x) <0, h(x)=0. (D

Due to the nonconvexity in the power balance equality con-
straints h(x) = 0, the OPF is infamously non-convex. The
infamy is not because the nonconvexity is too insufferable
however insufferability is defined; it is because OPF has be-
come a textbook example of practical optimization problems
in operations research and systems engineering.

Brief Literature Review: In pursuit of overcoming this non-
convexity, hundreds of papers yearly investigate methods to
solve variants of OPF. The OPF can also make you a mil-
lionaire: The US department of energy and ARPA-E have a
competition, called grid optimization (GO) Competition [2],
[3], where academics and practitioners compete in solving
variants of the OPF with up to $3 million in prizes. To
solve the OPF, academics often resort to one of these four
approaches. i) Assume DC power flow and eliminate some
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variables, resulting in convex quadratic programs that can be
solved efficiently for large power systems [4], [5], [6], [7]. ii)
Derive semidefinite programming (SDP) relaxations of OPF
appended with methods to recover an optimal solution [8],
[9], [10], [11], [12], [13], [14], [15]. iii) Design global op-
timization methods with some performance guarantees under
various relaxations of nonconvex OPF [16], [17], [18]. iv) Ob-
tain machine learning-based algorithms that learn solutions to
OPF [19], [20], [21], [22], [23], [24]. A thorough description
of the OPF literature is outside the scope of this work.

Relevant to these approaches that only focus on ACOPF
are methods and algorithms that study stability-constrained
OPF where dynamic stability or optimal control metrics are
appended to the OPF problem [25], [26], [27], [28]. This
integration of system operating cost and dynamic stability
results in the merging of power system’s secondary and ter-
tiary control layers. This means that the five-minute generator
setpoints provided by the tertiary layer not only minimize the
system operating cost but also allow the system to be more
controllable or more stable. However, this does not circum-
vent the issues with the nonconvex equality constraints in the
ACOPF problem and still convex relaxation and linearization
are required. This direction of stability or control-constrained
OPF, while seemingly distinct, aligns closely with the method
we propose in our approach.

Furthermore, due to the increasing penetration of renew-
able energy resources, complex load demands, and other
power electronics-based devices in the future power grid,
the 5-10 minutes setpoints provided by the traditional OPF
may not be valid/optimal because of the time-separation and
slow update process [29]. With that in mind, this paper investi-
gates a new approach of solving the OPF problem in realtime.
This is done in a way by virtually ignoring (1) and dumping
the OPF problem into a feedback control problem that inher-
ently satisfies the constraint set in (1), while simultaneously
performing other tasks such as load frequency regulation and
realtime control. Next, we explain in detail how this approach
works. A more detailed discussion of the literature is omitted
from here (for brevity and clarity) and instead is given after
the formulation of the proposed controller (Section IV).

Main Idea: First, formulate a dynamic, differential alge-
braic equation (DAE) model of power systems. This model
incorporates algebraic equations that model power flows (the
nonconvex constraints in (1)) as well as generator dynam-
ics. Then, solve a control problem that computes (a) OPF
setpoints (i.e., generator output power) and (b) their devia-
tions in a feedback fashion by utilizing phasor measurement
units (PMUs) data in realtime, while forgoing the need to
solve for the power flow variables—yet still ensuring that
physical constraints are not violated. By formulating a re-
altime, feedback-driven control problem that solves for a
time-invariant feedback gain matrix, and feeding that gain into
a highly scalable differential algebraic equation (DAE) solver,
we avoid actually having to solve a nonconvex optimization
problem for the OPF variables.
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In short, we address a robust feedback control problem
for the power system model, which not only incorporates the
key constraints found in the OPF problem but also delivers a
solution closely aligned with the OPF results. This approach
ensures optimal generator setpoints akin to those in the OPF,
while also enhancing system transient stability by introducing
damping to system oscillations.

The presented approach in this paper does not actually solve
the OPF with the generator’s cost curves—but as observed
later in the paper, we showcase using thorough simulations
how the proposed approach is very close to the optimality
under transient conditions similar to the OPF solution. Fur-
thermore, in a real-world setting, the DAE solver is replaced
with the actual system meaning that even the DAEs do not
have to be simulated. The DAEs already encode the noncon-
vex constraints (using constant system matrices) in OPF—a
key factor in the proposed method.

Paper Contributions: The presented approach in this paper
is endowed with the following key properties and contribu-
tions. The OPF-controller: i) Circumvents the need to solve
or deal with the nonconvex equality constraints modeling
power flow. That is, we find generators’ setpoints in realtime
while knowing that these setpoints do satisfy and abide by
the power flow constraints. ii) Deals with the uncertainty
in renewables, loads, and parameters in a control-theoretic
way. In contrast with vintage robust optimization or the more
intricate distributionally robust optimization algorithms, the
developed approach here is truly uncertainty unaware. iii)
Utilizes realtime information from grid sensors such as PMU
via state estimators allowing for realtime micro-adjustments
of dispatchable generation. This is in contrast with OPF for-
mulations that do not utilize grid measurements for better
dispatch of generators. iv) Eliminates the need to separate
the OPF and the secondary control time scales: this approach
serves the purposes of both OPF and control, so the need to
separate the two becomes unnecessary. v) Seamlessly incor-
porates advanced models of renewables, resulting in setpoints
for fuel-based generators that are aware of the dynamics of
solar and wind farms, etc.

