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Abstract
Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. 
However, recent studies demonstrated that cancer can also be driven purely by epigenetic alterations, without driver 
mutations. Specifically, a 24-h transient downregulation of polyhomeotic (ph-KD), a core component of the Polycomb 
complex PRC1, is sufficient to induce epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA 
repair and characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 downregulation 
is performed for extended periods of time remains unclear. Here, we show that prolonged depletion of PH, which mimics 
cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of 
DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad misregulation of H2AK118 
ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs and might contribute to these phenotypes. Together, 
this study supports a model where DNA repair and replication defects accumulate during the tumorigenic transformation 
epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.
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Introduction

The tumorigenic process is typically associated with DNA 
damage defects and genomic instability (Hopkins et al. 
2022). However, recent studies established that cancer can 

also be induced purely by epigenetic changes initiated by 
the transient loss of the transcriptionally repressive Poly-
comb PRC1 complex (Parreno et  al. 2024). Polycomb 
Group (PcG) proteins are grouped in two main classes of 
complexes called Polycomb Repressive Complex 1 and 2 
(PRC1 and PRC2) (Levine et al. 2002; Kassis et al. 2017; 
Schuettengruber et al. 2017). Drosophila PRC1, which is 
composed of PH, PC, PSC, and SCE subunits, is primar-
ily responsible for H2AK118 ubiquitylation (H2AK118ub, 
corresponding to H2AK119ub in mammals) (Barbour et al. 
2020; Parreno et al. 2022), whereas PRC2 mediates H3K27 
trimethylation (H3K27me3) (Holoch and Margueron 2017). 
PRC1 and PRC2 are also highly interdependent, given that 
PRC1 binds to H3K27me3 while PRC2 associates with 
H2AK118ub (Blackledge et al. 2014; Cooper et al. 2016, 
Kasinath et al. 2021). This enables cooperative binding of 
the two complexes to the same sites and codependency in the 
establishment of the respective marks on chromatin (Cooper 
et al. 2016; Barbour et al. 2020, Tamburri et al. 2020). While 
PRC1 and PRC2 form several redundant subcomplexes in 
mammalian cells (Parreno et al. 2022, Potter et al. 2023), 
Drosophila Polycomb complexes comprise a reduced 
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number of paralogous and accessory subunits, facilitating 
the study of these components in flies.

PRC1 and PRC2 coregulate a variety of cellular processes 
including embryonic development, differentiation, and 
cell proliferation (Chan and Morey 2019; Loubiere et al. 
2019, Loubiere et al. 2020). Consistent with a role for PcG 
proteins in cell identity, dysregulation of these components 
has been associated with multiple types of cancer (Piunti 
and Shilatifard 2021), including breast and prostate 
cancers, as well as hematologic malignancies (Varambally 
et al. 2002; Guo et al. 2007; Li et al. 2010; Zhang et al. 
2010; Ntziachristos et al. 2012; Herviou et al. 2016; Kim 
and Roberts 2016; Althobiti et al. 2020). In agreement, 
PRC1 loss-of-function mutations in Drosophila result in 
up-regulation of major oncogenes including JAK/STAT, 
NOTCH, and JNK signaling pathways, which are important 
drivers of the tumorigenic process (Classen et al. 2009; 
Martinez et al. 2009; Loubiere et al. 2016, Torres et al. 
2018).

Recent studies also suggest a role for PRC1 in DNA 
double-strand break (DSB) repair by homologous 
recombination (HR) and, to a lesser extent, non-homologous 
end joining (NHEJ) (Vissers et al. 2012). Upon exposure 
to ionizing radiation (IR) or FokI-induced DSBs, PRC1 
core subunits are quickly and transiently recruited to the 
damage site in an ATM-dependent manner, where they 
induce H2A/H2AXK119ub and transcriptional silencing 
(Kakarougkas et al. 2014, 2015; Ui et al. 2015). This histone 
modification also promotes the recruitment of DSB repair 
components including 53BP1, BRCA1, RAP80, and the 
resection protein CtIP (Ismail et al. 2010, Pan et al. 2011, 
Ismail et al. 2013, Kakarougkas et al. 2014, Fitieh et al. 
2021, Fitieh et al. 2022). However, the extent to which DSB 
repair relies on PRC1 remains unclear, as loss of  the PRC1 
subunit BMI-1 only partially affects repair kinetics and the 
resulting sensitivity to IR exposure is modest (Ismail et al. 
2010, Fitieh et al. 2021).

Importantly, even a transient depletion of PRC1 core 
complex subunits leads to cancer formation in Drosophila 
(Parreno et  al. 2024). Specifically, a 24-h depletion of 
the PRC1 subunit PH results in irreversible activation of 
key members of the JAK–STAT pathway, which in turn 
trigger a switch to a self-sustaining cancer cell fate, even 
upon restoration of normal PRC1 activity (Parreno et al. 
2024). These EICs are proficient in DSB repair and do not 
show chromosome rearrangements or major increase in the 
mutational load (Parreno et al. 2024).

