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Abstract

We present Zeroth-order Riemannian Averaging Stochastic Approximation (Zo-RASA) algo-
rithms for stochastic optimization on Riemannian manifolds. We show that Zo-RASA achieves
optimal sample complexities for generating ϵ-approximation first-order stationary solutions using
only one-sample or constant-order batches in each iteration. Our approach employs Rieman-
nian moving-average stochastic gradient estimators, and a novel Riemannian-Lyapunov analysis
technique for convergence analysis. We improve the algorithm’s practicality by using retractions
and vector transport, instead of exponential mappings and parallel transports, thereby reduc-
ing per-iteration complexity. Additionally, we introduce a novel geometric condition, satisfied
by manifolds with bounded second fundamental form, which enables new error bounds for
approximating parallel transport with vector transport.

1 Introduction

We consider zeroth-order algorithms for solving the following Riemannian optimization problem,

min
x∈M

f(x) := Eξ[F (x, ξ)], (1.1)

whereM is a d-dimensional complete manifold, f :M→ R is a smooth function, and we can access
only the noisy function evaluations F (x, ξ). A natural zeroth-order algorithm is to estimate the
gradients of f and use them in the context of Riemannian stochastic gradient descent. The main
difficulty in doing so is the construction of the zeroth-order gradient estimation. Assuming that we
have independent samples ui that are standard normal random vectors supported on TxM, the
tangent space at x ∈M, Li et al. (2022) proposed to construct the zeroth-order gradient estimator
as

GExp
µ (x) =

1

m

m∑
i=1

F (Expx(µui), ξi)− F (x, ξi)

µ
ui (1.2)

where µ > 0 is a smoothing parameter. Note here that if a retraction is available, then one could
also replace the exponential mapping with a retraction based estimator,

GRetr
µ (x) =

1

m

m∑
i=1

F (Retrx(µui), ξi)− F (x, ξi)

µ
ui. (1.3)
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Result Objective Manifold Operations m N

Zo-RSGD

(Li et al., 2022, Alg 1)
Smooth,
2MB

general Retr O(d/ϵ2) Ω(1)

Zo-RASA,
Alg 1, Thm 3.1

Smooth,
2MB

General Exp map,
PT

O(d) Ω(1)
O(1) Ω(d)

Zo-RASA,
Alg 2, Thm 4.2

Smooth,
4MB

Compact,
2nd FF bound

SO-Retr,
VT

O(d) Ω(1)
O(1) Ω(1)

Table 1: Conditions required to establish a sample complexity of O(d/ϵ4) for various
algorithms for convergence to stationarity in the sense of Definition 2.2. For instance, to
obtain the O(d/ϵ4) sample complexity for Alg 1, we need to require m = O(d) and N = Ω(1), or
m = O(1) and N = Ω(d). Here, 2MB and 4MB stand for bounded second central moment (i.e.,
variance) (Assumption 3.2) and fourth central moment (Assumption 4.3) respectively. 2nd FF stands
for second fundamental form (Theorem 4.1) (see Section 2 for definition of second fundamental form).
SO-RETR stands for second-order retraction (Assumption 4.4). PT and VT stand for parallel and
vector transport respectively (see, Definition 2.3). The parameter d is the intrinsic dimension of the
manifoldM, m is the batch-size, N is the total number of iterations required, and ϵ is the desired
precision. Oracle complexity refers to the number of calls to the stochastic zeroth-order oracle. We
also remark here that although Li et al. (2022, Algorithm 1) uses retraction, its convergence analysis
also assumes retraction-based smoothness. For Zo-RASA, we need the initial batch-size m0 = O(d).

The merit of having a Gaussian distribution on the tangent space is that the variance of the
constructed estimator Gµ(x) will only depend on the intrinsic dimension d of the manifold, and is
independent of the dimension n of the ambient Euclidean space. We refer to Li et al. (2022) for the
details of our zeroth-order estimator and its applications. See also Wang et al. (2021); Wang (2023)
for additional follow-up works.

To obtain an ϵ-approximate stationary solution of (1.1) (as in Definition 2.2) using the above
approach, Li et al. (2022) established a sample complexity of O(d/ϵ4), with O(1/ϵ2) iteration
complexity and m = O(d/ϵ2) per-iteration batch size. Even considering d = 1 for simplicity,
this suggests for example that to get an accuracy of ϵ ≈ 10−3, one needs batch-sizes of order
m ≈ 106 resulting in a highly impractical per-iteration complexity. Intriguingly, when implementing
these algorithms in practice, favorable results are obtained even when the batch-size is simply set
between ten and fifty. Thus, there exists a discrepancy between the current theory and practice of
stochastic zeroth-order Riemannian optimization. Furthermore, in online Riemannian optimization
problems (Maass et al., 2022; Wang et al., 2023) where the data sequence is observed in a streaming
fashion, waiting for very long time-periods in each iteration in order to obtain the required order of
batch-sizes is highly undesirable.

The main motivation of the current work stems from the above-mentioned undesirable issues
associated with the use of mini-batches in stochastic Riemannian optimization algorithms by Li et al.
(2022). We address the problem by getting rid of the use of mini-batches altogether, and by developing
batch-free, fully-online algorithm, Zeroth-order Riemannian Averaging Stochastic Approximation
(Zo-RASA) algorithm, for solving (1.1). We show that to obtain the sample complexity of O(d/ϵ4),
Zo-RASA only requires m = 1 (see the remark after Theorem 3.1), which is a significant improvement
compared to Li et al. (2022). The first version of Zo-RASA in Algorithm 1 uses exponential mapping
and parallel-transports. However, this version is not implementation-friendly. As a case-in-point,
consider the Stiefel manifold (see (2.1)) for which we highlight that there is no closed-form expression

for the parallel transport P xk+1

xk . Indeed, they are only available as solutions to certain ordinary
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differential equation, which increases the per-iteration complexity of implementing Algorithm 1.
To overcome this issue and to develop a practical version of the RASA framework, we replace the
exponential mapping and parallel transport by retraction and vector transport respectively, resulting
in the practical version of Zo-RASA method in Algorithm 2. As we will discuss in Section 2, in the
case of Stiefel manifolds, retractions cost only 1/4 the time of an exponential mapping. Also, while
there is no closed-form for parallel transport on Stiefel manifolds, vector transport has an easy
closed-form implementation. We establish that Algorithm 2 has the same sample complexity as
Algorithm 1, with significantly improved per-iteration complexity. We now highlight two specific
novelties that we introduce in this work to establish the above result.

• Moving-average gradient estimators and Lifting-based Riemannian-Lyapunov anal-
ysis. We introduce a Riemannian moving-average technique (see, Line 4 in Algorithm 1 and
Algorithm 2) and a corresponding novel Riemannian-Lyapunov technique for analyzing zeroth-
order stochastic Riemannian optimization problems, which works in the lifted space by tracking
both the optimization trajectory and the gradient along the trajectory (see (3.4)). For Euclidean
problems, these techniques were introduced and extended in Ruszczynski and Syski (1983);
Ruszczyński (1987); Ghadimi et al. (2020); Ruszczynski (2021); Balasubramanian et al. (2022).
However, those works rely heavily on the Euclidean structure. Non-trivial adaptions are needed
to extend such methodology and analyses to the Riemannian settings; see Theorem 3.1 and
Theorem 4.2.

• Approximation error between parallel and vector transports. A major challenge in
analyzing Algorithm 2 is to handle the additional errors introduced by the use of retractions and
vector transports. We identify a novel geometric condition on the manifolds under consideration
(see Assumption 4.1) under which we provide novel error bounds between parallel and vector
transports (see Theorem 4.1). We further show that the proposed condition, which plays a crucial
role in our subsequent convergence analysis, is naturally satisfied if the second fundamental form
of the manifold is bounded. We remark that the obtained error bounds, between parallel and
vector transport, are of independent interest and are potentially applicable to a variety of other
Riemannian optimization problems.

In Table 1, we summarize the sample complexities of stochastic zeroth-order Riemannian uniopti-
mization algorithms

1.1 Prior works

We refer to Absil et al. (2008); Boumal (2023) for a discussion on general Riemannian optimization
methods. To the best of our knowledge, Li et al. (2022) provided the first oracle complexity results for
zeroth-order stochastic Riemannian optimization. Following this, Wang et al. (2021); Wang (2023);
Maass et al. (2022) improved and extended the applicability of zeroth-order Riemannian optimization.
A central concern in Riemannian optimization is the increased per-iteration complexity caused
by the use of exponential mapping and (sometimes) parallel transport. To tackle this, retraction
and vector transport are often preferred (Absil et al., 2008; Boumal, 2023). Such replacements
have thus far been considered in the deterministic settings, in the context of Riemannian quasi-
Newton methods (Huang et al., 2015), Riemannian variance reduction methods (Sato et al., 2019),
Riemannian proximal gradient methods (Chen et al., 2020; Huang and Wei, 2022) and Riemannian
conjugate gradient methods (Sato, 2022). We discuss precise comparisons to this work later in
Section 4.1.1.
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Stochastic gradient averaging methods in the Euclidean setting were studied in the several earlier
works (Polyak, 1977; Ruszczynski and Syski, 1983; Xiao, 2009). For nonconvex problems, Ghadimi
et al. (2020) analyzed the averaging stochastic approximation algorithm and established a sample
complexity of O(1/ϵ4) to obtain an ϵ-approximate first-order stationary solution without using
mini-batches; see also Ghadimi and Powell (2022) for a zeroth-order extension. For the smooth
Riemannian setting, Han and Gao (2020) used a related moving-average technique, and achieve
O(ϵ−3) sample complexity. However, Han and Gao (2020) assumes a Lipschitz smooth-type inequality
over gradF (x; ξ) itself under a given retraction (which is stronger than our assumption) and assume
access to the computationally demanding isometric vector transport (see (2.2)). More importantly,
they assume an opaque and rather strong condition that all iterates of their algorithm are close to a
local optima of the problem to carry out their analysis.

2 Basics of Riemannian optimization

A differentiable manifoldM is a Riemannian manifold if it is equipped with an inner product (called
Riemannian metric) on the tangent space, ⟨·, ·⟩x : TxM× TxM→ R, that varies smoothly onM.
The norm of a tangent vector is defined as ∥ξ∥x :=

√
⟨ξ, ξ⟩x. We drop the subscript x and simply

write ⟨·, ·⟩ (and ∥ξ∥) if M is an embedded submanifold with Euclidean metric. Here we use the
notion of the tangent space TxM of a differentiable manifoldM, whose precise definition can be
found in (Tu, 2011, Chapter 8). As an example, consider the Stiefel manifold given by

M = St(n, p) := {X ∈ Rn×p : X⊤X = Ip}. (2.1)

The tangent space of St(n, p) is given by TXM = {ξ ∈ Rn×p : X⊤ξ + ξ⊤X = 0}. One could equip
the tangent space with common inner product ⟨X,Y ⟩ := tr(X⊤Y ) to form a Riemannian manifold.
For additional examples, see Absil et al. (2008, Chapter 3) or Boumal (2023, Chapter 7) .