Notations: Bold lowercase and uppercase letters represent
vectors and matrices respectively, while all calligraphic letters
denote sets such as R, NV, etc. The set of real-valued x by y ma-
trices is represented as R**Y. Similarly positive definite matrix
of size x by y is denoted as S’::_y We represent identity and
zero matrices of appropriate dimension as I and O. For any
matrix A, symbols A+, AT ||Allo, G[A], and ||A|2 denote its,
orthogonal complement, transpose, total number of non-zero
elements, largest singular value, and £;-norm, respectively.
We represent positive/negative definiteness as > 0/< 0 and
positive semi-definiteness by > 0. Symbol * represents the
symmetric elements in a given symmetric matrix. We denote
the union (combination) of two sets via symbol U such as
GUTR. We use diag to show a diagonal matrix. The set R*
represents a column vector of x elements and R, repre-
sents a positive scalar. Given a vector a(¢) in time interval

VOLUME 3, 2024



IEEE
L CSS

7

T

t €10, 00), its Lo-norm is represented as /[ [la(t)||?d.

Also, for the sake of simplicity, we omit time dependency,
i.e., (t) in representing some of the time-dependent vectors.

Paper Organization: The remainder of the paper is orga-
nized as follows: Section II summarizes the ACOPF problem
formulation. Section III presents the multi-machine NDAE
model of power networks. Section IV explains the proposed
methodology and its mathematical derivation. Numerical case
studies are performed in Section V while the paper is con-
cluded in Section VI.

1l. ACOPF FORMULATION
In this section, we briefly present the ACOPF formulation.'
We consider a power network consisting N number of buses,
modeled by a graph (N, £) where N is the set of nodes and
£ is the set of edges. Note that N consists of traditional
synchronous generator, renewable energy resources, and load
buses, i.e.,, N=GURUL where G collects G generator
buses, R collects the buses containing R renewables, while
L collects L load buses. The generator’s supplied (real and
reactive) power is denoted by (Pg;, Qg;) for bus i € G, and
the bus voltages are depicted as v;. The bus angle is repre-
sented as 6; and the angle difference in a line is 0;; := 0; — 0;.
The parameters (G;;, B;;) respectively denote the conductance
and susceptance between bus i and j which can be directly
obtained from the network’s bus admittance matrix [30].
Furthermore, quantities (Pr;, Or;) denote the active and re-
active power generated by renewables for bus i € R, while
(PLi, OLi) denote the active and reactive power consumed by
the loads for bus i € L. Essentially, renewables are modeled
as negative loads. If a bus does not have generation, load,
or a renewable source attached to it, the corresponding ac-
tive/reactive powers are equal to zero.

Given the above notation, the ACOPF can be written as [4]

min Jorr(PG) = PE 4+ biPgi+ci  (2a
L opr(PG) ;a, Gi +biPci +ci (2a)
subject to Vie N': Pgi + Pri + PLi
N
=U,‘ZU1‘(GUCOSQU —i—B,‘jSian‘j) (2b)
j=1
Vie N: Qgi + Ori + Ovi
N
=U,‘ZU1‘ (Gijsin9,-j—Bij0059ij) (ZC)
j=1
VieG: PO < Pg; < PE™(2d)
VieG: 08" < Qci < 08" ()
Vie N:omt <y < oM™ (2f)
VieN:Sﬁmeax (2g)

'We use ACOPF and OPF interchangeably in this paper.
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Vie N:S;, < Fuax.  (2h)

The variables in the ACOPF are the active/reactive pow-
ers for generator buses and angles and voltages for all
buses (Pg, Qg., 0, v). In (2), the objective function Jopr(Pg)
minimizes the generator’s convex quadratic cost function with
parameters a;, b;, and c;. The first two constraints model
power flow balance in the network—a nonlinear, non-convex
relation between the variables. The last five constraints repre-
sent upper and lower bounds on the generators’ power as well
as bus voltages and line flow constraints, with Sy, S;, repre-
senting from and to line flows and Fp,x denoting maximum
rating of the transmission lines.

The ACOPF is usually solved every 5—10 minutes, al-
though the frequency at which it is solved depends on the
computational power and updated predictions of renewables
and loads. Ideally, a system operator would have all of the
constraints satisfied at each time step ¢, and one would solve a
realtime ACOPF that satisfies all constraints while optimizing
the cost function.

In the next section, we present the dynamics of the same
power system with a focus on the realtime control problem.
‘We then showcase that the proposed realtime controller inher-
ently satisfies some of the key ACOPF constraints.

1Il. DYNAMICS OF MULTI-MACHINE POWER SYSTEMS
Here, we describe the transient dynamics of a power system
which by definition encodes the algebraic constraints (2b)
and (2c). For the same power network, we can write the
4th-order dynamics of synchronous generators as [30]:

8i = w; — wo (3a)

Mw; = Tvi — Pei — Di(wi — wp) (3b)
TiiE{ = —%E{ + %vi cos(8; — 6;) + Eri (3c)
TeniTvi = —Twvi — RLDi(wi —wo) + T (3d)

8, w;, Ei’ , T denotes the generator’s rotor angle, frequency,
transient voltage, and mechanical input torque, respectively,
while Egq;, T; are generator’s controllable inputs (exciter
field voltage and torque setpoint). The constant terms in (3)
are as follows: M; is the rotor’s inertia constant (pu x $2),
D; is the damping coefficient (pu x s), xg4; is the direct-axis
synchronous reactance (pu), x; is the direct-axis transient re-
actance (pu), T, is the direct-axis open-circuit time constant
(s), Tcy; is the chest valve time constant, Rp; is the regu-
lation constant for the speed-governing mechanism, and wg
denotes the rotor’s synchronous speed (rad/s). The mathemat-
ical model relating generator’s internal states (§;, w;, El.’ , Tvi),
generator’s supplied power (Pg;, Ogi), and terminal voltage v;
is given by the generator’s internal algebraic constraint [30]

Pc,,:)iEi’ vi sin(8; — ei)—%v? sin(2(8; — 6;))  (4a)

/
S Uy ) XaitXei 2
Oci = T E;v;cos(8; — 6;) Tl
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— B2 cos(2(8; — 67)).

/ .
2x4;%qi

(4b)

The power flow equations, for all buses i € N, representing
the distribution of real and reactive power are given by (2b)
and (2c), which are present in the ACOPF formulation. Hence,
the power flow constraints and the generator’s algebraic con-
straints essentially couple the rapidly varying dynamic states
and control variables with the ACOPF ones.