Here, we investigate whether a sustained inactivation 
of PRC1, which mimics a cancer-inducing context, 
eventually results in DNA damage repair defects and 
genomic instability. We show that inactivation of PH over 
5 days is sufficient to induce massive over-replication, the 
misregulation of several repair genes, and a broad reduction 

in H2AK118ub and H3K27me3. Consistently, these tumors 
have elevated levels of endogenous DNA damage, DSB 
repair defects, and genomic instability. Together, these 
results are consistent with a model where EICs derived from 
transient PcG inactivation can rapidly transition to a state 
characterized by a highly genetically unstable genome. This 
instability might further contribute to tumor development 
when Polycomb depletion is maintained.

Materials and methods

Drosophila strains, genetics, and growth conditions

Drosophila flies were maintained on a standard corn-meal 
yeast extract medium at 25 °C. Crosses were performed as 
described in Parreno et al. (2024) (See also Fig. 1). Briefly, 
Gal80ts was used to achieve complete depletion of PH or 
the control white gene by switching the temperature from 
18 °C to 29 °C. The ey-FLP system was used to generate 
complete knockdowns in the larval eye-antennal imaginal 
discs (EDs) (Parreno et al. 2024). Flies were reared and 
crossed at 18 °C to inhibit Gal4 activity. Six independent 
crosses were set up using 80 virgin females with 20 males 
for each genotype and egg laying was carried out for 4 h at 
18 °C to synchronize the embryonic and larval development. 
As the timing of Drosophila development is temperature-
dependent, we adapted the timing for each knockdown (KD) 
condition to carry out phenotypic and molecular analyses 
at comparable developmental times. Most dissections were 
performed on female larvae at the third instar larval stage 
(L3). Male larvae were used for the experiment described 
in Supplementary Fig. 2c,d. For achieving constant ph-
KD and the temperature-matched white-KD control, 
tubes containing eggs were shifted to 29 °C throughout 
development, and third instar larvae (L3) were dissected 
5 days after egg laying (AEL). The control no ph-KD was 
maintained at 18 °C throughout development (AEL to L3), 
with dissections typically done on day 11 AEL. For transient 
ph-KD at the L1 stage, flies were kept at 18 °C for 48 h, 
then shifted to 29 °C for 24 h and returned to 18 °C until 
dissection 11 days AEL (Parreno et al. 2024). For EdU 
experiments, transient ph-KD was induced at mid-L3 as 
follows: tubes were kept at 18 °C until 140 h AEL, shifted 
to 29 °C for 24 h and returned to 18 °C until dissection 24 h 
after the end of the temperature shift. Fly genotypes used  
for white-KD control were: ey-FLP, Act-gal4 (FRT.CD2 
STOP) (BL#64,095), TubGal80ts (BL#7019), and UAS-
wRNAi (BL#33,623)/UAS-GFP (BL#64,095). Fly genotypes 
used for ph-KD were: ey-FLP, Act-gal4 (FRT.CD2 STOP) 
(BL#64,095), TubGal80ts (BL#7019), and UAS-phRNAi 
(VDRC#50,028)/UAS-GFP (BL#64,095).
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Immunostaining and fluorescence microscopy

Third instar female larvae were dissected to isolate eye-
antennal imaginal discs (EDs) at room temperature (RT) 
in 1× PBS. Tissues were fixed in 4% formaldehyde for 
30 min on a rotating wheel. Permeabilization was carried 
out for 1 h in 1× PBS containing 0.5% Triton X-100 on a 
rotating wheel. Blocking was performed for 1 h using 3% 
BSA PBST (1× PBS + 0.1% Triton X-100). Next, tissues 
were incubated with anti-γH2Av (1:500 prepared in 1% 
BSA PBST, Rockland, 600–401-914) for 2 h at RT. Samples 
were washed in 1× PBST for 15 min each for three times 
before adding a secondary antibody (donkey anti-rabbit 
Alexa Fluor 488, 1:1000 in 1% BSA PBST, Invitrogen, 
A-21206) for 2 h at RT, on a rotating wheel. Tissues were 
then washed in PBST for 15 min each for three times prior 
to DAPI staining at a final concentration of 1 µg/mL for 
15 min. Discs were briefly washed in PBST and in 1× PBS 
for 5 min each. Discs were mounted in Vectashield medium 
(Eurobio scientific, catalog no. H-1000–10) or ProLong 
Gold antifade agent (Life Technologies, P36930). Images 
for quantification of DSB foci were taken with a DeltaVision 
deconvolution microscope (GE Healthcare/Leica) using a 
60× oil immersion objective (Olympus PlanApo N, NA 1.42) 
and a CoolSNAP HQ2 camera. Images were deconvolved 
using SoftWoRx 6.0.

