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Abstract—Heterogeneous computing environments combining
CPU and GPU resources provide a great boost to large-scale
scientific computing applications. Code generation utilities that
partition the work into CPU and GPU tasks while consider-
ing data movement costs allow researchers to develop high-
performance solutions more quickly and easily, and make these
resources accessible to a larger user base.

We present developments for a domain-specific language
(DSL) and code generation framework for solving partial dif-
ferential equations (PDEs). These enhancements facilitate GPU-
accelerated solution of the Boltzmann transport equation (BTE)
for phonons, which is the governing equation for simulating ther-
mal transport in semiconductor materials at sub-micron scales.
The solution of the BTE involves thousands of coupled PDEs as
well as complicated boundary conditions and solving a nonlinear
equation that couples all of the degrees of freedom at each time
step. These developments enable the DSL to generate config-
urable hybrid GPU/CPU code that couples accelerated kernels
with user-defined code. We observed performance improvements
of around 18X compared to a CPU-only version produced by
this same DSL with minimal additional programming effort.

Index Terms—Domain-specific language, GPU, code genera-
tion, physics, differential equations

I. INTRODUCTION

The analysis of thermal transport is crucial in assessing the
performance, cost-effectiveness, and reliability of integrated
circuits since overheating is a common cause of their break-
down. In developing methods for heat removal, it is necessary
to model the fundamental mechanisms of thermal transport.
The size of modern semiconductor devices ranges from a few
tens of nanometers to a few hundreds of nanometers. At room
temperature, the mean free path of energy-conducting phonons
in silicon is approximately 300 nm [1], which is comparable
to the device’s characteristic length scale. In such cases,
continuum equations such as Fourier’s law of heat conduction
are inadequate to accurately predict heat conduction, making it
necessary to utilize the Boltzmann Transport Equation (BTE)
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due to its validity in non-equilibrium heat conduction over a
wide range of length scales.

Boltzmann Transport Equation (BTE) is a seven-
dimensional (7-D) nonlinear integro-differential equation
consisting of three spatial coordinates, three wavevector
coordinates, and time. Even after linearizing it under the
single relaxation time approximation, solving the equation is
a difficult task. To address this, researchers have employed
the Monte Carlo method, which is useful in incorporating
complex physics such as dispersion, polarization, and
boundary scattering [2], [3]. However, this method is
impractical due to its high cost. Alternatively, deterministic
discretization-based methods have been used to obtain the
unsteady solution of both gray and non-gray BTE, but the
solution process remains a challenging research area in terms
of both memory and computational time [4].

The BTE poses unique challenges regarding performance,
parallelization and scalability compared with traditional PDE
systems. Firstly, the size of the problem grows rapidly due
to its seven-dimensional nature, even for modest resolutions.
To obtain a spatial and angular grid-independent solution and
accurately resolve the length scales, a practical device would
require approximately ~ 10° cells in spatial discretization,
400 directions (20 azimuthal and 20 polar angles), and 40
bands in the spectral space (15 bands with two polarizations
and 25 bands with one polarization). This typical discretiza-
tion results in 22000 coupled PDEs in space and time. In
the time dimension, iterative solvers take 10-20 iterations
(depending on the time step size) to attain 3-4 orders of
convergence within each time step. In most cases, ~ 10000
time steps are necessary to reach steady state or a state where
physically meaningful measurable quantities can be predicted.
These computational requirements pose significant challenges
in terms of parallelization and scalability, especially strong
scalability being a bottleneck for reducing the overall time to
solution, as traditional codes can take weeks to months for
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large 3D problems [4]. High-throughput architectures, such as
modern GPUs can help reduce the overall time to solution,
thereby greatly speeding up semiconductor design. However,
the complexity of the 7-D system along with the need to
apply complex boundary conditions makes this task extremely
challenging.

In this work, we use a modular domain specific language
(DSL) to implement the phonon BTE and add support for
GPU execution. The use of a modular DSL enables rapid
development of the codes while ensuring correctness and
exploration of different work distribution strategies. In partic-
ular, complexity within BTE applications require specialized
boundary conditions that are typically implemented via user-
supplied callback functions. These are implemented by domain
scientists based on their experimental needs. Unless these
are intentionally written for GPU processing, they may be
challenging to automatically port to the GPU. As a solution to
these constraints, we retain such callbacks to execute on the
CPU, and optimize for offloading functions to the GPU based
on minimizing the overall data-movement between the CPU
and the GPU. The DSL automatically partitions tasks between
the CPU and GPU by minimizing the data movement. The
complexity of the BTE system provides several options for
such optimizations.