In order to construct the nonlinear state-space represen-
tation of the multi-machine power networks (2b), (2¢), (3),
and (4), define x; as the vector populating all dynamic
states of the network such that x; := [ST w' E'T Tl—\r,I]T
in which & := {§;}icg, @ := {wilicg, E' :={E[}icg, Tm :=
{Tmi}ieg. Furthermore, we can define the vector of algebraic
states (that overlap with some ACOPF variables) as x, :=
[Pg Qg v’ OT]T. The controllable input of the power net-
work is defined as u := [E;E T:]T where Egq := {Eggiticg
and T := {T}i}icg- In addition, define the vector w as w :=
[Py Ox P QI]T where PR := {PR;}ier, Or := {ORi}ier,
P1. .= {PLi}ier, O := {OLi}iec- Essentially, vector w lumps
all uncertain quantities from renewables and loads. The above
notations allow us to have a compact, nonlinear differential
algebraic equation (NDAE) state space model:

(52)
(5b)

Dynamics : %qg = Aygxq + fq (Xq4,%4) + Byu

Constraints : 0 =Agx, + f, (x4,%,) + B,w

where x; € R" x, € R",u € R™, and w € R™. The func-
tions f,; : R" x R%™ — R" and f, : R" x R"™ — R" de-
fined the vector-valued mapping containing the nonlinearity
of generator dynamics as well as the power flow non-
linearity/nonconvexity. Matrices A; € R%*" A, € R"a*"a
B; € R"* and B, € R"™*™ define the linear portion of
the dynamics and algebraic constraints. By defining x =
[xs x0T € R™ and fx) = [fy®a.%0) fou®a,x0)] ' the
model (5) can also be rewritten as follows:

Ex =Ax + f (x) + Bu + B, w. (6)

Having defined the NDAE power network dynamics, we note
the following. i) Herein, we showcase a fourth-order gener-
ator model (i.e., each generator is modeled via four states)
but this can be extended to higher-order generator dynamics
as well as dynamic models of solar and wind. ii) In ad-
dition to modeling the algebraic constraints encoding lossy
power flows, the presented NDAE formulation also accounts
for the stator algebraic equation which is usually missing
from ACOPF formulation. iii) The controllable variable in the
ACOPF formulation, namely Pg, is present in the dynami-
cal system model as an algebraic variable that is controlled
explicitly via u(¢). This entails the following. Solving a feed-
back control problem that generates realtime sequence u(t)
and subsequently extracting the ACOPF’s algebraic variables
x,4(t), while satisfying the ACOPF constraints and being close
to its optimal solution Jopr(Pg ), could be specifically useful.
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IV. SOLVING OPF VIA DAE CONTROL THEORY

We focus now on the control problem for the NDAE model
(5), which when solved will essentially solve a version of
the ACOPF (2). This control problem can simply be defined
as computing a constant gain matrix that can be used with
the control input u(¢) in a closed-loop fashion (via realtime
state/output information) such that it can drive the system
back to a stable equilibrium after a large disturbance. With
that in mind, let us define the closed-loop system dynamics as
follows:

Ex =Ax + f (x) + Buc + B,w (7

where uc is the closed-loop control input and is defined as:

uc :=uc(t) = u]r(ef +K (x(t) —xk) (8)

in which u,r is the reference or baseline setting for the control
input u, x* is the dynamic states information at previous time
step k, and K is the constant controller gain matrix. Notice
that, et and x¥ can be determined numerically using power
flow studies. That being said, the key idea is to design K
such that using realtime state feedback information x(¢), the
closed-loop control input u¢ can make the system robust and
transiently stable against disturbances.

To that end, notice that, if we can compute K in a way such
that it encodes (5b) also along with (5a) (meaning determining
K for the whole NDAE system instead of eliminating (5b) and
converting it to an ODE system), then the determined feed-
back controller K will inherently satisfy the key constraints
appearing in the OPF formulation (2). This is because (5b)
includes power balance equations (2b), (2¢) of ACOPF and
generators stator algebraic constraints (4a),(4b) which indi-
rectly encode the constraints (2d),(2e) of the ACOPF. As for
the other constraints such as limits on generators’ capacities,
these can be encoded via saturation dynamics in the differen-
tial equations. Admittedly, other constraints such as thermal
limits of lines cannot be modeled in this approach, and to
that end we thoroughly investigate any constrained violations
incurred in Section V.

With that in mind, we name the computation of such feed-
back controller gain K which includes (5b) in its control
architecture as control-OPF feedback controller design. This
is because such K ensures system transient stability after
a large disturbance and also fully abides by the key OPF
constraints as discussed above. To that end, we present the
following results to compute such K which is based on Lya-
punov stability theory as follows:

(CONTROL-OPF) Fminimize a1A +axp + azer +aser

S, X €, K
subject to LMI (9), LMIs (10),

M—XTEX >0,

X>0,A>0,y >0,

€1 >0, >0,k >0

VOLUME 3, 2024
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where

® ay,ay, as, and a4 are known weighting constants.

e The variables in control-OPF are matrices S € R"%a*"%x
F e R X e ST 5™, and scalars A, j, &, €], € €
R.‘_J’_.

e [MI (9) is defined as

TAT+AT B, I T® «kiaTT
B —ul O D] 0
1 0 —«lI 0] (0] <0
oT p, 0 I 0
k2aT o o0 o0 -1
©)

where T = XE " + E1S and E* € R™*" represent the
orthogonal complement of matrix E.
e [MiIs (10) are defined as:

—l FT —el 1
€l <0, |7 <=0 0
F - I -T-T

® The corresponding controller gain matrix K can be ob-
tained as

K=FT! (11)

® The designed control-OPF is a convex semi-definite op-
timization problem and thus can easily be solved via
various optimization solvers.