EdU labeling to assess replication

Ethynyl-2′-deoxyuridine (EdU, thymidine analog) labeling 
was performed using Click-iT Plus EdU Alexa fluor 555 
Imaging kit (Invitrogen, #C10638) as per manufacturer’s 
instructions. The EDs/tumors of female third instar larvae 
were dissected in Schneider's medium and EdU was added 
at a final concentration of 25 µM on a rotating wheel at 
RT for 15 min. After washing with PBS, tissues were fixed 
in 4% formaldehyde for 30 min and washed three times 
with PBS. The imaginal discs were permeabilized for 1 h 
in 1× PBS + 0.5% Triton X-100 on a rotating wheel then 
blocked for 1 h in 1× PBS + 0.1% Triton X-100 + 3% BSA. 
EdU detection was performed according to manufacturer’s 
instructions for 30 min on a rotating wheel at RT away from 
light. 500 µl of Click-iT reaction solution was prepared per 
tube containing 10–12 EDs/tumor. After a wash with 1× 
PBS + 0.1% Triton, DAPI staining was performed at a 
final concentration of 1 µg/ml for 15 min. Tissues were 
washes in 1× PBS + 0.1% Triton and discs were mounted in 
Vectashield medium. Image acquisition was performed using 
a Leica SP8-UV confocal microscope with a 10 × objective 
(NA 0.4) and 63× oil immersion objective [numerical 
aperture (NA 1.4)]. Quantification of EdU-positive cells in 
Supplementary Fig. 2b was done over a single plane of cells 
using Fiji.

Fluorescent In Situ Hybridization (FISH) for karyotype 
analysis

Chromosome preparation and FISH was performed as previ-
ously described (Gatti and Goldberg 1991; Larracuente and 
Ferree 2015; Ryu et al. 2015). Briefly, EDs or tumors from 
L3 larvae were dissected in 0.7% NaCl solution and incu-
bated in colchicine solution (3 ml of 0.7% NaCl + 100 µl of 
1 mM colchicine) for 1 h at RT away from light. Following 
colchicine treatment, tissues were incubated in 0.5% NaOAc 
for 7 min, and fixed using freshly prepared 2.5% PFA in 45% 
acetic acid for 4 min on a coverslip. Tissues were squashed 
onto poly-lysine coated slides and snap frozen in liquid nitro-
gen. The slides were washed in 100% ethanol for 5 min, air 
dried, and stained with FISH probes for AACAC, AATAT, 
and 359-bp repeats as previously described (Larracuente and 
Ferree 2015). Probe sequences are: 5′-6-FAM-(AACAC)7, 
5′-Cy3-TTT​TCC​AAA​TTT​CGG​TCA​TCA​AAT​AAT​CAT​, 
and 5′-Cy5-(AATAT)6. Imaging was performed with a Del-
taVision deconvolution microscope (GE Healthcare/Leica) 
using a 60× oil immersion objective (Olympus PlanApo, NA 
1.42) and a CoolSNAP HQ2 camera. Images were processed 
deconvolved using SoftWoRx 6.0.

Ionizing radiation exposure to induce DNA damage

Early L3  female larvae were transferred into a petri dish 
containing standard food medium and were irradiated with 
the dose of 5 Gy of X-rays using a Precision X-RAD iR160 
irradiator. After irradiation, larvae were maintained in the 
petri dish at 29 °C. Larval heads were dissected at indicated 
timepoints at RT in 1× PBS and fixed in 4% paraformalde-
hyde for 30 min before immunostaining. Microscopy and 
image analysis were performed as described above. Due to 
accelerated pupation of L3 stage larvae at 29 °C, DSB repair 
analysis was limited to 4 h post-irradiation.

Bioinformatic analyses

All in-house bioinformatic analyses were performed using 
R version 3.6.3 (URL: https://​www.R-​proje​ct.​org/) and are 
publicly available at https://​github.​com/​vloub​iere/​Rawal_​
et_​al_​HCB_​2024.​git. Computations on genomic coordinate 
files and downstream analyses were conducted using the 
data.table R package (data.table: Extension of ‘data.frame’. 
https://r-​datat​able.​com, https://​Rdata​table.​gitlab.​io/​data.​
table, https://​github.​com/​Rdata​table/​data.​table, v1.14.2).

Chromatin immunoprecipitation sequencing 
(ChIP‑seq) and CUT&RUN data analysis

ChIP-seq datasets and the processed data files were down-
loaded from Gene Expression Omnibus (GEO) [GSE222193, 

https://www.R-project.org/
https://github.com/vloubiere/Rawal_et_al_HCB_2024.git
https://github.com/vloubiere/Rawal_et_al_HCB_2024.git
https://r-datatable.com
https://Rdatatable.gitlab.io/data.table
https://Rdatatable.gitlab.io/data.table
https://github.com/Rdatatable/data.table
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(Parreno et  al. 2024)], and are listed Supplementary 
Table 1. PH ChIP-seq, and H2AK118Ub and H3K27me3 
CUT&RUN coverage was computed using 2.5 kb bins cov-
ering all canonical chromosomes (X, 2L, 2R, 3L, 3R, 4), 
and were visualized using Hilbert curves (Anders 2009) 
and an iteration level of 10. To compute enrichment ratios 
around the TSS of PcG-bound genes (−25 kb to + 75 Kb), 
H2AK118ub and H3K27me3 coverage was normalized to 
a set of activity-matched, unbound genes (n = 610 for each 
group).

