

Automating GPU Scalability for Complex Scientific Models: Phonon Boltzmann Transport Equation

Eric Heisler

*Kahlert School of Computing
University of Utah
Salt Lake City, USA
eric.heisler@utah.edu*

Sandip Mazumder

*Mechanical and Aerospace Engineering
The Ohio State University
Columbus, USA
mazumder.2@osu.edu*

Siddharth Saurav

*Mechanical and Aerospace Engineering
The Ohio State University
Columbus, USA
siddharthsaurav.1@buckeyemail.osu.edu*

Aadesh Deshmukh

*Kahlert School of Computing
University of Utah
Salt Lake City, USA
aadesh.deshmukh@utah.edu*

Hari Sundar

*Kahlert School of Computing
University of Utah
Salt Lake City, USA
hari@cs.utah.edu*

Abstract—Heterogeneous computing environments combining CPU and GPU resources provide a great boost to large-scale scientific computing applications. Code generation utilities that partition the work into CPU and GPU tasks while considering data movement costs allow researchers to develop high-performance solutions more quickly and easily, and make these resources accessible to a larger user base.

We present developments for a domain-specific language (DSL) and code generation framework for solving partial differential equations (PDEs). These enhancements facilitate GPU-accelerated solution of the Boltzmann transport equation (BTE) for phonons, which is the governing equation for simulating thermal transport in semiconductor materials at sub-micron scales. The solution of the BTE involves thousands of coupled PDEs as well as complicated boundary conditions and solving a nonlinear equation that couples all of the degrees of freedom at each time step. These developments enable the DSL to generate configurable hybrid GPU/CPU code that couples accelerated kernels with user-defined code. We observed performance improvements of around 18X compared to a CPU-only version produced by this same DSL with minimal additional programming effort.

Index Terms—Domain-specific language, GPU, code generation, physics, differential equations

I. INTRODUCTION

The analysis of thermal transport is crucial in assessing the performance, cost-effectiveness, and reliability of integrated circuits since overheating is a common cause of their breakdown. In developing methods for heat removal, it is necessary to model the fundamental mechanisms of thermal transport. The size of modern semiconductor devices ranges from a few tens of nanometers to a few hundreds of nanometers. At room temperature, the mean free path of energy-conducting phonons in silicon is approximately 300 nm [1], which is comparable to the device's characteristic length scale. In such cases, continuum equations such as Fourier's law of heat conduction are inadequate to accurately predict heat conduction, making it necessary to utilize the Boltzmann Transport Equation (BTE)

due to its validity in non-equilibrium heat conduction over a wide range of length scales.

Boltzmann Transport Equation (BTE) is a seven-dimensional (7-D) nonlinear integro-differential equation consisting of three spatial coordinates, three wavevector coordinates, and time. Even after linearizing it under the single relaxation time approximation, solving the equation is a difficult task. To address this, researchers have employed the Monte Carlo method, which is useful in incorporating complex physics such as dispersion, polarization, and boundary scattering [2], [3]. However, this method is impractical due to its high cost. Alternatively, deterministic discretization-based methods have been used to obtain the unsteady solution of both gray and non-gray BTE, but the solution process remains a challenging research area in terms of both memory and computational time [4].

The BTE poses unique challenges regarding performance, parallelization and scalability compared with traditional PDE systems. Firstly, the size of the problem grows rapidly due to its seven-dimensional nature, even for modest resolutions. To obtain a spatial and angular grid-independent solution and accurately resolve the length scales, a practical device would require approximately $\sim 10^6$ cells in spatial discretization, 400 directions (20 azimuthal and 20 polar angles), and 40 bands in the spectral space (15 bands with two polarizations and 25 bands with one polarization). This typical discretization results in 22000 coupled PDEs in space and time. In the time dimension, iterative solvers take 10-20 iterations (depending on the time step size) to attain 3-4 orders of convergence within each time step. In most cases, ~ 10000 time steps are necessary to reach steady state or a state where physically meaningful measurable quantities can be predicted. These computational requirements pose significant challenges in terms of parallelization and scalability, especially strong scalability being a bottleneck for reducing the overall time to solution, as traditional codes can take weeks to months for

large 3D problems [4]. High-throughput architectures, such as modern GPUs can help reduce the overall time to solution, thereby greatly speeding up semiconductor design. However, the complexity of the 7-D system along with the need to apply complex boundary conditions makes this task extremely challenging.

In this work, we use a modular domain specific language (DSL) to implement the phonon BTE and add support for GPU execution. The use of a modular DSL enables rapid development of the codes while ensuring correctness and exploration of different work distribution strategies. In particular, complexity within BTE applications require specialized boundary conditions that are typically implemented via user-supplied callback functions. These are implemented by domain scientists based on their experimental needs. Unless these are intentionally written for GPU processing, they may be challenging to automatically port to the GPU. As a solution to these constraints, we retain such callbacks to execute on the CPU, and optimize for offloading functions to the GPU based on minimizing the overall data-movement between the CPU and the GPU. The DSL automatically partitions tasks between the CPU and GPU by minimizing the data movement. The complexity of the BTE system provides several options for such optimizations.

II. GENERATING CODE

The task of writing optimized code for a complex application is made even more challenging when designing it to take advantage of heterogeneous architectures. Careful consideration must be made about which parts of the computation are best suited to which hardware resources. This decision also needs to account for the data movement costs. Then once an efficient code has been developed any changes to the model, mesh, or hardware may necessitate a costly redesign. A good alternative is to generate the code automatically by combining an abstract description of the problem with details about the task and computing environment. Now changes to the scenario will automatically be accounted for in the generated code. Here we describe a DSL and code generation framework that is capable of generating code for complicated scientific models on heterogeneous systems.