II. GENERATING CODE

The task of writing optimized code for a complex applica-
tion is made even more challenging when designing it to take
advantage of heterogeneous architectures. Careful considera-
tion must be made about which parts of the computation are
best suited to which hardware resources. This decision also
needs to account for the data movement costs. Then once an
efficient code has been developed any changes to the model,
mesh, or hardware may necessitate a costly redesign. A good
alternative is to generate the code automatically by combining
an abstract description of the problem with details about the
task and computing environment. Now changes to the scenario
will automatically be accounted for in the generated code.
Here we describe a DSL and code generation framework that
is capable of generating code for complicated scientific models
on heterogeneous systems.

A. Domain-specific Language

The DSL Finch is a recently developed tool for numerical
solution of PDEs in the Julia programming language [5], [6].
It was designed to emphasize flexibility, and includes support
for finite element and finite volume methods (FEM and FVM).
It also has a modular code generation system that allows
development of new generation targets aimed at particular
software libraries or hardware configurations.

For our application Finch provides key functionality that is
lacking in others. Specifically, we need to efficiently integrate
user-written callback functions into the code, and have the
expressiveness to write a very large number of coupled equa-
tions. The ability to easily make choices about the structure
of the generated code, along with the ability to hand-modify
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the code as desired, make this DSL ideal for exploring and
optimizing variations.

In this work we focus on an FVM application as described
further in the next section. More specifically, we consider
a large set of coupled, linear PDEs that will be integrated
with an explicit time stepping method. For demonstrations
involving other mathematical techniques, such as FEM and
more sophisticated time stepping routines, refer to prior work
with Finch [5], [7], [8].

This choice of numerical methods means that no linear
system needs to be solved, and the solution is simply advanced
in time based on a local calculation. Given the large number
of mostly independent calculations, this problem is very well
suited to a GPU architecture. On the other hand, there are com-
plications that will require a careful code design as described
further below.

Our equation, which is presented in more detail in section
3, is formulated as a conservation equation for an unknown
variable u. Eq. 1 represents a general form of this equation
after integrating over a control volume to make use of FVM.
Here s(u) is a source term. f(w) is a flux that is integrated
over the surface of the cell, and arises after application of the
divergence theorem.

é)—udV = /
v

ot
v

s(u)dV — | f(u)dA (1)
!

Before we can turn this equation into input for Finch, we
need to define the parts of the expression. Variables and coeffi-
cients are represented by entities that have a label, a symbolic
representation, values, and other metedata. Finch uses the
SymEngine library to represent and manipulate the symbolic
expressions. It is accessed in Julia through the SymEngine.jl
library [9]. In addition, we need to define some operators to
work with the symbols. SymEngine provides basic arithmetic,
while the DSL includes a set of common differential and
vector operators as well as some special ones like the upwind
operator used below. A powerful feature of the DSL is the
ability to define and import any custom symbolic operator.
For example, a more sophisticated flux reconstruction could be
created and used in the input expression similar to upwind.

The input for equation like (1) in Finch consists of the
integrands on the right side of the equation. Note that the
integrals and the time derivative term on the left are implicitly
included.

conservationForm(u, "s(u)-surface(f(u))")

Here the expressions for s(u) and f(u) need to be replaced
with their actual forms. For example, the reactive source term
—ku and advective flux term ub - n could be entered as:

conservationForm (u,

"-k+u-surface (upwind (b, u))")

Note that an upwind operator has been defined for recon-
structing an upwind flux of this form.

The first processing step done by Finch is to transform this
input into an expanded symbolic representation:
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—~TIMEDERIVATIVE+_u_1- _k_1%_u_1-SURFACE=*
conditional (_b_1+*NORMAL_1+_b_2+NORMAL_2>0,
(_b_1+*NORMAL_1+_b_2%NORMAL_2)*CELL1_u_1,
(_b_1+«NORMAL_1+_b_ 2*NORMAL_2)*CELL2_u_1)

Next, we will consider the forward Euler time integration
scheme, though a similar treatment applies to explicit methods
in general. Applying this scheme results in Eq. 2, where ug is
the known value from the previous time step.