RNA‑seq data analysis

RNA-seq datasets and the processed output files were 
obtained from GEO (GSE222193, (Parreno et al. 2024)), and 
are listed in Supplementary Table 1. Differential expression 
analysis output, performed using the DESeq2 R package 
(Love et al. 2014) (v1.26.0), was obtained from Parreno 
et al. (2024).

GO terms enrichment

Gene Ontology (GO) terms associated to genes that were 
upregulated (padj < 0.05 and log2 fold change > 1) or down-
regulated (padj< 0.05 and log2 fold change > 1) after constant 
or transient ph-KD were retrieved using the AnnnotationDbi 
R package (https://​bioco​nduct​or.​org/​packa​ges/​Annot​ation​
Dbi.​html, v1.48.0). For each GO term, over-representation 
was then assessed over a background set of genes consist-
ing of all the genes that passed DESeq2 initial filters, using 
a one-sided Fisher’s exact test (alternative = “greater”). 
Obtained p values were corrected for multiple testing using 
false discovery rate (FDR). Differentially expressed genes 
associated to “cellular response to DNA damage,” “DNA 
repair,” and “DNA replication” GO terms are available in 
Supplementary Table 2, together with six other genes which 
were associated to the “cellular response to DNA damage 
stimulus,” which were nevertheless excluded from Fig. 3d 
due to the likelihood that their role in DNA damage response 
is indirect (Supplementary Table 2).

Results

A fly system enables fine regulation of PH depletion  
during larval development

Recent studies showed that knocking down the PRC1 subu-
nit PH for a short time (24 h, Fig. 1, transient ph-KD) during 
L1 larval stage is sufficient to induce EIC formation in third 
instar larvae (L3), and these EICs do not exhibit DNA repair 
defects or genomic instability (Parreno et al. 2024). These 
studies used an efficient thermosensitive ph-RNAi fly system 

to acutely deplete PH with a 24 h incubation time at 29 °C, 
and normal PH levels were restored within 48 h after switch-
ing to 18 °C (Parreno et al. 2024). We applied the same 
system to address the effect of prolonged PRC1 inactivation 
(constant ph-KD), thus enabling direct comparisons with 
transient ph-KD conditions. Constant ph-KD was obtained 
by incubating the larvae at 29 °C during the whole larval 
development for 5 days. Additionally, inactivation of the eye 
color-associated white gene (white-KD) or larvae maintained 
at 18 °C (no ph-KD) were used as controls (Fig. 1). Similar 
to transient ph-KD (Parreno et al. 2024), prolonged ph-KD 
also results in tumor formation in 100% of eye-antennal 
imaginal discs (EDs) of L3 larvae (Parreno et al. 2024).

Prolonged ph‑KD results in H2AK118ub 
and H3K27me3 loss at Polycomb target sites

Given that both transient and constant ph-KD results in 
tumors characterized by loss of polarity and differentia-
tion, we asked whether these tumors differ at the epigenetic 
level. We plotted the genome-wide enrichments of PH, 
H2AK118ub, and H3K27me3 from control EDs (no ph-
KD), EICs after transient ph-KD, and tumors derived from 
constant ph-KD, using published ChIP-seq and CUT&RUN 
data sets [GSE222193 (Parreno et al. 2024), Supplementary 
Table 1]. Hilbert curves show that PH recruitment to chro-
matin is restored after transient ph-KD, whereas it is severely 
perturbed after constant ph-KD (Fig. 2a and Supplemen-
tary Fig. 1a). Consistently, the analysis of H2AK118ub and 
H3K27me3 enrichments around PRC1 target genes (PRC1-
bound) relative to PRC1 non-target genes (PRC1-unbound) 
shows that these modifications are largely restored after 
transient ph-KD, but not after constant ph-KD (Fig. 2b and 
Supplementary Fig. 1b). The most significant difference 
between EICs derived from transient ph-KD and constant 
ph-KD tumors is associated with H2AK118ub, consistent 
with this histone modification being the primary modifi-
cation established by PRC1 (Fig. 2a,b and Supplementary 
Fig. 1b). We conclude that tumors resulting from prolonged 
ph-KD are characterized by extensive loss of H2AK118ub 
and H3K27me3 at PcG target genes, while this is not the 
case for EICs resulting from transient ph-KD.