A. Domain-specific Language

The DSL Finch is a recently developed tool for numerical solution of PDEs in the Julia programming language [5], [6]. It was designed to emphasize flexibility, and includes support for finite element and finite volume methods (FEM and FVM). It also has a modular code generation system that allows development of new generation targets aimed at particular software libraries or hardware configurations.

For our application Finch provides key functionality that is lacking in others. Specifically, we need to efficiently integrate user-written callback functions into the code, and have the expressiveness to write a very large number of coupled equations. The ability to easily make choices about the structure of the generated code, along with the ability to hand-modify

the code as desired, make this DSL ideal for exploring and optimizing variations.

In this work we focus on an FVM application as described further in the next section. More specifically, we consider a large set of coupled, linear PDEs that will be integrated with an explicit time stepping method. For demonstrations involving other mathematical techniques, such as FEM and more sophisticated time stepping routines, refer to prior work with Finch [5], [7], [8].

This choice of numerical methods means that no linear system needs to be solved, and the solution is simply advanced in time based on a local calculation. Given the large number of mostly independent calculations, this problem is very well suited to a GPU architecture. On the other hand, there are complications that will require a careful code design as described further below.

Our equation, which is presented in more detail in section 3, is formulated as a conservation equation for an unknown variable u . Eq. 1 represents a general form of this equation after integrating over a control volume to make use of FVM. Here $s(u)$ is a source term. $f(u)$ is a flux that is integrated over the surface of the cell, and arises after application of the divergence theorem.

$$\int_V \frac{\partial u}{\partial t} dV = \int_V s(u) dV - \int_{\partial V} f(u) dA \quad (1)$$

Before we can turn this equation into input for Finch, we need to define the parts of the expression. Variables and coefficients are represented by entities that have a label, a symbolic representation, values, and other metadata. Finch uses the SymEngine library to represent and manipulate the symbolic expressions. It is accessed in Julia through the SymEngine.jl library [9]. In addition, we need to define some operators to work with the symbols. SymEngine provides basic arithmetic, while the DSL includes a set of common differential and vector operators as well as some special ones like the upwind operator used below. A powerful feature of the DSL is the ability to define and import any custom symbolic operator. For example, a more sophisticated flux reconstruction could be created and used in the input expression similar to upwind.

The input for equation like (1) in Finch consists of the integrands on the right side of the equation. Note that the integrals and the time derivative term on the left are implicitly included.

```
conservationForm(u, "s(u)-surface(f(u))")
```

Here the expressions for $s(u)$ and $f(u)$ need to be replaced with their actual forms. For example, the reactive source term $-ku$ and advective flux term $ub \cdot n$ could be entered as:

```
conservationForm(u,
  "-k*u-surface(upwind(b, u))")
```

Note that an upwind operator has been defined for reconstructing an upwind flux of this form.

The first processing step done by Finch is to transform this input into an expanded symbolic representation:

```

-TIMEDERIVATIVE*_u_1- _k_1*_u_1-SURFACE*
conditional(_b_1*NORMAL_1+_b_2*NORMAL_2>0,
(_b_1*NORMAL_1+_b_2*NORMAL_2)*CELL1_u_1,
(_b_1*NORMAL_1+_b_2*NORMAL_2)*CELL2_u_1)

```

Next, we will consider the forward Euler time integration scheme, though a similar treatment applies to explicit methods in general. Applying this scheme results in Eq. 2, where u_0 is the known value from the previous time step.

$$\int_V u dV = \int_V u_0 dV + dt \int_V s(u_0) dV - dt \int_{\partial V} f(u_0) dA \quad (2)$$

The corresponding transformation to the symbolic form results in:

```

_u_1 =
_u_1-dt*_k_1*_u_1-dt*SURFACE*
conditional(_b_1*NORMAL_1+_b_2*NORMAL_2>0,
(_b_1*NORMAL_1+_b_2*NORMAL_2)*CELL1_u_1,
(_b_1*NORMAL_1+_b_2*NORMAL_2)*CELL2_u_1)

```

We approximate these integrals by setting the values in the control volume or on the surface equal to their average. Then considering a polygonal/polyhedral cell with m sides, the calculation for a given cell is Eq. 3, where A_i is the area of face i .

$$u = u_0 + dt \left(s(u_0) - \frac{1}{V} \sum_{i=1}^m A_i f(u_0) \right) \quad (3)$$

Finch organizes the symbolic terms into categories depending on the presence of unknowns and the type of integral. Here LHS refers to left-hand side, where terms involve unknown variables. RHS is right-hand side, where all quantities are known. Volume and surface mean volume and surface integration respectively.

LHS volume:

```

_u_1
RHS volume:
_u_1-dt*_k_1*_u_1

```

RHS surface:

```

-dt*conditional(
_b_1*NORMAL_1+_b_2*NORMAL_2 > 0,
(_b_1*NORMAL_1+_b_2*NORMAL_2)*CELL1_u_1,
(_b_1*NORMAL_1+_b_2*NORMAL_2)*CELL2_u_1)

```

These transformations for time stepping and integration are performed automatically by the DSL to match the chosen time stepping scheme and equation form. Another example is weak form equations that are used with the finite element discretization. In that case the terms would be organized into linear and bilinear groups, and for volume, boundary, or surface integration.

Once the symbolic representation is expanded, sorted, and simplified, it will be combined with the rest of the configuration information to create a more complete intermediate representation (IR). Information about the numerical methods and mesh are included to form a complete description of the computation in the form of a computational graph. Unlike

other such graphs, this IR also includes metadata about the parts of the computation and comment nodes to facilitate generation of easily readable code.

The IR must remain at a relatively abstract level to be compatible with several different code generation targets. Different targets may perform calculations in different ways and structure the code in different ways to achieve an optimal solution. This is demonstrated in the application in Section 3. Another example is for linear algebra operations such as matrix multiplication. Code generation targets for different languages need to account for different data layouts to take advantage of vectorization. This means that the IR needs to represent these computations on the level of abstract linear algebra operations.