It is worth mentioning here that the designed control law
uc(t) of the proposed control-OPF requires that all the state
variables (both x; and x,) are known in realtime. This require-
ment can easily be satisfied these days because of the recent
developments in synchronized measurement technologies and
highly efficient state estimation algorithms [31], [32], [33],
[34], [35]. These modern state estimation algorithms only
require measurements from a few PMUs (placed optimally
such that the system is observable) and can efficiently esti-
mate all the states of the network including the states of solar
plants [36], [37].

In the following sequel, we present a detailed explanation of
each variable and the mathematical derivation of the proposed
control-OPF formulation.

A. MATHEMATICAL DERIVATION OF CONTROL-OPF

To begin with, let us assume there is an unknown disturbance
in the system and the new value of the vector w is w’. This
disturbance will move the states of the power network from
its initial equilibrium to a new equilibrium x’. With that in
mind, the perturbed closed loop dynamics i.e Ax = x —x’ of

(7) can be written as:
EAx=(A+BK)Ax + Af(Ax)+B,Aw. (12)

Now the main idea is to design in K such that the perturbed
dynamics (12) converge asymptotically to zero. With that in
mind, to compute such controller gain matrix K we utilize
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the robust H notion [38]. The core idea in H,-based con-
troller design is that the controller makes sure that the norm
of the performance index is always less than constant times
the norm of disturbance i.e IIZ1II%2 < yzllwllﬂz, where z is
the user-defined performance index and y is optimization
variable commonly known as performance level in the control
theocratic literature. To that end, let us consider the perfor-
mance index for the perturbed closed loop system (12) to be:
Azy = CAx + DAu + D, Aw € R™ which can also be writ-
ten as: Az; = (C + DK)Ax + D, Aw, where the matrices
C e R D e R™*"_and D,, € R™*™ are user-defined
penalizing matrices (meaning how much weight should be
given to each state and control inputs in response to the
disturbance) similar to the @, R matrices in LQR type con-
troller. From now on for the sake of notation simplicity with
little abuse of notation, we will consider Ax =x, Aw = w,
and Az =z.

That being said, we now utilize Lyapunov stability theory
to design the controller gain K which guarantees H, stability
of the closed loop system (12). To that end, let us consider
a Lyapunov function V (x) = x " E " Px, with P € R™*"x and
V : R™ — R,. Now assuming that the well-known Kalman-
Popov-Yakubovich (KYP) lemma [39]E P = PTE > O sat-
isfies, then the derivative of V along system trajectories x can
be written as follows:

V(x) = (Ex) Px + (Px)" (Ex).

Now Ho criterion can be written as V(x)+ lez 1—
y?w w < 0, then by plugging the value of Ex from (12) in it
and doing simplifications we get the following quadratic form
YTYW <0, with W =[x w Af]" and

A/P+o"®+P'A. ®'D,+P'B, PT
D)®+B)P DD, -y O
P 0 0

Y =

where A, =A + BK and ® = C + DK. Notice UIYw <
0 holds if ¥ < 0. Now assuming Af to be quadratically-
bounded with known constant « such that

AL < llax)l2
S AfE)TAf(x)—a’xTx <0

13)
(14)

which can be written as ¥ ' @W < 0, where
® = diag ([—a2 0 1]) .

Notice that it is common in the power system feedback con-
trol literature to assume some sort of boundedness (such
as norm or quadratic boundedness or Lipschitz continuity
assumption) on the structure of the nonlinearity to design
feedback controllers in a tractable fashion [37], [40], [41].
These assumptions are applicable to power systems models
since the system states have specific upper and lower limits.
For instance, the voltage is constrained to lie within a range
from 0.95 pu to 1.05 pu. That being said, we proceed with the
derivation of the control-OPF formulation. By S-Lemma [42],
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if there exists a scalar k > 0 then ¥ — (x)©® < 0 holds, which
can be written as:
AlP+®"®+P'A +ke ®'D,+P'B, PT
D)®+B)P D)D,—y O
P o —kl
Now applying congruence transformation with diag([T '

I I))where T = P~!, then the above matrix inequality can
be written as follows:

Q T'®'D,+B, I
D)®T+B) D!D,—y I 0 (15)
1 0] —klI

with =TTA +T"®T®T +A.T +xa?T'T. Using
Schur complement lemma [43] on (15) we get

TTAT+A.T B, I T'®' ial’
B -y 0 D] 0
1 0 —«I 0 0 (16)
oT D, O I 0
K2aT o o0 0 -1

Now to get a strict LMI for controller design we have to elimi-
nate the KYP lemma, this can be done as detailed in [40], [44].
That being said, let us assume there exist matrices U € R"™*"x
and V € R™>*" guch that

UEV=|:I O](U‘I)TPV =[P1 Pz] (17)
0O 0O P; P,

Then from (17) we get

ETP=v)T [’;1 g} y-! (18a)
T

P E=wHT [i# g} vl (18b)
2

Then we can see from (18) that PTE and E TP can be made
equal onlyif " = Q@ and Py = Py ". Hence, P can be updated

as
p=uT|PT Oyt
P; Py

—_———
P

and T = P! can be written as
P, O
r=v| ! “lwoH'
P, P,

—_——

1571

Then, for any X € S’ it is straightforward to show

T=XE' +E'S (19)
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where § € R"*"x and E+ € R™*" is the orthogonal com-
plement of matrix E. Finally, by defining F = KT, ju = y?,
and plugging the value of T from (19) into (16) we get the
LMI (9). Notice that one can minimize the maximum eigen-
values of the assumed candidate Lyapunov function to ensure
quick convergence, which can be written as Al — X TEX > 0
with A being an optimization variable that should be min-
imized as shown in the proposed control-OPF formulation.
Furthermore, as K = FT~! then one can limit the size of
controller gain K by constraining F and T as: H H < eI
and T~! < e,1. Which in LMI formulation (via applying the
Schur complement) can equivalently be written as LMIs (10).
This ends the derivation of control-OPF.