Prolonged ph‑KD results in upregulation of DNA 
replication and repair genes

Given the major epigenetic differences between EICs gener-
ated by transient and constant ph-KD, we examined the dif-
ferential gene expression between these tumors compared to 
control tissues (no ph-KD) and temperature-matched white-
KD, using the published datasets derived from RNA-seq 
analyses (Parreno et al. 2024). As shown in Fig. 3a and Sup-
plementary Fig. 1b, we found significant differences in gene 

https://bioconductor.org/packages/AnnotationDbi.html
https://bioconductor.org/packages/AnnotationDbi.html
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expression profiles between transient and constant ph-KD 
tumors. These include the upregulation of genes required 
for tissue and organ development in constant ph-KD tumors 
relative to transient ph-KD tumors, consistent with PRC1 
roles in organismal development (Loubiere et  al. 2019, 
Loubiere et al. 2020).

Remarkably, gene clusters corresponding to Gene Ontol-
ogy (GO) terms related to DNA replication, DNA dam-
age, and DNA repair were also mostly upregulated in con-
stant ph-KD conditions relative to transient ph-KD tumors 
(Fig. 3a). Consistently, a fold-change analysis of all the 
genes classified as “DNA replication” (n = 111) or “DNA 
damage response” (n = 242) shows a significantly higher 
level of transcription for both categories in constant ph-KD 
tumors relative to control, and also compared to all genes 

(Supplementary Fig. 1c). This indicates that DNA replica-
tion and DNA damage response genes are overall more tran-
scriptionally active in tumors derived from sustained ph-KD.

Within this general trend, 21 genes required for “DNA 
replication” and 28 genes required for the “DNA damage 
response” were the most affected, displaying at least a 
twofold change in expression in constant ph-KD tumors 
relative to controls, most of which (18 and 26 genes, 
respectively) were upregulated (Fig. 3b, c).

Most of the DNA replication and DNA damage response 
genes upregulated in tumors derived from constant ph-
KD are not associated with PRC1 enrichments in normal 
tissues (no ph-KD) (e.g., Fig. 3d, CG10336 or TIPIN in 
mammals), suggesting that they are not direct targets of PH 
and their upregulation is an indirect effect of PRC1 loss. 
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The most notable exception is the gene for the replication, 
repair, and transcription factor Fkh (FOXA2 and FOXA1 in 
mammals) (Knott et al. 2012, Li et al. 2012, Dummer et al. 
2016, Jin et al. 2020, Hoggard et al. 2021), whose promoter 

is enriched for PRC1 in normal tissues. This suggests that 
PRC1 downregulation from constant ph-KD directly affects 
fkh expression (Fig. 3d).
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The replication genes affected in constant ph-KD tumors 
correspond to key replication components, including the 

MCM complex, origin firing factors, and several DNA 
polymerases (Supplementary Table 2). This increase in 

DNA repair

cellular response to DNA damage stimulus

DNA replication

RNA-seq

CG10336

H3K27me3

PcG (-)
fkh

PcG (+)

ba

Up c
on

sta
nt 
ph

−K
D

Dow
n c

on
sta

nt 
ph

−K
D

Up t
ran

sie
nt 
ph

−K
D

Dow
n t

ran
sie

nt 
ph

−K
D

neuromuscular synaptic transmission
secretion

striated muscle cell differentiation
muscle cell differentiation

compound eye photoreceptor cell differentiation
regulation of transport

striated muscle cell development
regulation of secretion by cell

muscle system process
regulation of ion transport

behavior
ion transport

sex differentiation
tissue development

imaginal disc development
transcription by RNA polymerase II

regulation of transcription by RNA polymerase II

DNA metabolic process

4

6

8

10
FDR (−log10)

1
1.5
2
2.5
3

OR (log2)

25

20

15

10

5

0

Up
Down

no
 ph

-K
D

tra
ns

ien
t 

ph
-K

D
co

ns
tan

t 

ph
-K

D

N
um

be
r o

f g
en

es

DNA damage response

DNA replication

c

30
25
20
15
10
5
0

Up
Down

no
 ph

-K
D

tra
ns

ien
t 

ph
-K

D
co

ns
tan

t 

ph
-K

D

N
um

be
r o

f g
en

es

e

constant ph-KDtransient ph-KDno ph-KD

d

18.690Mb
Chr2L

100

450

10

10

ChIP-seq
PH

10

H2AK118ub

10

22

22

10

100

22

10

28.581 28.583 28.585Mb
2 kbChr3R

no ph-KD

transient ph-KD

no ph-KD

no ph-KD

transient ph-KD

transient ph-KD

constant ph-KD

constant ph-KD

constant ph-KD

no ph-KD

transient ph-KD

constant ph-KD

5

5

5

Fig. 3   Tumors induced by constant ph-KD display dysregulation 
of DNA damage response- and replication  -associated genes. a 
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The complete list is shown in Supplementary Fig. 1c. b Number of 
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CUT&RUN, normalized by input) and gene expression by RNA-seq, 
in control (no ph-KD), transient ph-KD, and constant ph-KD condi-
tions. e EdU staining of EDs and tumors from L3 in indicated KD 
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Table 1   List of DNA repair genes dysregulated genes upon constant ph-KD. Selected genes from Supplementary Table 2, including their 
DNA repair function, mammalian homologs, and link to cancer. Mismatch repair (MMR), base excision repair (BER), nucleotide excision repair 
(NER), translesion synthesis (TLS)

