

1 Grain-scale stress heterogeneity in concrete from in-situ X-ray measurements

2 Mohmad M. Thakur^a, N. Axel Henningsson^b, Jonas Engqvist^b, Pierre-Olivier Autran^c, Jonathan P. Wright^c, Ryan C.
3 Hurley^{a,d,e}

4 ^aHopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD 21218, USA

5 ^bDivision of Solid Mechanics, Lund University, Box 118, 221 00 Lund, Sweden

6 ^cESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France

7 ^dDepartment of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

8 ^eDepartment of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

9 Abstract

10 Concrete features significant microstructural heterogeneity which affects its mechanical behavior. Strain localization
11 in the matrix phase of concrete has received significant attention due to its relation to microcracking and our ability
12 to quantify it with X-ray computed tomography (XRCT). In contrast, stresses in sand and aggregates remain largely
13 unmeasured but remain critical for micromechanics-based theories of failure. Here, we use a combination of *in-*
14 *situ* XRCT, 3D X-ray diffraction (3DXRD), and scanning 3DXRD to directly measure strain and stress within sand
15 grains in two samples of mortar containing different sand volume fractions. Our results reveal that, in contrast to
16 inclusion theories from continuum micromechanics, aggregates feature a broad distribution of average stresses and
17 significant gradients in their internal stress fields. Our work furnishes the first known dataset with these quantitative
18 stress measurements and motivates improvements in micromechanics models for concrete which can capture stress
19 heterogeneity.

20 **Keywords:** Concrete, Aggregate Stresses, Scanning 3D X-ray Diffraction, 3D X-ray Diffraction, Heterogeneity,

21 1. Introduction

22 Concrete is a heterogeneous material consisting of aggregates and a matrix of cement paste. Prior work has re-
23 vealed significant heterogeneity in the microstructure and material properties of the cement paste [1, 2]. Experimental
24 techniques such as nanoindentation provide an estimate of elastic properties of different phases in concrete [3]. These
25 measurements provide input material properties for mesoscale models which are used to predict the mechanical re-
26 sponse of concrete from its microstructure [4]. Recent studies coupled these mesoscale models and experiments

27 *Email addresses:* mthakur3@jh.edu (Mohmad M. Thakur), rhurley6@jhu.edu (Ryan C. Hurley)

27 with *in-situ* imaging to provide microscale data for validating mesoscale models, [5] marking the first effort to validate mesoscale models directly at the microscale, rather than relying on comparisons with macroscale measurements.
28 However, most mesoscale models continue to be validated based only on a comparison of their predicted macroscopic
29 stress-strain response with experimental measurements or with an additional measurement of microscale damage localiza-
30 tion profile in the cement paste [6, 7]. In all but only a few prior studies [8, 9], the evolution of stresses in aggregates during macroscopic loading remained unmeasured. The reliability of mesoscale and continuum microme-
31 chanics models, which depend on assumptions regarding the aggregate stress distributions to predict failure (e.g.,
32 [10, 11]), therefore remains to be validated.

33 The use of mesoscale modeling or experiments with *in-situ* imaging remains confined to small samples, typically
34 not larger than 20 mm in any dimension. Continuum micromechanics on the other hand has emerged as a promising
35 tool for predicting the mechanical response of large volumes of material while accounting for microstructural
36 heterogeneity. Konigsberger and colleagues [12, 10] developed a multiscale micromechanics model to determine the
37 traction at the aggregate surfaces to infer 3D stress states in the surrounding interfacial transition zones (ITZ). They
38 further predicted the location of the largest tensile stresses in the ITZ surrounding aggregates by assuming them to
39 be spherical and their stresses to be derivable from Eshelby's inclusion theory. This location and the corresponding
40 tensile stresses were assumed to drive fracture nucleation and thus concrete strength. A central assumption in their
41 approach and in many other micromechanics-inspired continuum models is that the stress inside each aggregate and
42 average stress in all the aggregates follows from Eshelby's inclusion theory – intra-aggregate stresses are gradient free
43 and all aggregates in a material feature the same stress derivable from Eshelby's theory [13, 14].

44 In this work, we address the following questions that are essential to developing robust mesoscale and continuum
45 micro-mechanics models for concrete: (1) Are the stresses in different aggregates in a sample of concrete the same?
46 If not, how significant is the variation in stresses and does it depend on the aggregate volume fraction? (2) How
47 significantly do stresses vary inside each aggregate in a sample of concrete? Answering this question is critical for
48 understanding stress and strain localization in ITZ. (3) What fraction of the aggregates exhibit stresses greater than the
49 mean stress? One previous work [9] clarified that continuum micromechanics models provide accurate estimates of
50 global aggregate average stress for concrete samples with low aggregate volume fraction (≈ 0.15) but did not examine
51 the stress variations inside individual aggregates.

52 To answer these questions, we performed unconfined compression experiments on two samples composed of
53 ordinary portland cement mixed with water and quartz sand with varying volume fractions. We refer to these samples
54 as concrete, although the term "micro-concrete" has also been used in the literature to refer to specimens containing
55 such small aggregate sizes [15]. We used *in-situ* x-ray computed tomography imaging (XRCT), 3D x-ray diffraction

58 (3DXRD), and scanning 3D x-ray diffraction (s3DXRD) measurements to capture the microstructure of concrete,
59 determine the average stress in each aggregate, and determine stress variation within aggregates, respectively. To the
60 best of our knowledge, these experiments represent the first dataset resolving stress variations within aggregates in a
61 concrete sample. This communication is arranged as follows. Section 2 describes the experiments. Section 3 discusses
62 results. Section 4 provides a conclusion.

63 **2. Experiments and In-situ X-ray Imaging**

64 Two concrete samples, referred to as S1 and S2, with aggregates consisting of single-crystal quartz grains, were
65 prepared using Ordinary Portland Cement (OPC) and ball- and air-milled single crystal quartz with aggregate volume
66 fractions equal to 20% and 30%. A water-to-cement ratio of approximately 0.5 by weight was used for each sample.
67 A detailed description of the experiments and sample preparation, including the preparation of single-crystal quartz
68 grains, is described in [5]. Here, we only review salient information for the current study. We note that the single-
69 crystal quartz grains are chemically and morphologically similar to siliceous sands typically used to make cement;
70 however, the former is ideal for X-ray diffraction measurements because it provides well-defined diffraction spots for
71 analysis.

