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Abstract—Running deep visual analytics models for real-time
applications is challenging for mobile devices. Offloading the
computation to edge server can mitigate computation bottleneck
at the mobile device, but may decrease the analytics performance
due to the necessity of compressing the image data. We consider
a “split computing” system to offload a part of the deep
learning model’s computation and introduce a novel learned
feature compression approach with lightweight computation. We
demonstrate the effectiveness of the split computing pipeline in
performing computation offloading for the problems of object
detection and image classification. Compared to compressing the
raw images at the mobile, and running the analytics model on
the decompressed images at the server, the proposed feature-
compression approach can achieve significantly higher analytics
performance at the same bit rate, while reducing the complexity
at the mobile. We further propose a scalable feature compression
approach, which facilitates adaptation to network bandwidth
dynamics, while having comparable performance to the non-
scalable approach.

Index Terms—Computer vision, feature compression, object
detection, split computing.

1. INTRODUCTION

EEP learning models have achieved tremendous success

in various visual analytics tasks. There is an increasing
interest in leveraging the power of large neural network models
on high-resolution image and video data to solve challenging
problems. Being able to efficiently run these computationally
intensive neural networks at a high frame rate is crucial for ap-
plications such as autonomous driving, navigation assistance for
blind and visually impaired people, and augmented reality. How-
ever, end-user devices that capture the raw visual data are often
constrained in computation power and cannot run these mod-
els with sufficient speed. Running these models also consumes
significant energy, reducing battery life.

Manuscript received 10 December 2023; revised 12 March 2024 and 7 May
2024; accepted 12 May 2024. Date of publication 28 May 2024; date of cur-
rent version 16 October 2024. This work was supported in part by NSF under
Grant 2003182, and in part by Intel. The work of Zhongzheng Yuan and Yao
Wang was supported by NSF under Grant 1952180. The associate editor co-
ordinating the review of this manuscript and approving it for publication was
Dr. Shigi Wang.

Zhongzheng Yuan, Siddharth Garg, Elza Erkip, and Yao Wang are with the
Electrical and Computer Engineering Department, New York University Tandon
School of Engineering, Brooklyn, NY 11201 USA (e-mail: zy740@nyu.edu;
sg175@nyu.edu; ee531 @nyu.edu; yw523 @nyu.edu).

Samyak Rawlekar is with the Department of Electrical and Computer Engi-
neering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 USA
(e-mail: samyakr2 @illinois.edu).

Digital Object Identifier 10.1109/TMM.2024.3406165

, Siddharth Garg

, Elza Erkip ", Fellow, IEEE,

, Fellow, IEEE

A solution to this problem is to employ edge computing, which
transmits the acquired image data and offloads the computation
to a nearby edge server with larger computation power. Effi-
cient computation offloading requires optimizing the trade-off
between multiple objectives including compressed data rate,
analytics performance, and computation speed. There are two
main frameworks for performing computation offloading. One
is to first compress the image on the mobile device, then per-
form decompression and inference on the decompressed image
at the server [1], [2]. The other approach, commonly known
as Collaborative Intelligence, proposes to split the task model
between the mobile and the server, and compress and send
the intermediate features at the point of split to the server [3],
(41, 51

In either framework, compression can be performed using
conventional, non-learned image/video compression standards.
Such approaches may have practical advantages, because they
can leverage existing hardware and software for compression,
but the impact of compression on the analytics task’s perfor-
mance cannot be controlled directly. That is, the non-learned
compression module cannot be optimized jointly with the task to
optimize rate-performance tradeoffs. In contrast, using a learn-
able compression module enables direct optimization of the
rate-performance trade-off; specifically, only features that are
useful for the analytics task need to be generated and com-
pressed. The split computation approach can also reduce the
computation at the server, which could be important for appli-
cations where the server has resource constraints.

For these reasons, our work adopts the split computing frame-
work and introduces a novel learning-based approach for feature
compression with lightweight computation on the mobile side.
We train the feature compression and decompression modules
together with the analytics model to optimize the analytics task
performance under a rate constraint. We demonstrate the effec-
tiveness of the split computing approach with learned feature
compression on two common computer vision tasks: object de-
tection and image classification. Compared to baseline methods
that apply either standard image compression or learned image
compression at the mobile and perform decompression and vi-
sual analytics at the edge, the proposed system achieves higher
object detection and classification accuracy in the low to medium
rate range, while requiring substantially lower compute time on
the mobile device.

While tailoring the split computing model for each target bi-
trate is likely to achieve the highest analytical performance for
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that bitrate, it may not be practically feasible to store multiple
models on the client device to adapt to different bandwidth con-
ditions. Scalable compression, a well explored concept that has
been adopted in video compression standards [6], [7], is one
possible method to achieve variable rate encoding. In scalable
compression, a layered bitstream is generated by the compres-
sor. The base layer bitstream provides a basic level of analytics
performance, and each additional enhancement bitstream pro-
vides an incremental performance improvement. Thus, the en-
coder can quickly adapt to changing bandwidth by generating
and sending the maximum number of layers that the current
bandwidth allows. We propose the first scalable learned feature
compression model and a corresponding strategy to train this
model jointly with the task model. The resulting single scalable
compression model and corresponding task model can achieve
competitive performance over the entire rate range, compared
to the non-scalable approach, which uses separately optimized
compression and task models for each target bit rate.
Finally, we explore the possibility of reconstructing the origi-
nal image using learned features for analytics. The intermediate
features in the split computating framework are generated by a
model trained specifically for a target task but not for human
visualization. In some applications, it may be important for a
human operator to visually inspect the image to verify the de-
tection or classification result. We show that it is possible to
recover a degraded version of the image from the compressed
feature, which is sufficient for human verification in most
instances.
Our contributions are summarized as follows:
® We propose a novel lightweight feature compression
scheme embedded within the split computing framework.
To exploit the cross-channel and spatial redundancy among
the multi-channel features, we perform channel and spatial
dimensionality reduction and further decorrelate the result-
ing channels. We use the compression architecture of [8]
to encode the reduced features as Gaussian variables with
mean and scale predicted by a side hyperprior bitstream.