Drosophila 
gene

Mammalian 
homolog

Function in DNA repair Link to cancer

Upregulated
Mms4 EME1 Holliday Junction resolvase in complex with 

Mus81. Replication fork processing and repair
Overexpressed in several cancers, including colorectal 

and lung cancer. Associated with poor prognosis and 
chemo resistance

RecQ4 RECQ4 HR repair Overexpressed in several cancers, including osteosarco-
mas, prostate, colorectal, and breast cancers. Associ-
ated with poor prognosis and chemo resistance

PolH POLH Translesion polymerase Overexpressed in several cancers, including breast, lung, 
ovarian and bladder cancers. Associated with poor 
prognosis and chemoresistance

CG43295 MRNIP HR repair through phase separation, fork protec-
tion

Overexpressed in colorectal cancer, associated with 
radioresistance and poor prognosis

FANCI FANCI Interstrand crosslink repair, stalled fork processing Overexpressed in several cancers, including lung adeno-
carcinoma, cervical cancer and liver hepatocellular 
carcinoma, associated with poor cancer prognosis

Spel1
Mlh1
Msh6

MSH2
MLH1
MSH6

Mismatch repair,
Homeologous recombination

Commonly overexpressed in cancer, correlated with 
poor prognosis in prostate cancer

Rif1 RIF1 Telomere maintenance, DSB repair (prevents 
resection, promoting NHEJ)

Commonly overexpressed in cancer, promotes drug 
resistance, correlated with poor prognosis

CG10336
Timeout/tim2

TIPIN
TIMELESS

Fork protection complex,
Replication stress response, Homologous recombi-

nation repair, Telomere maintenance

Overexpression induces cancer, promotes drug resist-
ance, associated with poor cancer prognosis

Claspin CLASPIN Checkpoint activation in response to replication 
stress

Overexpression induces cancer, promotes radioresist-
ance, associated with poor prognosis

Downregulated
PCNA2 PCNA Sliding clamp for DNA repair in Drosophila. HR, 

MMR, NER, BER, TLS,
Downregulated in many cancers, particularly in sarco-

mas and testicular cancer

compared with tumors derived from constant ph-KD (Sup-
plementary Fig. 2a,b).

Together, these results establish that constant ph-KD 
leads to tumors characterized by the upregulation of sev-
eral DNA replication genes, which is likely a consequence 
of cell hyperproliferation. This upregulation is more 
pronounced than that observed in tumors derived from 
transient ph-KD, consistent with an higher proliferation 
rate. Upregulation of components required for replica-
tion initiation and progression can also contribute to the 
acquisition of the hyperproliferative state (Yu et al. 2020). 
In addition, we observed dysregulation of several DNA 
damage response genes upon constant depletion of PH, 
most of which are likely the indirect consequence of PH 
loss. These genes are mostly expressed at normal levels 
in transient ph-KD tumors, representing a major differ-
ence between the effects of short-term and long-term PH 
depletions.

expression of replication-linked genes might result from an 
overall induction of replication in the tissue. Thus, we inves-
tigated the proliferation state of the cells in these tumors by 
EdU staining. As expected, control EDs are characterized 
by a few replicating cells posteriorly to the morphogenetic 
furrow (Avellino et al. 2023; Parreno et al. 2024) (Fig. 3a 
and Supplementary Fig. 2a,b). Conversely, tumors derived 
from constant ph-KD are characterized by massive EdU 
incorporation, indicating the switch to an uncontrolled over-
proliferating state (Fig. 3a and Supplementary Fig. 2a,b). 
Of note, DNA replication-associated genes are found over-
expressed also in transient ph-KD tumors (Supplementary 
Fig. 1d), albeit to a lesser extent compared to constant ph-
KD tumors. Consistently, transient ph-KD tumors are also 
enriched for replicating cells compared to controls (Parreno 
et al. 2024) (Fig. 3e and Supplementary Fig. 2a,b), although 
the number of replicating cells in these tumors is lower 
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Prolonged ph‑KD leads to defective DSB repair 
and increased genomic instability

DNA repair genes over-expressed in constant ph-KD tumors 
include several components previously linked to damage 
accumulation, cancer formation, and/or poor cancer prog-
nosis (Table 1), like Mms4 (Dewalt et al. 2014), RecQ4 
(Maire et al. 2009; Su et al. 2010; Xu et al. 2021), PolH 
(Tomicic et al. 2014, Sonobe et al. 2024), Tipin/Timeless 
(Zhou et al. 2020; Chen et al. 2022), Claspin (Choi et al. 
2014), MRNIP (Staples et al. 2016, Bennett et al. 2020, 
Wang et al. 2022), FANCI (Smogorzewska et al. 2007; Li 
et al. 2023), MMR proteins (Msh2, Mlh1, Msh6) (Shcherba-
kova and Kunkel 1999; Velasco et al. 2002; Li et al. 2008; 
Wagner et al. 2016; Wilczak et al. 2017; Chakraborty et al. 
2018; Donis et al. 2021; Zhou et al. 2024), and Rif1 (Liu 
et al. 2018; Mei et al. 2018; Sad et al. 2021). Similarly, genes 
downregulated in constant ph-KD tumors include known 
components required for DNA repair and replication fork 
protection in the presence of replication damage, such as the 
PCNA variant PCNA2 (Feng et al. 2023) (Table 1). Collec-
tively, misregulation of these genes is expected to lower fork 
protection, increase DSB formation in response to stalled 
fork, and impair DSB repair.

