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Abstract: Quantification of all types of uncertainty helps to establish reliability in any analysis.
This research focuses on uncertainty in two attribute levels of wetland classification and creates
visualization tools to guide analysis of spatial uncertainty patterns over several scales. A novel variant
of confusion matrix analysis compares the Cowardin and Hydrogeomorphic wetland classification
systems, identifying areas and types of misclassification for binary and multivariate categories. The
specific focus on uncertainty in the paper refers to categorical consistency, that is, agreement between
the two classification systems, rather than comparing observed data to ground truth. Consistency is
quantified using confusion matrix analysis. Aggregation across progressive focal windows transforms
the confusion matrix into a multiscale data pyramid for quick determination of where attribute
uncertainty is highly variant, and at what spatial resolutions classification inconsistencies emerge.
The focal pyramids summarize precision, recall, and F1 scores to visualize classification differences
across spatial scales. Findings show that the F1 scores appear most informative on agreement about
wetlands misclassification at both coarse and fine attribute scales. The pyramid organizes multi-scale
uncertainty in a single unified framework and can be “sliced” to view individual focal levels of
attribute consistency. Results demonstrate how the confusion matrix can be used to quantify the
percentage of a study area in which inconsistencies occur reflecting wetland presence and type. The
research provides confusion metrics and display tools to focus attention on specific areas of large data
sets where attribute uncertainty patterns may be complex, thus reducing land managers” workloads
by highlighting areas of uncertainty where field checking might be appropriate, and improving
analytics by providing visualization tools to quickly see where such areas occur.

Keywords: wetland classification; confusion matrix; attribute accuracy; attribute scale; categorical
consistency; uncertainty; database alignment

1. Introduction

This is a paper about geospatial uncertainty in the classification of categorical data
attributes. Uncertainty is inherent within geospatial data [1]. Types of uncertainty include
accuracy and error, completeness, currentness, consistency, risk, reliability, confidence, and
additional properties and can arise for several reasons. Spatial position and classification
errors may occur when creating the dataset. The scale at which data is presented may be
inappropriate to detect patterns at other scales. Data may contain logical inconsistencies
due to uneven quality assessment. Data can age and can lead to temporal uncertainty if they
no longer accurately reflect a changing landscape. If not recognized, these and other types
of data uncertainties can lead to poor decisions, lost time, and in turn lead to unnecessary
increases in project costs. Quantification and communication of uncertainty are important
to establish reliability and confidence in analysis and to aid decision-making [2-4]. It
might also contribute to improved error reporting that aligns with the Global Biodiversity
Framework’s sustainability goals, especially Target 2, promoting 30% restoration and
recovery of degraded terrestrial and inland waters by 2030 [5]

A wealth of published literature reports analysis of positional uncertainty. Exam-
ples include positional errors due to distance metrics [6] or projection transformation [7],
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displacements due to cartographic generalization [8] and scale change [9], or errors due
to edge bias in tiled data [10]. Less analysis has focused on attribute uncertainty, except
for assessing errors in metric attributes for choropleth classification [11,12]. The type of
attribute uncertainty examined in this paper is categorical consistency, that is, agreement
between two wetlands databases. This research examines spatial patterns of attribute
consistency existing within wetlands data to address two questions. The first question
looks at how consistency patterns may vary across the level (or attribute scale) at which
classification occurs. In this article, finer attribute scales comprise more categories, while
coarser scales comprise fewer. The second question is how to efficiently detect and examine
such variations across a range of geospatial scales, where coarser details refer to smaller
geospatial scales and finer details at larger scales. Throughout the discussion, the terms
attribute consistency, accuracy, and uncertainty will be used interchangeably.

Multiple reasons justify the use of wetlands data for examining categorical attribute
accuracy. Wetlands play a vital role in the Earth’s ecosystems. They support ecosystem
management tasks such as wildlife habitat preservation, water purification, flood control,
and carbon storage monitoring [13,14]. However, wetlands are under stress of degradation
and destruction due to multiple human and natural factors [15,16]. Between 1780 and 1980,
the United States lost 53% of its original wetlands [17]; and significant amounts of wetlands
continue to be lost today [18]. Keeping a detailed inventory of wetlands is vital for preser-
vation and for tracking how wetlands change over time. However, exhaustive stewardship
through field checking is not always possible, especially in expansive monitoring areas or
in areas of dramatic landscape change.

Then too, wetlands categories provide a rich data domain within which to study
attribute categorization. Categories can vary dramatically across attribute scales. Various
wetlands classification efforts do not always agree, even to the point of legal dispute [19].
Additionally, a fine attribute scale may not be applicable to decision-making at a coarser scale
unless the spatial process under scrutiny is evident in data at both fine and coarse levels of
detail. The largest wetlands database in the United States is the National Wetlands Inventory
(NWI). This database uses the Cowardin classification developed in 1979 to establish a national
classification standard and to track wetland gain and loss over time [20,21]. The classification
considers landscape position, hydrologic regime, and vegetative type and includes five
main wetland types: palustrine, riverine, lacustrine, marine, and estuarine [21,22].

While the Cowardin classification system is appropriate for tracking wetland loss
over time, it does not allow for the assessment of how effectively a wetland performs
ecological functions such as water purification or storage [20-23]. The Hydrogeomorphic
(HGM) classification system is commonly used to analyze wetland functionality [22,23].
The HGM system was developed by the U.S. Army Corps of Engineers and considers
landscape position, water sources, and hydrodynamics [19,22]. Following Brinson [23],
HGM incorporates seven main classes: riverine, depression, slope, organic soil flat, mineral
soil flat, estuarine fringe, and lacustrine fringe.