72 Unconfined uniaxial compression experiments were performed at the ID11 beamline of the European Synchrotron
73 Radiation Facility (ESRF) [5]. Stress-strain curves are shown in Figure 1. We performed a combination of XRCT
74 imaging and 3DXRD measurements at the consecutive compressive load states marked in Figure 1 (a). We performed
75 s3DXRD measurements only for sample S1 at compressive loads equal to 83 N ($\sigma_{zz} \approx 26$ MPa) and 99.5 N ($\sigma_{zz} \approx 32$
76 MPa). Although, sample S2 exhibited yielding as evident by the softening in Figure 1 (a), we restrict our discussion
77 to load cases before yielding. Prior work discussed XRCT imaging and 3DXRD measurements in detail [16]. XRCT
78 provided the microstructure of the samples at a resolution of 2.5 microns/voxel. 3DXRD measurements provided a
79 single stress tensor for each aggregate (single-crystal quartz grain) in the concrete sample. Here we revisit this data
80 and also discuss s3DXRD, used to determine intra-grain stress fields in each aggregate [17], to address the questions
81 posed in the Section 1.

82 s3DXRD is a variant of 3DXRD which employs a square X-ray beam smaller than the size of individual crystals
83 to probe samples [18, 17]. By virtue of the small beam size, the sequential sample rotation and lateral translation of
84 samples, and reconstruction methods exploiting tomographic principles, we can measure intra-granular crystal orien-
85 tations, and strain fields with s3DXRD with approximately 10^{-4} resolution per strain tensor component. Stress fields
86 can readily be determined from these strain fields using the anisotropic form of Hooke's law (the crystal orientation
87 can be computed from the diffraction measurement).

88 s3DXRD measurements were made using a $20 \times 20 \mu\text{m}$ box beam. A total of 180 diffraction images were acquired
89 during a 180° rotation of the sample such that each frame was integrated continuously over a 1-degree interval. After
90 each 180° rotation, the sample was translated horizontally $20 \mu\text{m}$ in a direction orthogonal to the X-ray beam path to
91 illuminate a distinct portion of the sample, and another 180° rotation was performed. We continued this sequence of
92 scans and translations 35 times to scan a $700 \mu\text{m}$ diameter and $20 \mu\text{m}$ tall section of the center of the sample. We then
93 translated the sample $20 \mu\text{m}$ upward and repeated the process. A total of 20 non-overlapping layers were scanned in
94 this manner so that a $400 \mu\text{m}$ tall portion of the sample was examined. This $400 \mu\text{m}$ portion of the sample began at
95 the approximate center of the sample's height and extended downward in the laboratory reference frame (positive z in
96 Figure 1). The s3DXRD data was refined in ImageD11, using methods described in [17] and methods similar to those
97 described in [19], to obtain orientation, strain, and stress on a voxel-by-voxel basis at a resolution of $20 \mu\text{m}$ throughout
98 the $400 \mu\text{m}$ tall portion of the sample which was scanned.

99 3. Results and Discussion

100 The data from XRCT, 3DXRD, and s3DXRD were registered to assign an average stress tensor from 3DXRD
101 and an intra-granular stress field from s3DXRD to each aggregate observed in the XRCT images. Registration was
102 performed by translating and rotating grain centroids (and respective tensor quantities such as stress) obtained from
103 each method, as described in [16], until they were within $30 \mu\text{m}$ of one another. Grains in the XRCT dataset without
104 a registered 3DXRD grain were assigned a stress tensor equal to the mean of registered grains. Grains in the XRCT
105 dataset without a registered s3DXRD grain were not considered for analysis of intra-granular stresses. Figures S1
106 and S2 in the supplementary data demonstrate close alignment of XRCT and 3DXRD grain positions and XRCT and
107 s3DXRD grain positions, respectively.

108 3.1. Stresses from 3D X-ray Diffraction (3DXRD)

109 Figure 1 (a) shows the macroscopic stress-strain response of Sample S1 and S2. Sample S2 had a higher aggregate
110 volume fraction compared to sample S1 and therefore exhibited a stiffer response. There was also a slight variation in
111 the water-to-cement ratio of the two samples, as discussed in prior work [5].

112 Figures 1 (b) - (g) show the average σ_{zz}^{agg} for all grains measured using 3DXRD and successfully registered to
113 XRCT grains at several load levels. An aggregate's stress tensor was computed from its strain tensor and grains were
114 assumed strain-free at the first load step of the experiment (reference loads of 7 N and 0 N for samples S1 and S2,
115 respectively). Although not exact, this strain-free assumption eliminates errors due to slight variations in strain-free
116 lattice constants of the quartz grains. It can be observed from Figure 1 that the average aggregate stresses increased

117 with the macroscopic load. Furthermore, average aggregate stresses for different aggregates were heterogeneous and
118 not uniform as assumed in continuum micromechanics models.

119 The heterogeneity of average aggregate stresses increased with macroscopic loads, as reflected by a broadening of
120 the σ_{zz}^{agg} distributions in Figure 2. The standard deviation of σ_{zz}^{agg} for Sample S1 was 17 MPa, 24 MPa, and 30 MPa at
121 macroscopic loads of 43 N ($\sigma_{zz} = 24$ MPa), 63 N ($\sigma_{zz} = 36$ MPa), and 83 N ($\sigma_{zz} = 47$ MPa), respectively. The standard
122 deviation of σ_{zz}^{agg} for Sample S2 was equal to 32 MPa, 41 MPa, and 58 MPa at macroscopic loads of 50 N ($\sigma_{zz} = 28$
123 MPa), 70 N ($\sigma_{zz} = 40$ MPa), and 90 N ($\sigma_{zz} = 51$ MPa), respectively. Sample S2, which had a higher aggregate volume
124 fraction, in particular, exhibited a higher standard deviation. The distribution of other stress components for Sample
125 S1 and S2 are provided in Figures S3 and S4, respectively, in the supplementary data. We observed that the fraction
126 of grains with σ_{zz}^{agg} stresses more negative (compressive) than the mean aggregate stress was approximately 40% for
127 both samples at all load steps, as shown in Figure S5 in the supplementary data. In a granular material, such grains
128 would be called force chains. To the best of our knowledge, such force chains have not yet been measured or modeled
129 in concrete, but concepts of force chains in granular materials have enabled new continuum micromechanics models
130 with enhanced predictive capabilities [20].