We now introduce the concept of a Riemannian gradient and the notion of ϵ-approximate
first-order stationary solution for (1.1).

Definition 2.1 (Riemannian Gradient). Suppose f is a smooth function on Riemannian manifold

M. The Riemannian gradient gradf(x) is a vector in TxM satisfying d(f(γ(t)))
dt

∣∣∣
t=0

= ⟨v, gradf(x)⟩x
for any v ∈ TxM, where γ(t) is a curve satisfying γ(0) = x and γ′(0) = v.

Definition 2.2 (ϵ-approximate first-order stationary solution for (1.1)). We call a point x̄ an
ϵ-approximate first-order stationary solution for (1.1) if it satisfies E[∥gradf(x̄)∥2x̄] ≤ ϵ2, where the
expectation is with respect to both the problem and algorithm-based randomness.

Geodesics, retractions and exponential mappings. Given two tangent vectors ξ, η ∈ TM,
the Levi-Civita connection ∇ : TM× TM → TM, (ξ, η) → ∇ξη ∈ TM is the “directional
differential” of η along the direction of ξ, which is determined uniquely by the metric tensor ⟨·, ·⟩x.
In Euclidean spaces, ∇ξη is just calculating the directional derivative of the vector field η along ξ.
For a Riemannian manifoldM, the geodesic γ is a curve onM that satisfies ∇γ′γ′ = 0, i.e., the
directional derivative along the tangent direction is always zero. Usually we find the geodesic with
the initial value condition, ∇γ′γ′ = 0, γ(0) = x, γ′(0) = v, whose existence and uniqueness are
locally guaranteed by the existence and uniqueness theorem for linear ODEs.

Given any curve γ(t) on M, one could calculate the length of the curve and define the dis-

tance between the two points x, y ∈ M respectively by L(γ) :=
∫ b
a ∥γ

′(t)∥γ(t)dt and d(x, y) :=
minγ,γ(a)=x,γ(b)=y L(γ). If the manifold is a complete Riemannian manifold, according to (Do Carmo,
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1992, Corollary 3.9), there exists a unique minimal geodesic γ satisfying γ(a) = x, γ(b) = y that
minimizes L(γ). Therefore, we can always calculate the distance with respect to the minimal

geodesic as d(x, y) =
∫ b
a ∥γ

′(t)∥γ(t)dt,∇γ′γ′ = 0, γ(a) = x, γ(b) = y, which will be utilized in our
error analysis in Section 4.

A retraction mapping Retrx is a smooth mapping from TxM toM such that: Retrx(0) = x,
where 0 is the zero element of TxM, and the differential of Retrx at 0 is an identity mapping,

i.e., dRetrx(tη)
dt

∣∣∣
t=0

= η, ∀η ∈ TxM. In particular, the exponential mapping Expx on a Riemannian

manifold is a retraction that generated by geodesics, i.e. Expx(tξ) := γ(t) where γ is a geodesic
with γ(0) = x and γ′(0) = ξ. Notice that the retraction is not always injective from TxM toM
for any point x ∈ M, thus the existence of the inverse of the retraction function Retr−1

x is not
guaranteed. However, when M is complete, the exponential mapping Expx is always defined for
every ξ ∈ TxM, and the inverse of the exponential mapping Exp−1

x (y) ∈ TxM is always well-defined
for any x, y ∈M. Also, since Expx(tξ) generates geodesics, we have d(x,Expx(tξ)) = t∥ξ∥x. These
are facts that we use in Assumption 3.1 and convergence proofs.

As an example, the retractions on Stiefel manifolds can be defined by the QR decomposition,
RX(ξ) := Q where X+ξ = QR. It can also be defined through the Polar decomposition as RX(ξ) :=
UV ⊤, where X+ξ = UΣV ⊤ is the (thin) singular value decomposition of X+ξ. The geodesic on the

Stiefel manifold is given by: X(t) =
[
X(0) Ẋ(0)

]
exp

(
t

[
A(0) −S(0)
I A(0)

])[
I
0

]
exp(−A(0)t),

for A(t) = X⊤(t)Ẋ(t) and S(t) = Ẋ⊤(t)Ẋ(t) with initial point X(0) and initial speed Ẋ(0). The
exponential mapping is thus given by ExpX(0)(Ẋ(0)) = X(1). The computation cost of the QR and

Polar decomposition retractions are of order 2dk2 +O(k3) and 3dk2 +O(k3), whereas as shown by
Chen et al. (2020, Section 3) the exponential mapping takes 8dk2 +O(k3), which illustrates the
favorability of retractions in practical computations. We refer to Absil et al. (2008, Chapter 4)
and Boumal (2023, Chapter 3) for additional examples and more discussions on retractions and
exponential mappings.

Vector and parallel transport. Vector transports are linear mappings from one tangent
space to another, which can be formally defined below.

Definition 2.3 (Vector and parallel transport). A vector transport T on a smooth manifold M is
a smooth mapping TM× TM→ TM : (ηx, ξx) → Tηx(ξx) ∈ TM, where the subscript x means
that the vector is in TxM, such that: (i) There exists a retraction R so that Tηx(ξx) ∈ TRx(ηx)M,
(ii) T0xξx = ξx for all ξx ∈ TxM, and (iii) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx), i.e., linearity.
Particularly, for a complete Riemannian manifold (M, ⟨·, ·⟩), we can construct a special vector
transport, namely the parallel transport P , that can map vectors to another tangent space “parallelly”,
i.e., ∀η, ξ ∈ TxM and y ∈M,

⟨PExp−1
x (y)(η), PExp−1

x (y)(ξ)⟩y = ⟨η, ξ⟩x. (2.2)

Notice that parallel transport is not the only transport that satisfies (2.2), and we call the vector
transport an isometric vector transport if it satisfies (2.2).

We can equivalently view P as a mapping from the tangent space TxM to TyM. We hence
denote P y

x : TxM→ TyM. Note that parallel transport depends on the curve along which the
vectors are moving. If the curve is not specified, it refers to the case when we are considering the
minimal geodesic connecting the two points, which exists due to completeness.

As an example, for the Stiefel manifold in (2.1), there is no closed-form expression for the
parallel transport, whereas one can always utilize the projection onto the tangent space, given
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Algorithm 1: Zo-RASA

1: Input: Initial point x0 ∈M, g0 = GExp
µ (x0), total number of iterations N , parameters β > 0,

τ0 = 1, τk = 1/
√
N or τk = 1/

√
dN when k ≥ 1, and stepsize tk = τk/β.

2: for k = 0, 1, 2, . . . , N − 1 do
3: xk+1 ← Expxk(−tkgk)
4: gk+1 ← (1− τk)P

xk+1

xk gk + τkP
xk+1

xk Gk
µ where Gk

µ = GExp
µ (xk) is given by (1.2) with batch-size

m = mk

5: end for

by projTX M(ξ) = (I − XX⊤)ξ + X skew(X⊤ξ), where skew(A) := (A − A⊤)/2, to transport
ξ ∈ TX0 St(d, p) to TX St(d, p). We refer to Absil et al. (2008, Chapter 8) and Boumal (2023,
Chapter 10) for additional examples and more discussions on vector and parallel transports.

Second fundamental form. We now discuss the notion of second fundamental form, which
will be helpful in characterizing a geometric condition used in Section 4 to quantify the error
of approximating parallel transports with vector transports. In general, the notion of second
fundamental form can be studied for general isometric immersions and we restrict here to the
embedding in Euclidean spaces only for brevity.

Definition 2.4 (Second fundamental form). SupposeM⊂ RD is a complete Riemannian manifold
equipped with the Euclidean metric. For any ξ, η ∈ TM, denote the extension of two vector fields to
RD as ξ̄, η̄ ∈ RD, also the directional derivative of η̄ along ξ̄ as ∇̄ξ̄η̄ ∈ RD. The second fundamental

form refers to the bilinear and symmetric vector, B(ξ, η) = ∇̄ξ̄η̄ −∇ξη ∈ (TM)⊥, which quantifies
the deviation of the Riemannian directional derivatives (depicted by Levi-Civita connection ∇) from
the Euclidean one (common directional derivative ∇̄).

Finally, we remark that there are various definitions of second fundamental forms, among which
the most common one is a quadratic form related to B; see (Do Carmo, 1992, Chapter 6, Definition
2.2). Here we simply refer to B as the second fundamental form.

3 Zeroth-order RASA for smooth manifold optimization

We now introduce the Zeroth-order Riemannian Average Stochastic Approximation (Zo-RASA)
algorithm for solving (1.1). The formal procedure is stated in Algorithm 1, where P y

x is the parallel
transport from TxM to TyM along the minimum geodesic connecting x and y. To establish the
sample complexity of Algorithm 1, we extend the analysis of Ghadimi et al. (2020), which is in-turn
motivated by the lifting-technique introduced in Ruszczynski and Syski (1983); Ruszczyński (1987),
to the Riemannian setting. As such works heavily rely on the Euclidean structure, our proofs involve
a non-trivial adaption of such techniques.

In our convergence analysis, we always choose τ0 = 1, and we consider two choices of τk when
k ≥ 1:

τk = 1/
√
N or τk = 1/

√
dN, k ≥ 1, (3.1)

which corresponds to large or single batch, respectively. Moreover, we always choose tk = τk/β,
where β is a positive constant determined by the smoothness constant in Assumption 3.1 (see
Theorem 3.1), so that the step-size and the averaging weights are in the same order. Furthermore,
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we define

Γ0 = Γ1 = 1, and Γk = Γ1

k−1∏
i=1

(1− τ2i ). (3.2)

This leads to the following inequalities which will be used frequently in our convergence analysis:

N∑
i=k+1

τiΓi ≤ Γk+1 and
N∑

i=k+1

τ2i Γi ≤ τkΓk+1. (3.3)

To proceed, we construct the following potential function

W (x, g) := (f(x)− f∗)− η(x, g), where η(x, g) := − 1

2β
∥g∥2x, g ∈ TxM, (3.4)

where f∗ = minx∈M f(x) and β > 0 is a constant to be determined later. Note that the potential
function in (3.4) has the component of both function value and the norm of the (estimated) gradients,
also that W is always non-negative. In our analysis, we proceed by bounding the difference of
potential function between successive iterates. More specifically, using the convexity of the norm,
for any pair (x, g), we have ∥gradf(x)∥2x ≤ −2β η(x, g) + 2∥g− gradf(x)∥2x. This observation will be
leveraged in the proof of Theorem 3.1 to obtain the sample complexity of Algorithm 1 for obtaining
an ϵ-approximate stationary solution.

We also highlight that our convergence analysis extensively utilizes the isometry property of
parallel transport, stated in (2.2), i.e., ⟨P y

x (η), P
y
x (ξ)⟩y = ⟨η, ξ⟩x. This result is a generalization of

the isometry in the Euclidean spaces, since the inner product in Euclidean spaces is unchanged if
one moves the beginning point of the vectors together. A direct result of this identity is that the
length of the vectors is unchanged, namely ∥P y

x (ξ)∥y = ∥ξ∥x, which we will also use extensively.
We now introduce the assumptions needed for our analysis.