® We demonstrate the effectiveness of the proposed scheme
for both object detection and image classification. Our
approach achieves higher task accuracy under similar bit
rates, and significantly faster inference speeds, compared
to the compression-decompression-analytics baselines.
® Our work is the first to introduce bitrate scalability for
task-aware compression. We propose a scalable compres-
sion model for generating a layered bitstream that enables
variable bitrate and efficient adaptability to changing band-
width constraints. Our proposed model is also the first
model that can achieve variable bitrate while using only
a single model without the need for model switching.

® We show that it is possible to train an image reconstruction
model to recover a degraded version of the original image
from the compressed features that are extracted for object
detection.

Preliminary version of this work has been presented in [9],
[10]. The two prior works considered the object detection task
only, while here we demonstrate the success of the proposed
feature compression approach for image classification as well.
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Fig. 1. Two pipelines for computation offloading. 1) Compress the image at
the client side, then feed the decompressed image to the task model at the server.
2) Split the task model between the client and the server. Compress and transmit
the intermediate features.

The scalable compression approach reported in [10] used multi-
ple task decoder models to achieve good rate-task performance
for different bitrate ranges. Here we show that a single task
decoder is sufficient to achieve good performance over the
entire rate range.

II. RELATED WORKS

The method of compressing imagery data for the purpose of
computation offloading has been widely studied by several re-
search groups and standardization efforts. The Motion Picture
Expert Group (MPEG) has recently started a standardization ef-
fort known as “Video Coding for Machines” (VCM) [11], [12].
MPEG-VCM comprises of two main tracks: VCM and Feature
Compression for VCM (FCVCM). VCM focuses on compress-
ing the input image/video followed by decompression and infer-
ence on the server, while FCVCM focuses on compressing the
intermediate feature of the task network. The FCVCM track fits
into the broader framework of computational offloading known
as Collaborative Intelligence, where the computation of an infer-
ence pipeline is split between the mobile device and the server.
These two methods are illustrated in Fig. 1.

Here we review some representative works of learned com-
pression modules for these two pipelines.

A. Analytics-Aware Image Compression

In the image compression approach for computation offload-
ing, the input image is compressed by an image compression
model and sent to the server. The server performs decompression
and feeds the reconstructed image to the task model. This ap-
proach has the advantage that existing image/video compression
standards can be utilized, as well as protocols for transporting
the compressed bitstream. However, existing image/video com-
pression standards were not optimized for analytics, but rather
for image reconstruction. Several prior works have tried to ad-
dress this problem by learning image compression models that
better preserve analytics performance.

A task-aware JPEG compression model was proposed in [13].
The work proposes to use a convolutional network to predict the
quantization table for DCT coefficients for JPEG compression.
Images compressed using the predicted quantization table
achieved better task performance than when the standard table
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was used. In [1], [2], the learned image compression model
with hyperprior [8] was used to compress images, and then the
decompressed images were fed to a detection or segmentation
model. By jointly training the compression and task models,
some performance loss due to compression is recovered. These
prior works require relatively large convolutional networks to
perform image compression on the mobile device, which still
consumes substantial computation time and battery.

B. Analytics-Aware Feature Compression

Collaborative intelligence (CI) is another approach for of-
floading computation from the mobile device to the server. In
contrast to the image compression approach, where inference of
the task model is performed fully on the server side, the mo-
bile and the server each share a part of the computation of the
task model in collaborative intelligence [3]. CI for deep neural
networks was first proposed by [4], which demonstrated that la-
tency and energy consumption can be reduced by splitting a deep
neural network between a mobile device and an edge server.

Compression of the intermediate feature is necessary to re-
duce the bitrate for transmission. There has been no widely
adopted standard for compressing the features of a model. Sev-
eral works have proposed using existing image/video compres-
sion standards or learned compression models for feature com-
pression.

Intermediate feature compression using standard image/video
codec was studied in [11], [14] with HEVC, and in [15] with
JPEG and additional dimensionality reduction. Using standard
codecs for feature compression in general did not achieve good
performance, as the codecs were designed for compression of
images and not features.

Feature compression with learned image compression model
was proposed in [16]. The hyperprior compression model was
used and the task model was end-to-end trained. However, the
split point considered by [16] was at the second to the last layer
of the original deep learning model, so that the mobile device still
has to do a majority of the computation task. In [17], a learned
feature dimension reduction and entropy coding approach was
proposed. The model achieved good rate-task performance, but
switching between different feature compression modules was
still necessary to compress at different bitrates. In addition, be-
cause only the feature compression modules were trained, its
performance was lower compared to end-to-end trained mod-
els. Another feature compression approach for CI was proposed
in [18], where a learned entropy compression model was used
to compress the features and the input image was downsampled
to reduce spatial redundancy.

The standardization of feature compression for analytics has
also started recently, with the FC-VCM standardization effort
calling for proposals of feature compression solutions. In [19],
the intermediate features were stacked in a matrix and PCA was
performed to transform the matrix into coefficients. The coeffi-
cients are compressed using the VVC standard video codec. A
similar strategy was used in [20], except that a trained neural
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network was used instead of the PCA to transform the interme-
diate features. The methods both use standard video codecs to
compress the intermediate bitstream, which are not end-to-end
trainable and may be suboptimal to end-to-end trained methods.

Our approach to feature compression is most similar to that
of [17] and [18]. Compared to [17], we also employ a feature
dimension reduction module, and in addition, we trained our
model end-to-end and used the hyperprior model for better rate
reduction. Compared to [18], our model do not downsample
the input image, which may lead to decreased performance for
the detection of smaller objects. Both works do not have a
variable rate model that does not require model switching. Our
scalable compression model, which we describe below, enables
variable rate compression with single model.