/udV:/uodV—i-dt/s(uo)dV—dt/f(uo)dA 2)
v v v v

The corresponding transformation to the symbolic form results
in:

u_ 1l =
~u_1-dtx_k 1+ u_ 1-dt*SURFACE=*
conditional (_b_1+«NORMAL_1+_b_2+NORMAL_2>0,
(_b_1+*NORMAL_1+_b_2*NORMAL_2)*CELL1_u_1,
(_b_1#NORMAL_1+_b_ 2*NORMAL_2)*CELL2_u_1)

We approximate these integrals by setting the values in
the control volume or on the surface equal to their average.
Then considering a polygonal/polyhedral cell with m sides,
the calculation for a given cell is Eq. 3, where A; is the area
of face .

u = ug + dt (5(u0) — % ZAJ(U@) 3)
i=1

Finch organizes the symbolic terms into categories
depending on the presence of unknowns and the type
of integral. Here LHS refers to left-hand side, where
terms involve unknown variables. RHS is right-hand
side, where all quantities are known. Volume and

surface mean volume and surface integration respectively.
LHS volume:

—u 1l

RHS volume:
_u_l-dtx_k_1x_u_1

RHS surface:
—dtxconditional (
_b_ 1xNORMAL_1+_b_2*NORMAL_2 > 0,
(_b_1+#NORMAL_1+_b_2*NORMAL_2)*CELL1_u_1,
(_b_1#NORMAL_1+4+_ b 2*NORMAL_2)*CELL2_u_1)

These transformations for time stepping and integration are
performed automatically by the DSL to match the chosen
time stepping scheme and equation form. Another example
is weak form equations that are used with the finite element
discretization. In that case the terms would be organized
into linear and bilinear groups, and for volume, boundary, or
surface integration.

Once the symbolic representation is expanded, sorted, and
simplified, it will be combined with the rest of the config-
uration information to create a more complete intermediate
representation (IR). Information about the numerical methods
and mesh are included to form a complete description of the
computation in the form of a computational graph. Unlike

other such graphs, this IR also includes metadata about the
parts of the computation and comment nodes to facilitate
generation of easily readable code.

The IR must remain at a relatively abstract level to be
compatible with several different code generation targets.
Different targets may perform calculations in different ways
and structure the code in different ways to achieve an optimal
solution. This is demonstrated in the application in Section
3. Another example is for linear algebra operations such as
matrix multiplication. Code generation targets for different
languages need to account for different data layouts to take
advantage of vectorization. This means that the IR needs to
represent these computations on the level of abstract linear
algebra operations.

B. Code Generation

At a high level, the calculation involves a loop over time
steps containing loops over cells to update the values of the
unknown variable u. A rough sketch of the needed computa-
tion is illustrated here. Note that s (u) represents the volume
integral terms, and f (u) the surface integral terms. They
will also include any code for calculating or fetching the
needed coefficients, variable values, and geometric quantities.
For brevity we will only use s (u) and f (u)

for step = 1l:Nsteps
for cell = 1:Ncells

source = s (u)
flux = 0
for face = 1l:Nfaces
flux += f(u, u_neighbors)
end
u_new = u + dt % (source + flux)

apply_boundary_conditions (u_new)
end

u = u_new
time += dt
end

For our purposes the time step loop is always done sequen-
tially. The cell loop can be done in parallel very easily, with
the only connection being the need for neighboring values
in the flux calculation. A variety of parallel strategies can
be used, ranging from distributed memory multiprocessing,
to CPU multithreading, to GPU multithreading. Depending on
the details of s(u), f(u), and the boundary conditions, this
may be efficiently parallelized on a GPU. When generating
code to run completely on the GPU with one thread per cell,
it has the following structure.

for step = 1:Nsteps
cell = threadID

source = s (u)
flux = 0
for face = 1:Nfaces
flux += f(u, u_neighbors)
end
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u_new u + dt * (source + flux)
apply_boundary_conditions (u_new)

u u_new
time += dt
synchronize_threads ()

end

The BTE also involves an additional processing step to
evolve the temperature in each cell. It is necessary to do
this at each time step due to the presence of temperature-
dependant quantities in the equation that will be introduced
in the next section. The relationship between the non-linear
phonon energy distribution and temperature is highly non-
linear. The change in temperature can be approximated by
calculating the phonon energy flux and using the first law of
thermodynamics. The energy calculation involves integrating
the phonon intensity over all directions and bands, which
means that all degrees of freedom are loosely coupled for each
cell by this process. This relation is not of the form of a PDE
that can be expressed in the context of Finch. This means that
hand-written code needs to be developed and coupled with
the code generated by the DSL. While Finch supports such
user-supplied callback functions, it is not possible to optimize
these the same way as functions written purely in the DSL.
To complicate things further, this additional code is written
for execution on a CPU, which means that any generated GPU
kernels need to work alongside the host code. Communication
is required, and decisions must be made by the DSL related
to the structure of the code efficiently. Here is one example
configuration.

