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Abstract

The endosperm, a product of double fertilization, is one of the keys to the evolution and success
of angiosperms in conquering the land. While there are differences in endosperm development
among flowering plants, the most common form is coenocytic growth, where the endosperm
initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This
complex process requires an interplay among networks of transcription factors such as MADS-
box, ARFs, and phytohormones. The role of cytoskeletal elements in shaping the coenocytic
endosperm and influencing seed growth also becomes evident. This review offers a recent
understanding of the molecular and cellular dynamics in coenocytic endosperm development and

their contributions to the final seed size.
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Introduction

Seed development in flowering plants begins with a complex process known as double
fertilization [1,2]. One sperm cell fertilizes the egg cell, giving rise to the embryo, while the other
fertilizes the central cell, initiating endosperm formation. The endosperm is vital for nourishing
the embryo; in monocots, the majority of the endosperm persists throughout seed development,
also serving as a nutrient supply for germination. On the other hand, the endosperm in dicots
diminishes as the embryo becomes mature. The developmental trajectory of the endosperm in
most plants unfolds through two distinct phases: the coenocytic phase, marked by divisions of
endosperm nuclei without cytokinesis, resulting in a multinucleate single-cell structure, followed
by cellularization, transforming into a structured cellular endosperm [3-6,7**] (Figure 1). The
duration of the coenocytic endosperm phase has been shown to highly correlate with the final
seed size, with a shorter duration resulting in smaller seeds and a longer duration producing larger
seeds [8-12]. The supply of more nutrients from the mother plant to the endosperm, which

supports embryo development, ultimately leads to larger seeds [13-15].

While the general understanding of endosperm development spans various plant species,
the early stages of seed development in Arabidopsis thaliana, particularly the formation of
coenocytic endosperm, stand out as extensively studied. This model system serves as a
cornerstone for unraveling the molecular and cellular dynamics of endosperm development, and
this review aims to provide an overview of endosperm development in flowering plants with an
emphasis on recent discoveries that illustrate the dynamic nature of Arabidopsis coenocytic

endosperm development.
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Endosperm development in flowering plants

Distinct types of endosperms are observed across flowering plants; morphologically, three
forms of endosperm development are present in flowering plants: cellular, coenocytic, and
helobial [16]. In the coenocytic form, the endosperm undergoes nuclear divisions without
cytokinesis. In the helobial form, the endosperm consists of both a cellular part and a free nuclear
or coenocytic part. In many flowering plants like Oryza sativa (rice), Zea mays (maize), Glycine
max (soybean), and Arabidopsis, fertilization of the central cell results in a triploid endosperm,
composed of two maternal polar nuclei and one sperm nucleus [17]. In the basal angiosperm
Nymphaeaceae, the female gametophyte possesses only one polar nucleus, and double
fertilization results in the formation of a diploid cellular endosperm [17,18]. Endosperm
development in Nymphaeaceae is minimal, and embryo nourishment is carried out by the
sporophyte-derived tissue called perisperm, which surrounds the endosperm (Figure 1a). The
perisperm accumulates starch, while the chalazal endosperm (CZE) protrudes into the perisperm
and has been speculated to function like haustoria (Figure 1a), providing nourishment to the
embryo [19]. Other basal angiosperms, such as Amborella, possess two polar nuclei that fuse to
form a homo-diploid central cell nucleus, resulting in a triploid cellular endosperm after
fertilization [20,21]. Although examining basal angiosperms provides insights, endosperm

evolution is dynamic, and it still remains unclear what constitutes the ancient form of endosperm.