C. Scalable Compression

Scalable image compression (also known as layered com-
pression or coding) encodes an image into a base layer z; and
additional enhancement layers z3, z3,..., zps for a total of M
layers. The layers are embedded in that layer m is useful and
contribute to improved quality only if all previous layers up to
m — 1 are available [21].

The sender can adaptively generate and send a set of layers
given the current communication channel throughput. When the
decoder receives the base layer bitstream only, it can decode
the image with a basic reconstruction quality. With each addi-
tional enhancement bitstream received, the decoder can decode
the image with successively higher quality. When the same im-
age or video is sent to multiple receivers with different network
throughputs such as in a live broadcast, scalable compression
facilitates the sharing of the lower layers among multiple re-
ceivers, reducing the total traffic load in the network.

Another benefit of layered coding is that lower layers can
be protected using stronger error correction or delivered over a
more reliable channel, so that lower layers can be successfully
delivered with a high probability, leading to more graceful per-
formance degradation when the network connectivity is poor [6].
Compared to non-scalable compression, which needs to receive
the entire bitstream in order to decode an image at a fixed bitrate,
scalable compression offers more robustness to the communi-
cation channel variability.

In the case of feature compression for analytics, scalability
can be considered as generating a bitstream with multiple lay-
ers, such that each additional layer leads to improvement in the
analytics performance. In practical applications, the mobile de-
vice is often deployed in areas with weak and unstable inter-
net connections. In such scenarios, scalable compression can be
particularly useful. In the case of a sudden drop in the network
throughput (e.g., switching from 5 G to 4 G wireless network),
the base layer can be transmitted to ensure a basic performance
in analytics. When the network condition improves, additional
layers can be generated and sent.

There have been several works on learned scalable compres-
sion of images for human visualization. In [22], scalability is
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Overview of the proposed system. The task model is split into two parts that run on the mobile device and the edge server, respectively. A feature

compression model is used to compress the intermediate features at D3. Another split point (D4) considered in our experiments is also indicated. The notation |2
and 12 refers to down-sample by a factor of 2 and up-sample by a factor of 2 respectively. (a) For object detection using the YOLOVS5 architecture. When splitting at
D4, the first skip connection of the YOLO model was removed. The C3 layer which originally receives this skip connection was modified with less input channels.

(b) For image classification using the ResNet 18 architecture.

achieved by using multiple encoder models to successively com-
press the residual of the reconstructed image and send the resid-
ual latent information in layers. Another model proposed by [23]
encodes the input image to layered latent features and uses lower
layer latents to predict and enhance the higher layer bitstreams.
More recently, a fine-grained scalable model is proposed by [24].
The model generates a base and an enhancement feature tensor.
The base feature is sent as a whole, while the enhancement fea-
ture tensor is split along the channel dimension, and each channel
is sent one by one for each enhancement layer.

Some prior works have considered scalable compression for
analytics, such as [25], and [26]. However, the scalability pro-
posed by these works refers to the ability of the server model
to perform additional analytics tasks as it receives each addi-
tional bitstream, while our proposed scalable model increases
the accuracy of a single task with additional layers.

III. FEATURE COMPRESSION FOR SPLIT COMPUTING
A. Proposed Model

We create a split computing model by splitting the task model
into two parts, with the first part running on the mobile device
and the second part running on the server. This paper calls the

mobile part of the model the task encoder F, and the server part
of the model the task decoder G. The intermediate features at the
point of split are compressed and transmitted from the mobile
to the server.

Choosing the point of split is an important consideration as
it affects the amount of computation needed to be done by the
mobile device. In general, a split point that is deeper into the
task model results in sparser features that are easier to compress.
However, splitting deeper is counter to the goal of computational
offloading, as a larger percentage of the task model needs to
execute on the mobile.

We observe that in typical learned image compression mod-
els [8], [27], the model architecture involves the use of strided-
convolutions or downsample layers to reduce the spatial di-
mension of the input. In the learned image compression model
proposed by [8], [27], the input image undergoes four 2x
down-sample convolution layers before being entropy encoded.
Interestingly, several task models [28], [29], including the ones
we use, also contain strided-convolutions or 2 x downsampling.
Motivated by these similarities, we place the split point in our
task models after the fourth down-sampling layer (D4), mirror-
ing the architecture of [8], [27]. We also consider splitting after
the third down-sampling layer (D3) for less computation on the
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Fig. 3. Inter-channel covariance matrix (top row) and the variance of each

channel (bottom row) for the intermediate features from the YOLOv5 model at
the D3 split point, for the original feature channels and after channel reduction
to different number of channels.

mobile side. In typical task models, these points of split are early
in the task model, so the share of computation allocated for the
mobile device is small. This methodology can be applied to a
range of different computer vision models. We demonstrate this
by showing its effectiveness in the YOLOv5 model [28] for
object detection, and the ResNet18 model for image classifica-
tion [29]. An overview of the proposed split computing model
for object detection and classification is shown in Fig. 2.

B. Feature Dimensionality Reduction

It is common for convolutional network models to increase
the number of channels at each downsample layer. While having
a large number of channels is beneficial for task performance,
there is significant redundancy among the channels, which can
be seen in the inter-channel covariance matrix, as shown in
Fig. 3(a). Coding these channels directly and independently does
not exploit the redundancy between channels. We propose to first
reduce the channel dimension of the features before performing
entropy coding. We use a 1 x 1 convolution layer to reduce the
number of channels from N to Ng. In addition to reducing the
number of channels, this layer also serves to decorrelate the
resulting channels. In the receiver, we use a reverse 1 x 1 con-
volution layer to increase the channel number back to N. As
shown in Fig. 3(b), the first 10 channels capture most of the total
variance of the original N = 128 channels.