At the outset, it is important to clarify that the objective of this research is not to
demonstrate that one classification system is more reliable or more accurate than the other.
Instead, the focus will center on detecting discrepancies between the two systems, across
attribute scales. In situations where ground truth or imagery are not feasible for validation
purposes, a strategy acknowledged by federal and international organizations [24-27]
evaluates accuracy using two independently compiled databases of similar credibility,
recording where they agree or disagree. That is the approach taken here. Agreement
indicates more certainty about a wetland’s presence or class while disagreement indicates
uncertainty. A primary contribution of this work is to re-express attribute uncertainty in the
context of database agreement rather than in the evaluation of data against empirical truth.
Identifying areas of disagreement can help wetlands managers focus localized attention in
study areas that are extensive or where access may be challenging.

Confusion matrices will be utilized to compare the two databases at two different
attribute scales, assessing first the binary distinction of wetland versus non-wetland (coarse
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attributes), and second a multi-category distinction of specific wetland classes (fine at-
tributes). Focal window analysis will transform the coarse and fine attribute surfaces into a
hierarchical data framework making the patterns of database disagreement (uncertainty;,
or inconsistency) evident at different spatial scales, highlighting localized areas where
disagreement is extreme or highly variant. Many disciplines use confusion matrices and
apply vocabulary in diverse ways. For example, the terms misclassification, validation
dataset, and test dataset take on a different meaning because situations arise (as in this
study) where ground truth is unavailable to verify the accuracy of a test dataset. Neither
dataset is considered a ‘benchmark’ or ‘validation’. Other traditional terms such as false
positives and negatives, and true positives and negatives also take on new meanings within
this context and are important to clarify. The terms “true” and “false” traditionally imply
that the accuracy of the data is completely verifiable, and that one dataset contains the
“truth”. This is not possible to confirm without field checking. Disagreement and agreement
are the preferred terms in this paper because they acknowledge the uncertainty present
within both datasets and do not carry connotations of absolute truth. Throughout the paper
then, the terms true positive and true negative indicate database agreement, while false
positives and false negatives indicate disagreement.

The research will investigate agreement and disagreement at two attribute levels as
described above, based on the alignment between the two classification methods. This
provides an innovative approach to confusion matrix analysis and the metrics of recall,
precision, and F1 scores, as described in the Methods section in more detail. A primary
contribution of this paper is an empirical demonstration of how confusion matrix analysis
can apply logically to the comparison between two databases, two classification systems,
or both.

2. Materials and Methods
2.1. Study Area and Data Sources

The study area in inland Louisiana, USA covers about 2000 square miles (1.28 million
acres), containing ten different parishes (Figure 1). Main water features include the Missis-
sippi River that flows through the western half of the study area, Lake Maurepas located in
the southeast corner, and False River, an oxbow lake in the northwest. This region has a
low elevation and relatively flat terrain. The largest population center is the city of Baton
Rouge located adjacent to the Mississippi River. Areas to the north and east of Baton Rouge
consist of pastureland, wetlands, and forested areas. Major areas of agriculture are located
along the Mississippi River. The high population is concentrated around Baton Rouge.
However, most of the study area is sparsely populated. In addition to the main study area,
a subregion (Figure 1B) was chosen around the False River oxbow. Aerial imagery and
land-use data indicate the area around False River is agricultural with a mixture of pasture
and cropland.

Table 1 outlines the data sources used for this analysis. National Landcover Dataset
(NLCD) land cover data provide supplementary information about the study area and aid in
qualitative assessment. NWI wetlands data from the United States Fish and Wildlife Service
(FWS) are used as the source of Cowardin-classified wetlands. HGM-classed wetland data
did not exist in a geospatial format within the study area at the time of this research, so a
wetlands dataset based upon the HGM classification was geoprocessed using United States
Geological Survey (USGS) elevation, Soil Survey Geographic Database (SSURGO) of the
Natural Resources Conservation Service (NRCS) hydric soils, and National Hydrography
Dataset (NHD) data. This processing is described in Section 2.3.

The data layers show different compilation dates and spatial resolutions, although
Tobler [28] demonstrates that numeric conversion between map scale and geospatial res-
olution reduces readily to multiplication by 1000. By this well-accepted method, the soil
data point has a spatial resolution of 20 m. The hydrography data point is 24 m, and the
wetlands data point is 65 m. Geospatial analysis is commonly undertaken that accounts
for minor differences in detection and resolution such as these, which are not considered
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a problematic difference in this project. Differences in compilation dates are beyond the
control of the authors, and beneficial insights made available by these temporal differences
are discussed below.
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Figure 1. The red outline shows the 2000 square mile study area located in Louisiana. The blue
outline shows the subarea focusing on the False River oxbow lake. (A) shows the study area outlined
in red. (B) shows an inset used for the multiscale analysis, around the Flse River oxbow.

Table 1. Data Layers.

Data Layer Source Resolution Years Collected
Land Cover NLCD-USGS 30 m 2016
Wetlands NWI-FWS 1:65,000 1970s, 1980s, 2010s
Elevation USGS 30m 2016
Hydric Soils SSURGO-NRCS 1:20,000 2000s-2019
Hydrography NHD-USGS 1:24,000 2000s—2010

2.2. Wetlands Classification Systems

NWI is the largest database of geospatial wetlands data within the United States and
uses the Cowardin classification [21]. According to the NWI, three wetland types are found
within the study area: 566,902 acres of palustrine (44.3%), 217,458 acres of riverine (17.0%),
and 68,720 acres (5.4%) of lacustrine wetlands.