131 3.2. *Stresses from Scanning 3D X-ray Diffraction (s3DXRD)*

132 s3DXRD measurements were reconstructed at $20\ \mu\text{m}$ resolution on a voxel-by-voxel basis in a $400\ \mu\text{m}$ tall section
133 of Sample S1, as described in Section 2. Figure 3 (a) provides a rendering of the 51 grains for which s3DXRD mea-
134 surements were successfully made. Approximately 20 grains were registered with XRCT data; the remainder were not
135 registered most likely because of our stringent criterion for matching XRCT and s3DXRD grains combined described
136 in Section 2 combined with the fairly coarse ($20\ \mu\text{m}$) spatial resolution of s3DXRD data, and because the region inter-
137 rogated with s3DXRD was smaller than the full sample diameter and thus the reconstruction of grains overlapping the
138 boundary of this region would feature inaccurate centers. s3DXRD grains were segmented by binarizing the voxelized
139 data and applying a watershed segmentation algorithm [16]. Figures 3 (b) and (c) show the intra-aggregate σ_{zz} stress
140 components on the $20\ \mu\text{m}$ grid for each grain at two load levels. These figures qualitatively convey significant intra-
141 granular heterogeneity of σ_{zz} which is further supported quantitatively by the frequency distribution of intra-aggregate
142 σ_{zz} stress for a select number of grains at both macroscopic loads in Figure 3 (d). We note that the stress distributions
143 within individual aggregates is heterogeneous and *not* uniform as would be assumed in a continuum micromechanics
144 model employing an infinite-domain Eshelby inclusion theory [21, 9]. The maximum and minimum standard devia-
145 tion of σ_{zz} within individual aggregates was 24 MPa and 8 MPa for a macroscopic load equal to 83 N, and 30 MPa
146 and 10 MPa for a macroscopic load equal to 99.5 N.

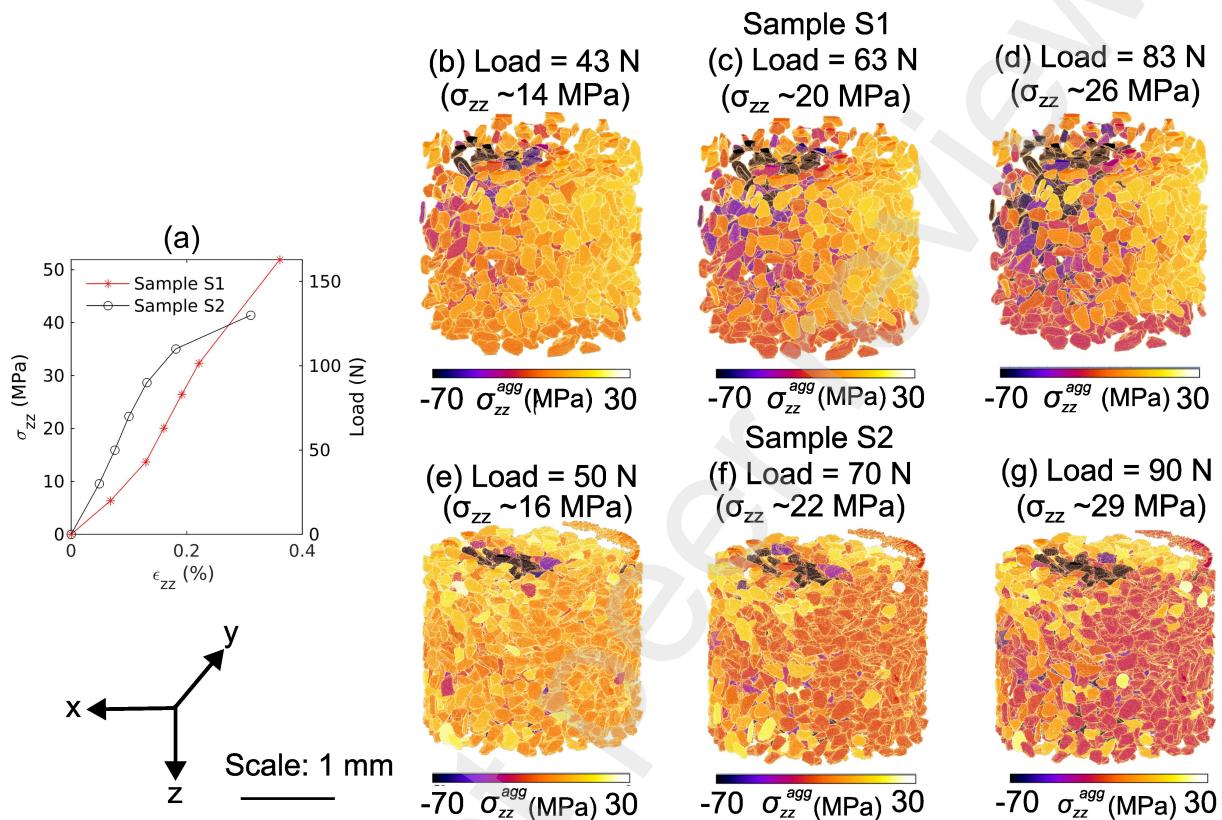


Figure 1: (a) Average aggregate stresses and load cell reading at several sample strains for Samples S1 and S2. At each symbol, the sample strain was held constant while XRCT and 3DXRD measurements were made. At symbols corresponding to 83 N and 99.5 N for Sample S1, we performed s3DXRD measurements in addition to XRCT and 3DXRD measurements. Average individual aggregate stresses in both samples are shown in (b) - (g). (b) Sample S1 with macroscopic load = 43 N. (c) Sample S1 with macroscopic load = 63 N. (d) Sample S1 with macroscopic load = 83 N. (e) Sample S2 with macroscopic load = 50 N. (f) Sample S2 with macroscopic load = 70 N. (g) Sample S2 with macroscopic load = 90 N.