By solving control-OPF we can determine an appropriate
time-invariant gain matrix K as given in (11) which can be
plugged into (8) to design a feedback control law that guaran-
tees the stability of the system after a large disturbance. Notice
that the computation of K is carried out offline.? Furthermore,
the design control law u¢ acts in realtime based on the system
state/output information provided by PMUs in power systems.
Notice that, the overall proposed controller design in this
work is different than [44], [45], [46], [47], as here we are
utilizing robust Ho, notion, considering nonlinearities also
in controller design, and also engineering the overall con-
troller architecture as an efficient optimization problem which
ensures quick convergence of state variables with optimal
controller gain matrix K.

B. CONTROL-OPF NOVELTY, PROPERTIES, AND
LITERATURE DISCUSSION

We want to emphasize here that the control-OPF gain matrix
K has been derived in a way such that it satisfies the algebraic
constraints (5b) of the NDAE power system model. This can
also be verified by looking at the structure of the proposed
LMI (9), we can observe that it is dependent on the singular
matrix E and the whole system matrices A, B and B,, (which
encodes the algebraic constraints matrices A, B,) of (5b). This
means that K inherently satisfies some of the key constraints
appearing in ACOPF formulation (2). Although the rest of the
ACOPF constraints such as line thermal limits and voltage
limits are not explicitly modeled in the presented control-OPF
architecture, through extensive numerical case studies under
various conditions we show that these constraints are also
indeed satisfied. This is because the control-OPF also makes
sure that the system is transiently stable after a large distur-
bance.

Furthermore, notice that matrix D is a penalizing matrix on
the control inputs, meaning how much control effort needs to
be performed by each generator in response to the disturbance.
In this way, we can control how much active power needs to be

2This matrix gain is computed offline as it does not depend on the state of
the system and only relies on the system’s parameters and topology. Hence,
its computation is performed offline. In case topological changes happen in
the system, this gain matrix K should ideally be recomputed, but feedback
control gains are known to be robust to minor changes in system parameters
and topology.
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extracted from a particular generator to meet the varying load
demand. Thus by appropriately designing D (i.e., by putting
more penalty on those generators that are expensive), one can
ensure that after a large disturbance, the system operating cost
is optimal. In this work, as the control inputs are field voltage
E¢4 and governor reference valve position T, and since T,
directly control active power output from the generators, then
in designing D matrix a larger penalty has been added to the
T, of those generators which are expensive (by looking at the
quadratic cost function of each generator).

To that end, since the control-OPF acts in realtime
and provides stability guarantees while also satisfying
ACOPF conditions then the need for running ACOPF after
5—10 minutes in the tertiary layer of the power system can be
eliminated. Thus, we essentially dumped the ACOPF problem
in a feedback control architecture. It is worthwhile to mention
that in the presented control-OPF we do not even need to solve
the power system NDAE model. In a real-world application,
the NDAE (5) is replaced by the actual power system model.
Thus the control-OPF is essentially carried out offline and
then K is used online, knowing that K satisfies system alge-
braic constraints.

It is worth mentioning here that, as compared to the lit-
erature where authors have tried to merge system optimality
and secondary control (as in [26], [48], [49], [50], [51], [52])
this work differs in the following ways. Here, in response to
the system transients, the controller adjusts the power output
of all the generators optimally (via properly setting design
matrices C and D) through realtime information received from
the PMUs while also satisfying the algebraic constraints. Fur-
thermore, the proposed controller in this work can directly be
actuated through the primary layers controllers, for example
in the case of 4/"-order generator model as used in this paper,
the proposed controller is actuated through turbine dynamics
(via torque setpoint T ) and by directly controlling the gen-
erator field voltage E 7,. In the case of higher-order generator
dynamics (which include automatic voltage regulator (AVRs)
dynamics) the proposed controller can adjust the setpoint of
AVRs and turbine dynamics.

Furthermore, the studies [50], [51] design cost-optimal fre-
quency controller; however, the optimality of the controller is
not clear as no-cost comparison with OPF has been carried
out. In addition, the designed controller requires controllable
loads to improve system performance, and without control-
lable loads, the proposed controller works exactly the same as
AGC. Similarly in [26], [48], [49] the economic dispatch layer
(or the OPF layer) has been merged with the AGC layer via
formulating an optimization problem that solves them simul-
taneously, however the design methodology cannot improve
system transient stability (by adding damping to the system
oscillations) and can only remove steady-state error in the
frequency (similar to the AGC but optimally). These method-
ologies are not capable of incorporating generator dynamics
and realtime PMUs data in their proposed methodologies.

We also want to point out here that the proposed approach
in this work is based on linear matrix inequalities and is
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hence convex. However, it is completely different than the
methods in the literature that solve ACOPF using convex
relaxation or linearization. This is because to find a solu-
tion for ACOPF problem convex relaxation or linearization
is commonly carried out for the highly nonlinear nonconvex
AC power flow equations [16], [17], [18]. While on the other
hand, the proposed approach does not carry out any convex
relaxation or linearization and directly encodes the alge-
braic constraint model (which models these nonlinear power
flow equations) in its design. Furthermore, notice that the
conventional ACOPF does not consider the load/renewable
uncertainty and assumes that the forecasted operational con-
ditions used in the OPF formulations are exactly the same
as the actual conditions, which is unrealistic. This is mainly
because of the increasing penetration of stochastic renew-
able resources, often observed as substantial fluctuations in
load demand caused by behind-the-meter PV power plants.
Thus, resulting in significant deviations between the actual
operating conditions and the original forecasted conditions
used in the OPF formulations. These forecast errors can have
consequences, potentially leading to violations of critical op-
erational limits and jeopardizing the system’s steady-state
stability [53]. In this regard, recently many robust AC-OPF
formulations have also been proposed—see [54], [55], [56],
[57]. However, to solve the power flow equation most of these
studies again use linearization and convex relaxations. This is
because guaranteeing a solution to the AC power flow equa-
tion is particularly challenging because of the highly nonlinear
relationship between the decision variables. Satisfying the
power balance equations is important because it is a necessary
condition for system stability.