B. Code Generation

At a high level, the calculation involves a loop over time steps containing loops over cells to update the values of the unknown variable u . A rough sketch of the needed computation is illustrated here. Note that $s(u)$ represents the volume integral terms, and $f(u)$ the surface integral terms. They will also include any code for calculating or fetching the needed coefficients, variable values, and geometric quantities. For brevity we will only use $s(u)$ and $f(u)$

```

for step = 1:Nsteps
  for cell = 1:Ncells
    source = s(u)
    flux = 0
    for face = 1:Nfaces
      flux += f(u, u_neighbors)
    end
    u_new = u + dt * (source + flux)
    apply_boundary_conditions(u_new)
  end
  u = u_new
  time += dt
end

```

For our purposes the time step loop is always done sequentially. The cell loop can be done in parallel very easily, with the only connection being the need for neighboring values in the flux calculation. A variety of parallel strategies can be used, ranging from distributed memory multiprocessing, to CPU multithreading, to GPU multithreading. Depending on the details of $s(u)$, $f(u)$, and the boundary conditions, this may be efficiently parallelized on a GPU. When generating code to run completely on the GPU with one thread per cell, it has the following structure.

```

for step = 1:Nsteps
  cell = threadID
  source = s(u)
  flux = 0
  for face = 1:Nfaces
    flux += f(u, u_neighbors)
  end

```

```

u_new = u + dt * (source + flux)
apply_boundary_conditions(u_new)
u = u_new
time += dt
synchronize_threads()
end

```

The BTE also involves an additional processing step to evolve the temperature in each cell. It is necessary to do this at each time step due to the presence of temperature-dependant quantities in the equation that will be introduced in the next section. The relationship between the non-linear phonon energy distribution and temperature is highly non-linear. The change in temperature can be approximated by calculating the phonon energy flux and using the first law of thermodynamics. The energy calculation involves integrating the phonon intensity over all directions and bands, which means that all degrees of freedom are loosely coupled for each cell by this process. This relation is not of the form of a PDE that can be expressed in the context of Finch. This means that hand-written code needs to be developed and coupled with the code generated by the DSL. While Finch supports such user-supplied callback functions, it is not possible to optimize these the same way as functions written purely in the DSL. To complicate things further, this additional code is written for execution on a CPU, which means that any generated GPU kernels need to work alongside the host code. Communication is required, and decisions must be made by the DSL related to the structure of the code efficiently. Here is one example configuration.

GPU kernel:

```

cell = threadID
source = s(u)
flux = 0
for face = 1:Nfaces
    flux += f(u, u_neighbors)
end
u_new = u + dt * (source + flux)

```

CPU code:

```

for step = 1:Nsteps
    (launch GPU_kernel asynchronously)
    compute_boundary_contribution(u_bdry)
    (synchronize and get u_new from GPU)
    u = u_new + u_bdry
    (external post-processing)
    (send u to GPU)
    time += dt
end

```

Note that this involves substantial communication between GPU and host at each time step. In some cases this may be too expensive to be practical, but as demonstrated below there are cases in which it is still beneficial. Given the sensitivity of communication, Finch will automatically determine what variables need to be updated and communicated during each

step. Other values will either only be sent once, or not at all.

III. DEMONSTRATION: BOLTZMANN TRANSPORT EQUATION

The phonon Boltzmann Transport Equation (BTE) is used to describe heat transfer in nanometer-scale semiconductor materials [10], [11]. The challenge of this model is that it involves solving a seven-dimensional PDE to compute the phonon intensity. Typically, this is done by partially discretizing three of the dimensions to create a large number – hundreds to tens of thousands – of loosely coupled four-dimensional (time and three spatial coordinates) PDEs as detailed below. Although this presents a challenging problem to solve, it also presents some unusual opportunities for designing efficient parallel strategies.

Given the loose nature of their coupling, the equations can be solved almost independently in parallel. Several parallel configurations have been explored with promising results [12]–[14].

A. Model

The BTE may be written in terms of the phonon intensity, I , as Eq.(4) [10], [11].

$$\frac{\partial I}{\partial t} + \mathbf{v}_g \cdot \nabla I = \frac{I_0 - I}{\tau} \quad (4)$$

where \mathbf{v}_g is the group velocity, τ is the scattering time-scale, and I_0 is the equilibrium distribution function per direction. The intensity represents a phonon energy distribution function, $I = I(\mathbf{x}, t, \mathbf{s}, \omega)$, dependent on position \mathbf{x} , time t , wave vector direction \mathbf{s} , and frequency ω . The direction and frequency are partitioned into discrete angular vectors and frequency bands, and will be denoted with the subscripts d and b respectively as in $I_{d,b}$.

The frequency space is typically discretized into 40 [15] to 80 [14] spectral bands. Since we also need to account for longitudinal and transverse polarizations, and the separate polarizations can also be treated independently, the number of distinct equations will be larger. For this work we use 40 frequency bands, which results in 40 longitudinal bands and an additional 15 transverse bands. The number of discrete direction vectors for a general 3-dimensional problem can be around $20 \times 20 = 400$ [14], but simpler configurations such as axisymmetric [15] and 2-dimensional [8] can be done with much fewer. For this study, we consider a 2-dimensional case with 20 directions.

Some very coarse-grained 3-dimensional runs were also performed successfully. However, to go from two to three dimensions with comparable resolution requires a significant increase in both the number of cells and directions. It increases the dimensionality of the problem by two dimensions. For the purpose of demonstrating the usefulness of Finch in modeling a very complex system while presenting meaningful results, we decided to focus on a two-dimensional (2-D) BTE model.