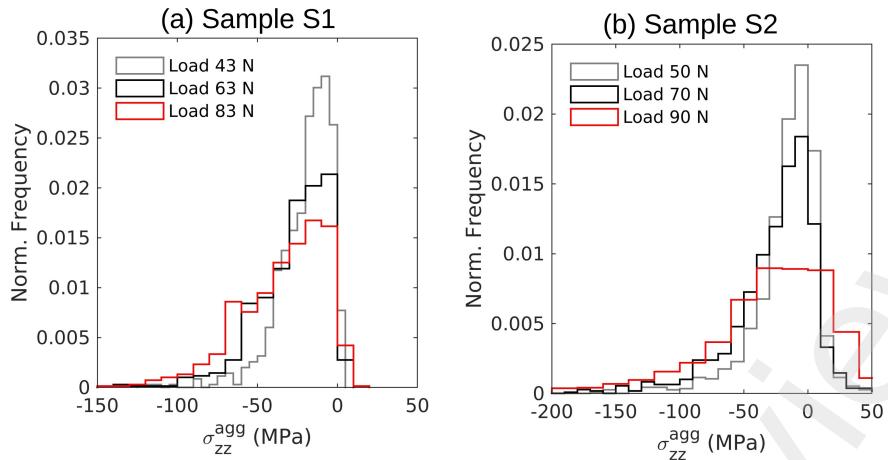


Figure 2: Histograms of average individual aggregate stresses (σ_{zz}) for different macroscopic loads obtained from 3D X-ray Diffraction. (a) Sample S1 . (b) Sample S2.

147 Heterogeneity in intra-aggregate stresses, in contrast to expectations from micromechanics theories, may stem from
 148 multiple sources: (1) deviation from an ellipsoidal inclusion shape for the aggregates, which invalidates the Eshelby
 149 assumption; (2) finite domains, which modify Eshelby's tensor and introduce intra-aggregate stress gradients [22];
 150 (3) strong aggregate-mortar or aggregate-aggregate interaction effects, which are incorporated implicitly into Mori-
 151 Tanaka's theory but not into Eshelby's inclusion theory [22]. To assess whether deviation from ellipsoidal shapes
 152 alone plays a role in causing stress gradients, we plot the standard deviation of intra-granular stress versus a measure
 153 of deviation from ellipsoidal shape in Figure 3 (d). The ellipticity parameter, (Es) defined in [23], was obtained from
 154 XRCT images for grains that were registered with scanning 3DXRD. The deviation of Es from 1 indicates deviation
 155 in ellipticity of a grain. We find no clear trend, and no significant reduction of standard deviation at $Es=1$, suggesting
 156 that the shape alone does not cause significant intra-granular stress gradients. The finite domain size would not alone
 157 cause the observed intra-granular stress gradient because each grain features a distinct stress distribution. We therefore
 158 conclude that some combination of shape, finite-domain, and interaction effects likely contribute to the intra-granular
 159 stress gradients. We conclude that care must be taken when applying continuum micromechanics models assuming
 160 constant intra-aggregate stresses to the prediction of concrete mechanics and failure [21, 10, 24, 9].

161 4. Conclusion

162 Few direct measurements of aggregate stresses and no intra-aggregate stress measurements have been made until
 163 now [8, 9]. These quantities are employed in micromechanics models for predicting elastic properties and incipient