Furthermore, most of the literature in robust OPF consid-
ers a deterministic uncertainty, meaning disturbance realiza-
tion/set is considered to be known, which is unrealistic. Such
as in [53] robust OPF is proposed with uncertainty in load
demand to be in a known deterministic set. This uncertainty
in load demand is first modeled in the power balance equation
and then various relaxations and restrictions are carried out
to reach the final convex robust AC-OPF formulation. Also,
albeit convex robust OPF can give feasible solutions (meaning
the solutions satisfy the power balance equations and the op-
erational constraints) against uncertainty in power injections
and load demand, they cannot make the system transiently
stable after large disturbance as they are control unaware. On
the other hand, the proposed control-OPF is truly uncertainty-
unaware and can also make the system transiently stable by
providing damping to the system oscillations and bringing the
system back to its equilibrium after a large disturbance.

V. NUMERICAL CASE STUDIES

To evaluate the performance of the proposed methodology, we
test various magnitudes of disturbances in load and renewable
energy resources. We also compare the overall cost of the
system with the control-OPF and by just running ACOPF.
Notice that the control-OPF provides us time-varying vectors
of Pg and Q. as shown in Fig. 2 while ACOPF gives static
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FIGURE 1. Overall integrated framework of the proposed control-OPF.
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FIGURE 2. Time-varying active/reactive power set-points provided by
control-OPF and static set-points from ACOPF for three random step
disturbances in load demand; above figures are for case 39 and below
figures are for case 9 test system.

set-points for the generator power outputs. This is because
when a disturbance is applied to the system the control-OPF
also commands all the generators to increase or decrease
power in order to mitigate the effect of the disturbance on
the system dynamics. To compute the cost of the system
with control-OPF, we evaluate the quadratic cost equation of
the generator for the vector Pg (generated from running the
control law u(z)), and then computing the mean of the total
cost vector, given as follows:

T
1
Tope (pcGOHtrol-OPF) =z ; gg: aiPE,(t) + biPsi(t) + ¢i

With that in mind, two case studies are carried out as dis-
cussed in the below sections. In the first case study, we apply
random step uncertainty in load demand with Gaussian noise
and evaluate the system total cost and compare it with ACOPF
cost. A similar comparison has been carried out in the second
case study. However, here we also assume high uncertainty in
the power generated by renewables as shown in Fig. 8. In both
case studies, we also check if with the control-OPF the system
violates any ACOPF constraints or not.

To that end, in this section, the following high-level re-
search questions are investigated.

260

e (QI. Given that the control-OPF strategy does not ex-
plicitly take into account generators’ cost curves and
the ACOPF cost function JopF(PéCOPF), how far are
the generators’ varying setpoints and their correspond-
ing aggregate costs JopF(Pg’mml'OPF) from the ACOPF
solutions?

e (2. Can we quantify the price of realtime control and
regulation of the grid’s dynamic states?

® (3. The control-OPF approach does not take into ac-
count inequality constraints modeling thermal line lim-
its. Does this approach result in any constraint violations
of the ACOPF?

® (4. Is the comparison between ACOPF and control-OPF
fair? While the former know exact values for all uncer-
tain loads and renewables (needed to compute ACOPF
setpoints), the latter is truly uncertainty-unaware.

All the simulation studies are carried out in MATLAB
2022b and using MATPOWER software. Optimal power flow
for all the case studies is carried out by running runopf
command in MATPOWER [58]. The control-OPF gain is
computed via YALMIP [59] and using MOSEK [60] solver,
while the power system NDAE:s (5) are simulated using MAT-
LAB DAE:s solver ODE151i. The overall architecture of the
control-OPF can be seen in Fig. 1.

A. SCENARIO A: UNCERTAINTY IN LOAD DEMAND

In this section, we analyze the overall system cost with the
control-OPF and compare it with the cost obtained by run-
ning ACOPF under random disturbances in load demand. To
that end, the simulations are carried out as follows: Initially,
the system operates under steady-state conditions, meaning
the overall demand is exactly equal to the power generated
by load and renewables. Thus there are no transients in the
system and the system rests in an equilibrium state. Then
right after + > O ten random (with varying uncertainty) step
disturbances in load demand have been added as follows:
Py + 0, = (1+8)(P) 4+ 09) + wy(t), where 8; represent
the amount of the disturbance, w,(¢) is a Gaussian noise with
zero mean and variance of O.OI(PG(; + Qg), PY, Qg are the
initial active and reactive load demand, and P}, Q/, is the
new load demand after the disturbances has been applied. For
every ten simulations, the value for §, is selected randomly
in [0.01,0.08] for case 9 and case 14, for case 39 the range
is chosen in [0.001,0.02], while for case 57 §; is randomly
picked in [0.001,0.01].

After the disturbance, the power system is stabilized via
control-OPF, and the gain K which is computed offline. Notice
that for every load disturbance, we get time-varying genera-
tor power output vector Pg and Q. The vector Pg is then
plugged into the quadratic cost equation of the generators
(given in MATPOWER) and finally average is taken to com-
pute the final cost. In this way, we get the overall cost of the
system with the control-OPF acting in realtime to redistribute
the power from the generator in response to the disturbances.
For similar uncertainties in load demand, OPF is also carried
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TABLE 1. Cost comparison for the control-OPF and ACOPF for scenario A.