As stated in the introduction, the objective of this research is to compare two indepen-
dently compiled classification systems. The HGM system does not incorporate a category
for open water. The NWI data were modified using NHD hydrography data to remove
open water from the classification and improve database alignment with the HGM sys-
tem. If open water were not removed, an inflated amount of the study area would have a
classification disagreement. This would shift the primary focus of the study and distort
the analysis by adding disagreement where technically there is none. Again, both systems
record the presence of open water, but only one system classifies it in a unique category.

The HGM classification system includes seven classes reflecting landscape function-
ality: riverine, depressional, slope, mineral soil flats, organic soil flats, tidal fringe, and
lacustrine fringe [23]. Several examples of research using geospatial data to create an HGM
dataset have been published in recent years [29-32]. There are also examples of research
that use NWI data and landscape position, landform, water flow path, and waterbody
type characteristics to modify NWI data and create HGM subclasses [20,33]. The HGM
classification was modified into three classes matching the Cowardin classes present within
the study area (riverine, lacustrine, and palustrine). Riverine and lacustrine classes exist
within both classification systems; however, the palustrine class is only in the Cowardin
system. To better align the two systems a “palustrine” class was created for the HGM by
combining depressional, slope wetlands, mineral soil flats, and organic soil flats definitions.
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The HGM palustrine class describes wetlands whose main water sources are groundwater
or precipitation rather than flows from rivers or lakes.

The HGM dataset was processed using ancillary data drawn from elevation, hydric
soils, and hydrography layers. A 30 m buffer was applied to all rivers and lakes larger than
eight hectares. Areas within this buffer with hydric, predominately hydric, or partially
hydric soils were classed as riverine. Areas adjacent to lakes with hydric, predominately
hydric, or partially hydric soil were classed as lacustrine. The elevation surface was used to
locate topographic depressions and areas on slopes greater than two percent with hydric,
predominately hydric, or partially hydric soils. These areas were classed as palustrine in
addition to areas that had completely hydric soils.

2.3. Confusion Matrices and Evaluation Metrics

Confusion matrices are utilized to compare NWI and HGM wetlands classes. As
discussed above, this analysis highlights where two independently compiled datasets have
agreement or disagreement. The analysis proceeds under the assumption that where the
HGM and NWI classifications agree (“true” positives and negatives), the classification is
consistent between the databases. Similarly, “false” positives and negatives indicate a lack
of consistency. Confusion matrices and classification metrics will be tabulated as well as
mapped to highlight portions of the study area where disagreements occur.

The coarser attribute scale assesses the presence versus absence of wetlands. A coarse
confusion matrix key is shown in Figure 2. True positives (green) and true negatives (white)
refer to areas where NWI and HGM agree on the presence or absence of wetlands. False
positives (red) and false negatives (blue) refer to areas where NWI and HGM disagree on
the presence of wetlands. Specifically, false positives are areas where the HGM classifies a
wetland as present while NWI does not. False negatives are areas where the HGM does not
classify a wetland as present while NWI does.

Hydrogeomorphic

No Wetlands Wetlands

No Wetlands Agreement (TN)
NwWI

Wetlands Agreement (TP)

Figure 2. Key for the coarse attribute uncertainty surface. The matrix compares the presence versus
the absence of wetlands in the NWI and HGM data sets. True negatives (white) and positives (green)
indicate areas where the data sets agree, while false negatives (blue) and positives (red) show areas
of disagreement.

The finer attribute scale confusion matrix key (Figure 3) compares not only the presence
and absence of wetlands, but also the agreement of the specific wetlands type (riverine,
lacustrine, or palustrine). The first column (pink background) shows false negatives
(wetlands in NWI but not in HGM) for all categories while the top row (yellow background)
shows false positives (wetlands in HGM but not in NWI). The diagonal (orange background)
shows cells that agree on the presence/absence of wetlands in both data sets as well as on
their specific type. The six gray cells indicate a misclassification at the finer level, namely
that both classification systems agree that wetlands are present but disagree on the type
of wetland. The percentage values shown in Section 3 below indicate the proportion of
pixels in each of the sixteen cases for the entire area. The cells are color-coded, with hue
(blue, green, purple) referring to wetland type. Saturation and darkness (e.g., pastel green,
medium green, dark green) are used to distinguish false negatives and false positives for
each wetland type. More saturated colors are used to emphasize locations of disagreement.
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HGM

No Wetlands Riverine Lacustrine Palustrine

No Wetlands Disagreement (FP)

Riverine

NwWI

Lacustrine

Palustrine

Disagreement (FN) Agreement (TN, TP)

Figure 3. Key for the fine attribute uncertainty surface. This key compares not only the presence
versus the absence of wetlands, but also the agreement of the specific wetland classification (riverine,
lacustrine, and palustrine).

Blue chips in the figure indicate riverine wetlands, purple chips indicate lacustrine
wetlands and green chips indicate palustrine wetlands. Gray chips indicate that both sys-
tems classify wetland presence but disagree on the type (riverine, lacustrine or palustrine).
The orange diagonal shows agreement between the two classification systems, while the
yellow (top) row and the red (leftmost) column show disagreement. Recall, precision,
and F scores are the evaluation metrics used to quantify uncertainty within the confusion
matrices. Recall (Equation (1)) defines the ratio of true positives to real positives [34] and
measures how often the HGM data agree with an NWI positive classification of wetland
presence or type. Precision (Equation (2)) defines the rate of true positives over predicted
positives and measures how often the NWI data agree with an HGM positive classification
of wetland presence or type. Both recall and precision are measured on a scale of zero
to one. The more disagreement (false negatives or false positives) in an area, the lower
the recall and precision values, respectively. The F1 metric (Equation (3)) is the weighted
harmonic mean of recall and precision [34]. Where the two databases agree, the F1 score
will be one. Lower F1 values therefore indicate the rate of disagreement between the two
classification systems. (In the equations below, TP refers to True Positives and FN refers to
False negatives, following existing conventions for each metric).