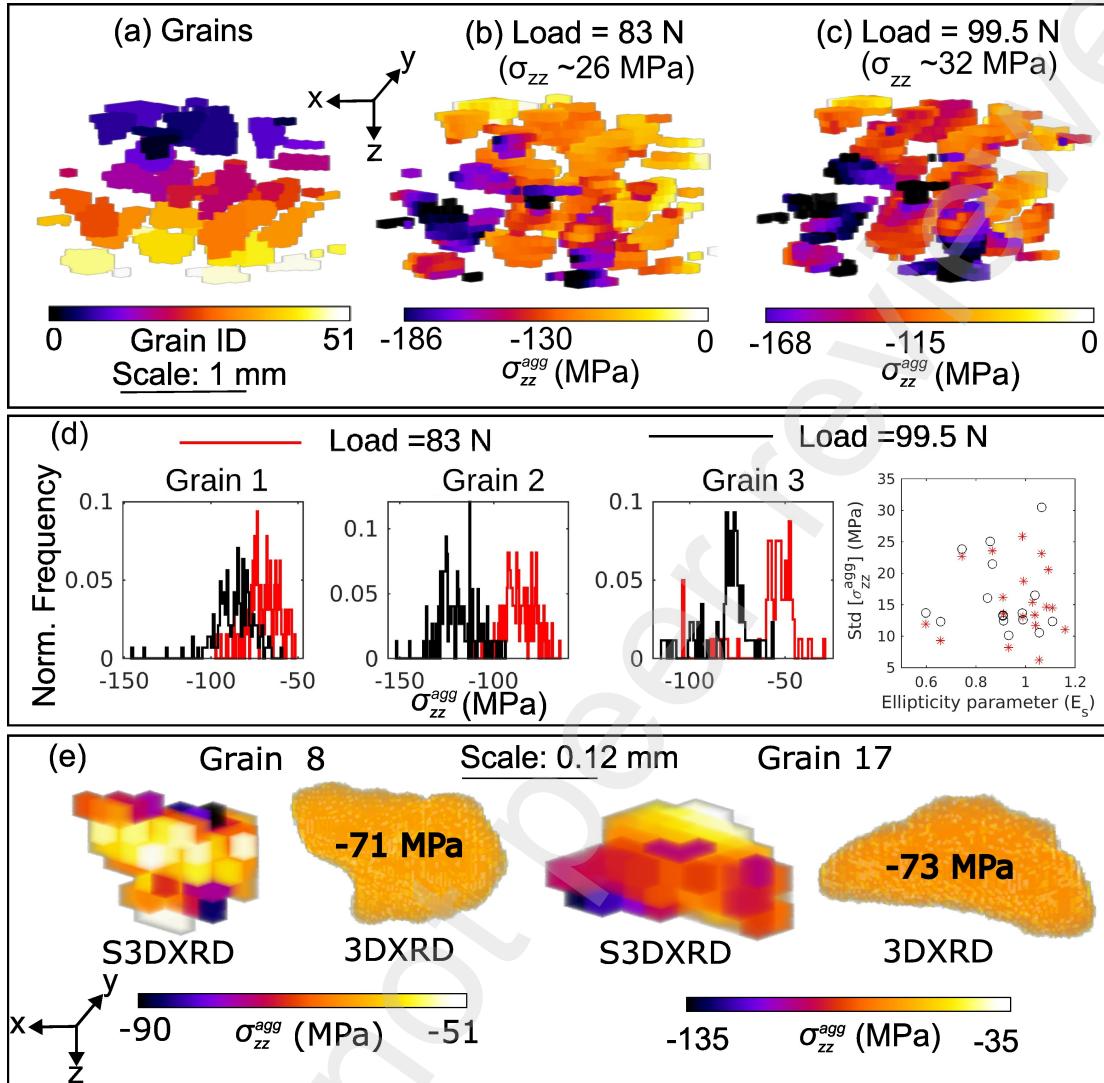


Figure 3: Stresses (σ_{zz}) inside aggregates obtained from scanning 3D X-ray Diffraction (s3DXRD). (a) Individual aggregates obtained from (s3DXRD). (b) Visualization of σ_{zz} field for macroscopic load = 83 N. (c) Visualization of σ_{zz} field for macroscopic load = 99.5 N. (d) Distribution of σ_{zz} in some individual aggregates for macroscopic load = 83 N and 99.5 N and standard deviation of stresses (σ_{zz}) inside aggregates with the variation in shape (ellipticity) of aggregates. (e) Close visualization of σ_{zz} field for macroscopic load = 83 N obtained from s3DXRD and 3DXRD

164 failure and can also be employed to calibrate mesoscale models [21, 10, 24, 5]. Here, we employed XRCT, 3DXRD,
165 and s3DXRD to furnish microstructure, average stresses, and intra-granular stresses for the first time in a small speci-
166 men of concrete. Key findings are as follows:

- 167 1. The average stresses in aggregates measured with 3DXRD exhibited significant heterogeneity, in contrast with
168 predictions of Eshelby's inclusion theory for infinite domains. Approximately 40 % of the aggregates exhibited
169 compressive stresses more negative than the mean, reflecting force chain like behavior akin to that of granular
170 media.
- 171 2. Intra-aggregate σ_{zz} fields exhibited significant gradients in contrast to Eshelby's inclusion theory for infinite do-
172 mains. Grain morphology, finite domain sizes, and aggregate-mortar or aggregate-aggregate interaction effects
173 may have each contributed to the presence of these gradients.
- 174 3. Regardless of origin, intra-aggregate stress gradients suggest a need for micromechanics models to incorporate
175 heterogeneity for robust predictions.

176 **Acknowledgements**

177 MMT and RCH acknowledge support by the U.S. National Science Foundation Award No. CMMI-2125023. All
178 authors acknowledge support from ESRF for synchrotron beamtime under proposal numbers ma-4978.

179 **Competing Interests**

180 The authors declare no competing interests.

181 **Data availability**

182 Data used for this work is provided at [www.zenodo.org \[25\]](http://www.zenodo.org/25).

183 **References**

- 184 [1] S. Diamond, The microstructure of cement paste and concrete - A visual primer, *Cement and Concrete Composites* 26 (8) (2004) 919–933.
185 doi:10.1016/j.cemconcomp.2004.02.028.
- 186 [2] V. S. milauer, Z. Bittnar, Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste, *Cement and*
187 *Concrete Research* 36 (9) (2006) 1708–1718. doi:10.1016/j.cemconres.2006.05.014.
- 188 [3] K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, F. Sorrentino, Determination by nanoindentation of elastic modulus and hardness of pure
189 constituents of Portland cement clinker, *Cement and Concrete Research* 31 (4) (2001) 555–561. doi:10.1016/S0008-8846(00)00505-6.

190 [4] M. A. Homel, J. Iyer, S. J. Semnani, E. B. Herbold, Cement and Concrete Research Mesoscale model and X-ray computed micro-tomographic
191 imaging of damage progression in ultra-high-performance concrete, *Cement and Concrete Research* 157 (October 2021) (2022) 106799.
192 doi:10.1016/j.cemconres.2022.106799.
193 URL <https://doi.org/10.1016/j.cemconres.2022.106799>

194 [5] M. M. Thakur, N. A. Henningsson, J. Engqvist, P.-O. Autran, J. P. Wright, R. C. Hurley, On mesoscale modeling of concrete: Role of
195 heterogeneities on local stresses, strains, and representative volume element, *Cement and Concrete Research* 163 (2023) 107031.

196 [6] Y.-j. Huang, S. Natarajan, H. Zhang, F.-q. Guo, S.-l. Xu, C. Zeng, Z.-s. Zheng, A ct image-driven computational framework for investigating
197 complex 3d fracture in mesoscale concrete, *Cement and Concrete Composites* 143 (2023) 105270.

198 [7] S. Naderi, W. Tu, M. Zhang, Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates, *Cement and
199 concrete research* 140 (2021) 106317.

200 [8] R. Hurley, D. Pagan, An in-situ study of stress evolution and fracture growth during compression of concrete, *International Journal of Solids
201 and Structures* 168 (2019) 26–40.

202 [9] R. C. Hurley, D. C. Pagan, E. B. Herbold, C. Zhai, Examining the micromechanics of cementitious composites using in-situ x-ray measure-
203 ments, *International Journal of Solids and Structures* 267 (2023) 112162.

204 [10] M. Königsberger, B. Pichler, C. Hellmich, Micromechanics of itz-aggregate interaction in concrete part ii: Strength upscaling, *Journal of the
205 American Ceramic Society* 97 (2) (2014) 543–551.

206 [11] M. Königsberger, M. Hlobil, B. Delsaute, S. Staquet, C. Hellmich, B. Pichler, Hydrate failure in itz governs concrete strength: A micro-to-
207 macro validated engineering mechanics model, *Cement and Concrete Research* 103 (2018) 77–94.

208 [12] M. Königsberger, B. Pichler, C. Hellmich, Micromechanics of ITZ-aggregate interaction in concrete part I: Stress concentration, *Journal of
209 the American Ceramic Society* 97 (2) (2014) 535–542. doi:10.1111/jace.12591.

210 [13] K. Tanaka, Note on volume integrals of the elastic field around an ellipsoidal inclusion, *J. elasticity* 2 (1972) 199–200.

211 [14] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, *Proceedings of the royal society of
212 London. Series A. Mathematical and physical sciences* 241 (1226) (1957) 376–396.

213 [15] O. Stamati, E. Roubin, E. Andò, Y. Malecot, P. Charrier, Fracturing process of micro-concrete under uniaxial and triaxial compression: Insights
214 from in-situ X-ray mechanical tests, *Cement and Concrete Research* 149 (June) (2021) 106578. doi:10.1016/j.cemconres.2021.106578.