Realtime System | Maximum Deviation of | Percentage Improvement
Test System Method Total System Cost RegulationyCOSt Frequency Nadir (pu) as Compgared trz) ACOPF
Case 9 ACOPF 5.4188 — 2.30 ><10‘z —
control-OPF 5.5801 0.1613 2.01 x10™* 8.660
Case 14 ACOPF 8.4591 — 1.72 ><10’§ —
control-OPF 9.0121 0.5531 1.38 x10™ 19.77
Case 39 ACOPF 41.819 — -2.411 ><10’3 —
control-OPF 46.105 4.286 -2.001 x10™ 17.01
Case 57 ACOPF 42.771 — 0.109 x107° —
control-OPF 47.511 4.736 0.078 x1073 28.44

The Control-OPF provides realtime frequency regulations and thus the cost is slightly higher as compared to ACOPF. All the costs shown

in the table are in thousands of dollars (X103).

TABLE 2. Cost comparison for the control-OPF and ACOPF for scenario B.

Realtime System | Maximum Deviation of | Percentage Improvement
Test System Method Total System Cost RegulationyCOSt Frequency Nadir (pu) as Compgared t% ACOPF
Case 9 ACOPF 6.319 — 1.112 x10°3 —
control-OPF 6.410 0.091 0.982 x1073 11.691
Case 14 ACOPF 10.431 — -1.107 ><10‘Z —
control-OPF 12.522 2.091 -0.891 x10™ 19.513
Case 39 ACOPF 50.929 — 1.136 ><10’§ —
control-OPF 60.001 5.072 0.803 x10~ 29.313
Case 57 ACOPF 44,771 — -0.181 ><10’§ —
control-OPF 48.001 3.230 -0.142 <10~ 21.546

Similar to Scenario A the control-OPF improves s stem transient stability by adding damping and thus the cost is slightly higher. All the costs

shown in the table are in thousands of dollars (x 103)

out ten times, and an average of the overall cost is computed
to determine the system cost for random loads with OPF.

To that end, a comparison of the overall system cost with
control-OPF and OPF for this case study is presented in
Table 1. We can note that for different test networks, the aver-
age cost of system operation under various load disturbances
is close to the average cost computed via just running OPF.
This can also be corroborated from Fig. 6 from which we can
see that the cost of control-OPF is close to the cost obtained
from OPF for case 9 and case 14 test systems. The extra cost
incurred in the case of control-OPF can be seen as the system
regulation cost. As seen from Table 1 with the control-OPF
there is around 10 — 30% improvement in the frequency nadir
for various test systems resulting in improved system transient
stability. This is because the proposed approach makes sure
that the power system quickly converges to its equilibrium
conditions and is Ho-stable after a large disturbance.

Fig. 2 also illustrate the time-varying power generation set-
points (for the first three simulations) generated by control-
OPF and static set-points received via solving OPF and we
can observe that both of them are not far away from each other.
Moreover, in Fig. 3 we present active and reactive power from
all the generators, line flows, and modulus of bus voltages for
the case 9 test system. Notice that, line flows are computed
from the state vectors as follows:

Sp=[CVIYEVE, S, = [CVIY;V*

where S¢, S; are apparent power flows from both ends (from
bus and to bus) of the transmission line respectively, V are the
bus voltages, Y%, Y represent the conjugate of from and to
VOLUME 3, 2024
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FIGURE 3. Active and reactive power generated by all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario A.

bus admittance matrices, while C ¢, C; are binary matrices and
it generates all from and to end buses of the transmission lines.

With that in mind, we can clearly see from Fig. 3 that all
the line flows, bus voltages, and generator’s power outputs
are within their prescribed limits and thus the control-OPF
successfully satisfies all the system constraints that are usu-
ally modeled in OPF. Similarly for all the other test systems,
we can see from Table 3 that the maximum instantaneous
value for the line flows, and active and reactive power genera-
tions are less than their respective maximum limits. Thus the
proposed control-OPF satisfies the constraints of the system—

and no ACOPF constraint violations are incurred.
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TABLE 3. Summary of ACOPF constraints for different test systems with control-OPF for scenario A.

: max¢(Sy(¢) — Smax) | max:(Si(t)— Smax) | max¢(Py(t) — Paax) | maxi(Qg(t) — Qmin) | maxt(Qg(t) — Qmax)
ystem
(pu) (pu) (pu) (pu) (pu)
Case 9 -0.5120 -0.4401 -0.9631 3.1402 -0.1091
Case 14 -0.4101 -0.2170 -0.6706 0.1926 -0.1006
Case 39 -0.1763 -0.1695 -0.0918 2.1021 -0.1921
Case 57 -0.1391 -0.4112 -0.0111 2.1120 -1.0326
The results indicate no constraint violations for flows, maximum active/reactive powers.
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FIGURE 4. Active and reactive power of a couple of generators and their
respective limits, line flows, and their maximum rating, and the overall
modulus of all buses voltages for case 39 bus test system for Scenario B.

B. SCENARIO B: UNCERTAINTY IN RENEWABLE POWER
GENERATION

Here we analyze the cost of operating the system with control-
OPF and compare it with OPF under random uncertainty in
renewable power generations. To that end, the simulations
in this section are performed as follows: Initially, the power
generation from renewables is Pg, Qg, then right after r > 0,
a random disturbance has been added and the power out-
put from renewables are given as: Py + Qf = (1 + (SR)(P,g +
Q%) + wg(t), where g represent the severity of the distur-
bance, wg(r) is the random noise as shown in Fig. 8, and Py,
Q) are the updated power output from renewables after the
disturbance. With that in mind, we carry out ten simulations
and for each simulation, the value for & is selected randomly
in [—0.01, 0.03] for case 9 and case 14, for case 39 it is in
[—0.001, 0.01], while for case 57 it is chosen randomly in
[—0.01, 0.02].