Similarly, we reduce the spatial dimension of the features by
down-sampling. At the encoder side, we use a convolution layer
with a kernel size of 5 x 5 and a stride of 2 to down-sample the
features by a factor of 2. At the decoder side, 5 x 5 transposed
convolution is used to upsample the features back to the origi-
nal spatial dimension. The reduction and expansion layers are
placed before the nonlinear activation of the output layer at the
point of split. Similar to compression models [8], [27] where
there is no activation function at the last layer of the encoder,
we do not use nonlinear activation in the feature compression
layers because the entropy coder expects a Gaussian distribu-
tion, while nonlinear activation in the model typically produces
a single-sided distribution. We perform spatial reduction in ad-
dition to channel reduction for the split point at D3 so that the
resulting spatial dimension is the same as in D4, while only
channel reduction is performed at the D4 split point.
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Reducing the channel and spatial dimensions has the added
benefit that it reduces the computation time for arithmetic cod-
ing. We observed that larger tensor size leads to longer arithmetic
encoding time, as shown in our results Section VI-F. Reducing
the dimension of the feature tensor helps increase the overall
inference speed.

C. Rate-Task Loss

In the learned image compression framework proposed
by [27], the image compression model is trained through mini-
mizing a rate-distortion loss,

L=Lp+X-Lp
Lr =E;p, [~ logs p(4(z; 6))]
LD = IEI"-‘F::: [d(..[:,_&(?;l? 6))]: (1)

where A is a hyper-parameter that controls the rate-distortion
trade-off, ¢ is the quantized feature vector, and d(z, &) is the
distortion between the original image = and the decoded image
Z. Models with different compression bitrates were trained by
setting the A hyper-parameter to different values.

In our framework, y is the feature vector to be compressed
at the point of split, and we further perform channel and spatial
reduction to obtain the reduced feature vector z. To optimize
for task performance, we replace the distortion loss by the task
loss, L¢qgr. For example, we use the cross-entropy loss for the
classification task, and the combination of object presence loss,
object class loss, and box coordinate loss for the object detection
task [30]. We use the combined Rate-Task loss to train the model
end-to-end:

L :LR‘FA‘Ltask
Lp = Eqgp,[—logy p(2(y(z;0); 9))] 2)

where 6 indicates the task model parameters, and ¢ the feature
compression model parameters. Instead of directly entropy cod-
ing the quantized z, z, we follow the idea of hyperprior in [8]
to more efficiently perform entropy coding. We generate a hy-
perprior feature vector zp from z using a hyperprior analysis
model. zp, is quantized to Z; and entropy encoded to be included
in the bitstream as side information. Z; is decoded by a hyper-
prior synthesis model to predict the probability distribution of
z for entropy coding of z. The rate loss term would include the
entropy for both z and zj,.

D. Reduction/Expansion Layers Pre-Training

Instead of training the entire model (including the task model
and the feature compression model) with the Rate-Task loss from
scratch, we found it to be beneficial to pre-train the channel and
spatial reduction/expansion layers in the feature compression
model, while keeping the task model to be the same as the pre-
trained task model without rate constraint. If these layers are
randomly initialized, inserting these layers into the pretrained
task model severely reduces the overall performance. Therefore,
we pre-train these layers with the MSE loss between the input to
the reduction layer and the output of the expansion layer. This
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Fig. 4. Overview of the proposed scalable compression model. The model creates scalable layers by generating and entropy coding different groups of reduced
feature channels from the task encoder. In this example, we first train a model with four layers with each layer having 8 channels. We then split the base layer into
8 layers of 1 channel each and the second layer into 4 layers of 2 channels each. This model with M =14 layers is then further trained to cover a wider rate range

when the number of received layers [ varies from 1 to 14.

step helps to initialize the reduction and expansion layers to
better reconstruct the feature y. Further refinement of the entire
model serves to reduce the correlation between the features in z
(through the rate loss) and adapt the task model layers to work
with the reconstructed features y from quantized z.

IV. SCALABLE FEATURE COMPRESSION

In the work just presented, we assume a different split com-
puting model (including a task model and a compression model)
is trained for each target rate by selecting a different lambda.
We extend such non-scalable model to enable rate-performance
scalability for feature compression. We transform the original
feature tensor with multiple feature channels into groups of
channels, each with a small number of channels, to form
different scalable layers.

We first perform dimensionality reduction to the intermediate
feature at the split point to reduce the features into M groups
of features z,,,m = 1,2, ..., M, each with a small number of
channels. Unlike the single dimensionality reduction layer in the
non-scalable model, the scalable model uses M separate con-
volution layers Ry,,m = 1,2,..., M, to generate M groups of
features z,, = Ry(y) with Ng,_ channels. A separate hyper-
prior model is trained to estimate the mean and variance param-
eters for each z,,, which are individually quantized and entropy
encoded using their respective hyperpriors.

At the server side, M separate dimension expansion layers
Em are used to expand all received dequantized features Z,

back to N channels and the original spatial dimension of y.
The expanded tensors are added together to produce the input to
the task decoder. During inference, if only [ scalable layers are
received, the recovered feature g is the sum of all received and
expanded tensors:

1
9= Em(im),le{L,2,...M}.

m=1

3)

This combined feature is then input to the task decoder model
to produce the analytics result ¢ = G(7). An overview of our
scalable model is shown in Fig. 4.

A. Multi-Round Refinement of Scalable Layers Using
Rate-Task Loss

With a pre-trained YOLO model, we first pre-train the reduc-
tion/expansion modules by minimizing the MSE loss between
the original and reconstructed features with all scalable layers
activated. We then refine the model end-to-end with the rate-task
loss using a training strategy that updates all scalable layers iter-
atively. For each batch of training data, we input the batch into
the model over M rounds. In round [, only layers 1 to [ are ac-
tivated, for [ from 1 to M. The model is updated using the loss
corresponding to having only layers up to [

1
L= Z Lfl?ate + A L%"ask: 4)

m=1
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TABLE1
LAMBDA VALUE AND TOTAL NUMBER OF FEATURES CHANNELS UP TO [ FOR
EACH SCALABLE LAYER [

Number of scalshle layers [ 1 F] 3 4 5 [ 7 8 9 10 11 12
Number of channels up 1o ] 1 2 3 4 5 [] 7 § 12 16 24 32
A 0125 0325 0375 05 0625 075 0875 1 2 3 6 12

where L7 . is the rate loss for th m-th layer, L%, . is the task
loss when using up to [ layers. After going through M rounds,
the compression and decompression modules corresponding to
all layers as well as the shared task encoder and decoder will be
updated. We experimented with different A; values for training
and found that good performance can be achieved by setting A;
depending on the number of channels up to that layer. We set A;
according to Table 1.