Assumption 3.1. The function f : M → R is L-smooth on M, i.e., ∀x, y ∈ M, we have
∥P y

x gradf(x) − gradf(y)∥y ≤ L d(x, y). An immediate consequence (see, for example, Boumal
(2023, Proposition 10.53)) of this condition is that we have |f(y)− f(x)− ⟨gradf(x),Exp−1

x (y)⟩x| ≤
L
2 ∥Exp

−1
x (y)∥2x.

Assumption 3.1 is a generalization of the standard gradient-Lipschitz assumption in Euclidean
optimization (Nesterov, 2018; Lan, 2020) to the Riemannian setting, and is made in several
works (Boumal, 2023). To generalize it to the Riemannian setting, due to the fact that gradf(x)
and gradf(y) are not in the same tangent space, we need to utilize parallel transports P y

x to match
the two vectors in the same tangent space.

Throughout the paper, we define Fk as the σ-algebra generated by all the randomness till iteration
k of the algorithms. Namely, for Algorithm 1, we have Fk = σ(ξ0, . . . , ξk, x0, . . . , xk, g0, . . . , gk).

Assumption 3.2. Along the trajectory of the algorithm, the stochastic gradients are unbiased and
have bounded-variance, i.e., for k ∈ {1, . . . , N}, we have Eξ[gradF (xk; ξk)|Fk−1] = gradf(xk) and
Eξ[∥gradF (xk; ξk)− gradf(xk)∥2

xk |Fk−1] ≤ σ2.

The above assumption is widely used in stochastic Riemannian optimization literature; see,
for example, Zhang et al. (2016); Li et al. (2022); Boumal (2023), and generalizes the standard
assumption used in Euclidean stochastic optimization (Nesterov, 2018; Lan, 2020).

Now we proceed to the convergence analysis of Algorithm 1. We first state the following standard
result characterizing the approximation error of GExp

µ (given by (1.2)) to the true Riemannian
gradient.
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Lemma 3.1 (Proposition 1 in Li et al. (2022) with exponential mapping). Under Assumptions

3.1, 3.2 we have ∥EGExp
µ (x) − gradf(x)∥2x ≤

µ2L2

4 (d + 3)3, E∥GExp
µ (x)∥2x ≤ µ2L2(d + 6)3 + 2(d +

4)∥gradf(x)∥2x and E∥GExp
µ (x)− gradf(x)∥2x ≤ µ2L2(d+ 6)3 + 8(d+4)

m σ2 + 8(d+4)
m ∥gradf(x)∥2x, where

the expectation is taken toward all the Gaussian vectors in Gµ and the random variable ξ.

Based on the above result, we have the following Lemma 3.2 which bounds the difference
of gk to the true Riemannian gradient gradf(xk), and Lemma 3.3 bounds the difference of two
consecutive gk, where we use parallel transport to make gk and gk+1 in the same tangent space, i.e.,
∥P xk

xk+1g
k+1 − gk∥2

xk .

Lemma 3.2. Suppose the Assumptions 3.1 and 3.2 hold, and {xk, gk} is generated by Algorithm 1.
We have

E∥gk − gradf(xk)∥2xk (3.5)

≤Γkσ̃
2
0 + Γk

k∑
i=1

((1 + τi−1)τi−1

Γi

L2∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 + τkσ̂

2
)
,

where the expectation E is taken with respect to all random variables up to iteration k, including
the random variables {ui}ki=1 used to construct the zeroth-order estimator as in (1.2). Here the
notations are defined as:

σ̂2 :=
µ2L2

4
(d+ 3)3

σ̃2
k := σ2

k +
8(d+ 4)

mk
E∥gradf(xk)∥2xk where σ2

k := µ2L2(d+ 6)3 +
8(d+ 4)

mk
σ2.

(3.6)

Moreover, from (3.3) we have

N∑
k=1

τkE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0,

N∑
k=1

τ2kE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τ

2
k

L2E∥gk∥2
xk

β2
+ τ3k σ̃

2
k + τ2k σ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0.

Proof. Firstly, note that we have the following: gk−gradf(xk) = (1−τk−1)P
xk

xk−1g
k−1+τk−1P

xk

xk−1G
k−1
µ −

gradf(xk) = (1−τk−1)P
xk

xk−1(g
k−1−gradf(xk−1))+(P xk

xk−1gradf(x
k−1)−gradf(xk))+τk−1P

xk

xk−1(G
k−1
µ −

gradf(xk−1)) = (1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1 + τk−1∆

f
k−1. Hence, we have

∥gk − gradf(xk)∥2xk

≤(1− τk−1)∥gk−1 − gradf(xk−1)∥2xk−1 + τk−1∥ek−1∥2xk + τ2k−1∥∆
f
k−1∥

2
xk

+ 2τk−1⟨(1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1,∆

f
k−1⟩xk ,

(3.7)

where the notation is defined as ek−1 := 1
τk−1

(P xk

xk−1gradf(x
k−1) − gradf(xk)), and ∆f

k−1 :=

P xk

xk−1(G
k−1
µ −gradf(xk−1)). Denote δk−1 = ⟨(1−τk−1)P

xk

xk−1(g
k−1−gradf(xk−1))+τk−1ek−1,∆

f
k−1⟩xk .

The main novelty in the proof of this lemma is that δ is no longer an unbiased estimator (which is
true for the first-order situation). We have by Lemma 3.1 that

2Euk [δk−1] = 2⟨(1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1,Euk [∆

f
k−1|Fk−2]⟩xk

≤∥(1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1∥2xk + ∥EukGk−1

µ − gradf(xk−1)∥2xk−1

≤(1− τk−1)∥gk−1 − gradf(xk−1)∥2xk−1 + τk−1∥ek−1∥2xk + σ̂2.
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Notice that in the above computation, the expectation is only taken with respect to the Gaussian
random variables that we used to construct Gµ(x

k−1). Plugging this back to (3.7), we have
Euk∥gk − gradf(xk)∥2

xk ≤ τk−1σ̂
2 + (1− τ2k−1)∥gk−1 − gradf(xk−1)∥2

xk−1 + τk−1(1 + τk−1)∥ek−1∥2xk +

τ2k−1∥∆
f
k−1∥

2
xk . Now dividing both sides of this inequality by our new definition of Γk, we get

1
Γk

Euk∥gk−gradf(xk)∥2
xk ≤ 1

Γk−1
∥gk−1−gradf(xk−1)∥2

xk−1 +
(1+τk−1)τk−1

Γk
∥ek−1∥2xk +

τ2k−1

Γk
∥∆f

k−1∥
2
xk +

τk−1

Γk
σ̂2.

By Assumptions 3.1, 3.2 and Lemma 3.1, we have that ∥ei∥2xi+1 ≤ L2

τ2i
d(xi, xi+1)2 ≤

L2t2i ∥gi∥2xi
τ2i

=

L2∥gi∥2
xi

β2 , and E[∥∆f
i ∥2xi+1 |Fi−1] ≤ σ2

i +
8(d+4)
mi

E[∥gradf(xi)∥2
xi |Fi−1]. Hence, by applying law of total

expectation (to take the expectation over all random variables), we have 1
Γk

E∥gk − gradf(xk)∥2
xk ≤

1
Γk−1

E∥gk−1−gradf(xk−1)∥2
xk−1+

(1+τk−1)τk−1

Γk

L2E∥gk−1∥2
xk−1

β2 +
τ2k−1

Γk
σ̃2
k−1+

τk−1

Γk
σ̂2. Now by telescoping

the sum in the above equation, we get (note that we take g0 = Gµ(x
0))

E∥gk − gradf(xk)∥2xk ≤ ΓkE∥Gµ(x
0)− gradf(x0)∥2x0

+ Γk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)

≤ Γkσ̃
2
0 + Γk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)
.

This proves (3.5). From (3.3) we have

N∑
k=1

τkE∥gk − gradf(xk)∥2xk

≤
N∑
k=1

τkΓk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)
+ σ̃2

0

=

N−1∑
k=0

( N∑
i=k+1

τiΓi

)
1

Γk+1

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0

≤
N−1∑
k=0

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0,

where we used
∑N

k=1 τkΓk ≤ Γ1 = 1 due to (3.3), so that the last term is simply σ̃2
0.

By using similar calculations, we have that

N∑
k=1

τ2kE∥gk − gradf(xk)∥2xk ≤

N∑
k=1

τ2kΓk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)
+

N∑
k=1

τ2k σ̃
2
0

=
N−1∑
k=0

(
N∑

i=k+1

τ2i Γi

)
1

Γk+1

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0
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≤
N−1∑
k=0

τk

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0,

which completes the proof.

Lemma 3.3. Suppose Assumptions 3.1 and 3.2 hold. We have

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk ≤ 2

N∑
k=0

τ2k σ̂
2 + 2

N∑
k=0

(
τ2k + τ3k

)
σ2
k + 2

N∑
k=0

τ2k σ̃
2
0

+ 2

N∑
k=0

(1 + τk)τ
2
k

L2E∥gk∥2
xk

β2
+ 2

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk

(3.8)

where the expectation E is taken with respect to all random variables up to iteration k, which includes
the Gaussian variables u in the zeroth-order estimator as in (1.2).

Proof. First note that ∥P xk

xk+1g
k+1 − gk∥2

xk = τ2k∥Gk
µ − gk∥2

xk = τ2k∥Gk
µ − gradf(xk) + gradf(xk)−

gk∥2
xk ≤ 2τ2k∥Gk

µ − gradf(xk)∥2
xk + 2τ2k∥gradf(xk)− gk∥2

xk . Taking the expectation conditioned on
Fk−1, we get

1

2
E[∥P xk

xk+1g
k+1 − gk∥2xk |Fk−1]

≤τ2kE[∥Gk
µ − gradf(xk)∥2xk |Fk−1] + τ2kE[∥gradf(xk)− gk∥2xk |Fk−1]

≤τ2k
(
σ2
k +

8(d+ 4)

mk
E[∥gradf(xk)∥2xk |Fk−1]

)
+ τ2kE[∥gradf(xk)− gk∥2xk |Fk−1],

where last inequality is by Lemma 3.1. Now using law of total expectation to take the expectation
for all random variables and summing up over k = 0, ..., N − 1, we have

1

2

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk

≤
N∑
k=1

τ2kσ
2
k +

N∑
k=1

τ2k
8(d+ 4)

mk
E∥gradf(xk)∥2xk +

N∑
k=1

τ2kE∥gradf(xk)− gk∥2xk

≤
N∑
k=0

τ2k σ̂
2 +

N∑
k=0

(
τ2k + τ3k

)
σ2
k +

N∑
k=0

τ2k σ̃
2
0

+

N∑
k=0

(1 + τk)τ
2
k

L2E∥gk∥2
xk

β2
+

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk ,

where the second inequality is by Lemma 3.2.

Now we are ready to present our main result.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold. In Algorithm 1, we set µ = O
(

1
Ld3/2N1/4

)
,

and β ≥ 4L. Then the following holds.
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(i) If we choose τ0 = 1, τk = 1/
√
N , k ≥ 1 and mk ≡ 8(d + 4), k ≥ 0, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(1/

√
N).