GPU kernel:

cell = threadID
source = s (u)
flux = 0

for face 1:Nfaces
flux += f(u, u_neighbors)

end

u_new = u + dt x (source + flux)
CPU code:

for step = 1l:Nsteps

(launch GPU_kernel asynchronously)
compute_boundary_contribution (u_bdry)
(synchronize and get u_new from GPU)

u u_new + u_bdry
(external post-processing)
(send u to GPU)
time += dt

end

Note that this involves substantial communication between
GPU and host at each time step. In some cases this may be
too expensive to be practical, but as demonstrated below there
are cases in which it is still beneficial. Given the sensitivity
of communication, Finch will automatically determine what
variables need to be updated and communicated during each
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step. Other values will either only be sent once, or not at all.

III. DEMONSTRATION: BOLTZMANN TRANSPORT
EQUATION

The phonon Boltzmann Transport Equation (BTE) is used to
describe heat transfer in nanometer-scale semiconductor mate-
rials [10], [11]. The challenge of this model is that it involves
solving a seven-dimensional PDE to compute the phonon
intensity. Typically, this is done by partially discretizing three
of the dimensions to create a large number — hundreds to tens
of thousands — of loosely coupled four-dimensional (time and
three spatial coordinates) PDEs as detailed below. Although
this presents a challenging problem to solve, it also presents
some unusual opportunities for designing efficient parallel
strategies.

Given the loose nature of their coupling, the equations can
be solved almost independently in parallel. Several parallel
configurations have been explored with promising results [12]-
[14].

A. Model

The BTE may be written in terms of the phonon intensity,
1, as Eq.(4) [10], [11].

ol

i )

where v, is the group velocity, 7 is the scattering time-scale,
and [ is the equilibrium distribution function per direction.
The intensity represents a phonon energy distribution function,
I =I(x,t,s,w), dependent on position x, time ¢, wave vector
direction s, and frequency w. The direction and frequency are
partitioned into discrete angular vectors and frequency bands,
and will be denoted with the subscripts d and b respectively
as in Id,b-

The frequency space is typically discretized into 40 [15]
to 80 [14] spectral bands. Since we also need to account
for longitudinal and transverse polarizations, and the separate
polarizations can also be treated independently, the number
of distinct equations will be larger. For this work we use
40 frequency bands, which results in 40 longitudinal bands
and an additional 15 transverse bands. The number of discrete
direction vectors for a general 3-dimensional problem can be
around 20 x 20 = 400 [14], but simpler configurations such
as axisymmetric [15] and 2-dimensional [8] can be done with
much fewer. For this study, we consider a 2-dimensional case
with 20 directions.

Some very coarse-grained 3-dimensional runs were also
performed successfully. However, to go from two to three
dimensions with comparable resolution requires a significant
increase in both the number of cells and directions. It increases
the dimensionality of the problem by two dimensions. For the
purpose of demonstrating the usefulness of Finch in modeling
a very complex system while presenting meaningful results,
we decided to focus on a two-dimensional (2-D) BTE model.

The finite volume method is used to solve Eq.(4). Integration
is done over a control volume V, and the divergence theorem
is applied to the advective term to give Eq.(5). The time
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tv, - VI=""%
=
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derivative can be integrated using a variety of methods. To
facilitate resolution of high-frequency transient behavior, the
time steps should be kept relatively small [15]. This means that
a simple explicit scheme such as forward Euler is reasonable.

I Ioy — 1,

9 d’de:/Mdvf\vg|b/ldbsd‘ndA 5)
ot Th ’

14

\%4 oV

Temperature is ultimately the quantity of interest, so it
is necessary to derive thermal information from the phonon
intensity. This relationship is indirect and nonlinear, and must
be computed at every time step to determine the equilibrium
intensity. We have adopted the formulation and relation to
temperature used in [14] and [4]. Please refer to those for
more detailed descriptions of the physics.