215 [16] M. M. Thakur, S. Enright, R. C. Hurley, Phase segmentation in x-ray ct images of concrete with implications for mesoscale modeling,
216 *Construction and Building Materials* 403 (2023) 133033.

217 [17] N. A. Henningsson, S. A. Hall, J. P. Wright, J. Hektor, Reconstructing intragranular strain fields in polycrystalline materials from scanning
218 3dxrd data, *Applied Crystallography* 53 (2) (2020) 314–325.

219 [18] Y. Hayashi, D. Setoyama, Y. Seno, Scanning three-dimensional x-ray diffraction microscopy with a high-energy microbeam at spring-8, in:
220 *Materials Science Forum*, Vol. 905, Trans Tech Publ, 2017, pp. 157–164.

221 [19] A. Henningsson, M. Kutsal, J. P. Wright, W. Ludwig, H. O. Sørensen, S. A. Hall, G. Winther, H. F. Poulsen, Microstructure and stress mapping
222 in 3d at industrially relevant degrees of plastic deformation, *Scientific Reports* 14 (1) (2024) 20213.

223 [20] A. Gupta, K. Ramesh, R. Hurley, An inclusion model for predicting granular elasticity incorporating force chain mechanics, *Granular Matter*
224 26 (2) (2024) 40.

225 [21] M. Königsberger, B. Pichler, C. Hellmich, Micromechanics of ITZ-Aggregate Interaction in Concrete Part II: Strength Upscaling 97 (2) (2014)
226 543–551. doi:10.1111/jace.12606.

227 [22] S. Li, G. Wang, Introduction to micromechanics and nanomechanics by Shaofan Li, Gang Wang (z-lib.org) (2008).

228 [23] Y. Hayakawa, T. Oguchi, Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner, *Computers*

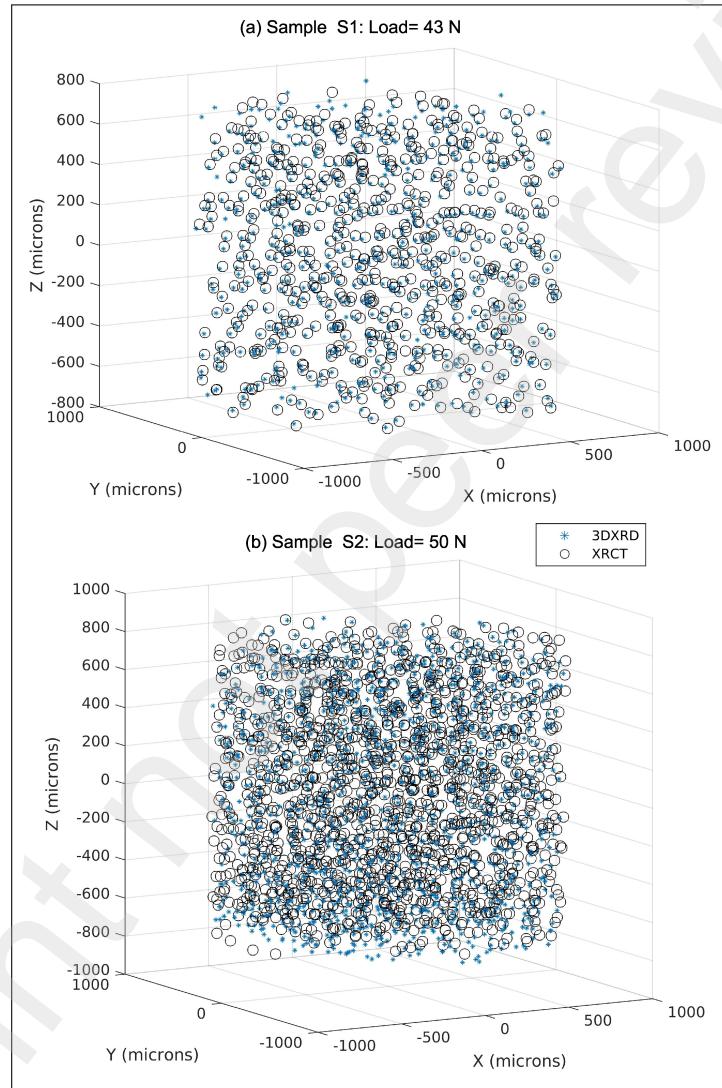
229 & geosciences 31 (6) (2005) 735–741.

230 [24] M. Königsberger, M. Hlobil, B. Delsaute, S. Staquet, C. Hellmich, B. Pichler, Hydrate failure in ITZ governs concrete strength:

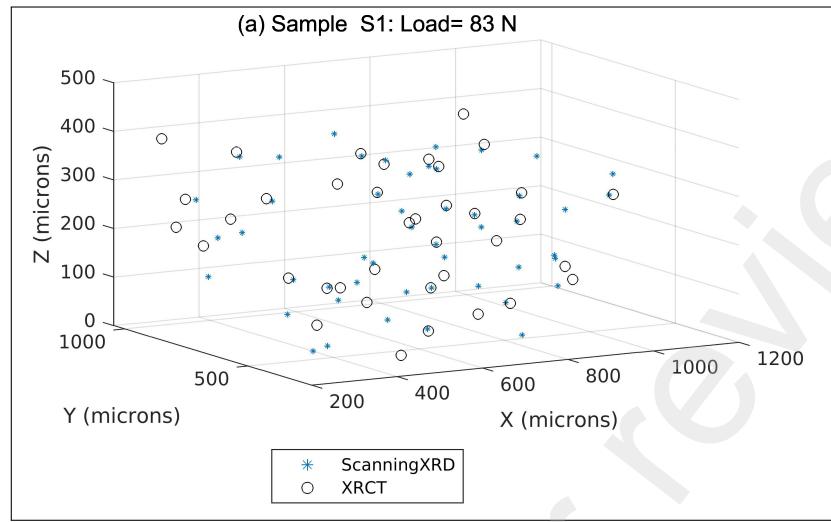
231 A micro-to-macro validated engineering mechanics model, Cement and Concrete Research 103 (November 2017) (2018) 77–94.

232 doi:10.1016/j.cemconres.2017.10.002.