TP
Recall = m (1)
.. TP
Precision = TP + FP (2)
Fl — 2 x Precision x Recall 3)

Precision + Recall

Published literature criticizes the four metrics on several accounts but the application
of confusion matrices to examine database alignment avoids the problems raised when
the method is applied to ground truth. One common critique is that the F1 metric weights
both recall and precision equally [34,35]. This research however focuses on agreement and
disagreement. Both recall and precision are considered equally important measures of
disagreement here. A second concern is that all three metrics are inflated (i.e., tend to show
the highest attribute accuracy) when the most abundant label is true positives. As will be
shown in the results section, that is not the case in this study. Another criticism in published
literature is that recall, precision, and F1 do not consider true negatives but true negatives
will not affect this analysis, since true negatives record areas where both systems classify an
absence of wetlands. While specificity (Equation (4)) is the metric used to calculate the true
negative rate, it does not provide additional information about disagreement, so specificity

is not used in this research.
TN
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2.4. Pyramid Data Framework

After creating the confusion matrix surfaces, a progressive focal window analysis
transforms the coarse and fine uncertainty surfaces into a pyramid data framework. Three
metrics are calculated within the focal windows: recall, precision, and F1. Starting with
a three-by-three-pixel size, focal windows are moved across the entire surface and the
desired metric is calculated for the pixels falling within the focal window. The analysis then
iterates with increasingly large focal window sizes, and the calculated surfaces are stored
in new layers of the pyramid data framework. The base layer of the pyramid contains the
finest spatial resolution of the data (30 m). Figure 4 demonstrates this process, showing the
original coarse matrix surface and three focal surfaces (or pyramid layers) that use a 3 x 3,
5 x 5,and a7 x 7 window to calculate precision, recall and F1 metrics. The purple, orange,
and black call-out lines demonstrate the size of the focal windows and the resulting pixel
holding the precision value for the cells within that focal window.

Coarse Matrix Surface

No Wetlands Wetlands

i —'- Wetlands
P PrEcision = TP
recision = z5——5

i
4
\ | =—— = 0.57
h2 E 4+ 3 o
\
\
\
\
AY
[ 1 ] ™, .
[ 4
0.9 0.8/0.8 0.7 0.8
0.8/09 08 0.8 0.7 0.9§0.8 0.7 0.7 0.7
0.7/ 0.8 0.8 08 0.9 09038
0.8/ 09 0.8/0.8
0.9/09 09 08 0.8 0.8
0.9 0.8
I
Precision 3X3 Window Precision 5X5 Window Precision 7X7 Window 0

Figure 4. Shows an example of three differently sized focal windows (3 x 3,5 x 5,and 7 x 7) used to
calculate precision for the same coarse matrix surface. It is important to note that precision does not
involve true or false negatives (blue and white), only true positives and false positives (green and
red). An example 3 x 3 window is shown to demonstrate how a hypothetical precision value of 0.57
is derived from a coarse matrix surface. The precision value calculated for a focal window is stored in
the center pixel as shown for each window size. The focal window is moved exhaustively across the
entire coarse matrix surface. The purple, orange, and black dashed callout lines show where the focal
windows begin and their corresponding calculated precision values stored in the 3 x 3,5 x 5, and
7 x 7 focal window surfaces.

As Figure 4 shows, when the focal window size grows an increasing amount of the
edge is excluded because the focal window cannot extend beyond the limits of the original
surface. While some researchers (e.g., [10]) strive to avoid edge bias due to the exclusion
of border pixels, this study follows a different purpose, specifically to summarize the
study area by building a hierarchy of progressive focal windows. The strategy effectively
summarizes NWI and HGM agreement at progressively coarser levels of detail. Stacking
the results surfaces for each size of the focal window, the filled cells create a pyramid
shape with the original coarse matrix pixels lining the bottom and a single cell at the top
that summarizes the entire study area (Figure 5). Figure 5 also demonstrates “slicing the
pyramid”, which extracts a single layer of the pyramid to permit in-depth local analysis.
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Precision Pyramid Data Framework Pyramid Slice of Precision 5X5
Window

Coarse Matrix | |

RARERN

Figure 5. Shows an example of the hierarchical pyramid data framework created from the focal
window analysis shown in Figure 4. which uses precision as the metric. The base layer of the pyramid
is the original coarse matrix. Subsequent pyramid layers store the calculated surfaces from the focal
window analysis. The purple, orange, and black layers contain the calculated 3 x 3,5 x 5,and 7 x 7
precision focal window surfaces shown in Figure 4. Additional layers with larger focal windows can
be calculated and inserted into higher layers of the pyramid but are not shown. Slicing the pyramid
extracts one of the pyramid layers for more local analysis. A slice of the third layer which contains
the 5 x 5 pixel focal window is shown.

3. Results
3.1. Coarse Matrix—Wetlands Presence or Absence

The coarse attribute uncertainty surface over the False River subarea is shown in
Figure 6. Both HGM and NWI agree the majority (59.76%) of the subarea contains no
wetlands. True positives (Where HGM and NWI agree that wetlands are present) cover
12.93% of the subarea: the largest contiguous area is located to the east of the Mississippi
with more isolated strips located in the central subarea. The second-largest classification is
false negatives (22.72%) where the HGM detects no wetlands while NWI says wetlands
are present. Large numbers of false negative pixels are located along the Mississippi River
as well as in the southwest corner of the subset and the area around False River. False
positives cover the smallest portion of the subarea (4.59%) and are located primarily around
False River. Low recall and F1 values also indicate a large amount of disagreement.