Endosperm development in Brassicaceae undergoes three distinct phases (Figure 1b):
coenocytic, cellularization, and maturation [4,22,23]. In the coenocytic phase, the endosperm
establishes three subregions based on nuclear positioning [24] with a differential gene expression

pattern [25**,26**] — Micropylar Endosperm (MCE), confined to the region surrounding the
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developing embryo; Peripheral Endosperm (PEN), thought to play a major role in endosperm
expansion through rapid nuclear divisions; and Chalazal Endosperm (CZE), forming at the chalazal
pole of the endosperm, acting as a link between maternal tissue and filial tissue (seed) (Figure
1b) [4,27]. The large central vacuole residing in PEN pushes the nuclei and cytoplasm to the
plasma membrane, whereby these nuclei form an individual nuclear cytoplasmic domain (NCD)
(Figure 1b). Similar to the Nymphaeaceae, CZE in Brassicaceae is recognized as the site where
nutrients are absorbed from the mother plant and transported into the endosperm [28,29].
Endosperm cellularization causes the central vacuole to shrink, leading the embryo to switch as
a sink for all the nutrients [30]. As the embryo begins to expand, it initiates invasion into the
endosperm. This embryonic growth is accompanied by both the weakening of the endosperm
wall and programmed cell death [31,32%*]. The endosperm eventually remains as a thin aleurone-

like layer (Figure 1b) [33].

Monocot endosperm development resembles Arabidopsis until cellularization and
diverges after cellularization. Differentiation of tissues such as the basal endosperm transfer layer
(BETL) for grain filling, aleurone layer, embryo surrounding region (ESR) for nutrient transfer to
the embryo [34], and starchy endosperm occur in cereal crops (Figure 1c). These tissues are not
only major food sources (e.g., rice, maize, wheat), but also nourish the embryo during

embryogenesis and seed germination [35*].

An anomalous case of degenerating endosperm occurs in the family Orchidaceae [36]. The
orchid endosperm undergoes a few rounds of nuclear divisions but diminishes as the zygote
develops. Some orchid species fail to initiate nuclear division, resulting in no endosperm

formation [37]. Despite the lack of endosperm, orchid seeds germinate normally, indicating
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modifications in the orchid embryo's developmental or germination program [32*]. Orchid
embryos form a protocorm establishing a symbiotic association with mycorrhizal fungi to support
germination and survival [36,38]. Orchids without endosperm, thus, still require an alternative
system to support the embryo, further highlighting the essential role of nutrient storage and

supply in flowering plant endosperm.

Molecular dynamics of endosperm

Transcriptional profiling, coupled with laser capture microdissection, has been conducted
in diverse species to elucidate the functions of subregions within the coenocytic and cellularized
endosperm [25**,39-49]. A recent advancement involves single-nuclei RNA sequencing (snRNA-
seq) in Arabidopsis endosperm, providing a comprehensive map of transcriptomes and unraveling
distinct gene imprinting patterns among the endosperm subregions [26**]. The endosperm
displays gene imprinting, a phenomenon in which gene expression is biased depending on the
parent of origin. Genes that show preferential expression from the maternal allele are referred to
as maternally expressed imprinted genes (MEGs), whereas genes preferentially expressed from
the paternal allele are referred to as paternally expressed imprinted genes (PEGs) [50,51]. The
Arabidopsis endosperm is triploid, with a parental genome contribution ratio of maternal 2n to
paternal 1n. Disrupting this parental genome balance, either through interploidy crosses or using
mutants that can alter the ploidy levels [52], results in a change in the deregulation of gene
imprinting in the endosperm, the mechanisms for which still remains unknown [53]. Disrupting

parental genome balance also alters the seed sizes [11,40,54] (Figure 2). The parental conflict
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theory for nutrient allocation suggests that paternal genome expression leads to more resource
allocation to the progeny from the mother plant, while maternal genome expression restricts the
flow of nutrients to the endosperm [55-57], thereby maintaining a balance required for all
progeny seeds to survive. Notably, CZE exhibits a very high level of imprinting of the paternal
genome, presumably acting as the region of active conflict for resource accumulation from the
mother plant [26**]. The impact and mechanism of endosperm gene imprinting have been
extensively reviewed [51,58,59], providing valuable insights into the regulatory processes
governing endosperm development and its interaction with maternal and paternal genetic

contributions.