The boundary conditions are where the directions may be
coupled. Although intensity of phonons with different direc-
tions are treated as independent in the interior bulk, reflective
or symmetry conditions will couple values from different
directions depending on the geometry of the boundary. This
work includes symmetry and isothermal boundaries, so the
coupling must be considered. Our numerical procedure sets
the flux through the boundary faces by effectively setting the
intensity of ghost cells on the outside according to Eq.(6)
where r is the direction vector index corresponding to a
reflection.

outside __
Id,b - {

In this demonstration, one side of the domain has an
isothermal boundary representing a cold wall at the same
temperature as the initial equilibrium. The opposing wall is
also isothermal, but with a centered heat source with a narrow
Gaussian profile. This represents a hot spot. The remaining
boundaries are symmetric, which represents specular reflection
or a repeating configuration on either side. See figure 1.
The initial condition is a thermal equilibrium at the same
temperature as the cold wall of the domain.

The parameters used in our tests set the initial equilibrium
and cold wall temerature at 300. The hot spot has a peak
temperature of 350 with a 1/¢? distance of 10um. The
domain size is 525um X 525um to match the scenario used
in [15]. The mesh is a 120 x 120 grid of uniform cells. We
use 40 frequency bands resulting in 55 discrete bands when
accounting for polarization. A set of 20 uniformly distributed
direction vectors is used, resulting in 20 x 55 = 1100 intensity
degrees of freedom per cell, or about 1.6 x 107 overall. All
of the performance calculations below are for 100 time steps,
which corresponds to 100ns of elapsed time. The temperature
profile in figure 2 is after a longer duration of 20us (20,000
time steps).

Toy
Ir,b

at isothermal boundary ©)

at symmetric boundary

B. Encoding in the DSL

A goal of the DSL is to take equation input in an intuitive
form that closely resembles the mathematics. The conservative
integral form of the FVM discretization includes the volume
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centered Gaussian heat source

symmetryj initial equilibrium at T=300 | symmetry

cold wall at T=300

Fig. 1. Schematic of the 2-dimensional domain.

temperature

3.0e+02 305 310 3156 320 325 330 3.4e+02

— ! ‘ : I

Fig. 2. Temperature of the material after 205 (20,000 time steps). This view
is zoomed in to highlight the region around the hot spot. White contours show
the spread of heat.

and surface integrals of Eq.(5) above. The corresponding input
to the DSL is:

conservationForm (I,

"(Io[b] - I[d,b]l) / betalb]l +
surface (vg[b] » upwind([Sx[d];Sy[d]],
I[d,b]I))")

Note that an upwind approximation is used for the flux with
direction vector S [Sx; Syl. Since we are using the
default flux reconstruction order of one, this will generate a
first-order upwind approximation.

All of the symbols appearing in this expression, such as
variables, coefficients, and indices, must first be defined.
We refer to these as entities, and they are created with the
following commands.

d=index ("d", range=[1,ndirs])
b=index ("b", range=[1,nbands])
I=variable ("I", type=VAR_ARRAY,
location=CELL, index=[d, b])
Io=variable ("Io", type=VAR_ARRAY,
location=CELL, index=[d])
tau=variable ("tau", type=VAR_ARRAY,
location=CELL, index=[d])
Sx=coefficient ("Sx",sx_val, type=VAR_ARRAY)
Sy=coefficient ("Sy",sy_val, type=VAR_ARRAY)
vg=coefficient ("vg",vg_val, type=VAR_ARRAY)

Although I, and 7 are assumed as known in the equation for /,
they are dependent on temperature, which is in turn dependent
on I. They are created as variables that have mutable values
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for each cell. On the other hand, s and v, can be considered
coefficients. They have values that are either pre-computed
arrays or defined by a function of space-time coordinates.

The initial condition we use for [ is the equilibrium intensity
for a uniform temperature. These frequency dependent values,
I_init, are set with

initial (I, [I_init([b]

for d=1l:ndirs, b=1l:nbands])

The boundary conditions involve a more complicated calcula-
tion. In order to provide more flexibility, Finch allows custom
callback functions to be imported and used as coefficients and
boundary conditions. This option is a good choice for our
problem. Importing can be done by wrapping the function in
a macro:

@callbackFunction (
function isothermal (...)