The finite volume method is used to solve Eq.(4). Integration is done over a control volume V , and the divergence theorem is applied to the advective term to give Eq.(5). The time

derivative can be integrated using a variety of methods. To facilitate resolution of high-frequency transient behavior, the time steps should be kept relatively small [15]. This means that a simple explicit scheme such as forward Euler is reasonable.

$$\int_V \frac{\partial I_{d,b}}{\partial t} dV = \int_V \frac{I_{0,b} - I_{d,b}}{\tau_b} dV - |\mathbf{v}_g|_b \int_{\partial V} I_{d,b} \mathbf{s}_d \cdot \mathbf{n} dA \quad (5)$$

Temperature is ultimately the quantity of interest, so it is necessary to derive thermal information from the phonon intensity. This relationship is indirect and nonlinear, and must be computed at every time step to determine the equilibrium intensity. We have adopted the formulation and relation to temperature used in [14] and [4]. Please refer to those for more detailed descriptions of the physics.

The boundary conditions are where the directions may be coupled. Although intensity of phonons with different directions are treated as independent in the interior bulk, reflective or symmetry conditions will couple values from different directions depending on the geometry of the boundary. This work includes symmetry and isothermal boundaries, so the coupling must be considered. Our numerical procedure sets the flux through the boundary faces by effectively setting the intensity of ghost cells on the outside according to Eq.(6) where r is the direction vector index corresponding to a reflection.

$$I_{d,b}^{outside} = \begin{cases} I_{0,b} & \text{at isothermal boundary} \\ I_{r,b} & \text{at symmetric boundary} \end{cases} \quad (6)$$

In this demonstration, one side of the domain has an isothermal boundary representing a cold wall at the same temperature as the initial equilibrium. The opposing wall is also isothermal, but with a centered heat source with a narrow Gaussian profile. This represents a hot spot. The remaining boundaries are symmetric, which represents specular reflection or a repeating configuration on either side. See figure 1. The initial condition is a thermal equilibrium at the same temperature as the cold wall of the domain.

The parameters used in our tests set the initial equilibrium and cold wall temperature at 300. The hot spot has a peak temperature of 350 with a $1/e^2$ distance of $10\mu\text{m}$. The domain size is $525\mu\text{m} \times 525\mu\text{m}$ to match the scenario used in [15]. The mesh is a 120×120 grid of uniform cells. We use 40 frequency bands resulting in 55 discrete bands when accounting for polarization. A set of 20 uniformly distributed direction vectors is used, resulting in $20 \times 55 = 1100$ intensity degrees of freedom per cell, or about 1.6×10^7 overall. All of the performance calculations below are for 100 time steps, which corresponds to 100ns of elapsed time. The temperature profile in figure 2 is after a longer duration of $20\mu\text{s}$ (20,000 time steps).

B. Encoding in the DSL

A goal of the DSL is to take equation input in an intuitive form that closely resembles the mathematics. The conservative integral form of the FVM discretization includes the volume

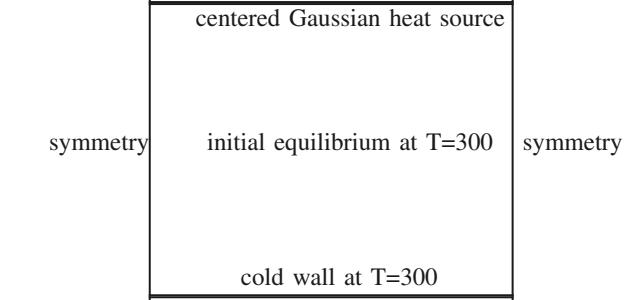


Fig. 1. Schematic of the 2-dimensional domain.

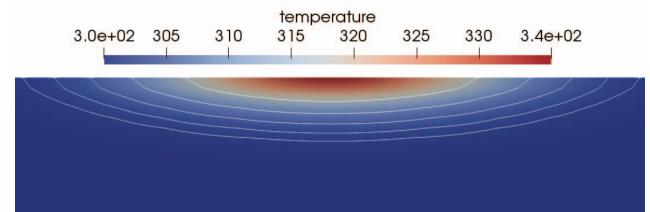


Fig. 2. Temperature of the material after $20\mu\text{s}$ (20,000 time steps). This view is zoomed in to highlight the region around the hot spot. White contours show the spread of heat.

and surface integrals of Eq.(5) above. The corresponding input to the DSL is:

```
conservationForm(I,
  "(Io[b] - I[d,b]) / beta[b] +
  surface(vg[b] * upwind([Sx[d]; Sy[d]], I[d,b]))")
```

Note that an upwind approximation is used for the flux with direction vector $S = [Sx; Sy]$. Since we are using the default flux reconstruction order of one, this will generate a first-order upwind approximation.

All of the symbols appearing in this expression, such as variables, coefficients, and indices, must first be defined. We refer to these as entities, and they are created with the following commands.

```
d=index("d", range=[1,ndirs])
b=index("b", range=[1,nbands])
I=variable("I", type=VAR_ARRAY,
           location=CELL, index=[d,b])
Io=variable("Io", type=VAR_ARRAY,
            location=CELL, index=[d])
tau=variable("tau", type=VAR_ARRAY,
            location=CELL, index=[d])
Sx=coefficient("Sx", sx_val, type=VAR_ARRAY)
Sy=coefficient("Sy", sy_val, type=VAR_ARRAY)
vg=coefficient("vg", vg_val, type=VAR_ARRAY)
```

Although I_o and τ are assumed as known in the equation for I , they are dependent on temperature, which is in turn dependent on I . They are created as variables that have mutable values

for each cell. On the other hand, \mathbf{s} and v_g can be considered coefficients. They have values that are either pre-computed arrays or defined by a function of space-time coordinates.