Manipulation of parental genome balance in the endosperm has also led to the
identification of genes with altered expression levels in the endosperm compared to the wild type
(Figure 2) [40,60-62]. Many of the genes encode MADS-box transcription factors (TFs), proteins
involved in phytohormone pathways, and cell cycle-related proteins [40,60-62]. For example,
among the MADS-box TF encoding genes, AGAMOUS LIKE 62 (AGL62), which is not imprinted,
exhibits a decrease in expression level in the case of maternal excess cross, while showing an
increase in expression level in the case of paternal excess cross (Figure 2) [40]. MADS-box TFs
constitute an ancient gene family conserved across kingdoms [63], and plant MADS-box TFs are
divided into two classes, type | and type Il. Initially, type Il MADS-box TFs were identified as
regulators of floral development and organization [64]. On the other hand, type | MADS-box TFs
remained not well-characterized until transcriptomic studies provided insights into their
predominant expression in the endosperm [39,40,65] and the female gametophyte [66].

Molecular and phylogenetic analyses further classified type | MADS-box TFs into four groups —
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Ma, MB, My, and M6 [67]. My and My-interacting Ma show specific expression in the endosperm,
and interestingly, these My and Ma are unique to flowering plants [68*]. Given that the
endosperm is also unique to flowering plants, this may suggest a special genome reprogramming
in flowering plants involving the significance of MADS-box TFs in the evolution and/or

development of the endosperm.

In Arabidopsis, mutation of AGL62, belonging to the Ma type, causes precocious
endosperm cellularization, serving as a negative regulator for endosperm cellularization [8].
Additionally, ag/91 (My type) and agl40 (Ma type) mutants produce smaller seeds, while
overexpression of AGL40 leads to the development of larger seeds [69]. Before the initiation of
cellularization, there is a noticeable decrease in the expression of a subset of type | MADS-box
genes such as AGL62, AGL40, PHE1, and PHE2 in the endosperm (Figure 2) [40,62,65]. Consistent
with the role of AGLs as negative regulators for endosperm cellularization, higher paternal dosage
endosperm (resulting in larger seeds with delayed cellularization) shows elevated and prolonged
expression of these genes [40,62,65,70], and higher maternal dosage endosperm (resulting in
smaller seeds with small endosperm showing early cellularization) exhibits downregulation

[40,71,72] .

Using the R2D2 auxin sensor [73], it was demonstrated that fertilization triggers auxin
production in the fertilized central cell (primary endosperm). Increasing auxin levels in the central
cell, achieved by overexpression of auxin biosynthesis genes, initiated nuclear divisions in the
central cell without fertilization [74]. Mutants associated with auxin biosynthesis and signaling
exhibit defects in endosperm proliferation [74]. Additionally, the endosperm-specific expression

of the dominant-negative IAA32, which impedes auxin signaling and thus induces auxin deficiency
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phenotypes, manifests a similar defect in endosperm proliferation [74]. Conversely, higher
paternal dosage endosperm displays auxin overproduction, resulting in a delay in endosperm
cellularization, and the overproduction of auxin in the endosperm also shows the same
cellularization delay phenotype [61]. Collectively, these findings emphasize the essential role of
auxin in endosperm development and highlight its regulatory role in the timing of endosperm

cellularization (Figure 2) [61,74].

The Arabidopsis ag/62 mutant reduces the auxin level in the endosperm compared to the
wild-type [75*]. Similarly, in the case of Fragaria vesca (strawberry), Fveagl62 showed reduced
expression of auxin biosynthesis genes [75*]. The interplay between auxin and AGL62 post-
fertilization becomes evident, playing a crucial role in endosperm proliferation. Auxin response
factors (ARFs) govern the expression of auxin-responsive genes both in positive and negative
manners [76,77]. A cluster of ARFs (cARFs) is expressed in the coenocytic endosperm [61].
Increased paternal dosage reduces and delays cARFs expression, while higher maternal dosage
increases expression of cARFs (Figure 2) [78*]. Furthermore, overexpression of cARFs in the
endosperm also causes early cellularization [78*], functioning in a dosage-dependent manner,
positively regulating endosperm cellularization [78*]. An antagonistic relationship exists between
auxin and cARFs in regulating endosperm cellularization; higher auxin levels prolong the
coenocytic phase, causing a delay in cellularization, while cARFs initiate their expression just

before cellularization, restricting the auxin signaling and promoting cellularization (Figure 2).