We directly tested this by investigating DNA break forma-
tion through immunofluorescence (IF) analysis of γH2Av 
foci in tumors dissected from L3 larvae after constant ph-KD 
or in EDs from the temperature-matched wRNAi control. 
Constant ph-KD results in a threefold increase in the num-
ber of γH2Av foci in the tissue, indicating a higher level of 
endogenous DNA damage (Fig. 4a–c). This likely derives 
from the higher number of replicating cells, which typically 
experience a higher baseline level of damage than non-repli-
cating cells, along with defective fork protection and repair.

In addition, we investigated the DSB repair response 
by treating constant ph-KD tumors and their controls with 
5 Gy ionizing radiation (IR), and by quantifying the kinet-
ics of γH2Av focus formation and resolution (Fig. 4c). Both 
tumor and ED control tissues showed a significant increase 
in the number of γH2Av foci 30 min after IR, indicat-
ing DSB induction and checkpoint activation. The higher 
level of repair foci in ph-KD tumors relative to the con-
trol reflects the higher baseline level of damage (Fig. 4c, 
timepoint 0). Importantly, constant ph-KD tumors dis-
play a significantly higher number of γH2Av foci relative 
to control EDs 4 h after irradiation, and this difference is 
much more pronounced than what is observed in untreated 
(UNT, timepoints 0) tissues or in tissues fixed 30 min after 
IR (Fig. 4b,c). This indicates that, unlike transient ph-KD 
tumors (Parreno et al. 2024), constant ph-KD tumors are 
defective in DSB repair.

Given the higher amount of DNA damage and defective 
repair, we hypothesized that constant ph-KD tumors might 
accumulate unrepaired DSBs over time, resulting in chro-
mosome rearrangements and genomic instability. We tested 
this by karyotype analysis of tumors from constant ph-KD 
and EDs from wRNAi control in L3 larvae (Fig. 4d). We 
stained with FISH probes for pericentromeric regions of dif-
ferent chromosomes to facilitate chromosome detection in 
rearranged conditions. Remarkably, we observe a six-fold 
increase in the frequencies of chromosome rearrangements 
in constant ph-KD tumors relative to controls (Fig. 4d,e). 
Rearrangements include a large number of chromosome 
fusions, aneuploidies, and abnormal number of satellites 
(Fig. 4d,e). Moreover, we observe a significant increase in a 
rare form of rearrangements characterized by fusions across 
several chromosomes (“broad rearrangements”) (Fig. 4d, e). 
The increase in chromosome rearrangements occurred in 
both males and females, suggesting that the effect is not 
sex-specific (Supplementary Fig. 2c,d).

In conclusion, tumors induced by PH depletion 
over 5  days during larval stages are characterized by 
misregulation of genes required for replication fork 
protection and DNA repair, DSB repair defects, and 
widespread genome instability, which was not observed in 
EICs derived from transient ph-KD.

Discussion

Chromosomal instability is a common hallmark of both 
human (Hanahan and Weinberg 2011) and fly tumors (Gat-
eff and Schneiderman 1974; Basto et al. 2008; Torres et al. 
2010; Dekanty et al. 2012), and it can contribute to tumor 
invasiveness (Barrio et al. 2023). However, the cause–effect 
relationship between abnormal karyotypes and tumor pro-
gression remains debatable [reviewed in (Fukasawa 2005; 
Milan et al. 2014)] and consistently, how tumors associated 
with PRC1 dysregulation acquire genome instability was 
unclear. Our comparative analysis of epigenetically initi-
ated cancers due to transient ph-KD and tumors resulting 
from prolonged ph-KD offers a rare opportunity to identify 
progressive changes occurring in a developing tumor. These 
studies shed light on how epigenetic tumors with a stable 
genome can quickly transition into a state characterized by 
massive genomic instability through prolonged PRC1 inac-
tivation (Fig. 5).

We show that, unlike transient ph-KD (Parreno et al. 
2024), constant ph-KD results in loss of H2AK118ub and 
H3K27me3 at Polycomb target genes, dysregulation of sev-
eral DNA repair genes, marked defects in DSB repair, and 
widespread genome instability. Importantly, the transition 
to a tumor characterized by an unstable genome is reached 
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within only 5 days of PH depletion, revealing a rapid acqui-
sition of this typical cancerous phenotype.