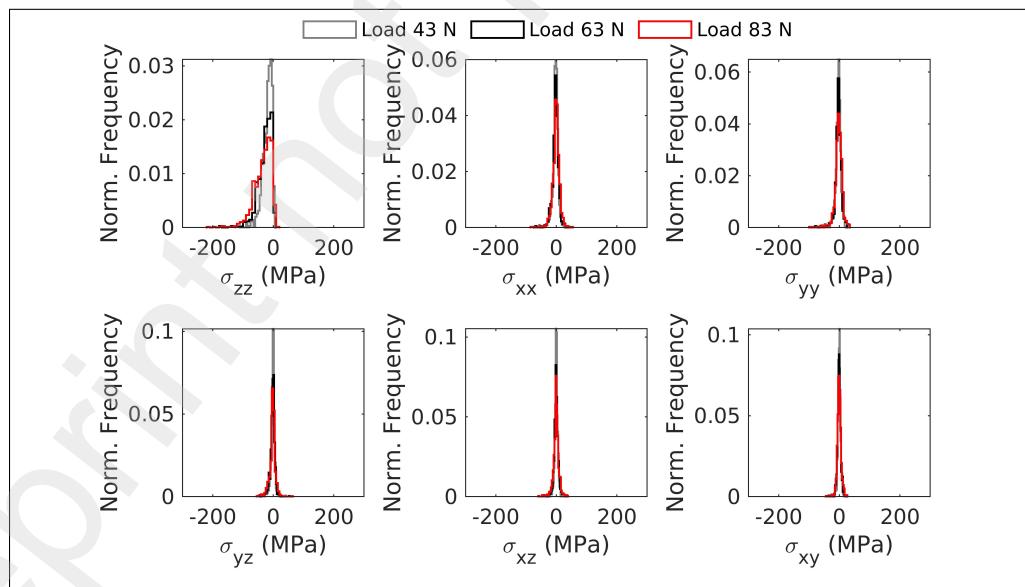
233 URL <https://doi.org/10.1016/j.cemconres.2017.10.002>

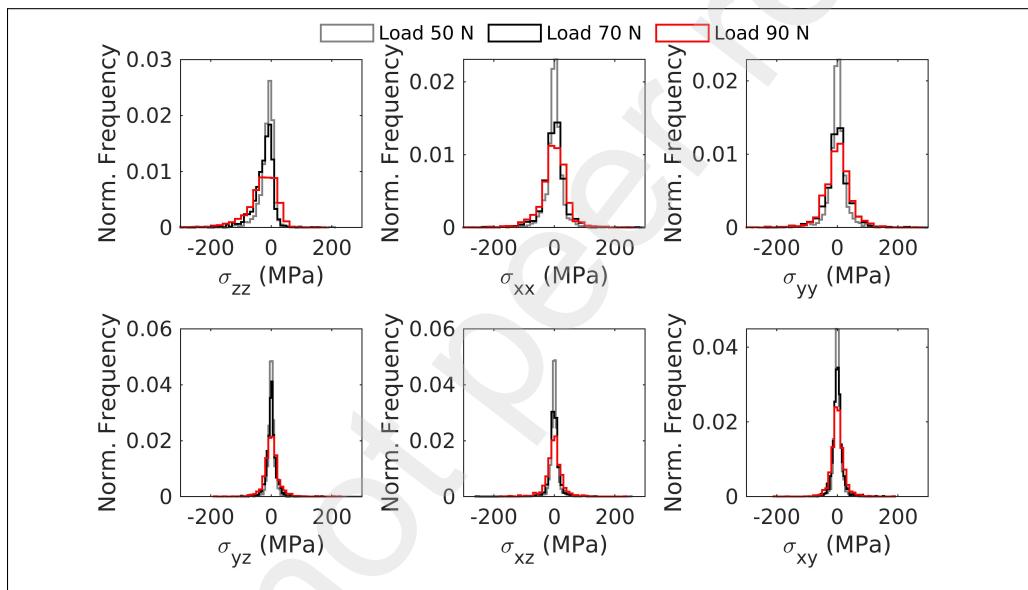

234 [25] M. M. Thakur, N. A. Henningsson, J. Engqvist, P.-O. Autran, J. P. Wright, R. C. Hurley, Dataset for article titled “grain-scale stress hetero-

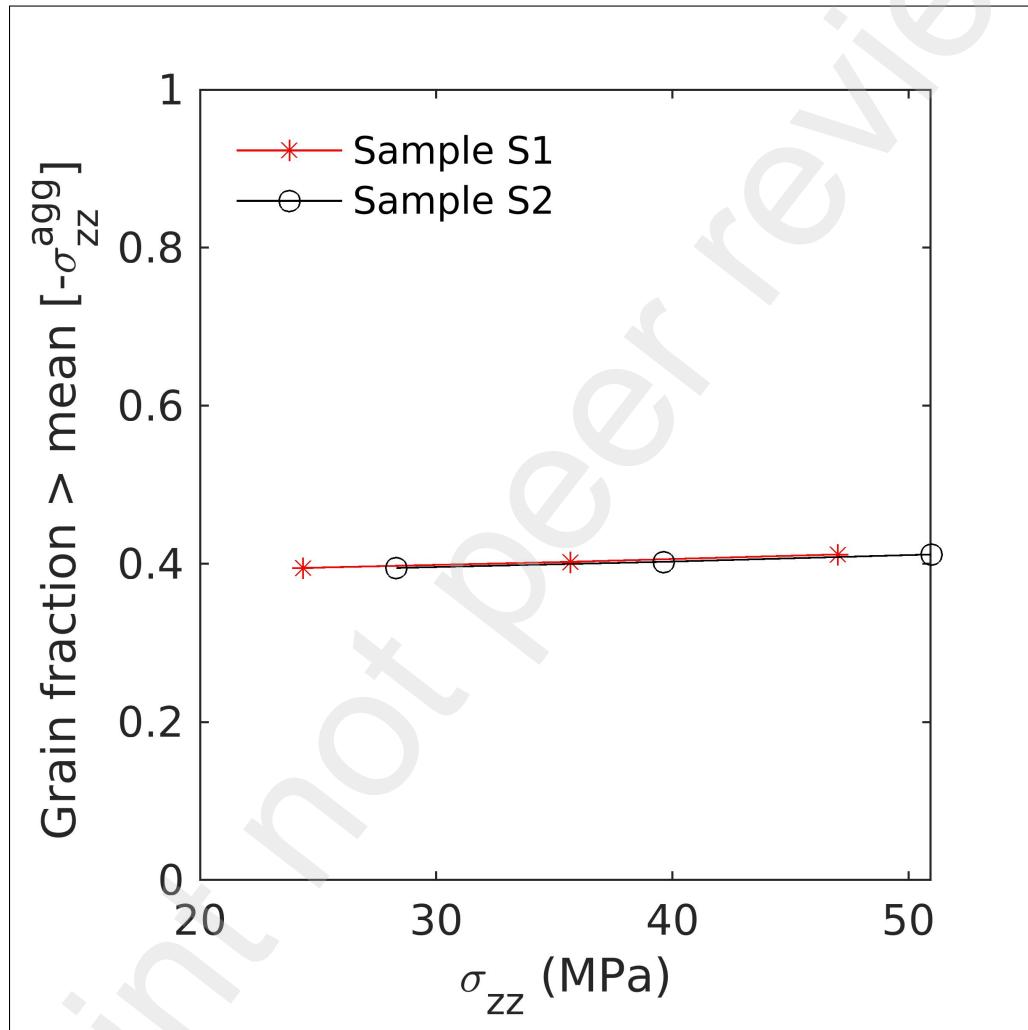
235 geneity in concrete from in-situ x-ray measurements”, Zenodo, <https://doi.org/10.5281/zenodo.14003326>, deposited: 2024-10-29