Another phytohormone, cytokinin, which promotes nuclear and cell division in plant cells
[79], has also been observed in the Arabidopsis coenocytic endosperm. Cytokinin-synthesizing

genes AtIPT4 and AtIPT8 are expressed in the coenocytic endosperm [80], and indeed, the
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cytokinin reporter TCS::erGFP [81] showed the highest activity in the early stage, gradually
decreasing as development progresses, and ultimately only remaining in the CZE [80]. To maintain
steady-state cytokinin homeostasis, the coenocytic endosperm also sustains the expression of
cytokinin oxidase/dehydrogenases (CKX) [82], which serve as negative regulators of cytokinin by
catalyzing irreversible catabolizing actions. The expression of CKXs goes down with the
progression of coenocytic development and they remain active only in MCE at the late globular
embryo stage [80]. Mutants of HAIKU1 (IKU1), which codes for VQ motif protein [83], and HAIKUZ2
(IKU2), which encodes a leucine-rich repeat kinase [84], show a reduced seed size phenotype with
early cellularization [12]. In ikul and iku2 mutants, CKX2 expression is inhibited compared to the
wild type, resulting in higher cytokinin levels in the endosperm [80]. Conversely, mutants that
block cytokinin signaling exhibit a larger seed phenotype [85-87]. Although the detailed molecular
mechanism remains unclear and further investigation into the timing of endosperm
cellularization in these lines is necessary, these results demonstrate the importance of
maintaining intricate cytokinin balance in endosperm development; increased cytokinin levels
prompt early cellularization, whereas reduced levels and signaling of cytokinin lead to larger

seeds.

Brassinosteroid (BR) is broadly present in the developing seed [88] and plays a positive
role in gene expressions that promote seed size, such as SHORT HYPOCOTYL UNDER BLUE],
MINISEED3, and IKU2 in the endosperm [89]. Simultaneously, BR represses the expression of
negative regulators of seed size, such as APETAL2 and ARF2 in the integuments and endosperm
[89]. In addition to these extensively studied factors, other factors and pathways have been

identified to be involved in endosperm development and seed size control [90]. A complex
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interplay and regulation among hormones and TFs likely occur in the coenocytic endosperm,
governing its development and ultimately determining the final seed size. Further exploration of
the connections among these factors and pathways will contribute to unraveling this unique and

essential aspect of development, with implications for both biology and agriculture.

Cellular dynamics of endosperm

In addition to examining gene expressions and their associated phenotypes as described
in the previous section, researchers have also intensively investigated the cellular dynamics of the
unique coenocytic endosperm to further understand its development and have elucidated its link
with seed size determination. In barley (Hordeum vulgare) [5], Lesser Swine Cress (Coronopus
didymus) [91], and Arabidopsis [28,92,93], immunostaining revealed a distinctive microtubule
(MT) arrangement known as the radial MT system in the coenocytic endosperm during
interphase, forming an aster-shaped pattern around the nucleus. This radial MT system
orchestrates cell wall placement during endosperm cellularization by generating phragmoplast at
the border of nuclear-cytoplasmic domains (NCDs) [5,91,92,94]. Advances in confocal microscopy
and live-cell imaging have allowed a detailed exploration of the dynamics and functions of both
MT and actin filament (F-actin) in the entire coenocytic endosperm development [7**]. Similar
to the radial MT, F-actin also generates an aster-shaped structure around each nucleus soon after
the third nuclear division (Figure 3), with this pattern being more prominent in the PEN subregion
[7**]. Perturbation of F-actin, achieved through the expression of the semi-dominant negative
ACTIN transgene (DN-ACTIN) (Figure 3) [95], or treatment with the actin inhibitor latrunculin B
(Lat B), caused irregular nuclei positioning and random, bouncing-like movement in the