(ii) If we choose τ0 = 1, τk = 1/
√
dN , k ≥ 1, m0 = d and mk = 1 for k ≥ 1, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(

√
d/N), for all N = Ω(d).

Here the expectation E is taken with respect to all random variables up to iteration k, which includes
the random variables u in zeroth-order estimator (1.2).

Before we proceed to the proof of Theorem 3.1, we have the following Lemma 3.4 which will be
utilized in the proof.

Lemma 3.4. Suppose we take parameters the same as Theorem 3.1, then we have

τk
2β
−

τ2kL

2β2
−

(1 + τk)τ
2
k

β

L2

β2
≥ τk

4β
, (3.9a)

τk
2
−
(
4

(
2L2

β2
+ 1

)
(1 + τk) + 1

)
8(d+ 4)

mk
τ2k ≥

τk
4
. (3.9b)

Proof. To show (3.9a), using β ≥ 4L, we just need to show that τk/8 + (1 + τk)τk/16 ≤ 1/4, which
holds naturally in both cases (i) and (ii).

As for (3.9b), again by β ≥ 4L we just need to show that
(
4(1/8+1)(1+τk)+1

)
(8(d+ 4)/mk)τk ≤

1/4. In case (i), this is equivalent to 18τ2k + 22τk − 1 ≤ 0, which is guaranteed when N ≥ 520.

For case (ii), similar calculation shows that we need τk ≤ (
√
222 + 9/(d+ 4)− 22)/36, which is

guaranteed when N ≥ 3.2 · 104 · (d+ 4)2/d.

Proof. [Proof of Theorem 3.1] By the isometry property of parallel transport,

η(xk, gk)− η(xk+1, gk+1) =
1

2β
∥gk+1∥2xk+1 −

1

2β
∥gk∥2xk

=
1

2β
∥P xk

xk+1g
k+1∥2xk −

1

2β
∥gk∥2xk

=− ⟨− 1

β
gk, P xk

xk+1g
k+1 − gk⟩xk +

1

2β
∥P xk

xk+1g
k+1 − gk∥2xk .

By combining this and Assumption 3.1, we have the following bound for the difference of the
merit function (defined in (3.4)), evaluated at successive iterates:

W (xk+1, gk+1)−W (xk, gk)

≤− tk⟨gradf(xk), gk⟩xk +
t2kL

2
∥gk∥2xk +

1

β
⟨gk, P xk

xk+1g
k+1 − gk⟩xk +

1

2β
∥P xk

xk+1g
k+1 − gk∥2xk

=

(
t2kL

2
− tk

)
∥gk∥2xk + tk⟨gk, Gk

µ − gradf(xk)⟩xk +
1

2β
∥P xk

xk+1g
k+1 − gk∥2xk .

Moreover, we have

Euk [⟨gk, Gµ(x
k)− gradf(xk)⟩xk ] = ⟨gk,EukGµ(x

k)− gradf(xk)⟩xk

≤1

2
∥gk∥2xk +

1

2
∥EukGµ(x

k)− gradf(xk)∥2xk ≤
1

2
∥gk∥2xk +

1

2
σ̂2,
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where the expectation is only taken with respect to the Gaussian random variables that we used
to construct Gµ(x

k). Therefore, by using the law of total expectation, we have EW (xk+1, gk+1)−
EW (xk, gk) ≤ 1

β

(
τ2kL
2β −

τk
2

)
E∥gk∥2

xk+
τk
2β σ̂

2+ 1
2βE∥P

xk

xk+1g
k+1−gk∥2

xk , and we thus have (by summing

up the above inequality over k = 0, ..., N):

N∑
k=0

(
EW (xk+1, gk+1)− EW (xk, gk)

)
≤

N∑
k=0

1

2β

(
τ2kL

β
− τk

)
E∥gk∥2xk +

N∑
k=0

τk
2β

σ̂2 +
1

2β

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk ,

(3.10)

where the last term sums from 1 since g1 − P x1

x0 g
0 = τ0(G

0
µ − g0) = 0.

Utilizing (3.8) and (3.10), we have (note that W ≥ 0)

N∑
k=0

1

2β

(
τk −

τ2kL

β

)
E∥gk∥2xk ≤W (x0, g0) +

N∑
k=0

τk
2β

σ̂2 +
1

2β

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk

≤W (x0, g0) +
1

2β

N∑
k=0

(τk + 2τ2k )σ̂
2 +

1

β

N∑
k=0

(
τ2k + τ3k

)
σ2
k +

1

β

N∑
k=0

τ2k σ̃
2
0

+
1

β

N∑
k=0

(1 + τk)τ
2
k

L2E∥gk∥2
xk

β2
+

1

β

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk .

Combining this with (3.9a) we have

N∑
k=0

τkE∥gk∥2xk ≤ 4βW (x0, g0) + 2
N∑
k=0

(τk + 2τ2k )σ̂
2 + 4

N∑
k=0

(
τ2k + τ3k

)
σ2
k

+ 4

N∑
k=0

τ2k σ̃
2
0 + 4

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk .

(3.11)

By Lemma 3.2 and (3.11), we get (also by τk ≤ 1)

1

2

N∑
k=0

τkE∥gradf(xk)∥2xk ≤
N∑
k=0

τkE∥gk − gradf(xk)∥2xk +

N∑
k=0

τkE∥gk∥2xk

≤
N−1∑
k=0

τ2k σ̃
2
k +

N−1∑
k=0

τkσ̂
2 +

(
2L2

β2
+ 1

) N∑
k=0

τkE∥gk∥2xk + 2σ̃2
0

≤
(
8L2

β
+ 4β

)
W (x0, g0) +

N∑
k=0

[
τk + 2

(
2L2

β2
+ 1

)
(τk + 2τ2k )

]
σ̂2

+

N∑
k=0

[
τ2k + 4

(
2L2

β2
+ 1

)
(τ2k + τ3k )

]
σ2
k +

[
4

(
2L2

β2
+ 1

) N∑
k=0

τ2k + 2

]
σ̃2
0

+

N∑
k=0

[
4

(
2L2

β2
+ 1

)
(τ2k + τ3k ) + τ2k

]
8(d+ 4)

mk
E∥gradf(xk)∥2xk ,

(3.12)
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where τ0E∥g0 − gradf(x0)∥2x0 ≤ σ̃2
0 is used in the last term on the second line. By combining (3.12)

and (3.9b) we get

N∑
k=0

τk
4
E∥gradf(xk)∥2xk

≤
N∑
k=0

[
τk
2
−
(
4

(
2L2

β2
+ 1

)
(τ2k + τ3k ) + τ2k

)
8(d+ 4)

mk

]
E∥gradf(xk)∥2xk

≤
(
8L2

β
+ 4β

)
W (x0, g0) +

N∑
k=0

[
τk + 2

(
2L2

β2
+ 1

)
(τk + 2τ2k )

]
σ̂2

+

N∑
k=0

[
τ2k + 4

(
2L2

β2
+ 1

)
(τ2k + τ3k )

]
σ2
k +

[
4

(
2L2

β2
+ 1

) N∑
k=0

τ2k + 2

]
σ̃2
0.

(3.13)

For case (i) in Theorem 3.1, (3.13) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤
c1W (x0, g0)√

N
+ c2σ̂

2 +
c3

1
N

∑N
k=0 σ

2
k√

N
+

c4√
N

σ̃2
0,

for some absolute positive constants c1, c2, c3 and c4. The proof for case (i) is completed by noting
that (see (3.6)) σ̂2 = O(1/

√
N), 1

N

∑N
k=0 σ

2
k = O(1) and σ̃2

0 = O(1).
For case (ii) in Theorem 3.1, (3.13) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤ c′1W (x0, g0)

√
d

N
+ c′2σ̂

2 +
c′3

1
N

∑N
k=0 σ

2
k√

dN
+ c′4

√
d

N
σ̃2
0,

for some positive constants c′1, c
′
2, c

′
3 and c′4. The proof of case (ii) is completed by noting that

σ̃2
0 = O(1), σ̂2 = O(1/

√
N) and 1

N

∑N
k=0 σ

2
k = O(d).

Remark 3.1. If we sample R ∈ {0, 1, 2, ..., N} with P(R = k) = τk/(
∑N

k=0 τk), then the left hand

side of the inequalities in Theorem 3.1, i.e., 1
N+1

∑N
k=0 E∥gradf(xk)∥2xk , becomes E∥gradf(xR)∥2

xR .
If we use this sampling in case (i) of Theorem 3.1, then to get an ϵ-approximate stationary solution
as in Definition 2.2, we require an iteration complexity of N = O(1/ϵ4) and so an oracle complexity
of Nm = O(d/ϵ4). Case (i) requires m = O(d) per-iteration, which might be inconvenient in practice.
Case (ii) of Theorem 3.1 avoids this, as in case (ii) both the iteration complexity and the oracle
complexity are N = O(d/ϵ4), with batch size m = O(1). This makes case (ii) more convenient to
use in practice, from a streaming or online perspective. For the simulations in Section 5, we thus
choose m = O(1) and apply the result from case (ii). We also remark that the above results provide
concrete solutions to the question raised by Scheinberg (2022), namely, on the need for mini-batches
(and its order per-iteration) in zeroth-order stochastic optimization1.

Remark 3.2. Notice that to prove (3.9b), we need N = Ω(d) for case (ii) in Theorem 3.1.
We can remove this condition if in addition we have that gradf(x) is uniformly upper bounded:

1Although Scheinberg (2022) focuses on the Euclidean case, the discussion there also holds in the Riemannian
setting.
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∥gradf(x)∥x ≤ G, ∀x ∈ M; see also Assumption 4.2 which we utilize in the next section. Under
this condition, (3.12) directly gives:

1

2

N∑
k=0

τkE∥gradf(xk)∥2xk ≤
N∑
k=0

[
τk + 2

(
2L2

β2
+ 1

)
(τk + 2τ2k )

]
σ̂2

+

N∑
k=0

[
τ2k + 4

(
2L2

β2
+ 1

)
(τ2k + τ3k )

]
σ2
k +

[
4

(
2L2

β2
+ 1

) N∑
k=0

τ2k + 2

]
σ̃2
0

+
N∑
k=0

[
4

(
2L2

β2
+ 1

)
(τ2k + τ3k ) + τ2k

]
8(d+ 4)

mk
G2 +

(
8L2

β
+ 4β

)
W (x0, g0),

whose right hand side has the same order as (3.13). Therefore in this case we do not need N = Ω(d)
for case (ii) to achieve the same rates of convergence as in Theorem 3.1.

4 RASA with retractions and vector transports

Algorithm 1 is based on exponential mapping and parallel transport, which has a high per-iteration
complexity for various manifold choicesM. In this section, we focus on reducing the per-iteration
complexity of the Zo-RASA algorithm. The approach is based on replacing the exponential mapping
and parallel transport with retractions and vector transports, respectively, which leads to practically
efficient implementations and improved per-iteration complexity.