The initial condition we use for I is the equilibrium intensity for a uniform temperature. These frequency dependent values, I_{init} , are set with

```
initial(I, [I_init[b]
            for d=1:ndirs, b=1:nbands])
```

The boundary conditions involve a more complicated calculation. In order to provide more flexibility, Finch allows custom callback functions to be imported and used as coefficients and boundary conditions. This option is a good choice for our problem. Importing can be done by wrapping the function in a macro:

```
@callbackFunction(
    function isothermal(...)

    ...
)
```

Then the isothermal boundary condition can be set as a flux condition for variable I on boundary region 1 with:

```
boundary(I, 1, FLUX,
    "isothermal(I,vg,Sx,Sy,b,d,normal,300)")
```

The relevant values for parameters to be passed to the function will be interpreted automatically by Finch.

The temperature update that must occur each time step is indirectly based on the intensity values and involves a nonlinear relation that cannot be simply written within the context of the PDE for I . Alternatively, we perform it as a kind of post-processing step to be done after each step. Finch provides a simple way to insert arbitrary pre-step or post-step code. The following command will cause the `temperature_update` function to be called after each time step.

```
postStepFunction(temperature_update);
```

Other configuration details that need to be specified include time stepping scheme, discretization type, and order. A mesh must either be imported from a Gmsh or MEDIT formatted mesh file, or generated internally by Finch's simple generation utility. The relevant commands are illustrated in the documentation and example scripts are available in the code repository (reference withheld).

C. CPU Multiprocessing

The common way of partitioning this sort of calculation is to divide the meshed domain into groups of cells to be worked on in parallel. A significant part of the overhead with this strategy is the communication of neighboring cell values along the partition interfaces. Multithreaded CPU techniques can overcome this expense, but are limited by hardware constraints on number of cores and data movement.

The BTE presents another option for partitioning the calculation. Since there are a large number of equations that are only sparsely or indirectly coupled, it is more efficient to partition

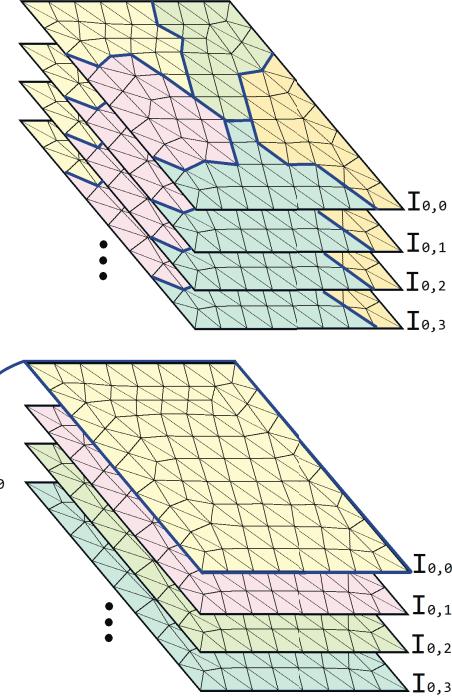


Fig. 3. Top: Partitioning the mesh requires communication between neighbors for all values of $I_{d,b}$, shown by the blue lines. Bottom: Partitioning the equations can require much less communication when there are a large number of partitions. In this case, different directions may be coupled at the boundary as shown in blue.

among the equations. Figure 3 illustrates the different communication patterns. Partitioning the equations, or equivalently the indices of $I_{d,b}$, requires much less communication. This is particularly relevant in 3 dimensions and with a large number of partitions.

In particular, when partitioning among the bands the boundary communication can be avoided as well. The coupling of the bands only occurs in the temperature update, which in turn only requires a reduction of intensity across bands. This would be an optimal configuration where communication costs are substantial, but is limited by the relatively small number of bands.

In Finch, the choice of partitioning strategy is simple. By default the mesh will be partitioned according to the number of available processes. The library Metis.jl, which is a Julia wrapper for the Metis library, is used for mesh partitioning. Alternatively, one can specify the number of partitions to create when building or importing the mesh. For the band-parallel case we will set the mesh partitions to one and instead assign sets of bands to each process.

When using indexed quantities like $I_{d,b}$, the generated code will include a set of nested loops like:

```
for cell = 1:Ncells
    for dir = 1:Ndirections
        for band = 1:Nbands
```

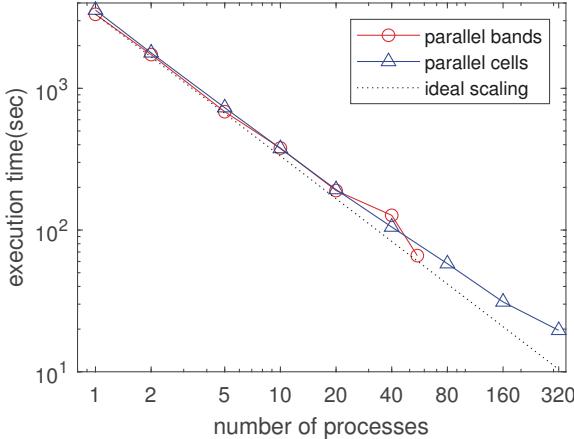


Fig. 4. Comparison of band-parallel and cell-parallel strategies. For this configuration the cell-based parallel version is able to scale to a greater number of processes despite a slightly higher communication cost.

```
(compute for I[dir,band,cell])
```

where the default choice of an outermost cell loop is used. If we wish to permute this ordering to one in which the parallel band loop is outermost, such as:

```
for band = 1:Nbands
  for cell = 1:Ncells
    for dir = 1:Ndirections
      (compute for I[dir,band,cell])
```

the loop ordering can be set with the command:

```
assemblyLoops([band,"cells",direction])
```

The ability to arrange these loops may also be advantageous in other applications where efficiency or details of the calculation favor a particular ordering.

Performance measurements were done on a cluster [to be named in final version] with two-socket Intel XeonSP CascadeLake nodes with 40 cores each and 192 GB of memory. Figure 4 illustrates the strong scaling for both the band-based and cell-based parallel strategies. Despite the higher communication costs for the cell-parallel version, it was able to scale well up to 320 processes.