However, transient ph-KD tumors already display a 
hyperproliferating state and some level of misregulation of 
replication genes. This suggests a progression of the tumor 
where the hyperproliferating state is acquired first, result-
ing in a higher baseline level of damage, followed by dys-
regulation of fork protection and repair genes (including 
PRC1 itself), which in turn results in DNA repair defects 
and chromosome rearrangements. Loss of PRC1 function 

can contribute to these phenotypes in non-mutually exclu-
sive ways: (i) by increasing transcription globally, thus 
bolstering replication stress form replication–transcription 
collision (Zeman and Cimprich 2014, Hamperl et al. 2017, 
Gomez-Gonzalez and Aguilera 2019, Chakraborty et al. 
2023); (ii) by preventing the establishment of H2AK118ub 
and H3K27me3 at DSBs, thus interfering with DSB repair 
(Ismail et al. 2010, Campbell et al. 2013, Ismail et al. 2013, 
Fitieh et al. 2021, Fitieh et al. 2022); and (iii) by misregulat-
ing the expression of genes required for replication, DNA 
fork protection and DSB repair, thus increasing the accu-
mulation of unrepaired and misrepaired breaks. In addition, 
these defects are amplified in a context of a hyperproliferat-
ing tissue, with additional potential for replication damage. 
Collectively, tumors derived from transient or constant ph-
KD represent a promising model system to investigate the 
gradual epigenetic and genomic changes leading to cancer 
formation.

Together, these observations also highlight the impor-
tance of core PRC1 subunits as tumor suppressors and 
guardians of genome stability. The finding that transient 
PRC1 depletion leads to epigenetic tumors without induc-
ing genome instability, while prolonged inactivation of 
this complex results in DNA repair defects and massive 
genome rearrangements, is also important to inform cancer 
treatment approaches. PRC1 has been considered a poten-
tial therapeutic target for cancer (Shukla et al. 2021; Itoh 
et al. 2022; Park et al. 2023) and our study suggests that 
PRC1 inactivation will likely increase the sensitivity of 
tumor cells to DNA damaging agents. On the other hand, 
“epi-drugs” targeting PRC1 can also potentially trans-
form healthy tissues into epigenetically initiated cancers 
and induce genome instability in response to protracted 
treatments. Thus, understanding how epigenetic tumors 
acquire a state characterized by high genome instability is 
important for establishing improved and safer approaches 
for cancer therapy.

Fig. 4   Constant ph-KD tumors are characterized by DSB repair 
defects and genomic instability. a Schematic representation of 
the experiment used to assess DSB repair. b Representative images 
of Drosophila cells from EDs or tumors, stained for γH2Av before 
(UNT) and at the indicated timepoints after IR, from white-KD (con-
trol) and constant ph-KD conditions. Dashed circles indicate the posi-
tion of each nucleus, identified by DAPI staining. c Quantification of 
the number of γH2Av foci per cell before (0 min) and after irradiation 
(30 and 240 min) in EDs or tumors derived from white-KD (control) 
and constant ph-KD. n ≥ 100 cells per replicate, representing EDs or 
tumors from three distinct larvae and independent crosses, at the indi-
cated time points from IR exposure. Error bars, standard error of the 
mean (SEM). Statistical significance was calculated using a two-sided 
t-test: ****p value < 1 × 10−5. The table show the individual aver-
age values and corresponding SEM. d Examples of karyotypes from 
white-KD (control) and constant ph-KD EDs or tumors from female 
larvae, showing examples of different chromosomal abnormalities. 
The scheme of the chromosomes shows the position of the major sat-
ellites stained by FISH. White arrowheads: fusions between Chr 4 
and Chr X, and between two Chr 4. Dashed circle: chromosome frag-
ment derived from a fusion between Chr 3 and X (yellow arrowhead). 
Cyan arrowheads: fusions between Chr 4 and Chr 2, in addition to 
broad rearrangements. e Quantification of chromosome abnormali-
ties in EDs or tumors from white-KD (control) and constant ph-KD 
flies. For each type of abnormality (see color legend), the number of 
counted events are shown on the right. n = 89 karyotypes represent-
ing EDs from three larvae from independent crosses for white-KD. 
n = 144 karyotypes representing tumors from seven larvae from inde-
pendent crosses for ph-KD. Error bars, SEM. ****p value < 1 × 10−5. 
Statistical significance was calculated using a two-sided t-test. Scale 
bars ,1 µm
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Fig. 5   Model for tumor progression in EICs. Upon transient 
ph-KD, EDs switch to a hyperproliferative cell fate notably due to 
an irreversible activation of the JAK–STAT pathway and zfh1 (Par-
reno et al. 2024). Prolonging ph-KD for 4 additional days results in 
accumulation of replication damage, misregulation of DNA dam-

age response genes, defective DSB repair leading to persistent DNA 
damage. This progression reflects a cascade of events where initial 
hyperproliferation leads to increased replication stress and subsequent 
dysregulation of DNA repair mechanisms, culminating in genome 
instability
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