236 (2024).

Supplemental Material: Grain-scale stress heterogeneity in concrete from in-situ X-ray measurements


This supplementary materials document contains additional figures to support the results and discussion of the communication associated with this document.


Fig. S1. Centroids of grains showing registration of x-ray computed tomography imaging (XRCT) and 3D x-ray diffraction (3DXRD). (a) Sample S1. (b) Sample S2.


Fig. S2. Centroids of grains showing registration of x-ray computed tomography imaging (XRCT) and scanning 3DXRD (s3DXRD) for Sample S1.

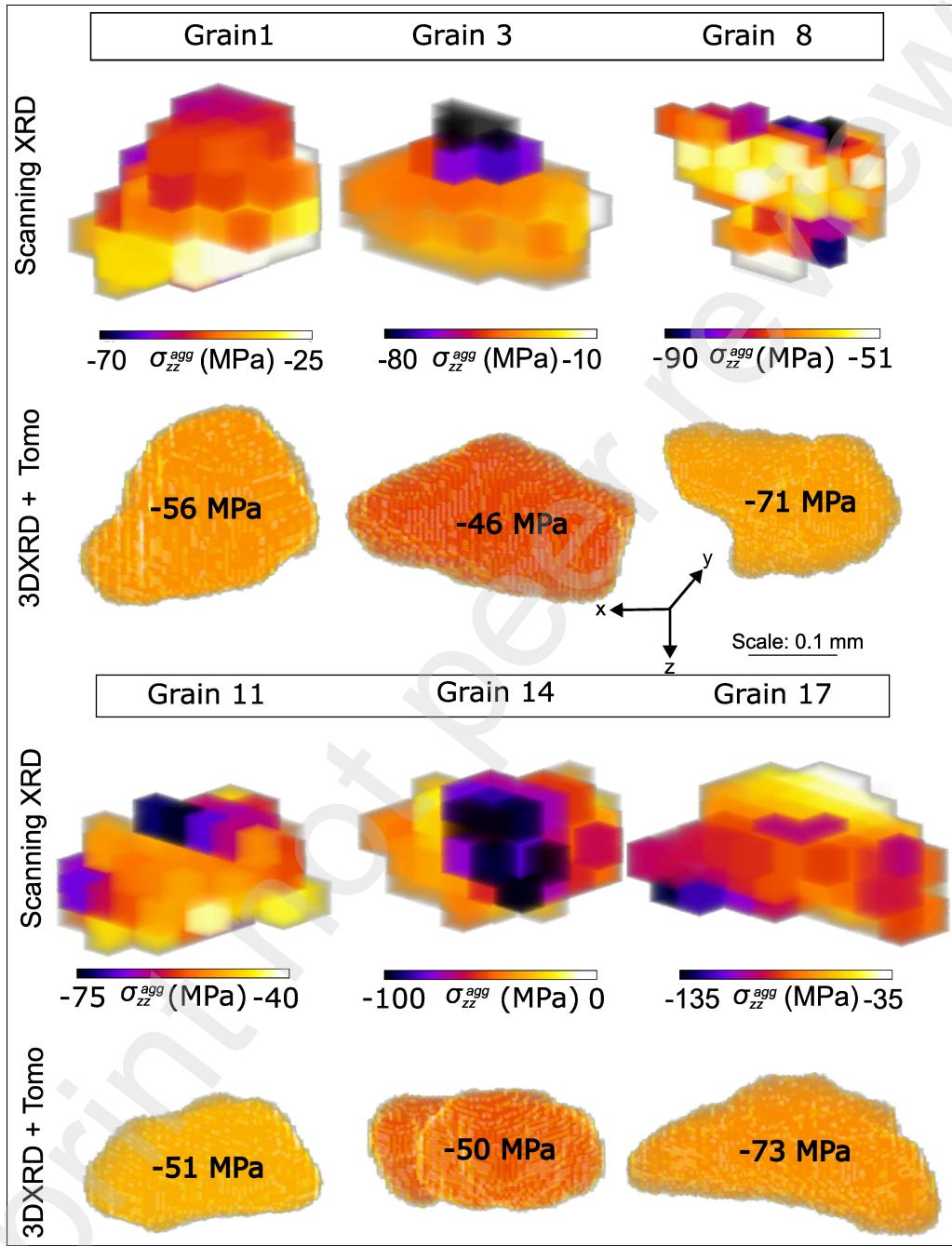

Fig. S3. Distribution of components of average individual aggregate stresses for different macroscopic loads obtained from 3DXRD for sample S1.

Fig. S4. Distribution of components of average individual aggregate stresses for different macroscopic loads obtained from 3DXRD for sample S2.

Fig. S5. Fraction of grains with σ_{zz}^{agg} stresses more negative (compressive) than the mean aggregate stress for Samples S1 & S2 at different levels of macroscopic average stress (x-axis).

Fig. S6. Close visualization of intra-aggregate σ_{zz} field for macroscopic load of 83 N obtained from s3DXRD for Sample S1. For comparison, the grain stress obtained for the corresponding grain from 3DXRD is plotted below each s3DXRD rendering.