Recall Precision F1 HGM
0.36 0.74 0.49 No Wetlands Wetlands
No Wetlands
NwI

Wetlands

“4Miles
1 ]

T
6 Kilometers

Figure 6. Coarse attribute uncertainty surface over the False River subarea. Recall, precision, and F1
scores are reported for the subarea. The blue frame bounds the mapped area on a satellite image.
3.2. Fine Matrix—Wetland Type

The fine attribute surface (Figure 7) gives a more in-depth view of wetlands’ attributes.
A benefit of the fine matrix over the coarse matrix is that landscape features become more
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obvious. For example, the purple seen in Figure 7 indicates a lake is likely present just as
blue indicates that a river or stream is present. The agricultural ditches seen in the center of
the oxbow are more easily identifiable as well as in the lake in the southeast corner, neither
of which is apparent in Figure 6.

HGM
Class Recall Precision F1 No Wetlands Riverine Lacustrine Palustrine
No Wetlands 0.72 0.93 0.81 No Wetlands
Riverine 0.19 0.03 0.05
Lacustrine 0.03 0.05 0.04 NwWI .
Palustrine 0.69 038 049 Lacustrine

Palustrine

Riverine

4 Miles
]

6 Kilometers

Figure 7. Fine attribute uncertainty surface over the False River subarea. Recall, Precision, and F1 are
reported for each of the wetland classes present in the subarea. The blue frame bounds the mapped
area in a satellite image.

Most of the NWI-classed riverine wetlands (light, medium and dark blue) within this
area are false negatives (5.51%). These areas are situated next to the Mississippi and narrow
channels in the southeast corner. It is likely that the channels are created by humans and
are too small to be captured in the NHD dataset used to process the HGM dataset. Few
lacustrine areas (purples) occur within the subarea with the majority outlining the oxbow
and a contiguous patch in the southeast. Palustrine wetlands (greens) dominate the region
and make up the majority of wetlands in this area. The highest recall, precision, and F1
values indicate the most agreement between the two datasets occurs in the areas classed
as non-wetlands. The palustrine class has the second-highest scores. This is expected as
there are few areas of riverine and lacustrine represented within this subarea and the HGM
model does not detect smaller and isolated areas well.
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3.3. Multiscale Analysis

A 200 x 200 pixel portion of the False River subarea (Figure 8) was used for the scale
analysis. Recall, precision, and F1 pyramids were created for both coarse and fine attribute
uncertainty surfaces and summarized for the subarea highlighted in yellow in the Figure.
From these pyramids, and for simplicity of explanation, four layers (focal windows sized
5 x 5,10 x 10, 15 x 15, and 20 x 20) are chosen from the coarse attribute pyramid to
highlight cross-scale variations (Figures 9-11). Summary statistics were calculated for each
layer and a consolidated table is presented in Section 3.3.4.

Recall Precision  F1
0.51 0.57 0.54 HGM
No Wetlands Wetlands
No Wetlands
NwWI

Wetlands

4 Miles

Figure 8. The 200 x 200 pixel portion of the False River subarea used for the multiscale analysis. The
coarse attribute resolution confusion matrix is shown along with the recall, precision, and F1 values
calculated at the finest pyramid level (3 x 3 focal window) for this subarea. The locator map shows
the 200 x 200 pixel area outlined in yellow within the False River subarea outlined in blue.

3.3.1. Recall

Figure 9 shows slices from the Recall pyramid. Areas of high recall (blue shades)
appear over the center and western part of the subarea as well as the northeastern corner.
While the center region of layer five shows small areas of low recall values (red), by layer
twenty they aggregate to show the center having the highest recall values in the study area.
Low recall areas are focused along the edges at all four levels. These areas indicate higher
levels of disagreement (false negatives). White regions mainly in layer 5 lack wetlands in
HGM and NWI. As the window size increases, these regions gradually disappear as the
focal window size exceeds areas without wetland pixels.

3.3.2. Precision

Slices from the precision pyramid are shown in Figure 10. Low precision values (red
shades) appear in the center of layer five, but by layer ten and extending into layer twenty,
two distinct low regions have emerged located in the northeast corner and south center.
High-precision (blue) areas cluster along the eastern border and show as patches at all
layers. Consistent precision patterns across all four focal window sizes imply that NWI
shows more stable classes across the range of attribute scales.
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Figure 9. Four slices from the coarse attribute surface recall pyramid. Layer number indicates the
height in the pyramid and window number indicates the size of the square focal window used in
that layer.

3.33.F1

The F1 metric considers both precision and recall (Figure 11). High F1 (blue shades)
indicate areas with the most agreement between the NWI and HGM datasets, while lower
F1 (red shades) will indicate areas with the least agreement (false negatives and positives).
While layer 5 seems to have a fragmented pattern, high F1 scores are consistent in the
western border and patches of low F1 values emerge in layers 10, 15, and 20 along the
edges. Most of the subarea has moderate F1 values (green shades).

When assessing agreement and disagreement across attribute scales, F1 appears to be
the most informative metric as it considers both types of disagreement (false positives and
negatives). Figure 12 shows this as it compares slices from Layer 20 of the precision, recall,
and F1 pyramids. The single (blue) area that has a high F1 value can be seen in both the
precision and recall slices. Areas such as the southeast corner that have high precision, but
low recall are more tempered in the F1 layer with values closer to 0.5 (green). Similarly, the
central region has lower precision values but higher recall. This shows why the F1 metric is
valuable for isolating general areas of agreement and disagreement, as it accounts for both
types of disagreement (false positives and negatives) and it is easier to see the combined
spatial patterns of recall and precision. Recall and precision are more valuable when trying
to isolate either false positives or false negatives and are more relevant when working with
ground truth data.
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Figure 10. Four slices from the coarse attribute surface precision pyramid. Layer number indicates
the height in the pyramid and window number indicates the size of the square focal window used in
that layer.