The convergence analysis of algorithms with retractions and vector transports are sharply
different and much harder than the one we presented in Section 3. Recall that the analysis in
Section 3 relied on the isometry property (2.2) of the parallel transports, which is no longer available
for vector transports. We hence assume explicit global error bounds between the difference of
retraction to exponential mapping, as well as vector transport to parallel transport in Assumption
4.1. In Section 4.1.2 we provide conditions on the manifold under which such assumptions are
naturally satisfied and provide explicit examples. Based on this, we establish that under a bounded
fourth (instead of the second) central moment condition, the same sample complexity result as in
the previous section could be obtained for the practical versions of Zo-RASA algorithm on compact
manifolds.

4.1 Approximation error of retractions and vector transports

We start with the following condition on the vector transport used; recall the notation from
Definition 2.3.

Assumption 4.1. If x+ = Retrx(g), g ∈ TxM, then with d denoting the geodesic distance, the
vector transport Tg satisfies the following inequalities:

∥Tg(v)∥x+ ≤ ∥v∥x, d(x, x+) ≤ ∥g∥x, ∥Tg(v)− P x+

x (v)∥x+ ≤ C∥v∥xd(x, x+) (4.1)

for any vector v ∈ TxM.

An intuitive explanation of the first inequality in (4.1) is that our retraction and vector transport
are “conservative” so that their length/magnitude is not longer than the exact operation of
exponential mapping and parallel transport. As for the last inequality in (4.1), we are essentially
positing that the vector transport would not “twist” the vector too much so that its difference
from the parallel-transported vector is not large. In general, conditions in (4.1) require the vector
transport not to be very far from the parallel-transported vectors on the new tangent space.
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4.1.1 Comparison to prior works

We now provide a detailed comparison to similar type of conditions proposed in two prior
works, Huang et al. (2015) and Sato (2022), and highlight the differences and advantages of
our proposal. According to the definition of vector transport in Definition 2.3, we need to specify a
retraction associated with the transport so that Tηx(ξx) ∈ TRx(ηx)M. In this section, we consider
the projection retraction, denoted simply as R.

Given two transports, TS and TR, Huang et al. (2015) propose certain conditions on approximating
one with the other. First they require that TS is isometric, i.e., ⟨TSη(ξ), TSη(ζ)⟩Rx(η) = ⟨ξ, ζ⟩x, hence
we can basically regard TS as parallel transport for comparison. Let TR denote the differential of the
retraction, given by TRη(ξ) = DRx(η)[ξ] =

d
dtRx(η + tξ) ∈ TRx(η)M. Now the conditions stated in

Equations (2.5) and (2.6) in Huang et al. (2015) are as follows: there exists a neighborhood U of x,
such that ∀y ∈ U we have ∥TSη −TRη∥op ≤ c0∥η∥x and ∥T −1

Sη
−T −1

Rη
∥op ≤ c0∥η∥x, where η = R−1

x (y)

and ∥ · ∥op is the operator norm. These assumptions are essentially local results, and as a result,
Huang et al. (2015) needs to impose an additional stringent condition (see, their Assumption 3.2)
that all the updates in their algorithms are already sufficiently close to the (local) optimal value
to prove their convergence results. With the above conditions (in particular for a T1η satisfying
their conditions in (2.5) and (2.6)), Huang et al. (2015) shows in Lemma 3.5 that locally we have
∥T1η(ξ)−T2η(ξ)∥y ≤ c0∥η∥x∥ξ∥x. The proof of their Lemma 3.5 relies on the smoothness of the local
coordinate form of the vector transports, which could hold only when we have a coordinate chart
covering the local neighborhood we consider. Hence, the assumptions in Huang et al. (2015) are in
a different flavor from ours. In particular, our assumptions are global, and we show in Theorem
4.1 that they are satisfied by a certain (global) assumption on the second fundamental form of the
manifoldM.

The existing work Huang et al. (2015) also assumes the so-called locking condition TSη(ξ) =
βTRη(ξ), where β = ∥ξ∥x/∥TRξ

(ξ)∥Rξ(x), which means that the approximating transport keeps
the same direction as the parallel transport TS . In our analysis, we avoid such a condition since
we are trying to transport two vectors gk and Gk

µ (see Algorithm 2), and not just one previous
gradient as in the Riemannian quasi-Newton method (Huang et al., 2015). Another existing
work Sato (2022) requires algorithm-specific conditions in their Assumption 3.1. To elaborate,
we recall that the deterministic Riemannian conjugate gradient iterates (Algorithm 1 in Sato
(2022)) are given by xk+1 ← Rxk

(tkηk) and ηk+1 ← −gradf(xk+1) + βk+1skT
k(ηk), where tk, βk

and sk are parameters and T k is a transport map from Txk
M to Txk+1

M. Given this, their
Assumption 3.1 requires that there exist C ≥ 0 and index sets K1 ⊂ N and K2 = N−K1 such that∥∥T (k) (ηk)−DRxk

(tkηk) [ηk]
∥∥
xk+1

≤ Ctk ∥ηk∥2xk
, k ∈ K1 and

∥∥T (k) (ηk)−DRxk
(tkηk) [ηk]

∥∥
xk+1

≤
C
(
tk + t2k

)
∥ηk∥2xk

, k ∈ K2.
Our assumption differs from the above in three aspects: (i) we do not make algorithm-specific

assumptions, where each inequality depends on the iterate number k; (ii) we are not only comparing
transporting ηk (which is the direction along which we update xk), but also the zeroth-order
estimator Gk

µ (see Algorithm 2), i.e., we assume a more general inequality by replacing DRx(tkη)[η]
with DRx(tkη)[ξ], where ξ can be different from η; (iii) we derive the last inequality in (4.1) using
global assumption of second fundamental form of the manifold M in Theorem 4.1, instead of
assuming it.

4.1.2 Illustrative Examples

We now further inspect Assumption 4.1 by checking the conditions under which (4.1) holds in
general, and also verifying it for various matrix-manifolds arising in applications.
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We start with the first inequality in (4.1). It holds naturally if the manifold is a submanifold
and the vector transport is the orthogonal projection, due to the non-expansiveness of orthogonal
projections. The second inequality in (4.1) is much trickier. For the scope of this work, we show that
the second equation in (4.1) holds for projectional retractions and projectional vector transports on
Stiefel manifold, which also includes spheres and orthogonal groups as special cases. If the inverse
of the retraction in Assumption 4.1 is well-defined, the second inequality in (4.1) could equivalently
be stated as ∥Exp−1

x (x+)∥x ≤ ∥Retr−1
x (x+)∥x, which may hold for a larger class of manifolds and

retractions. We leave a detailed study of this as future work.
Stiefel manifold. Consider the Stiefel manifold St(d, p) defined in (2.1), with the tangent

space TX St(d, p) = {ξ|X⊤ξ + ξ⊤X = 0} and Euclidean inner product ⟨X,Y ⟩ := tr(X⊤Y ). We
consider the projectional retraction (Absil and Malick, 2012) given by X+ = RX(ξ) := UV ⊤,
where X + ξ = UΣV ⊤ is the (thin) singular value decomposition of X + ξ. Also, the projectional
vector transport T is simply projecting a tangent vector ξ ∈ TX0 St(d, p) to TX St(d, p). It
is clear that ∥T (ξ)∥ ≤ ∥ξ∥ due to the non-expansiveness of orthogonal projections (note that
TX St(d, p) is simply a linear subspace). To show d(X,X+) ≤ ∥ξ∥, denote γ(t) the minimal
geodesic connecting X and X+ with γ(0) = X and γ(1) = X+, so that d(X,X+) =

∫ 1
0 ∥γ

′(t)∥dt.
Notice that we can define another curve c(t) = U(t)V ⊤(t), where X + tξ = U(t)Σ(t)V ⊤(t) is
the singular value decomposition. The curve c(t) = RetrX(tξ) is the parameterized curve of
projectional retraction. Now using the distance with respect to the minimal geodesic, we have
d(X,X+) =

∫ 1
0 ∥γ

′(t)∥dt ≤
∫ 1
0 ∥c

′(t)∥dt ≤
∫ 1
0 ∥ξ∥dt = ∥ξ∥, where ∥c

′(t)∥ ≤ ∥ξ∥ is due to the non-
expansiveness of orthogonal projections, namely, ∥c(t1)− c(t2)∥ ≤ ∥X + t1ξ − (X + t2ξ)∥. Indeed,
although St(d, p) is not a convex set, the non-expansiveness condition still holds (Gallivan and Absil,
2010), because (X + ξ)⊤(X + ξ) = Ip + ξ⊤ξ ⪰ Ip, and the projection of X + ξ onto the Stiefel
manifold is the same as projection onto its convex hull {X ∈ Rd×p|∥X∥2 ≤ 1}. Now we turn to
the last inequality in (4.1). Given a complete embedded submanifold, we can show that the last
inequality in (4.1) holds under the boundedness of the second fundamental form in Theorem 4.1,
given that the vector transport is the orthogonal projection to the new tangent space.

Theorem 4.1. SupposeM is an embedded complete Riemannian submanifold of Euclidean space.
Suppose for all unit vector ξ, η ∈ TM, ∥ξ∥ = ∥η∥ = 1, the norm of the second fundamental form
B(ξ, η) is bounded by constant C. Consider the parallel transport P y

x along the minimal geodesic
from x ∈M to y ∈M, we have ∥projTy M(v)− P y

x (v)∥ ≤ C∥v∥d(x, y), for any v ∈ TxM. That is,
the last inequality in (4.1) holds with constant C.

Proof. Without loss of generality, we assume ∥v∥ = 1, otherwise conduct the proof for v/∥v∥.
Denote the minimum geodesic γ with unit speed connecting x and y, parameterized by variable
t, also denote the parallel transported vector of v along γ as v(t), i.e. v(0) = v. Now for the
extrinsic geometry, we denote v = v⊤(t) + v⊥(t), where v⊤(t) ∈ Tγ(t)M and v⊥(t) is orthogonal to
Tγ(t)M. Note that the left-hand side of the inequality we want to prove is now parameterized as

∥v(t)− v⊤(t)∥.
Now since v(t) is a parallel transport of v, the tangent component must be zero, i.e., (v′(t))⊤ = 0.

Now consider any parallel unit vector z(t) ∈ Tγ(t)M along γ, then ⟨(v⊥)′(t), z(t)⟩ = −⟨v⊥(t), z′(t)⟩ =
−⟨v⊥(t), B(γ′(t), z(t))⟩, where B is the second fundamental form. Along with the fact that (v⊤)′ =
−(v⊥)′ we get ⟨(v⊤)′(t), z(t)⟩ = ⟨v⊥(t), B(γ′(t), z(t))⟩. Now the right-hand side has a uniform upper
bound of C, and by the arbitrarily chosen z(t) ∈ Tγ(t)M, we get ∥((v⊤)′(t))⊤∥ ≤ C.