A breakdown of the execution time used by different parts of the calculation is given in figure 5. It is clear that the calculation of I dominates. For one to ten processes it accounts for about 97%, and even at 55 it takes about 73%. Efforts to improve performance should focus on optimizing this part of the calculation, which motivates the GPU approach of the next section.

D. Accelerating with GPUs

The parallelization strategy needs to be reconsidered completely when designing code for a GPU. Communication between threads becomes less of an issue, and a very high degree of partitioning needs to be used. However, our band

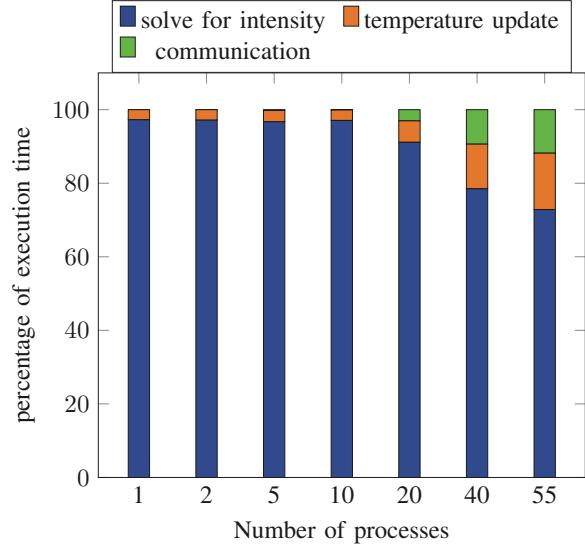


Fig. 5. Breakdown of execution time for the band-parallel strategy.

and cell-based parallel strategies from the previous section will still be important when using multiple GPUs in a distributed configuration.

Rather than generating a set of nested loops, the GPU code generator will flatten all of the loops and distribute each degree of freedom to separate threads. In the interior bulk of the domain all of the computations have a similar sequence of operations, so they can be efficiently computed without thread divergence issues. The values on the boundary will require substantially different work, so should be handled separately. Additionally, to facilitate more complicated, user-defined boundary conditions, it is much simpler and more robust to perform this calculation on the CPU with the supplied callback functions.

One option is to pre-compute the boundary values and send them to the GPU to include in the full calculation. Another option is to compute boundary contributions asynchronously on the CPU to be combined with the interior part after it has been sent back to the host. Since this application requires the values of I to be sent to the CPU for post-step processing, the communication will be done either way. Figure 6 illustrates this procedure.

To accomplish this very different code generation task, one only needs to instruct Finch to generate code for a GPU target with the command `useCUDA()`. This will cause the DSL to look for available GPU resources, and if available configure the code generation process accordingly. Presently this is limited to Nvidia hardware through the use of CUDA, with more general GPU support considered for future development. To interface with the CUDA tools, Finch uses Julia's CUDA.jl library. This package also provides simplified ways of allocating and communicating data between the host and GPU. Profiling macros also allow the interactive use of Nvidia's profiling software, which was used to determine the

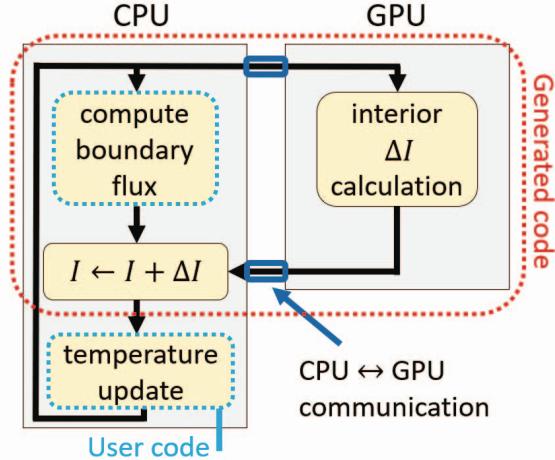


Fig. 6. Interior and boundary calculations are done asynchronously, then combined before the temperature update. The variable values and ΔI are communicated during each step.

performance metrics given below.

The experiments below were performed with similar CPU configuration as the previous section paired with eight Nvidia A6000 GPUs per node. Tests were also done with eight Nvidia A100 GPUs with similar results. Numerical data used 64-bit floating point numbers. For this application 32-bit numbers did not provide adequate precision for long-duration simulation.

Figure 7 shows execution time for this version compared to the CPU-only strategy of the previous section. The number of GPU devices and CPU processes is set so that each process is paired with one device. Partitioning between these is the same as the band-parallel strategy described above. Strong scaling for this problem configuration is good up to at least 10 devices, but larger numbers did not show further speedup. The parallel efficiency can be estimated by comparing the measured time to the line representing ideal scaling in the figure. Both curves display consistently good parallel efficiency over the range shown.

Although a direct comparison with the CPU-only code for similar process counts is not fair, we will state that the best performance using 20 cores on a single CPU was slightly slower than the same CPU using one core and one GPU. Profiling the computation with one GPU provided the following measurements.

SM utilization	86%
memory throughput	11%
FLOP performance	49% of peak

Note that these numbers correspond to the roofline for double-precision capability on an A6000 GPU. This is substantially lower than the peak single-precision capability, but as mentioned above, 32-bit floating point numbers are not sufficient for this application.