)

Then the isothermal boundary condition can be set as a flux
condition for variable I on boundary region 1 with:

boundary (I, 1, FLUX,
"isothermal (I,vg,Sx,Sy,b,d,normal,300)")

The relevant values for parameters to be passed to the function
will be interpreted automatically by Finch.

The temperature update that must occur each time step is
indirectly based on the intensity values and involves a nonlin-
ear relation that cannot be simply written within the context of
the PDE for I. Alternatively, we perform it as a kind of post-
processing step to be done after each step. Finch provides a
simple way to insert arbitrary pre-step or post-step code. The
following command will cause the temperature_update
function to be called after each time step.

postStepFunction (temperature_update) ;

Other configuration details that need to be specified include
time stepping scheme, discretization type, and order. A mesh
must either be imported from a Gmsh or MEDIT formatted
mesh file, or generated internally by Finch’s simple generation
utility. The relevant commands are illustrated in the documen-
tation and example scripts are available in the code repository
(reference withheld).

C. CPU Multiprocessing

The common way of partitioning this sort of calculation is to
divide the meshed domain into groups of cells to be worked
on in parallel. A significant part of the overhead with this
strategy is the communication of neighboring cell values along
the partition interfaces. Multithreaded CPU techniques can
overcome this expense, but are limited by hardware constraints
on number of cores and data movement.

The BTE presents another option for partitioning the calcu-
lation. Since there are a large number of equations that are only
sparsely or indirectly coupled, it is more efficient to partition
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Fig. 3. Top: Partitioning the mesh requires communication between neighbors
for all values of I;p, shown by the blue lines. Bottom: Partitioning the
equations can require much less communication when there are a large number
of partitions. In this case, different directions may be coupled at the boundary
as shown in blue.

among the equations. Figure 3 illustrates the different com-
munication patterns. Partitioning the equations, or equivalently
the indices of 1, requires much less communication. This is
particularly relevant in 3 dimensions and with a large number
of partitions.

In particular, when partitioning among the bands the bound-
ary communication can be avoided as well. The coupling of
the bands only occurs in the temperature update, which in
turn only requires a reduction of intensity across bands. This
would be an optimal configuration where communication costs
are substantial, but is limited by the relatively small number
of bands.

In Finch, the choice of partitioning strategy is simple. By
default the mesh will be partitioned according to the number
of available processes. The library Metis.jl, which is a Julia
wrapper for the Metis library, is used for mesh partitioning.
Alternatively, one can specify the number of partitions to
create when building or importing the mesh. For the band-
parallel case we will set the mesh partitions to one and instead
assign sets of bands to each process.

When using indexed quantities like I, 5, the generated code
will include a set of nested loops like:

for cell = 1:Ncells
for dir = 1:Ndirections
for band = 1:Nbands

Authorized licensed use limited to: TUFTS UNIV. Downloaded on November 21,2024 at 15:36:49 UTC from IEEE Xplore. Restrictions apply.



—S— parallel bands
—&— parallel cells

S 103 ¢ ideal scaling

@

R

)

£

ey

.0

S 520

=}

3 10

9]

x

)

101 L= L L L L L L L

5 10 20 40
number of processes

80 160 320

Fig. 4. Comparison of band-parallel and cell-parallel strategies. For this
configuration the cell-based parallel version is able to scale to a greater number
of processes despite a slightly higher communication cost.

(compute for I[dir,band,cell])

where the default choice of an outermost cell loop is used. If
we wish to permute this ordering to one in which the parallel
band loop is outermost, such as:

for band = 1:Nbands
for cell = 1:Ncells
for dir = 1:Ndirections

(compute for I[dir,band,cell])
the loop ordering can be set with the command:
assemblyLoops ([band, "cells",direction])

The ability to arrange these loops may also be advantageous in
other applications where efficiency or details of the calculation
favor a particular ordering.

Performance measurements were done on a cluster [to
be named in final version] with two-socket Intel XeonSP
Cascadelake nodes with 40 cores each and 192 GB of memory.
Figure 4 illustrates the strong scaling for both the band-
based and cell-based parallel strategies. Despite the higher
communication costs for the cell-parallel version, it was able
to scale well up to 320 processes.

A breakdown of the execution time used by different parts
of the calculation is given in figure 5. It is clear that the
calculation of / dominates. For one to ten processes it accounts
for about 97%, and even at 55 it takes about 73%. Efforts to
improve performance should focus on optimizing this part of
the calculation, which motivates the GPU approach of the next
section.