While recall, precision, and F1 were all computed for the fine attribute resolution
confusion matrices, F1 was found to be the most informative and therefore, only slices
from the F1 pyramid are shown (Figure 13). Additionally, the fine attribute resolution
confusion matrix is multivariate, so metrics are calculated individually for palustrine,
riverine, and lacustrine classes. As palustrine dominates this portion of the study area,
only the palustrine class is shown. The patterns of high and low F1 are similar to the coarse
matrix F1 patterns shown in Figure 11 because palustrine takes up so much of the study
area. However, the disagreement is more pronounced (deeper shades of red).

3.3.4. Consolidating and Comparing Metrics in the Pyramid Framework

Mean and standard deviation values were calculated for each pyramid layer. Table 2
reports the layer, the pixel size of the focal window used on that layer, and the number
of windows needed for the surface. Additionally, Table 2 reports the mean and standard
deviation (recall, precision, and F1) for each layer.

The mean and standard deviation are particularly useful in identifying patterns of
attribute inconsistency. This can be seen in Figure 14 which plots the standard deviation and
mean values for the first fifty layers in the coarse attribute F1, recall, and precision pyramids.
The mean values drop (Box A) before reaching an equilibrium that is maintained at the
top of the pyramid (Box C demonstrates this up to layer 49). Standard deviation values
also drop for all three metrics, implying that the mean values better represent the central
trend at coarse scales. After reaching an equilibrium in the metrics, further aggregation
does not show new patterns of agreement/disagreement which is why the previous scale
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analysis selected layers 5, 10, 15 and 20. To demonstrate the equilibrium, the pyramid layers
were calculated to the coarsest level, but in practice one needs to calculate the pyramid for
layers prior to the equilibrium. A plot such as shown in Figure 14 may provide wetlands
managers with an easy indication of the limits to usable resolution, showing that larger
focal windows will obscure rather than highlight areas requiring further attention.
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Figure 11. Four slices from the coarse attribute surface F1 pyramid. Layer number indicates the
height in the pyramid and window number indicates the size of the square focal window used in
that layer.
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Figure 12. Layer twenty from the coarse attribute resolution precision, recall, and F1 pyramids. Areas
that have both high recall and precision, as well as areas with low recall and precision, can be seen in
the F1 slices.
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Table 2. Coarse Attribute Confusion Matrix Multiscale Analysis Metrics.
Recall Precision F1
5 7 37,636 0.32 0.64 0.30 0.66 0.24 0.54
10 17 33,856 0.28 0.58 0.27 0.59 0.20 0.50
15 27 30,276 0.23 0.58 0.27 0.57 0.17 0.51
20 37 26,896 0.19 0.59 0.19 0.56 0.14 0.53

Palustrine Fine F1- Layer: 5, Win

The magnitude of the initial drop depends in part on the proportion of true positives,
false positives, and false negatives. A study area (such as False River) with more true
positives (24.68%) than false negatives (23.68%) and false positives (18.55%) will not have
as steep of an initial drop in the means as a study area with fewer true positives. A greater
number of true positives (more agreement between classification systems) raises the recall,
precision, and F1 means closer to 1.00 and as the pyramid summarizes more of the study
area the larger number of true positives will cause the means to approach this maximum.
The spread of the means also depends on the range of true positives, false positives, and
false negatives. The False River mean values seen in Figure 14 are not dispersed because
the study area has balanced levels of true positives, false negatives, and false positives. If
False River had a much larger proportion of false positives and a low proportion of false
negatives, the spread of the means would increase as the precision means would be much
lower than the recall means.
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Figure 13. Four slices from the fine attribute pyramid showing F1 scores calculated for the palustrine
class. Layer number indicates the height in the pyramid and window number indicates the size of
the square focal window used in that layer.
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Figure 14. These charts plot the mean and standard deviation F1, precision, and recall scores for the
first fifty layers of the coarse attribute pyramid. Box A is around the initial fall in mean Precision,
Recall, and F1 values in the first few layers. B indicates the three black dashes on the mean lines that
indicate where the means stop their initial descent. Box C is the portion of the graph where the means
have reached an equilibrium and do not drastically change.

4. Discussion

This research undertakes a multi-scale analysis of wetlands classification for a study
area in Louisiana, where uncertainty is defined by disagreement (inconsistency) between
independently compiled databases of similar credibility. Wetlands provide an example
of what Fisher [36] calls “poorly defined objects” due to vagueness and ambiguity. These
landscape features are considered vague due to difficulties in delimiting spatial extent.
They are considered ambiguous due to inconsistent class definitions across databases. The
two characteristics create special challenges for wetlands monitoring and management,
as well as for error reporting to meet the Global Biodiversity Framework targets 1 and
2 [5]. Both reasons make wetlands an excellent data source to utilize in an analysis of
classification uncertainty.

An additional complication in wetlands management is a frequent need for compre-
hensive field checking that could establish true and false wetland presence and type on the
ground. Often a lack of field checking is due to pragmatic reasons (limited staff, resources,
hydrological regime changes over time, or an expansive study area). Current imagery
might assist in determining wetlands but is not always available for a specified time period
or across the entire extent of managed areas. Complications with field checking can happen
in study areas that are hard to access physically, have anthropogenic disruption, or other
reasons. In the research reported here, imagery for the study area was not available for the
same years for NWI and HGM data.

The remainder of the discussion addresses key points in the methods, results, and
interpretations.