The distribution of execution time is significantly different for this accelerated version. Figure 8, when compared with figure 5, shows a substantially larger percentage of time spent

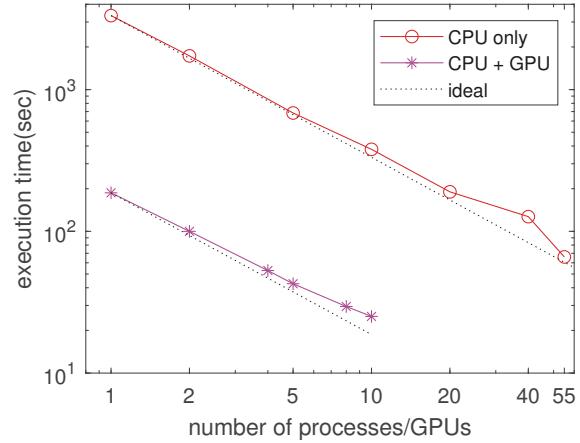


Fig. 7. Performance of GPU accelerated version compared to the CPU-only code. A band-based partitioning is used with multiple GPUs and the same number of CPU processes. Compared to the CPU code with an equal number of partitions, the GPU version is about 18 times faster.

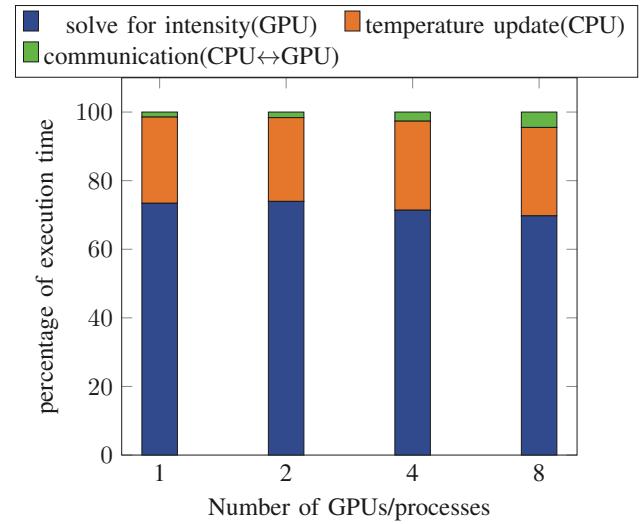


Fig. 8. Breakdown of execution time for the GPU accelerated version.

on the temperature update. Since that part of the work is approximately the same for both versions, it is the intensity calculation that has been sped up. Also note that the communication time between the GPU and host does not make up a very significant portion of the time despite the need for communicating variables at each time step. Further efforts to minimize communication could have some benefit, but would not be significant overall.

E. Discussion

The sections above have illustrated the ease of exploring a variety of parallel strategies using Finch. When working exclusively with CPUs, using one of the alternative partitioning strategies is a good option for reducing communication. The

trade-off is the limited number of possible partitions. A real benefit of using a band-based parallel strategy comes into play when working across multiple GPUs, where communication between devices can be particularly expensive.

The performance benefit of using a GPU to accelerate the calculation of I is very significant. Combining this with the user-specified temperature update and boundary condition code, which is run on the CPU, is simple and seamless from the user's perspective as the interaction is all handled within the generated code.

It is also important to compare and verify these results with an external code. The exact same model formulation was used by a previously developed Fortran code that was hand-written and optimized for band-based parallelism. Our solutions matched theirs, which had been previously verified against experimental results. Figure 9 compares our performance results against the other code. The sequential execution of our code takes roughly twice as long as the Fortran code. This is reasonable considering the other is a hand-written, single-purpose code.

The relatively poor scaling of the Fortran code is due to a slightly different parallelization of one part of the calculation, which becomes increasingly significant at higher process counts. The use of a GPU makes this comparison unfair, but consider that the GPU version required almost no additional programming effort compared to the CPU versions. In terms of time to solution, we have improved on the CPU-only codes by a very substantial margin for a given number of processes. The best possible times were roughly equal between the 10 GPU run and 320 CPU run. The question of which version is better depends on the resources available and the configuration of the problem. When working on a single-CPU workstation equipped with a GPU, it is clear that the GPU version would be a good choice.

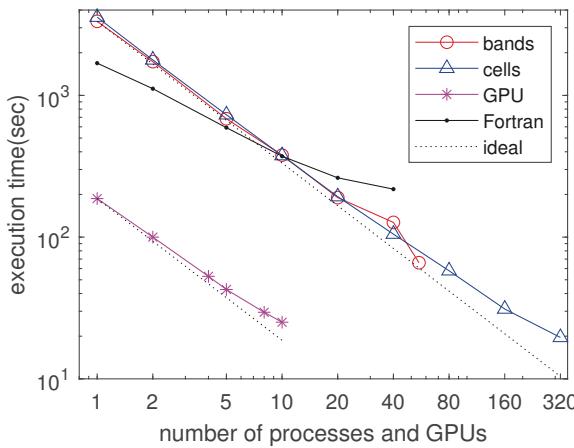


Fig. 9. Comparison of each strategy as well as a reference Fortran implementation based on the same model.

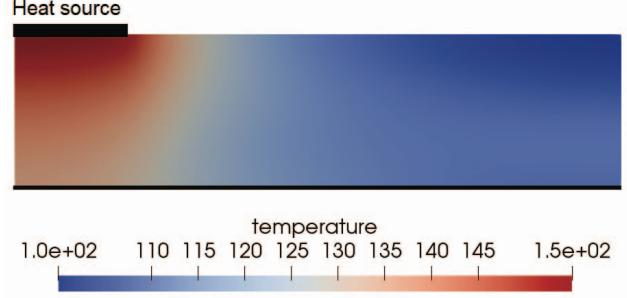


Fig. 10. Temperature of a smaller-scale, elongated material with a heat source in one corner. Similar to the other example, this has symmetry conditions on the left and right, and an isothermal boundary on the bottom.

IV. CONCLUSION

The phonon Boltzmann transport equation represents a high-dimensional PDE that quickly becomes computationally challenging to solve due to the curse of high dimensionality. Along with these complications come unusual opportunities for parallelizing the problem. We have explored an automated approach to creating efficient parallel code facilitated by the DSL Finch, which provides a very simple interface for working with the complex set of equations. Band-based parallel strategies were compared to typical cell-based methods. The exploration of these variations was greatly simplified by using Finch.