Note that with this strategy, the compression and expansion
modules for the lower layers are updated more times than the
higher layers. This is appropriate because the lower-layer affects
task-rate performance over a larger rate range than the higher
layers, due to the embedded nature of the layered bitstream. We
have found that this training strategy yields better performance
over the entire rate range than some alternative approaches, in-
cluding progressive training, where we first train only the base
layer compression modules and task modules, and then train
the second compression layer, while fixing the base compres-
sion layer and the task modules, and so on. The progressive
approach would optimize the task modules only for the lowest
rate, yielding suboptimal performance over the entire rate range.

B. Split Layer Training

We found that directly training the scalable model for many
rate points will lead to low rate-task performance. For example,
if we initialize the task encoder and decoder from a pretrained
YOLO model and directly train 14 scalable layers with the scal-
able loss, the rate-task performance will be much lower than the
non-scalable models.

Therefore, we first trained a model with a small number of
scalable layers spanning a large rate range. Specifically, we
trained a model with 4 scalable layers each with a channel size
of 8. This model achieved good accuracy for the high bitrate
points, but the base layer accuracy was slightly lower.

In order to create more operational rate points, we perform
layer splitting to generate more scalable layers for the low to
mid bitrate range. From the 4 scalable layer model, we split the
base layer with 8 channels to 8 layers of 1 channel each. We also
split the first enhancement layer with 8 channels to 4 layers of 2
channels each, resulting in a total of 14 scalable layers. In per-
forming splitting to the feature dimension reduction/expansion
modules, we separated the weight tensors of the convolution
layers along the channel dimension, so that new independently
operating convolution layers were formed for the new layers.

More generally, starting with a trained model that generates
M layers, the original base feature tensor that consists of Ng,
channels is subdivided into M’ tensors with N, , N ..., Np |
channels respectively. This has the effect of splitting the original
base layer into M scalable layers for the lower bitrate range, and
the model after the split will consist of M + M’ — 1 scalable
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layers. Subsequent enhancement layers can be similarly subdi-
vided into additional scalable layers, depending on the number
of scalable layers that are required for a particular use scenario.

After splitting the layers, a new set of hyperprior models for
each of the layers is initialized, and each newly formed layer
is coded independently. We then train the entire scalable model
end-to-end using the same multi-round training strategy using
the loss in (4), for both the newly splitted layers and the un-split
layers.

V. IMAGE RECONSTRUCTION

As described in the Introduction, in certain applications, it is
helpful if the server can reconstruct the images from the received
features, for example, to provide a human observer a low-quality
rendition of the remote scene who can in turn verify the object
detection results. In order to reconstruct the image from com-
pressed features (after the channel and spatial expansion), we
train an image reconstruction model to invert the down-sampling
process in obtaining the features.

The reconstruction model follows the same architecture as
the task encoder part of the split computing model, with the
number of input channels and the number of output channels
interchanged at each layers. The stride-2 convolution layers are
replaced with stride-2 transposed convolution layers. And the
number of input and output channels of each layer in the encoder
are reversed in the reconstruction model.

We train the reconstruction model by minimizing a distortion
loss between the original input image and the reconstructed out-
put image. We tested both MSE and MS-SSIM as the distortion
loss in our experiments, but we found that using both losses
led to similar reconstruction results. During training, only the
weights of the image reconstruction model are updated, while
the weights of the split computing model, including the task
model and the feature compression model, are frozen. Because
the split computing model is not modified, training the recon-
struction model does not affect the rate-task performance.

VI. RESULTS

In this section, we discuss the results of experiments con-
ducted on our proposed models. First, we present the results
for the non-scalable split computing approach and demonstrate
its effectiveness compared to the image compression approach,
in terms of rate-task performance and computation time. We
then describe the results for our proposed scalable compression
model and show that it can achieve performance comparable to
the non-scalable model. Furthermore, we draw comparison be-
tween our method and the use of PCA for obtaining transforms
for scalable layers, demonstrating that learned transforms opti-
mized for rate-task performance substantially outperform trans-
forms obtained by PCA. Finally, we show visual results of image
reconstruction using features optimized for object detection.

A. Non-Scalable Model for Object Defection

The Ultralytics YOLOv5 model [28] was used as the task
model architecture for object detection. The smaller-sized
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YOLOvV5s model with 7.2 million parameters was chosen for
faster training and inference speed. The model was initialized
with weights provided by [28], which were trained with images
from the entire COCO training set. We used the same strategy
of data augmentation as in the pre-trained model. The original
images were resized to 640 x 640 before being passed as input
to the model.

We trained models at different bitrates by varying the num-
ber of compressed channels N, the point of split D3, D4, and
the hyperparameter A. From these models, we selected the mod-
els that achieve the best rate-task trade-off to draw a Pareto
curve of task-accuracy vs. bitrate. We compared our models with
three different baselines using the compression-decompression-
analytics frame work. In the first baseline, we used the BPG for
image compression, which is based on the intra-coding scheme
of the H.265 video compression standard [31], followed by the
pretrained task model without fine-tuning. The range of QP
(Quantization Parameter) used for BPG is 29 - 45 for the Full
COCO dataset, and 43 - 49 for the COCO-Traffic dataset. In the
second baseline, the learned image compression model by [8]
was used as the image compressor. The compression model was
trained using MSE-loss for reconstruction and the task model
was not fine-tuned for compressed images. In the third baseline,
we fine-tuned both the image compression model and the task
model end-to-end using the same rate-task loss from (2).