D. Accelerating with GPUs

The parallelization strategy needs to be reconsidered com-
pletely when designing code for a GPU. Communication
between threads becomes less of an issue, and a very high
degree of partitioning needs to be used. However, our band
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Fig. 5. Breakdown of execution time for the band-parallel strategy.

and cell-based parallel strategies from the previous section will
still be important when using multiple GPUs in a distributed
configuration.

Rather than generating a set of nested loops, the GPU
code generator will flatten all of the loops and distribute
each degree of freedom to separate threads. In the interior
bulk of the domain all of the computations have a similar
sequence of operations, so they can be efficiently computed
without thread divergence issues. The values on the boundary
will require substantially different work, so should be handled
separately. Additionally, to facilitate more complicated, user-
defined boundary conditions, it is much simpler and more
robust to perform this calculation on the CPU with the supplied
callback functions.

One option is to pre-compute the boundary values and send
them to the GPU to include in the full calculation. Another
option is to compute boundary contributions asynchronously
on the CPU to be combined with the interior part after it has
been sent back to the host. Since this application requires the
values of I to be sent to the CPU for post-step processing, the
communication will be done either way. Figure 6 illustrates
this procedure.

To accomplish this very different code generation task, one
only needs to instruct Finch to generate code for a GPU
target with the command useCUDA (). This will cause the
DSL to look for available GPU resources, and if available
configure the code generation process accordingly. Presently
this is limited to Nvidia hardware through the use of CUDA,
with more general GPU support considered for future de-
velopment. To interface with the CUDA tools, Finch uses
Julia’s CUDA jl library. This package also provides simplified
ways of allocating and communicating data between the host
and GPU. Profiling macros also allow the interactive use of
Nvidia’s profiling software, which was used to determine the
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performance metrics given below.

The experiments below were performed with similar CPU
configuration as the previous section paired with eight Nvidia
A6000 GPUs per node. Tests were also done with eight Nvidia
A100 GPUs with similar results. Numerical data used 64-bit
floating point numbers. For this application 32-bit numbers did
not provide adequate precision for long-duration simulation.

Figure 7 shows execution time for this version compared to
the CPU-only strategy of the previous section. The number of
GPU devices and CPU processes is set so that each process is
paired with one device. Partitioning between these is the same
as the band-parallel strategy described above. Strong scaling
for this problem configuration is good up to at least 10 devices,
but larger numbers did not show further speedup. The parallel
efficiency can be estimated by comparing the measured time to
the line representing ideal scaling in the figure. Both curves
display consistently good parallel efficiency over the range
shown.

Although a direct comparison with the CPU-only code
for similar process counts is not fair, we will state that
the best performance using 20 cores on a single CPU was
slightly slower than the same CPU using one core and one
GPU. Profiling the computation with one GPU provided the
following measurements.

SM utilization
memory throughput | 11%
FLOP performance | 49% of peak

Note that these numbers correspond to the roofline for
double-precision capability on an A6000 GPU. This is sub-
stantially lower than the peak single-precision capability, but
as mentioned above, 32-bit floating point numbers are not
sufficient for this application.

The distribution of execution time is significantly different
for this accelerated version. Figure 8, when compared with
figure 5, shows a substantially larger percentage of time spent
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Fig. 7. Performance of GPU accelerated version compared to the CPU-only
code. A band-based partitioning is used with multiple GPUs and the same
number of CPU processes. Compared to the CPU code with an equal number
of partitions, the GPU version is about 18 times faster.

B solve for intensity(GPU) .temperature update(CPU)

B communication(CPU<GPU)

100

80

60

40

20

percentage of execution time

T
2 4

Number of GPUs/processes

Fig. 8. Breakdown of execution time for the GPU accelerated version.

on the temperature update. Since that part of the work is
approximately the same for both versions, it is the intensity
calculation that has been sped up. Also note that the com-
munication time between the GPU and host does not make
up a very significant portion of the time despite the need for
communicating variables at each time step. Further efforts to
minimize communication could have some benefit, but would
not be significant overall.

E. Discussion

The sections above have illustrated the ease of exploring a
variety of parallel strategies using Finch. When working ex-
clusively with CPUs, using one of the alternative partitioning
strategies is a good option for reducing communication. The
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trade-off is the limited number of possible partitions. A real
benefit of using a band-based parallel strategy comes into play
when working across multiple GPUs, where communication
between devices can be particularly expensive.