endosperm immediately after nuclear division [7**]. Overexpression of the wild-type ACTIN gene
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(OX-ACTIN) led to an increased number of actin cables around each nucleus (Figure 3),
maintaining an overall similarity to wild-type F-actin structures and nuclear movement.
Interestingly, the distance between nuclei increased further in OX-ACTIN compared to the wild-
type, generating a larger endosperm/seed, with DN-ACTIN resulting in the shortest distance and
smaller endosperm/seed [7**]. Taken together, one of the F-actin functions in the coenocytic
endosperm is to retain the newly divided nuclei at proper positions and maintain coenocytic
endosperm subregions as well as distinct NCDs. During interphase in the Arabidopsis coenocytic
endosperm, the radial MTs co-localize with F-actin asters [7**]. During nuclear division, MT forms
spindles, and concurrently, the aster structures of F-actin become disorganized. Treatment with
the MT inhibitor oryzalin, followed by drug washout, further demonstrated the dependence of F-
actin aster organization on radial MT [7**]. On the other hand, Lat B treatment does not exhibit
any effect on MT structures, and nuclear divisions proceed normally in DN-ACTIN, indicating that

MT function is independent of F-actin [7**].

Growth dynamics of endosperm and seed

Changes in the cellular dynamics of endosperm can influence the final seed size, and
understanding how the seed translates these cellular changes in the endosperm to impact the
ultimate seed size is also crucial. As plant cells undergo dynamic growth, the regulation of
differential turgor pressure emerges as a pivotal mediator for maintaining plant cell shape and
promoting cell expansion during growth and development [96-98]. The rapid expansion of a
developing seed raises critical questions about the role of turgor pressure in this process. To
measure turgor pressure in the coenocytic endosperm, a strategy was developed utilizing the

tissue indentation technique generating force versus displacement curves of the developing seed
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to determine the seed stiffness [99,100]. The slope of these curves is shown to be correlated to
the turgor pressure [100]. Seeds containing the early stage of the coenocytic endosperm exhibit
high seed stiffness, indicative of high turgor pressure in the endosperm. As the endosperm
develops, the stiffness (i.e., coenocytic endosperm turgor pressure) gradually decreases,
undergoing a significant reduction at cellularization [99]. The fis2 mutant, characterized by larger
seeds with the prolonged coenocytic endosperm phase, displays higher seed stiffness compared
to WT at the early coenocytic stage, indicating higher turgor pressure [99]. By contrast, the iku2
mutant, which produces smaller seeds with early endosperm cellularization, initially shows no
difference in seed stiffness compared to WT; however, the stiffness persists even after endosperm
cellularization [101**]. In iku2, the walls of the testa have a higher presence of demethylesterified
pectins [101**], likely contributing to the persisted seed stiffness observed after endosperm
cellularization. Taken together, the results from fis2 and iku2 mutants suggest that at the early
stage of coenocytic endosperm, turgor pressure positively regulates seed growth, while at the
later stage, the persisted pressure mediates testa stiffening, thereby restricting seed size

[99,101**,102].

Vacuoles actively participate in the control of plant cell turgor pressure and play an
important role in turgor pressure-dependent cell elongation [97,103]. Changes in the vacuole
structure in actin-dependent manner have been reported in plant cells [104]. Disrupting F-actin
in the coenocytic endosperm (DN-ACTIN) resulted in smaller seeds and defects in the vacuole
morphology (Figure 3). By contrast, OX-ACTIN shows no such defects in the vacuole morphology
and rather produces larger seeds [7**]. These results suggest that F-actin dynamics during the

coenocytic stage influence vacuole structure, potentially altering its function and leading to
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changes in turgor pressure in the early stage of the coenocytic endosperm (Figure 3).
Alternatively, F-actin may also control the distance between NCDs in the peripheral endosperm
and establish the volume of the coenocytic endosperm, potentially contributing to seed size
changes (Figure 3). Nevertheless, these works set the stage for exploring how turgor pressure in
the coenocytic endosperm is regulated and, in turn, how turgor pressure may govern seed growth

and development.