In some applications such as traffic monitoring or pedestrian
navigation, it may be unnecessary to detect all 80 classes of
objects in COCO. Therefore, we also performed an experiment
on a smaller subset of the COCO dataset to demonstrate the
potential for even better rate-accuracy performance under a
limited number of object classes. From the COCO dataset,
we picked 9 classes of objects, including Person, Car, Bus,
Truck, Motorcycle, Traffic Light, Fire Hydrant, Stop Sign, and
Parking Meter, that are relevant for traffic-related applications.
We extracted images from the COCO dataset that includes
at least one instance of the 9 classes into a dataset called
the COCO-Traffic dataset [32]. We trained and evaluated our
models on the COCO-Traffic dataset. In addition, we also
evaluated the models trained on the COCO-Traffic dataset on
the TIU-DHD dataset [33], which is a high-resolution object
detection dataset for traffic scenes, to demonstrate our model’s
ability to detect on higher resolution images.

1) Rate vs. Detection Accuracy Performance: The perfor-
mance for object detection on the entire COCO test set is shown
in Fig. 5. The detection accuracy is measured in mAP50, or
mean-Average-Precision using a 0.50 IOU threshold. Our fea-
ture compression model is shown to be outperforming the three
baselines. In low to medium bitrates, our model achieved a
higher mAP than all the baselines. At the high bitrates, our
model achieves comparable mAP as the learned compression
model fine-tuned using the Rate-Task loss.

For the experiment with the COCO-traffic dataset, we only
evaluated models at the D4 split point and focused on the low
bitrate region. By focusing on a more specific set of objects, the
features can be compressed to very low bitrates (by using very
few channels) while still maintaining high mAP (see Fig. 5(b)).
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Fig.5. Detection performance under various bitrates for the full COCO dataset

and the COCO-Traffic dataset. Points on the curves for the proposed method are
labeled with their respective compression configurations. For example, D4C6
refers to compression at split point D4 and reduction to 6 channels.

The results are significant for application settings with low com-
munication bandwidth and require compression into extremely
low bitrates. Our split computing model enables highly accurate
object detection while using low bandwidth transmission.

2) Fixed Task Encoder and Decoder Training: In some prac-
tical applications, it may be desirable to use a fixed pair of
task encoder and decoder when integrating it in a split com-
puting scenario. This enables the system to reuse a task en-
coder/decoder pre-trained from a large dataset without consid-
ering the compression artifacts and to switch only the com-
pression/decompression modules when the network throughput
changes. In such scenarios, only the feature compression layer
should be trained by the rate-task loss while the rest of the an-
alytics model remains fixed. We evaluate the performance loss
due to this practical constraint.

We use a pre-trained YOLO model [28] as the basis for the task
encoder and decoder and insert the non-scalable feature com-
pression modules. The compression modules are then trained
with the rate-task loss, while the task encoder and decoder are
fixed. This approach is similar to that of [17], in which variable
rate compression is achieved by switching the compression lay-
ers while the task encoder and decoder share the same weights
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TABLE II
BREAKDOWN OF RUNTIME (MILLISECONDS) PER IMAGE (640 x 640 PIXELS) FOR THE PROPOSED SPLIT COMPUTING YOLO MODEL AND BASELINES

Ballé2018 + YOLO

BPG + YOLO  BPG + YOLO D4ChH D3C40 .
(both models fine-tuned) YOLO on Mobile
(0.050 bpp, 0.404 bpp) (0.0573 bpp) (0,382 bpp) (D.0585 bpp)  (0.382 bpp)
Mobile Device . YOLO Pre-sphit 254,46 188.15
prssey Image Compression 733.70 13233 200,02 Featue O ) 012 2678 526.08
(Eélg{])Sm’er Image Decompression 3031 9477 119.00 Feature Decompression 9,09 2434 0
YOLO 7.39 7.39 7139 YOLO Post-split 53 6.6
Total time on Mobile 733,70 132.33 200.02 264.66 21492 526,08
Total time on Server 377 102.16 126.39 14.39 30.94 0
Total time 77140 234.49 326.41 27905 245.86 526,08
Detection mAFP50 [ 0.355, 0.533 0.342 0.503 [ 0.434 0530 ] 0.546

D4c6 and D3c40 refer to models with split point at d4 and d3 and channel reduction to nr = 6 and nr = 40, respectively.

TABLE IIT
BREAKDOWN OF RUNTIME (MILLISECONDS) PER IMAGE (360 x 360 PIXELS) FOR THE PROPOSED SPLIT COMPUTING RESNET 18 AND BASELINES

Ballé2018 + ResNells
BPG + ResNetl8  BPG + ResNetl8 D3C4 D4C64 !
sth models f ed
%_051 bw”ﬂ_;’{'ﬁl“h'r"?)’ (0.048 bpp) (0.350 bpp) (0.046 bpp) (0320 bpp) | ResNet18 on Mabile
Mobile Device ResNet18 Pre-split 6427 8314
(CPU) Image Compression 181.94 74.31 10466 Feature C. : 779 1654 13015
Fg%}s"““ Image Decompression 1571 36.18 4163 Feature Decompression 762 10.10 0
ResNetl§ 2.21 221 221 ResNet18 Post-split 1.78 1.21

Total time on Mobile TR1.04 7331 04,66 7306 90,68 130,15
Total time on Server 17.92 38.39 43.84 9.40 11.31 0
Total time 199.86 112.70 148.5 81.46 110.99 130.15
Classificat T 0,530, 0.636 0.182 0,578 I 0.502 0677 | 0705

for all bitrates. As expected, the rate-analytics performance with
this approach is significantly lower than the end-to-end trained
models (see Fig. 5). On one hand, this result demonstrates that
end-to-end training of all modules can lead to significant perfor-
mance gain. On the other hand, the performance with the fixed
task model is still far better than than the image compression
approach when both the task model and compression models
are fine tuned, when the object detection task focuses on a small
number of application-specific classes (see Fig. 5(b))

3) Runtime-Analysis: We ran our models and the baselines
in a setting that may be feasible in a practical scenario. For com-
putations ran on the mobile device, we used a 1.1 GHz CPU
processor. For neural network computations on the server side,
we used an Nvidia RTX-8000 GPU. Entropy coding and decod-
ing, however, are not parallelized and are ran on the CPU for
both the mobile and server.