The performance benefit of using a GPU to accelerate
the calculation of [ is very significant. Combining this with
the user-specified temperature update and boundary condition
code, which is run on the CPU, is simple and seamless from
the user’s perspective as the interaction is all handled within
the generated code.

It is also important to compare and verify these results
with an external code. The exact same model formulation
was used by a previously developed Fortran code that was
hand-written and optimized for band-based parallelism. Our
solutions matched theirs, which had been previously verified
against experimental results. Figure 9 compares our perfor-
mance results against the other code. The sequential execution
of our code takes roughly twice as long as the Fortran code.
This is reasonable considering the other is a hand-written,
single-purpose code.

The relatively poor scaling of the Fortran code is due to
a slightly different parallelization of one part of the calcula-
tion, which becomes increasingly significant at higher process
counts. The use of a GPU makes this comparison unfair, but
consider that the GPU version required almost no additional
programming effort compared to the CPU versions. In terms
of time to solution, we have improved on the CPU-only codes
by a very substantial margin for a given number of processes.
The best possible times were roughly equal between the 10
GPU run and 320 CPU run. The question of which version is
better depends on the resources available and the configuration
of the problem. When working on a single-CPU workstation
equipped with a GPU, it is clear that the GPU version would
be a good choice.
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Fig. 9. Comparison of each strategy as well as a reference Fortran imple-
mentation based on the same model.
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Fig. 10. Temperature of a smaller-scale, elongated material with a heat source
in one corner. Similar to the other example, this has symmetry conditions on
the left and right, and an isothermal boundary on the bottom.

IV. CONCLUSION

The phonon Boltzmann transport equation represents a
high-dimensional PDE that quickly becomes computationally
challenging to solve due to the curse of high dimensionality.
Along with these complications come unusual opportunities
for parallelizing the problem. We have explored an automated
approach to creating efficient parallel code facilitated by the
DSL Finch, which provides a very simple interface for work-
ing with the complex set of equations. Band-based parallel
strategies were compared to typical cell-based methods. The
exploration of these variations was greatly simplified by using
Finch.

The performance of this computation was improved substan-
tially by utilizing GPUs for the computationally expensive part
of the calculation. Switching to this more powerful architecture
required almost no additional programming effort due to the
flexible code generation utilities provided by Finch. We were
able to improve greatly upon the performance of CPU-only
results, including those generated by Finch, as well as a hand-
written Fortran code.
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APPENDIX

Below is an example of the Julia input code for Finch. This
is a simplified version to illustrate the main concepts. For a
full working version, see the example in the repository [16].
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Example input code

#=
2D explicit BTE.

=4

using Finch # Load the DSL package
initFinch ("bte-gpu");

# Model parameters and callback functions
include ("bte-parameters.jl")
include ("bte-boundary.jl")

# Configuration

domain (2) # 2-D
solverType (FV)

timeStepper (EULER_EXPLICIT)

dt = le-12; nsteps = 10000;
setSteps (dt, nsteps);
useCUDA(); # Tells Finch to generate for GPU

# Import a mesh
mesh ("mesh_file.msh")

# Indices and Variables

ndirs 16;

(t_bands, 1_bands) get_band_distribution (40);
total_bands t_bands + 1_bands;

d = index ("d", range=[1l,ndirs])

b = index("b, range=[1l,total_bands])

I = variable("I", type=VAR_ARRAY,
location=CELL, index = [d,b])

Io = variable ("Io", type=VAR_ARRAY,
location=CELL, index = [b])

beta = variable ("beta", type=VAR_ARRAY,
location=CELL, index = [b])

Sx = coefficient ("Sx", dir_x, type=VAR_ARRAY)

Sy = coefficient ("Sy", dir_y, type=VAR_ARRAY)

vg = coefficient ("vg", group_v, type=VAR_ARRAY)

boundary (I, 1, FLUX,
"isothermal_bdry(I,vg,Sx,Sy,b,d,normal,300)")
assemblyLoops (["elements", b, dl])

# After each time step the temperature is updated

postStepFunction (post_step () —>update_temp(...))
# BTE:
conservationForm (I,

"(Io[b] - I[d,b]) x betalb] +

surface (vg[b]*upwind ([Sx[d];Sy[d]l], I[d,bl))")

solve (I)
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