The performance of this computation was improved substantially by utilizing GPUs for the computationally expensive part of the calculation. Switching to this more powerful architecture required almost no additional programming effort due to the flexible code generation utilities provided by Finch. We were able to improve greatly upon the performance of CPU-only results, including those generated by Finch, as well as a hand-written Fortran code.

ACKNOWLEDGEMENT

This work was supported by United States National Science Foundation grants 2004236 and 2008772.

REFERENCES

- [1] C. L. Tien, A. Majumdar, and F. M. Gerner, "Microscale energy transport," 1998.
- [2] S. Mazumder and A. Majumdar, "Monte carlo study of phonon transport in solid thin films including dispersion and polarization," *Journal of Heat Transfer*, vol. 123, pp. 749–759, 08 2001.
- [3] J.-P. M. Péraud and N. G. Hadjiconstantinou, "Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations," *Physical Review B*, vol. 84, no. 20, p. 205331, 2011.
- [4] S. Mazumder, "Boltzmann transport equation based modeling of phonon heat conduction: progress and challenges," *Annual Review of Heat Transfer*, vol. 24, 2022.
- [5] E. Heisler, A. Deshmukh, S. Mazumder, P. Sadayappan, and H. Sundar, "Multi-discretization domain specific language and code generation for differential equations," *Journal of Computational Science*, vol. 68, p. 101981, 2023. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S187750323000418>
- [6] E. Heisler, A. Deshmukh, and H. Sundar. (2023) Finch documentation. [Online]. Available: <https://paralab.github.io/Finch/dev/>

[7] ——, “Finch: Domain specific language and code generation for finite element and finite volume in Julia,” in *Computational Science – ICCS 2022*, D. Groen, C. de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot, Eds. Cham: Springer International Publishing, 2022, pp. 118–132.

[8] *A Domain Specific Language Applied to Phonon Boltzmann Transport for Heat Conduction*, ser. ASME International Mechanical Engineering Congress and Exposition, vol. Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering, 10 2022, v008T11A012. [Online]. Available: <https://doi.org/10.1115/IMECE2022-95034>

[9] SymEngine. (2023) Symengine.jl. [Online]. Available: <https://symengine.org/SymEngine.jl/>

[10] A. Majumdar, C. Tien, and F. Gemer, “Microscale energy transport in solids,” *Microscale Energy Transport*, pp. 3–93, 1997.

[11] A. Majumdar, “Microscale Heat Conduction in Dielectric Thin Films,” *Journal of Heat Transfer*, vol. 115, no. 1, pp. 7–16, 02 1993. [Online]. Available: <https://doi.org/10.1115/1.2910673>

[12] S. Srinivasan, R. Miller, and E. Marotta, “Parallel computation of the Boltzmann transport equation for microscale heat transfer in multi-layered thin films,” *Numerical Heat Transfer, Part B: Fundamentals*, vol. 46, no. 1, pp. 31–58, 2004.

[13] C. Ni and J. Y. Murthy, “Parallel computation of the phonon Boltzmann transport equation,” *Numerical Heat Transfer, Part B: Fundamentals*, vol. 55, no. 6, pp. 435–456, 2009.

[14] S. A. Ali, G. Kollu, S. Mazumder, P. Sadayappan, and A. Mittal, “Large-scale parallel computation of the phonon Boltzmann transport equation,” *International Journal of Thermal Sciences*, vol. 86, pp. 341–351, 2014. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S1290072914002233>

[15] S. Saurav and S. Mazumder, “Extraction of thermal conductivity using phonon boltzmann transport equation based simulation of frequency domain thermo-reflectance experiments,” *International Journal of Heat and Mass Transfer*, vol. 204, p. 123871, 2023. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0017931023000273>

[16] E. Heisler, A. Deshmukh, and H. Sundar. (2023) Finch code repository. [Online]. Available: <https://github.com/paralab/Finch>

APPENDIX

Below is an example of the Julia input code for Finch. This is a simplified version to illustrate the main concepts. For a full working version, see the example in the repository [16].

Example input code

```

#=

2D explicit BTE.

#=
using Finch # Load the DSL package
initFinch("bte-gpu");

# Model parameters and callback functions
include("bte-parameters.jl")
include("bte-boundary.jl")

# Configuration
domain(2) # 2-D
solverType(FV)
timeStepper(EULER_EXPLICIT)
dt = 1e-12; nsteps = 10000;
setSteps(dt, nsteps);
useCUDA(); # Tells Finch to generate for GPU

# Import a mesh
mesh("mesh_file.msh")

# Indices and Variables
ndirs = 16;
(t_bands, l_bands) = get_band_distribution(40);
total_bands = t_bands + l_bands;
d = index("d", range=[1,ndirs])
b = index("b", range=[1,total_bands])

I = variable("I", type=VAR_ARRAY,
             location=CELL, index = [d,b])

Io = variable("Io", type=VAR_ARRAY,
              location=CELL, index = [b])
beta = variable("beta", type=VAR_ARRAY,
                location=CELL, index = [b])
Sx = coefficient("Sx", dir_x, type=VAR_ARRAY)
Sy = coefficient("Sy", dir_y, type=VAR_ARRAY)
vg = coefficient("vg", group_v, type=VAR_ARRAY)

boundary(I, 1, FLUX,
         "isothermal_bdry(I,vg,Sx,Sy,b,d,normal,300)")

assemblyLoops(["elements", b, d])

# After each time step the temperature is updated
postStepFunction(post_step() -> update_temp(...))

# BTE:
conservationForm(I,
  "(Io[b] - I[d,b]) * beta[b] +
  surface(vg[b]*upwind([Sx[d];Sy[d]], I[d,b]))")

solve(I)

```