We can now bound the derivative of ∥v(t)− v⊤(t)∥ as (∥v(t)− v⊤(t)∥2)′ = (1− 2⟨v(t), v⊤(t)⟩+
∥v⊤(t)∥2)′ = −2⟨v(t), (v⊤(t))′⟩+2⟨v⊤(t), (v⊤(t))′⟩ = 2⟨v⊤(t)−v(t), ((v⊤(t))′)⊤⟩ ≤ 2C∥v⊤(t)−v(t)∥.
Therefore, we get ∥v(t) − v⊤(t)∥′ ≤ C. Now integrating the above inequality from x to y along
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the minimal geodesic γ (i.e., with respect to t) and using the distance with respect to the minimal
geodesic, we obtain ∥projTy M(v)− P y

x (v)∥ ≤ Cd(x, y), which completes the proof.

Theorem 4.1 connects extrinsic and intrinsic geometry by measuring the difference of orthogonal
projection (extrinsic operation) and parallel transport (intrinsic operation), which might be of
independent interest for studying embedded submanifolds. The condition in Theorem 4.1 is stronger
than the bounded sectional curvature condition since if the second fundamental form is bounded, the
sectional curvature is also bounded by the Gauss formula (see Chapter 6, Theorem 2.5 in Do Carmo
(1992)). We point out that the condition of Theorem 4.1 is still satisfied by all the embedded
submanifold applications we consider, namely the sphere, the orthogonal group and the Stiefel
manifold. In particular, we have the following observation.

Proposition 4.1. SupposeM is a compact complete embedded Riemannian submanifold of Euclidean
space (i.e. satisfying Assumption 4.2), then the norm of the second fundamental form ∥B(ξ, η)∥ is
uniformly bounded for all unit vector ξ, η ∈ TM, ∥ξ∥ = ∥η∥ = 1.

The proof is immediate, since for all unit vector ξ, η ∈ TM, ∥B(ξ, η)∥ ∈ R is a smooth function
defined over a compact domain, and therefore it is upper bounded. As a result, Assumption 4.1
holds for all the embedded submanifold applications we consider, namely the sphere, the orthogonal
group and the Stiefel manifold.

Remark 4.1. We remind the readers that Theorem 4.1 requires the embedded submanifold assump-
tion, yet Assumption 4.1 does not, as long as (4.1) hold. This is also the main reason why we
summarize our assumption as in Assumption 4.1, and not present Theorem 4.1 directly.

Example: Grassmann manifold. Above, we have shown that Assumption 4.1 holds for a
class of embedded matrix submanifolds. Yet another setting is that of quotient manifolds (e.g., the
Grassmann manifold) which arises in applications of Riemannian optimization. Such manifolds are
not naturally embedded submanifolds of a Euclidean space. As a result, we can inspect Assumption
4.1 directly for such manifolds. Taking the Grassmann manifold as an example, we next verify
Assumption 4.1. To proceed, we utilize the following result.

Lemma 4.1. Suppose X ∈ St(d, p), G ∈ Rd×p with X⊤G = 0, and the QR decomposition of
X +G = QR where Q ∈ St(d, p) and R ∈ Rp×p is upper triangular. The principal angle between
the subspace spanned by X and Q is given by ∥Θ∥F , where Θ := arccos(Σ) where Σ is the singular
value matrix of X⊤Q, i.e., X⊤Q = UΣV ⊤; see, for example Edelman et al. (1998, Section 4.3).
We have that ∥Θ∥F ≤ ∥G∥F .

Proof. Since R⊤R = (X +G)⊤(X +G) = Ip + ∥G∥2F , we know that all the singular values of R are
greater than or equal to 1. Denote Σ = diag([σ1, ..., σp]). Since X⊤Q = X⊤(X + G)R−1 = R−1,
we know that the singular value decomposition of R = V Σ−1U⊤ (which implies that σi ≤ 1,
∀i = 1, 2, ...., p) and ∥R∥2F = ∥Σ−1∥2F =

∑p
i=1

1
σ2
i
. Also, as ∥R∥2F = ∥X +G∥2F = tr((X +G)⊤(X +

G)) = p+ ∥G∥2F , we get ∥G∥2F =
∑p

i=1
1
σ2
i
− p. Thus, ∥Θ∥2F = ∥ arccos(Σ)∥2F =

∑p
i=1(arccos(σi))

2 ≤∑p
i=1(

1
σ2
i
− 1) = ∥G∥2F , where we use the fact that (arccos(t))2 ≤ 1

t2
− 1, ∀t ∈ (0, 1].

Now we can inspect the Grassmann manifold. The Grassmann manifold Gr(d, p) is the set of all p-
dimensional subspace of Rd; see, for example, (Absil et al., 2008, Section 2.1). A quotient formulation
writes Gr(d, p) = St(d, p)/O(p) withO(p) = {Q ∈ Rp×p|Q⊤Q = Ip} being the orthogonal group. The
elements of the Grassmann manifold can be expressed as [X] ∈ Gr(d, p) with [X] := {XQ|Q ∈ O(p)}
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and X ∈ St(d, p). The element ξ̄ on the tangent space T[X]Gr(d, p) can be shown with a one-to-one

mapping (called the horizontal lift) to the set [ξ] with ξ ∈ TX St(d, p) and X⊤ξ = 0.
Suppose we start from an element [X] ∈ Gr(d, p) with X ∈ St(d, p) and the initial speed

Ḡ ∈ T[X]Gr(d, p), where G ∈ TX St(d, p) andX⊤G = 0. We denote the singular value decomposition

of G = UΣV ⊤ with U ∈ Rd×p and Σ, V ∈ Rp×p. Then the exponential mapping is given by
Y := Exp[X](Ḡ) = [XV cos(Σ) + U sin(Σ)], where sin and cos are matrix trigonometric functions;

see (Absil et al., 2008, Example 5.4.3). Also, the parallel transport is given by: ξ̄1 = P
[Y ]
[X](ξ̄) with

ξ1 = −XV sin(Σ)U⊤ξ+U cos(Σ)U⊤ξ+(I −UU⊤)ξ. See (Absil et al., 2008, Example 8.1.3). Hence,
the projectional retraction is given by Y ′ := Retr[X](Ḡ) = [X +G] = [Q], where X +G = QR is the
QR decomposition of X +G; see (Absil et al., 2008, Example 4.1.5). Furthermore, the projectional
vector transport is given by ξ̄2 = TḠ(ξ̄) with ξ2 = (I − Y Y ⊤)ξ. See (Absil et al., 2008, Example
8.1.10).

Now we show that (4.1) is satisfied. It is obvious that ∥TḠ(ξ̄)∥ = ∥(I − Y Y ⊤)ξ∥ ≤ ∥ξ∥. The
geodesic distance of [X] and the projectional retraction [Q] is exactly the principal angle between
the subspace spanned by X and Q, see (Edelman et al., 1998, Section 4.3). Following Lemma 4.1,
we can hence conclude that d([X], [Q]) = ∥Θ∥F ≤ ∥G∥F . Now we inspect the last equation in (4.1).
We can directly check that ∥ξ1 − ξ2∥F = ∥Aξ∥F ≤ ∥A∥F ∥ξ∥F , with

A :=−XV sin(Σ)U⊤ + U cos(Σ)U⊤ + Y Y ⊤ − UU⊤

=−XV sin(Σ)U⊤ + U cos(Σ)U⊤ − U cos2(Σ)U⊤ +XV cos2(Σ)V ⊤X⊤

+ U sin(Σ) cos(Σ)V ⊤X⊤ +XV cos(Σ) sin(Σ)U⊤.

Note also that we have the bound

∥A∥ =∥ −XV sin(Σ)U⊤ + U cos(Σ)U⊤ − U cos2(Σ)U⊤ +XV cos2(Σ)V ⊤X⊤

+ U sin(Σ) cos(Σ)V ⊤X⊤ +XV cos(Σ) sin(Σ)U⊤∥
≤∥ sin(Σ)∥+ ∥ cos(Σ)(I − cos(Σ))∥+ 2∥ sin(Σ) cos(Σ)∥ ≤ 4∥ sin(Σ)∥ ≤ 4∥G∥,

where we use the fact that X⊤X = U⊤U = V ⊤V = Ip and all norms are the Frobenius norm.
Therefore, we see that the last equation in (4.1) is satisfied with C = 4.

4.2 Convergence of retraction and vector transport based Zo-RASA

We now proceed to the convergence analysis of Zo-RASA algorithm with retraction and vector
transports. Algorithm 2 is the analog of Algorithm 1, using retraction and vector transport. Notice
that the zeroth-order estimator used in Algorithm 2 is as defined in (1.3), which is with respect to
the retraction in contrast to (1.2). Also T is the vector transport where we write T k := T−tkgk

for
brevity. The vector transport we use in experiments is simply the orthogonal projection onto the
target tangent space.

For our analysis, apart from the smoothness condition in Assumption 3.1, we also need to assume
that the manifold is compact.

Assumption 4.2. The manifold M is compact with diameter D, and the Riemannian gradient
satisfies ∥gradf(x)∥x ≤ G.

Here, G could potentially be a function of D and the constant L from Assumption 3.1, due to
compactness and smoothness. We remark that this compactness assumption is satisfied by various
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Algorithm 2: Zo-RASA with retraction and vector transport

1: Change the updates of xk+1 and gk+1 in Algorithm 1 respectively to

xk+1 ← Retrxk(−tkgk) and gk+1 ← (1− τk)T k(gk) + τkT k(Gk
µ),

where Gk
µ = GRetr

µ (xk) is given by (1.3) with batch-size m = mk.

matrix manifolds like the Stiefel manifold and the Grassmann manifold (see, for example, Lemma
5.1 in Milnor and Stasheff (1974)).

Turning to the stochastic gradient oracles, the bounded second moment condition in Assump-
tion 3.2 is now replaced by the following condition of bounded fourth central moment. Such a
condition is needed to conduct our convergence analysis. It is interesting to relax this assumption
or show this condition is necessary and sufficient to design batch-free, fully-online algorithms with
vector transports and retractions.

Assumption 4.3. Along the trajectory of the algorithm, we have that the stochastic gradients
are unbiased and have bounded fourth central moment, i.e., for each k ∈ {1, . . . , N}, we have
Eξ[gradF (xk; ξk)|Fk−1] = gradf(xk) and Eξ[∥gradF (xk; ξk)− gradf(xk)∥4

xk |Fk−1] ≤ σ4.

Note that Assumption 4.3 implies Assumption 3.2. To proceed with the convergence analysis of
Algorithm 2, we also need to assume that the retraction we use in Algorithm 2 is a second-order
retraction, as in Assumption 4.4.

Assumption 4.4. The retraction we use in Algorithm 2 is a second order retraction, i.e. ∀ξ ∈ TxM,
we have d(Retrx(ξ),Expx(ξ)) ≤ C∥ξ∥2x.

Note that the notion of second order retraction is only a local property, i.e., the above inequality
only holds when ∥ξ∥ is not too large. We refer to second order retraction without this locality
restriction, since we assume the compactness of M in Assumption 4.2 and thus the condition in
Assumption 4.4 also holds for large ∥ξ∥ and the constant C will globally depend on the curvature of
the manifold. We also point out that the condition in Assumption 4.4 is satisfied by projectional
retractions; see, for example, (Absil and Malick, 2012, Proposition 2.2). The study of higher-order
(better) approximation to the exponential mapping by the retractions is still an on-going research
topic Gawlik and Leok (2018), while here we only need a second-order retraction.