4.1. Evaluating Differences between Independently Compiled Data Classification Systems

Comber et al. [37] discuss variations that technical advances, data collection specifica-
tions, and mandates invariably introduce in digital data products representing the same
landscape features. The Cowardin system was established as a national classification system
to track wetland growth or retreat [21]. The HGM classification system reflects functional
ecological characteristics that affect water storage and volume [23]. The pre-processing
required to align the two classification systems (specifically for palustrine and riverine
wetlands classes) was also described, reflecting concerns expressed by Comber et al. [36]
that assumptions of database compatibility can interfere with uncertainty assessment. For
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example, the two classification systems treat open water in different ways, with one system
using a unique category and the other merging it with other wetlands classes. Open water
was eliminated from the analysis in order to avoid distorting the proportions of the study
area in the comparison. One contribution of the work reported here is to demonstrate the
importance of addressing classification alignment prior to beginning the assessment.

4.2. Advantages of Confusion Matrix Analysis to Highlight Classification Inconsistency

Another contribution of this work is to re-express confusion matrix analysis in the
context of inconsistency or disagreement between two databases rather than as validation of
empirical truth. In many cases of environmental uncertainty, ground truth is challenged or
obstructed and, in these cases, the confusion matrix can provide an alternative assessment
of uncertainty in the form of database agreement or disagreement. The traditional language
used in confusion analysis can be adjusted using “agreement” and “disagreement” rather
than true and false positives and negatives, carrying connotations that might be misleading
for assessing inconsistency between two databases. The research also demonstrates that
confusion analysis can be extended beyond binary classification to examine finer levels of
attribute accuracy, in this study, categories of wetlands type.

In terms of wetlands presence overall, what is seen in both the coarse and fine matrices
is influenced most likely by disturbance. Much of this area has been altered by agriculture.
Plots of agricultural land can be seen in areal imagery such as the locator map in Figure 7.
In addition to disturbance in this area, there is also a temporal difference between the NWI
and HGM databases. The NWI data were collected in the 1970s and 1980s and the HGM
data more recently. False negatives (off-diagonal percentages in Figures 2 and 6) could
indicate areas that were once wetlands (classed in the older NWI) but were destroyed and
not classed in the newer HGM.

The fine attribute matrices tend to highlight landscape features, for example, the
lacustrine and riverine wetlands in Figure 7 show probable locations of lakes and rivers,
whether classified as such by one data classification or both. Smaller anthropogenic features
such as agricultural ditches are also more prominent in the fine attribution, while they are
not evident in the coarse attribution shown in Figure 6. In the finer matrix, the highest
percentages of Recall, Precision and F1 scores are ascribed to areas classed as non-wetlands,
with more disagreement earning lower scores. This offers insight into differences in how
the two classification systems treat specific landscape features as well as which of the three
confusion metrics is most informative. Findings in this study show that the F1 scores appear
most informative about wetlands misclassification at both coarse and fine attribute scales.

In general, disturbance and temporal differences impact the patterns of disagree-
ment. A data manager could utilize this information to update the datasets in areas with
substantial amounts of disagreement such as in the center of False River. Being able to
visualize areas of high disagreement can potentially save time and resources by allowing
data managers to focus on specific areas within their monitored regions.

4.3. Benefits of the Pyramid Framework in Analyzing Confusion Matrix Metrics

One contribution of the paper is to demonstrate how patterns of uncertainty can be
examined and quantified spatially and within levels of attribute categorization, in a method
that links spatial with attribute levels of detail. This is accomplished using a pyramid
framework to display discrepancies in wetlands attributes (presence or absence and type).
The pyramid data framework allows multi-scale summary statistics to be stored in a single
unified framework that can then be visualized and sliced to extract representations at
individual levels of detail. Lower levels of the pyramid summarize local consistency while
higher levels of the pyramid summarize more global patterns. The pyramid also shows
the usable limits of resolution for analyzing data, as higher layers of the pyramid will
eventually become too aggregated to offer additional local insights.

The analytical power of the pyramid framework as a container for multiscale data
provides a ready method to provide focus in a large area of analysis. Patches of database



ISPRS Int. ]. Geo-Inf. 2024, 13, 103

17 of 21

agreement and disagreement become apparent as one travels through the layers of the
pyramid. The pyramid data framework is an especially useful tool that allows one to assess
confusion metrics at multiple scales. This is especially true for the F1 metric that considers
both types of disagreement (in conventional confusion matrix analysis, false negatives, and
false positives).

Calculating recall, precision, and F1 metrics at multiple focal window sizes is useful in
finding not only local patterns but also generalized global patterns that smooth outliers. For
example, inconsistency due to fragmentation is more apparent at a local scale, while overall
data accuracy issues become more apparent at a global scale. Additional tools such as
summary statistics can be calculated for each pyramid layer allowing one to easily compare
the data at various levels of aggregation and see which levels are informative. What results
is a way to visualize the attribute classification and determine how inconsistency patterns
might vary across spatial and attribute scales.

The choice of source data’s spatial resolution will constrain the landscape patterns
that are available for analysis. For example, in this study, the smaller stream channels,
canals and agricultural ditches in the False River subarea are not resolved in the NHD data
used to process the HGM data. No matter how fine the source data resolution, features too
small to be detected at that resolution will be missed in the comparison. As the pyramid
aggregates data by means of progressive focal windows, localized details are transformed
into more global patterns. At a certain level of aggregation, global details and summary
statistics will reach equilibrium and cease to change.