A breakdown of the inference time for our feature compres-
sion model and the baselines is shown in Table II. Compared
to running YOLO locally, our model achieved a 47% and 53%
reduction in the total inference time for the low and high bi-
trate models, respectively. At high bitrates, our split computing
approach has a clear advantage over both baselines in the total
inference time. At low bitrates, although our model has a slightly
longer runtime than BPG + YOLO, our detection performance
is superior over both baselines. The baseline using learned im-
age compression followed by YOLO turns out to be not viable
at least for the setting considered here, since its total inference
time is longer than running YOLO locally.

B. Non-Scalalable Image Classification

For our experiments on the classification task, we adopted the
ResNet18 model implemented by the torchvision package [34],
and we used weights pretrained using the ImageNet dataset as
initialization for our training. To combat overfitting, we used the

oes
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Fig. 6. Classification Accuracy under various bitrates for the ImageNet
dataset.

AutoAugment augmentation strategy as described in [35] for
training with ImageNet. The input original images were resized
to 256 x 256 for faster training. For evaluation, an image size of
320 x 320 was used. The rate vs. classification accuracy curve is
shown in Fig. 6. Our split computing classification model again
achieved better accuracy against the baselines across different
bitrates.

Using the same settings, we performed runtime analysis on
the classification models. The results are shown in Table III.
Our split computing model achieved a lower total inference time
than both baselines. Compared to running ResNet18 locally, our
model achieved a 37% and 15% reduction in total inference time
for the low and high bitrate models, respectively.

The amount of time saving in this experiment is less than
that of YOLO, because compared to YOLO, ResNet18 is more
computationally expensive in the early parts of the model. If a
more complex classification model is needed for higher accu-
racy, for example ResNet50, we expect that there would be more
significant time saving with our split computing methodology.
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Fig.7. Rate-Accuracy performance for the proposed scalable model compared
to non-scalable compression baselines, for the COCO-Traffic dataset.
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Fig.8. Rate-Accuracy performance for the proposed scalable model compared

to non-scalable compression baselines. Trained on the COCO-Traffic dataset,
evaluated on the TTU-DHD dataset.

C. Scalable Compression for Object Detection

The rate vs. detection accuracy performance of the scalable
model is shown in Fig. 7. We show results for two scalable
models: one with 4 layers and one with 14 layers as described
in Section IV-B. The 14-layer model was obtained from the
4-layer model through layer splitting and further refined through
training all 14 layers. It achieved performance similar to the
4-layer model but includes more points at the lower bitrate range
for more flexible adaptation to network bandwidth in low data
rate communication scenarios. It is encouraging to see that the
14-layer scalable model achieved similar accuracy as the non-
scalable model at the high rate range, and had relatively small
accuracy drop at the lower rates.

The 4-layer model achieved high detection performance at
the high bitrate range, even slightly surpassing the performance
of the non-scalable models. We suspect that this is because we
have not performed an exhaustive search of all possible model
configurations including the reduced channel number, down-
sampling of selected channels, lambda value, and split point for
the non-scalable model. Had we found optimal configuration for
each rate point, the non-scalable model should achieve equal or
higher detection accuracy than the scalable model at every rate.
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Fig. 9. Detection accuracy of the proposed scalable model compared to the
non-scalable model under different packet drop rate.

Similar to the experiment for the non-scalable model, we also
trained a model where the task encoder and decoder are fixed
with the pre-trained YOLO model weights. In this case, having
a fixed task encoder and decoder lowered the detection perfor-
mance more severely than the non-scalable model. This suggests
that for the scalable model, it is even more important to train the
entire model jointly to achieve good performance.

When evaluated on the higher-resolution (1624 x 1200) TJU-
DHD dataset, our model achieved similar performance curves
(Fig. 8). Even though the model was originally trained on the
COCO-Traffic dataset with resolution 640 x 640, switching to
higher-resolution data did not significantly affect the perfor-
mance.

We would like to emphasize that for the baseline non-scalable
methods, different points on the curve require a different set
of task encoder, task decoder, compression and decompression
modules. On the other hand, our scalable compression approach
achieves all the rate points with a single pair of task encoder
and decoder and a fixed set of compression/decompression lay-
ers. Higher rates are simply achieved when more compres-
sion/decompression layers are invoked. This makes our scalable
approach much more practical for real-world applications.

D. Performance Under Packet Drop

Because of the embedded structure of the scalable bitstream,
the scalable bitstream is better protected against possible packet
drop during transmission. We demonstrate this through an exper-
iment where a certain percentage of packets are dropped, which
reflects the scenario of packet drop due to congestion or band-
width decrease in the network during transmission. We assume
that each channel of the features is packetized as an individual
packet for transmission. During inference, a certain percentage
of the total packets are removed before passing to the task de-
coder.

We compare the performance of the scalable and the
non-scalable model when different percentages of the packets
were dropped. For the scalable bitstream, the highest layers
will be dropped first while the channels closer to the base layer
will be prioritized for delivery. For the non-scalable bitstream,
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Fig. 11. Inference time of using different numbers of scalable layers.

because the channels have no particular order of importance,
the channels are randomly dropped. Channels not received by
the receiver will be filled with zeros before being passed to the
task decoder model.