The following result in Lemma 4.2, which is a standard comparison-type result, will be utilized
in the subsequent proof.

Lemma 4.2 (Theorem 6.5.6 in Burago et al. (2022)). Suppose the sectional curvature ofM is upper
bounded, then ∀ξ, η ∈ TxM, we have ∥ξ − η∥x ≤ C d(Expx(ξ),Expx(ξ)), without loss of generality
we assume the constant to be C = 1 for the rest of the paper.

The following result shows that with a second-order retraction, the smoothness with respect to
exponential mapping implies the smoothness with respect to retractions.

Lemma 4.3. Suppose Assumption 3.1, 4.1 and 4.2 hold, if the retraction we use in Algorithm 2 and
(1.3) satisfy Assumption 4.4, then there exists a parameter L′ > 0, such that f is also L′-smooth
with the retraction, i.e., |f(Retrx(η))− f(x)− ⟨gradf(x), η⟩x| ≤ L′

2 ∥η∥
2
x, ∀η ∈ TxM. From now on,

we denote L as the parameter that satisfies both Assumption 3.1 and Lemma 4.3 for brevity.
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Proof. Denote y = Retrx(η). Note that we have |f(y) − f(x) − ⟨gradf(x), η⟩x| ≤ |f(y) − f(x) −
⟨gradf(x),Exp−1

x (y)⟩x|+|⟨gradf(x),Exp−1
x (y)−η⟩x| ≤ L∥Exp−1

x (y)∥2x+∥gradf(x)∥x∥η−Exp−1
x (y)∥x ≤

L∥η∥2x + Gd(Expx(η), y) ≤ (L + GC)∥η∥2x =: L′∥η∥2x, where the first inequality is by Assumption
3.2, the second is by Assumption 4.1 and Lemma 4.2, and the last inequality is by Assumption 4.4.

We remind the readers that Lemma 4.3 can guarantee that the retraction-based zeroth-order
estimator (1.3) still satisfies Lemma 3.1. In addition, we have the following bound on the fourth
moment of GRetr

µ .

Lemma 4.4. Consider Gµ given by (1.3). Under Assumptions 3.1, 4.1, 4.2 and 4.3, we have

E∥GRetr
µ (x)∥4x ≤

µ4L4

2 (d+12)6+3d2∥gradf(x)∥4x, where the expectation is taken toward the Gaussian
vectors when constructing Gµ and the random variable ξ.

Proof. Since E∥GRetr
µ (x)∥4x = 1

µ4Eu[(f(Retrx(µu))− f(x))4∥u∥4x] and

(f(Retrx(µu))− f(x))4

=(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩x + ⟨gradf(x), µu⟩x)4

≤8(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩x)4 + 8(⟨gradf(x), µu⟩x)4

≤8
(
L

2
∥µu∥2x

)4

+ 8(⟨gradf(x), µu⟩x)4,

where the last inequality is by Lemma 4.3. Therefore we have

E∥GRetr
µ (x)∥4x ≤

µ4L4

2
E∥u∥12x + 8E[⟨gradf(x), u⟩4x∥u∥4x]

≤ µ4L4

2
(d+ 12)6 + 8E[⟨gradf(x), u⟩4x∥u∥4x],

where the last inequality is by Lemma 2 in Li et al. (2022). It remains to bound the last term on
the right hand side, and we apply the same trick as in Proposition 1 in Li et al. (2022) here. Since u
is an Gaussian vector on the tangent space TxM (dimension is d), we can calculate the expectation
using the integral directly (denote g = gradf(x) and omit the subscript x for simplicity):

E(∥⟨gradf(x), u⟩u∥4) = 1

κ(d)

∫
Rd

⟨g, x⟩4∥x∥4e−
1
2
∥x∥2dx

≤ 1

κ(d)

∫
Rd

∥x∥4e−
τ
2
∥x∥2⟨g, x⟩4e−

1−τ
2

∥x∥2dx ≤ 1

κ(d)

(
4

τe

)2 ∫
Rd

⟨g, x⟩4e−
1−τ
2

∥x∥2dx

=
1

κ(d)

(
4

τe

)2( 1

1− τ

)d/2−2 ∫
Rd

⟨g, x⟩4e−
1
2
∥x∥2dx = 48

(
1

τe

)2( 1

1− τ

)d/2−2

∥g∥4,

where κ(d) :=
∫
Rd e

− 1
2
∥x∥2dx is the constant that normalizes Gaussian distribution, the second

inequality is by the following fact: xpe−
τ
2
x2 ≤ ( p

τe)
p/2, the second equality is by change of variables

and the last equality is by Ex∼N (0,Id)⟨g, x⟩
4 = 3∥g∥4. Taking τ = 4/d gives the desired result.

We now provide the convergence result for Zo-RASA (Algorithm 2). We remind the readers that
we assume C = 1 in both Assumptions 4.1 and 4.4. We would first need to utilize the following
Lemma 4.5, which is an analog to Lemma 3.2.
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Lemma 4.5. Suppose Assumptions 3.1, 4.1, 4.2, 4.3 and 4.4 hold, and {xk, gk} is generated by
Algorithm 1. We have

E∥gk − gradf(xk)∥2xk ≤ Γkσ̃
2
0 + Γk

k∑
i=1

((1 + τi−1)τi−1

Γi

L2∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 + τkσ̂

2
)
,

where the expectation E is taken with respect to all random variables up to iteration k, including the
Gaussian variables {ui}ki=1 in the zeroth-order estimator (1.2), and σ̃2

k is defined in (3.6). Further,
from the definition of τk in (3.1), we have

N∑
k=1

τkE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0,

N∑
k=1

τ2kE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τ

2
k

L2E∥gk∥2
xk

β2
+ τ3k σ̃

2
k + τ2k σ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0.

Proof. The proof is almost identical to the proof of Lemma 3.2, and we thus omit the details. Note
that here we need to utilize Assumption 4.1 to show d(xi, xi+1)2 ≤ t2i ∥gi∥2xi .

To show the bound for the term E∥P xk

xk+1g
k+1 − gk∥2

xk , we further need to utilize the following

bound for ∥gk∥xk first.

Lemma 4.6. Consider gk given by Algorithm 2. Suppose Assumption 3.1, 4.1, 4.2, 4.3 and 4.4

hold. Then, we have E∥gk∥2
xk ≤ µ2L2(d+ 6)3 + 2(d+ 4)G2 and E∥gk∥4

xk ≤ µ4L4

2 (d+ 12)6 + 3d2G4,
where the expectation E is taken with respect to all random variables up to iteration k.

Proof. Note that we have

∥gk∥2xk = ∥(1− τk−1)T k−1(gk−1) + τk−1T k−1(Gk−1
µ )∥2xk

≤ (1− τk−1)∥gk−1∥2xk−1 + τk−1∥Gk−1
µ ∥2xk−1 .

Taking expectation conditioned on Fk−1, we have by Lemma 3.1 that E[∥gk∥2
xk |Fk−1] ≤ (1 −

τk−1)E∥gk−1∥2
xk−1 + τk−1(µ

2L2(d+ 6)3 + 2(d+ 4)∥gradf(xk−1)∥2
xk−1). We remove the conditional

expectation by law of total expectation, also by Assumption 4.2 we have that

E∥gk∥2xk ≤ (1− τk−1)E∥gk−1∥2xk−1 + τk−1(µ
2L2(d+ 6)3 + 2(d+ 4)G2).

Denote Ak = E∥gk∥2
xk , note that we have Ak ≤ (1− τk−1)Ak−1 + τk−1(µ

2L2(d+ 6)3 + 2(d+ 4)G2).
Again from Lemma 3.1 we have A0 ≤ µ2L2(d+ 6)3 + 2(d+ 4)G2, from which and using induction,
we conclude that Ak = E∥gk∥2

xk ≤ µ2L2(d+ 6)3 + 2(d+ 4)G2. As for the fourth moment, note that

E(∥gk∥2xk)
2 ≤ E

(
(1− τk−1)∥gk−1∥2xk−1 + τk−1∥Gk−1

µ ∥2xk−1

)2
≤(1− τk−1)E∥gk−1∥4xk−1 + τk−1E∥Gk−1

µ ∥4xk−1 ,

≤(1− τk−1)E∥gk−1∥4xk−1 + τk−1

(
µ4L4

2
(d+ 12)6 + 3d2∥gradf(xk)∥4xk

)
where the last inequality is by Lemma 4.4. The final result follows similarly to the second moment
case.

Now we are ready to study the difference between gk and gk+1.

21



Lemma 4.7. Suppose Assumptions 3.1, 4.1, 4.2, 4.3 and 4.4 hold, and take τk as in (3.1). Then,
we have

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk ≤

4L2

β2

N−1∑
k=0

(1 + τk)τ
2
kE∥gk∥2xk + 4

N∑
k=0

(τ2k + τ3k )σ̃
2
k

+

[
4σ̃2

0 + 4σ̂2 +
8

β2

(
µ4L4

2
(d+ 12)6 + 3d2G4

)] N∑
k=0

τ2k ,

(4.2)

where the expectation E is taken with respect to all random variables up to iteration k, which includes
the random variables u in the zeroth-order estimator (1.3).

Proof. Since

∥P xk

xk+1g
k+1 − gk∥2xk = ∥gk+1 − P xk+1

xk gk∥2xk+1

≤2∥gk+1 − T kgk∥2xk+1 + 2∥T kgk − P xk+1

xk gk∥2xk+1

≤2τ2k∥Gk
µ − gk∥2xk + 2d(xk+1, xk)2∥gk∥2xk

≤4τ2k∥Gk
µ − gradf(xk)∥2xk + 4τ2k∥gradf(xk)− gk∥2xk + 2

τ2k
β2
∥gk∥4xk ,

where the second inequality is by the update and Assumption 4.1, and the last inequality is by
Assumption 4.1. Now taking the expectation conditioned on Fk−1 we get:

E[∥P xk

xk+1g
k+1 − gk∥2xk |Fk−1] ≤ 4τ2kE[∥Gk

µ − gradf(xk)∥2xk |Fk−1]

+ 4τ2kE[∥gradf(xk)− gk∥2xk |Fk−1] + 2
τ2k
β2

E[∥gk∥4xk |Fk−1].

Thus we have (by law of total expectation):

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk

≤4
N∑
k=1

τ2kE∥Gk
µ − gradf(xk)∥2xk + 4

N∑
k=1

τ2kE∥gradf(xk)− gk∥2xk +
2

β2

N∑
k=1

τ2kE∥gk∥4xk

≤4
N∑
k=1

τ2k σ̃
2
k + 4

N∑
k=1

τ2kE∥gradf(xk)− gk∥2xk +
8

β2

(
µ4L4

2
(d+ 12)6 + 3d2G4

) N∑
k=1

τ2k

where the second inequality is by Lemmas 3.1 and 4.6. The desired result follows by applying
Lemma 4.5 to the above inequality.