How many layers in the pyramid must be aggregated before the means reach an
equilibrium depends on the spatial pattern and fragmentation of the true positives, false
positives, and false negatives as well as on the size of the focal windows. Means and
standard deviations for all three confusion matrix metrics are plotted for the first 50 layers
of the pyramid in Figure 14. The layers where the means reach equilibrium are visually
apparent. Spatial patterns of the wetlands inconsistencies can impact this summary. For
example, if there are large areas of true positives and false negatives it will take a larger focal
window for those areas to be aggregated. With more fragmented inconsistency patterns,
the focal window does not need to be as large before patterns begin to cluster. If the areas of
true positives and false positives are isolated, the focal window will need to be larger before
those areas can affect the precision value. If large continuous patches of false positives
(disagreement) are distant from true positives (agreement), the precision mean will require
more layers in the pyramid (and larger focal windows) to summarize this pattern.

Figure 14 can be interpreted as having a few large, isolated clusters of values that are
apparent both by looking at the black ticks in area B and by looking at the coarse matrix
pattern in Figure 8. All three ticks occur before layer ten, a lower layer of the pyramid.
Users can interpret this as an inconsistency surface being evenly dispersed. The spread
of the standard deviation values reinforces this interpretation. If patches of disagreement
were clustered for example, the Recall standard deviation would be higher, and more layers
would be required for the recall mean reach equilibrium because larger focal windows
would be required to smooth over a large cluster.

In summary, plotting the mean and standard deviation recall, precision, and F1 values
lends important insights into the study areas. The spread of means, rate of their initial
decrease, and point at which they level off give insight into the composition and spatial
patterns of the study area. Means that have a quick and shallow decrease with little spread
indicate the study area has more true positives (agreement that wetlands exist) than true and
false negatives (disagreement about wetland presence). A shallow decrease without spread
also indicates that patches of similar attribute agreement or disagreement occur in small
clusters that are spatially proximal. Standard deviations also give insight into the spatial
pattern of the study areas. Higher standard deviations indicate more extreme high and low
values for that metric within the study area. Extremely high and low recall and precision
standard deviation values will occur where there is a large amount of disagreement and
areas where agreement occurs lie in isolated patches. Visualizing inconsistency at multiple
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scales shows where the disagreement is most extreme. The pyramid slices can identify
areas of high inconsistency within a single focal layer.

5. Conclusions

This research assesses categorical uncertainty in two attribute levels of wetland classi-
fication and creates visualization tools to guide the analysis of spatial uncertainty patterns
over several scales. A novel variant of confusion matrix analysis compares the Cowardin
and Hydrogeomorphic wetland classification systems. Algorithms were developed to
identify areas and types of misclassification for binary and multivariate categories. Code
implementing these algorithms as well as wetlands test data used in the case study is
available in the public domain (see Data Availability Statement below). The specific focus
on uncertainty in the paper refers to categorical consistency, that is, agreement between the
two classification systems, rather than comparing observed data to ground truth. To the
authors” knowledge, no previously published research utilizes confusion matrix analysis
to assess categorical accuracy using empirical data, either at a single scale or within a
hierarchy of scales.

The work reported here carries several limitations. One is a temporal difference
between the NWI and HGM data. The NWI data in this region were collected in the 1970s
and 1980s with a small portion collected in the 2010s, intermixing field checking with image
and geospatial analysis. However, the data used to create the HGM database was collected
after the 2000s. It is likely that temporal uncertainty is contributing to some database
disagreement. Wetlands that existed when the NWI was created but destroyed in later
years would appear as false negatives: NWI would class the area as wetlands while the
HGM would not. Conversely, the HGM may detect where wetlands once existed. Drained
soils may still be classed as hydric and some areas with hydric soils will not be classified as
wetlands by HGM but not by NWI [38,39]. The temporal disagreement especially shows
itself in disturbed areas such as the area of agricultural development around False River.

A second limitation Is that several assumptions were made in generating the HGM
dataset that may not be true in every geographic case. For example, the assumption that
soils classed as hydric are always wetlands is not always correct, nor that wetlands adjacent
to rivers and lakes are always riverine and lacustrine, respectively. However, the purpose
of this analysis is to demonstrate a method and data framework to explore multi-scale
patterns of attribute accuracy, rather than to establish a spatially precise model of wetlands
in the False River oxbow.

Another limitation of this work is its examination of only a single study area. Wetlands
emerge in a variety of ways in different landscape conditions, and their persistence is
impacted by factors including precipitation, soils and vegetation, topography, and human
disruption. Examination of wetlands in a variety of conditions will inform and advance
understanding of how patterns of uncertainty manifest across spatial and attribute scales,
and whether the patterns are stable or variant. Additional study areas will also provide
guidance on the efficacy of the confusion matrix analysis and of the pyramid data frame-
work for studying uncertainty across scales. This forms an area of ongoing research, and a
study area in the Pacific Northwest is under investigation [40].

The tools created in this research can help land managers, regulators, researchers, and
conservationists by allowing them to focus time and resources on wetland areas of highest
uncertainty, as they may need updated data for specialized management and monitoring.
Visualizations of attribute uncertainty can shorten analysis and facilitate decision-making
for areas when time, funding or labor is short. These tools offer a direct advantage for
reporting progress and errors in quantitative ways, following the IUCN’s resolutions to
advance the Global Biodiversity Framework. Additionally, the temporal difference in the
data and the inherent difference between the hydrogeomorphic (HGM) and Cowardin
classification systems can offer insight into historic wetlands patterns and impacts of
disturbance or disruption. Furthermore, the methodologies used in this research are not
limited to wetlands, and others working with categorical or classified geospatial data could
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apply these methodologies to their own work. In natural and social science domains, our
methods are directly applicable to compare for example databases or classification systems
reporting land cover vegetation, land parcel ownership (public, private, governmental), or
social categories such as race or ethnicity at province, state, county or local levels.
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