Fig. 9 shows the detection performance under different packet
drop rates, evaluated on the COCO-Traffic dataset. The per-
formance of the non-scalable model decreased rapidly as more
packets were dropped. In comparison, the scalable model was
able to maintain mAP higher than 0.6 with packet drop rate
as high as 50%. This experiment demonstrates the ability of
the scalable model to adapt to changing network bandwidth
and maintain high detection performance when the channel
bandwidth decreases. Examples of detection results at different
packet drop rate are shown in Fig. 10. The scalable model con-
tinues to detect correctly while the non-scalable model fails to
detect many objects when the packet drop rate increases to more
than 50%. This demonstrates the benefit of the scalable model in
scenarios such as vision-assisted navigation, where the mobile
device is moving and the bandwidth may change rapidly as the
environment changes.

25% Drop Rate

10131

50% Drop Rate 75% Drop Rate

Examples of detection results from the scalable and non-scalable model under different packet drop rates. Image samples taken from the TJU-DHD

E. Comparison With Principal Component Analysis

The proposed channel reduction module essentially performs
a linear transform over the original intermediate features, in
which the 1 x 1 convolution kernels are learned bases. To
demonstrate the benefit of using learned bases, we experimented
with using transform bases corresponding to Principal Compo-
nent Analysis (PCA) (also known as Karhunen Loeve Trans-
form). PCA provides transform bases that lead to uncorrelated
channels and has the property that using a given number of co-
efficients with largest variances, the original features can be re-
constructed with the lowest MSE.

With the pre-trained YOLO model without compression, we
first generate intermediate feature channels for all images in the
training set. We then perform PCA over all the sample vectors,
each consisting of all the features corresponding to the same
pixel, to obtain a set of transform bases and order them by the
coefficient variances. The top 32 channels were used to construct
a 4 layer scalable model, each layer having 8 channels. We then
trained ahyperprior model for entropy coding of each layer while
keeping the rest of the model fixed. As shown in Fig. 7, this PCA
approach led to significantly lower rate-analytics performance.
This is because PCA minimizes the MSE in reconstructing the
intermediate features for a given number of reduced channels,
but not the task loss. This result reinforces the importance of
learning the transform bases using the rate-task loss for multiple
scalable layers.

FE. Complexity Scalability

In addition to bitrate scalability, the proposed model is also
scalable in complexity. The scalable compression model com-
presses the features into a different number of channels depend-
ing on the target bitrate. The number of channels directly affects
the runtime for the feature dimension reduction module and the
arithmetic encoding and decoding.

Authonzed licensed use limited to: New York University. Downloaded on November 21,2024 at 03:38:08 UTC from IEEE Xplore. Restrictions apply.



10132

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Original Image BPG, 0.173 BFP

Fig. 12.
image compression model in [8].

Using the same setup that was used to measure the non-
scalable model, we measured the inference time of the scalable
model using different numbers of scalable layers. As shown in
Fig. 11, alarger number of layers requires longer inference time,
and the additional computation at the client leads to more bat-
tery energy consumption. In practical applications, the number
of layers can be tuned based on the battery status of the client
device and the end-to-end latency required for the application,
in addition to the network throughput.

G. Image Reconstruction From Compressed Features

Fig. 12 shows reconstructed images from compressed fea-
tures at a bitrate of 0.177 bpp and 0.449 bpp, respectively, along
with images compressed by other models at a bitrate close to
0.177 bpp. From the images reconstructed from the task fea-
tures, we can clearly recognize the detected objects.

At similar low bitrates, images compressed by BPG or the
learned image compression model have more severe blurring
and compression artifacts that can affect the object detection
performance. In comparison, despite the blurring of the back-
ground and sometimes severe distortion in the color of the de-
tected object (e.g. the purple bus) and irrelevant details (e.g. the
text in the background and the bus), the shape and edges of the

Learned Compression
Model (finetued for task),
0.166 BPP

D3C16, 0.177 BPP D3C48, 0.449 BPP

Reconstructed images from compressed features from the D3C16 and D3C48 models, compared to decompressed images from BPG and the learned

objects in our reconstructed image are more defined, which may
have led to the better detection performance. For example in the
top row, several cars are missed in the compressed images by
BPG and the learned image coder, while they are successfully
detected by the proposed scheme at similar low bit rates. In the
second row, the tennis racket held by the person is completely
blurred out with BPG compression, and as a result, is not de-
tected by YOLO. With the learned image coder, the racket was
detected as another object. In the reconstructed image from our
models, the racket is more visible and correctly detected.

H. Limitations and Future Works

In this paper, we have not considered the latency due to the
transmission of packets from mobile to server. We assume that
this latency will be small (typically around 15ms [32]) because
the server is close to the mobile device in edge computing. In
addition, we designed our model around image-based computer
vision models that do not consider temporal correlation between
frames. Models with the ability to detect and track objects based
on a series of frames reduce the need to re-detect per image.
How to compress the features in models with temporal feature
extraction is an important topic for further research. In practice,
the total latency of the model may also decrease the accuracy of
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the prediction, because objects captured in the frame may have
moved by the time results are sent back to the mobile device.
A solution that addresses all of these problems is a promising
direction for future research.

VII. CONCLUSION

This paper considered offloading deep-learning based visual
analytics tasks by splitting the computation between the mobile
device and the edge server. We introduced a lightweight trainable
feature compression architecture, which includes feature chan-
nel and spatial reduction, and hyperprior-based entropy coding.
With end-to-end training of the feature compression, decom-
pression, and the task model using a rate-task loss, our approach
can achieve higher task accuracy at low to medium rate range
than baseline methods that perform image compression at the
mobile device and image decompression and object detection
or image classification on the server. Furthermore, our approach
has significantly lower run-time at the mobile device (with CPU
only) and consequently lower total inference time than the base-
line methods.

We also proposed a scalable feature compression approach
that can vary the number of bit stream layers and consequently
the bit rate based on the sustainable throughput of the channel,
desired in split computing through a volatile wireless link be-
tween a mobile and the server. Compared to the non-scalable
model, our scalable model achieved comparable performance in
rate-analytics trade-off with only a single task model. Although
we only demonstrated the performance of the scalable compres-
sion approach for object detection, we expect similar trend for
image classification.
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