We now state the main result in Theorem 4.2, as an analog to Theorem 3.1. Notice that different
from Theorem 3.1, we do not need N = Ω(d) in case (ii), in view of Remark 3.2 and Assumption 4.2.

Theorem 4.2. Suppose Assumptions 3.1, 4.1, 4.2, 4.3 and 4.4 hold. In Algorithm 2, we set
µ = O

(
1

Ld3/2N1/4

)
and β ≥

√
dL. Then the following holds.

(i) If we choose τ0 = 1, τk = 1/
√
N , k ≥ 1 and mk ≡ 8(d + 4), k ≥ 0, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(1/

√
N).
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(ii) If we choose τ0 = 1, τk = 1/
√
dN , k ≥ 1, m0 = d and mk = 1 for k ≥ 1, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(

√
d/N).

Here the expectation E is taken with respect to all random variables up to iteration k, which includes
the random variables u in zeroth-order estimator (1.3).

Proof. [Proof of Theorem 4.2] The proof is very similar to the proof of Theorem 3.1. We first will
have the following inequality analogue to (3.11):

1

8β2

N∑
k=0

τkE∥gk∥2xk ≤W 0 +
1

2β

N∑
k=0

τkσ̂
2 +

2

β

N∑
k=0

(τ2k + τ3k )σ̃
2
k

+
1

2β
[4σ̃2

0 + 4σ̂2 +
8

β2
(
µ2L2

2
(d+ 12)6 + 3d2G4)]

N∑
k=0

τ2k

Note that we still need (3.9a) to show the above inequality.
We then directly provide the result corresponding to (3.13):

N∑
k=1

τk
2
E∥gradf(xk)∥2xk ≤ (8β2 + 16L2)

(
W 0 +

1

2β

N∑
k=0

τkσ̂
2 +

2

β

N∑
k=0

(τ2k + τ3k )σ̃
2
k

+
1

2β
[4σ̃2

0 + 4σ̂2 +
8

β2
(
µ2L2

2
(d+ 12)6 + 3d2G4)]

N∑
k=0

τ2k

)
+

N−1∑
k=0

τ2k σ̃
2
k +

N−1∑
k=0

τ2k σ̂
2 + σ̃2

0

(4.3)

Now by Assumption 4.2, we have σ̃2
k ≤ σ2

k +
8(d+4)
mk

G2, which is exactly the reason we don’t need to
show an inequality similar to (3.9b).

For case (i) in Theorem 4.2, (4.3) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤
c1W (x0, g0)√

N
+ c2σ̂

2 +
c3

1
N

∑N
k=0 σ̃

2
k√

N
+

c4√
N

σ̃2
0,

for some absolute positive constants c1, c2, c3 and c4. The proof for case (i) is completed by noting
that (see (3.6)) σ̂2 = O(1/

√
N), 1

N

∑N
k=0 σ̃

2
k = O(1) and σ̃2

0 = O(1).
For case (ii) in Theorem 4.2, (4.3) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤ c′1W (x0, g0)

√
d

N
+ c′2σ̂

2 +
c′3

1
N

∑N
k=0 σ̃

2
k√

dN
+ c′4

√
d

N
σ̃2
0,

for some positive constants c′1, c
′
2, c

′
3 and c′4. The proof of case (ii) is completed by noting that

σ̃2
0 = O(1), σ̂2 = O(1/

√
N) and 1

N

∑N
k=0 σ̃

2
k = O(d).

Remark 4.2. By the technique discussed in Remark 3.1, to obtain an ϵ-approximate stationary
point in Definition 2.2 we need an oracle complexity of O(d/ϵ4).

5 Numerical experiments

5.1 k-PCA

We now provide numerical results on the k-PCA problem to demonstrate the effectiveness of the
Zo-RASA algorithms. For a given centered random vector z ∈ Rn, the k-PCA problem corresponds
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to finding the subspace spanned by the top-k eigenvectors of its positive definite covariance matrix
Σ = E[zz⊤]. Formally, we have the following problem on the Stiefel manifold:

min
X∈St(n,r)

f(X) := −1

2
tr(X⊤E[zz⊤]X). (5.1)

Note that the dimension of the Stiefel is given by d = nr − r(r + 1)/2.
For any Y = XQ where Q ∈ Rr×r, and Q⊤Q = QQ⊤ = Ir, we have f(X) = f(Y ). Hence, we

can equivalently view (5.1) as the following minimization problem on the Grassmann manifold:

min
[X]∈Gr(n,r)

f([X]) := −1

2
tr(X⊤E[zz⊤]X).

Note that the dimension of the Grassmannian is given by d = r(n− r).
We solve (5.1) using Algorithm 2 and compare it with the zeroth-order Riemannian SGD method

from Li et al. (2022). In all the experiments, we used projecting vector transport rather than
parallel transport for Stiefel manifolds, due to the aforementioned facts that parallel transport
is time-consuming to numerically compute on Stiefel manifold, and has no closed form. In the
stochastic zeroth-order setting, for each query point Xk, the stochastic oracle returns a noise
estimate of f(x) based on a single observation zk, i.e. F (Xk; zk) = −1/2 tr((Xk)⊤zkz

⊤
k X

k). For
our experiments, we assume zk is sampled from a centered Gaussian distribution with covariance
matrix given by Σ =

∑r
i=1 λiviv

⊤
i +

∑n
i=r+1 λiviv

⊤
i , where V = [v1, ..., vn] is an orthogonal matrix.

The first r λis are uniform random numbers in [100, 200] and the last n− r are uniform random
numbers in [1, 50]. For our experiments, we fix r and try different n (reflected in different rows in
Figure 1).

We set N = 50000 × n for Zo-RASA and one-batch Zo-RSGD (Zo-RSGD-1) algorithms, while
N = 50000 for our mini-batch Zo-RSGD algorithm (Zo-RSGD-m). The reason here is that for
Zo-RSGD-m, we take m = n = O(d) since we fix r and change n. While the theoretical result in Li
et al. (2022) requires the batch-size m to be O(d/ϵ2), they empirically observed reasonable-order
batch-sizes suffices. For Zo-RASA, according to our theory, we again take τk = 0.01/

√
N and β = 100.

For Zo-RSGD-1 and Zo-RSGD-m, we set tk as tk = 10−4/
√
N and tk = 5× 10−4/

√
N respectively.

For all algorithms, we again compare the function value, norm of the Riemannian gradient and
the principal angles between the current iterate and the optimal subspace. Figures 1 plots the
results. The experimental results provide support for the proposed algorithms (and the established
theory), demonstrating that the proposed Zo-RASA algorithm is more efficient in terms of decreasing
the Riemannian gradient and principal angles compared to conventional zeroth-order Riemannian
stochastic gradient descent methods that utilize mini-batches.

5.2 Identification of a fixed rank symmetric positive semi-definite matrix

We now provide another numerical example from Bonnabel (2013). Consider a matrix-version linear
model as in Tsuda et al. (2005):

yt = tr(Wxtx
⊤
t ) = x⊤

t Wxt

where xt ∈ Rn is the input and yt ∈ R is the output, and the unknown matrix W ∈ Rn×n is a
positive semi-definite matrix with a fixed rank r (r ≤ n). Denote the set

S+(n, r) = {W ∈ Rn×n|W = W⊤, rank(W ) = r} (5.2)
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(a) Optimality gap (b) ∥gradf(Xt)∥ (c) Principal angles

Figure 1: Results for kPCA (5.1) with n ∈ {10, 30, 50} (corresponding to three rows) and r = 5.
The resulting manifold (Stiefel) dimensions are d = {35, 135, 235}. The x-axis is the number of
zeroth-order oracle calls (i.e. number of function value calls).

which is the set of positive definite matrices with rank r. The problem is thus formulated as a
matrix least square problem

min
W∈S+(n,r)

f(W ) :=
1

2
Ex,y(x

⊤Wx− y)2 (5.3)

Notice that W can be represented as W = GG⊤ where G ∈ Rn,r is a matrix with full column
rank. Also notice that for any orthogonal matrix O ∈ Rr×r we have W = GOO⊤G⊤ = GG⊤,
we have the following quotient representation of the set of fixed rank positive definite matrices
S+(n, r) ≃ Rn×r

∗ /O(r), where the right hand side represents the set of equivalent classes:

[G] = {GO|O ∈ O(r)}.

We could thus conduct our experiment on the quotient manifold Rn×r
∗ /O(r), with the following
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re-formulated problem:

min
[G]∈Rn×r

∗ /O(r)
f(G) :=

1

2
Ex,y(x

⊤GG⊤x− y)2 (5.4)

The manifold S+(n, r) has dimension d = nr − r(r − 1)/2 and is not a compact manifold. We
test (5.4) to show the efficiency of our proposed algorithm even without the compactness assumption
(Assumption 4.2) which we need to conduct our theoretical analysis.

We solve (5.4) using Algorithm 2 and compare it with the zeroth-order Riemannian SGD method
from Li et al. (2022). In all the experiments, we used again retraction and projecting vector
transport rather than exponential mapping and parallel transport. The ground-truth G⋆ ∈ Rn×r is
sampled randomly with standard Gaussian entries. For our experiments, we sample x ∼ N (0, Id)
and construct y = x⊤Wx noiselessly. Specifically, given a query point Gt and a Gaussian sample xt

with yt = x⊤
t G

⋆(G⋆)⊤xt, the stochastic zeroth-order oracle gives the value 1
2(x

⊤
t G

t(Gt)⊤xt − yt)
2.

For our experiments, we fix r and test with different n (reflected in different rows in Figure 2).
We set N = 5000 × n for Zo-RASA and one-batch Zo-RSGD (Zo-RSGD-1) algorithms, while

N = 5000 for our mini-batch Zo-RSGD algorithm (Zo-RSGD-m) for the same reason as the kPCA
experiments. For Zo-RASA, according again to our theory, we again take τk = 10−3/

√
N and β = 100.

For Zo-RSGD-1 and Zo-RSGD-m, we set tk = 10−5/
√
N .

For all algorithms, we again compare the function value, norm of the Riemannian gradient
and the quantity ∥Gt(Gt)⊤ − G⋆(G⋆)⊤∥ which measures the error to the ground truth positive
semi-definite matrix. Figures 2 plots the results. It’s worth noticing here that mini-batch Zo-RSGD
seems to work the worst in the plots, which is due to the fact that we take the step sizes the
same for Zo-RSGD-1 and Zo-RSGD-m. The reason we cannot enlarge the step size for Zo-RSGD-m

is that the projectional retraction and projectional vector transport requires solving a Sylvester
equation which leads to numerical stability issues if the step sizes become large (see Boumal et al.
(2014) for details). The experimental results provide support for the proposed algorithms (and the
established theory), demonstrating that the proposed Zo-RASA algorithm is more efficient in terms
of decreasing the Riemannian gradient and function values compared to conventional zeroth-order
Riemannian stochastic gradient descent methods that utilize mini-batches.
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