To that end, from Fig. 7 and Table 2 we can see that the
difference between system operating cost with control-OPF
and by just running OPF are close to each other. Again the
extra cost observed in the case of control-OPF is the sys-
tem regulation cost and results in the improvement of system
transient stability for all the test systems. This means that
control-OPF not only ensures transient stability of the system
via realtime feedback—which can also be verified from Fig. 5,
we can see that all the generator frequencies quickly converge
to their equilibrium after large disturbance, but also makes
sure that the power redistribution from the generators after a

disturbance is such that it is close to OPF cost. In Figs. 4 and
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FIGURE 5. Generator frequencies under ten random disturbances in load
and renewables for case 9, case 14, case 39, and case 57 test systems
respectively.
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FIGURE 6. Comparison of the operating cost of the system with
control-OPF and OPF under Scenario A, case 9, case 14, case 39, and case
57, respectively.

9 we also illustrate the active and reactive power output of
generators, line flows of transmission lines, and the modulus
of bus voltages for all ten simulations. We can clearly see that
for every random renewable uncertainty, the generator power
output, line flows, and bus voltages are within their prescribed
limits. Thus ensuring that the system constraints are satisfied.

These results can also be corroborated from Table 4, from
which we can observe that for all test systems, the in-
stantaneous active/reactive power outputs and transmission
to and from line flows are less/greater than their respective
maximum/minimum limits. Notice that the reason it satisfies

all the system constraints is because the proposed control-OPF
VOLUME 3, 2024
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TABLE 4. Summary of ACOPF constraints for different test systems with the control-OPF for scenario B.

S maXt(Sf (t) - Smax) maxt(St (t) - Smax) maxt(Pg (t) - Rnax) maxt(Qg (t) - Qmin) maxt(Qg (t) - Qmax)
ystem
(pu) (pw) (pu) (pu) (pu)
Case 9 -0.3009 -0.4110 -0.0401 1.2130 -1.990
Case 14 -0.1099 -0.2101 -0.1099 1.2216 -0.0115
Case 39 -0.1421 -0.7321 -0.0091 0.2510 -0.0109
Case 57 -0.7020 -0.1981 -0.0021 2.01910 -0.0307

— CSS

The results indicate no constraint violations for flows, maximum active/reactive powers.
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FIGURE 7. Comparison of the operating cost of the system with control-
OPF and OPF under Scenario B, case 9, case 14, case 39, and case 57,
respectively.
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FIGURE 9. Active and reactive power generated by all the generators and

their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario B.
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FIGURE 10. The generator frequencies for 9-bus (top-left), 14-bus
(top-right), 39-bus (bottom-left), and 57-bus (bottom-right) test systems,
for disturbance in load demand and renewable power.

makes sure that the system is stable (in terms of H., and
Lyapunov stability) and it inherently encodes the algebraic
constraints (power balance and generator stator constraints)
of power system in its feedback control architecture.

Furthermore, it is worth mentioning here that besides im-
proving frequency nadir, the control-OPF also makes the
power system more robust toward various uncertainties from
load and renewables. To verify this, we further increased the
severity of load and renewable uncertainty by increasing the
value of 6, and &g, respectively, and we simulated the systems
without and with control-OPF under these disturbances. The
results are presented in Fig. 10. We can see that for all the test
systems, without control-OPF the system becomes unstable
and loses its synchrony while with the proposed control-OPF
the system remains stable and synchronized.

To that end, since the proposed control-OPF, ensures guar-
anteed stability, satisfies all the system constraints, and the
overall system cost after a large disturbance in load and re-
newable is close to the cost obtained from OPF. Then the
need to solve OPF after 5—10 minutes in the tertiary layer
(or economic dispatch layer) of the power system can be
eliminated. This is because the control-OPF acts in realtime
through feedback provided by the PMUs and it also ensures
system stability as discussed in Sec. IV.

VI. PAPER SUMMARY, LIMITATIONS, AND FUTURE WORK
In this work, we propose a new method to approximate the
OPF problem using feedback control theory. The proposed
algorithm namely control-OPF is based on Lyapunov stabil-
ity and it explicitly models the algebraic constraints of the
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power system in the controller architecture. These algebraic
constraints (especially the power balance equations) are part
of the OPF problem, since the control-OPF inherently sat-
isfies these constraints then the need for solving OPF after
5—10 minutes in the tertiary layer of the power system can be
rethought or potentially eliminated.

Given the case studies, we present preliminary answers to
the posed research questions Q7-04 posed in Section V.

e Al: We observe that control-OPF approach yields a
cost function that is on average slightly higher than the
ACOPF under transient conditions. The extra cost in-
curred can be seen as system regulation cost.

e A2: The control-OPF produces more than just time-
varying, realtime generator setpoints and deviations; it
produces realtime regulation of the grid’s voltages and
frequencies. The slight extra cost of control-OPF results
in on average 10—30% improvement in frequency nadir,
depending on the studied system and the assumed condi-
tions.

® A3: The control-OPF approach results in no constraint
violations for all studied power systems under different
realizations of renewables, loads, and initial conditions.

® A4: While the OPF knows exact values for all un-
certain loads and renewables (needed to compute OPF
setpoints), the control-OPF is truly uncertainty-unaware.
The former needs vectors of uncertainty from renewables
and loads; the latter hedges against it. Hence one could
argue that the cost comparison is objectively unfair to
the control-OPF. A fairer comparison would be with a
stochastic OPF, which is also uncertainty-aware.

The limitations of the presented work are as follows:

e As compared to ACOPF the proposed method herein
does not take into account the inequality constraints and
the quadratic cost equations of synchronous generators.

® The control-OPF formulation does not include theoreti-
cal near-optimality guarantees. It is only under compu-
tationally feasible conditions, such as the existence of
an NDAE feedback controller gain matrix K, that the
near-optimality performance of the proposed method can
be empirically evaluated.

® The near-optimality performance of the control-OPF
method can potentially deteriorate and can also result in
some operational constraint violations under potentially
different operating conditions.

Future work will focus on addressing the above limita-
tions, comparing this framework with a robust version of
ACOPF, extending the dynamic model to incorporate power-
electronics-based models of renewable energy resources such
as wind and solar farms, and investigating the performance
of robust H,- or L,-based controllers in terms of costs and
response to uncertainty.
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