Conclusion and perspectives

The endosperm, a highly complex structure within the seeds of flowering plants, plays an
essential role in nourishing the embryo during development and germination as well as the
evolution of flowering plants. Further investigations on a genome-scale level regarding the
emergence of newly duplicated genes, specific to flowering plants, and their expressions in the
endosperm hold promise not only for uncovering the functions of yet unexplored genes in

endosperm development but also shedding light on the evolution of flowering plants.

Phytohormones, particularly auxin, have demonstrated a prominent role in endosperm
development, with ongoing efforts to decipher the complex regulatory pathways. While the link
between the MADS-box TF AGL62 and auxin has been explored, the roles of other AGL genes in
phytohormone regulation remain uncharted territory. Cytokinin, another key phytohormone in
endosperm development, is connected with the HAIKU pathway, which also involves epigenetics
[80,84]. Understanding the spatiotemporal crosstalk among cytokinin, auxin, TFs, and imprinting
during endosperm development will pave the way to unraveling additional layers of complexity

in seed size regulation.
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In contrast to the endosperm, F-actin in the central cell forms a meshwork structure and
displays constant inward movement from the plasma membrane to the central cell nucleus [95].
This dynamic F-actin movement aids in the migration of the sperm nucleus towards the central
cell nucleus for karyogamy and is independent of MT functions [95]. Collectively, fertilization not
only alters the dynamics of cytoskeletons but also influences interactions between F-actin and
MT, posing a fundamental question of the transition in fate at the cellular dynamics level within

the same cell (central cell to endosperm without cell division).

Very recently, comparative transcriptomics among seeds with single fertilization of either
the egg or central cell using the mutant producing single-sperm-cell pollens has revealed a set of
endosperm genes that are dependent on embryo development and vice versa [105*]. The
communications among the embryo, endosperm, and seed coat also orchestrate their
development as a seed and influence the final seed size [32*,106-110]. Continued research into
the highly complex mechanisms governing seed development, including this unique coenocytic
endosperm, promises to unlock new avenues for improving seed traits and, consequently,

enhancing yields per capita on a global scale.
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seed biology.
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wheat. The review also discusses the regulation of cell-cycle and hormone signaling during
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both promotes and restricts seed growth and size. Nature Communications 2023, 14:67.
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105* Zhang Y, Maruyama D, Toda E, Kinoshita A, Okamoto T, Mitsuda N, Takasaki H, Ohme-Takagi M:
Transcriptome analyses uncover reliance of endosperm gene expression on Arabidopsis
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Comparative transcriptomics among seeds with single fertilization of either the egg or central

cell have revealed a set of endosperm genes that are dependent on embryo development, and

vice versa.
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Figure 1. Seed growth and development in flowering plants. a. Double fertilization leads to the formation
of the embryo and diploid cellular endosperm in Nymphaeaceae. The perisperm (nucellus), a sporophytic
tissue, stores starch and provides nourishment to the developing embryo via the endosperm. The chalazal
endosperm forms a haustoria-like structure that transfers nutrients to the embryo. At seed maturity, the
perisperm persists, possibly to support the embryo for germination. b. Double fertilization in Arabidopsis
forms an embryo and a triploid nuclear endosperm. Endosperm development initially undergoes nuclear
divisions without cytokinesis to form a coenocyte and then it cellularizes starting from the micropylar
endosperm. In mature seeds, the endosperm is almost completely absorbed by the embryo and remains
as a thin aleurone-like layer. c. In maize, the endosperm undergoes coenocytic development at an early
stage and then starts to cellularize. After cellularization, the endosperm differentiates into the basal
endosperm transfer layer (BETL) which acts as a barrier and supply route, embryo surrounding region
(ESR), aleurone layer, and starchy endosperm. The endosperm is not absorbed by the embryo, and it
supports the embryo during germination by providing all the necessary nutrients.
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Figure 2. Molecular Dynamics of
Arabidopsis Endosperm
Development. Endosperm
development is orchestrated by an
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phytohormones. After double
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leading to an elevation in auxin levels.
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signaling. This action by ARFs halt the
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cross. Conversely, in the case of a
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PEGs in the maternal excess cross.
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678 Figure 3. Cytoskeleton Dynamics in Coenocytic Endosperm. Z-projected confocal images depict F-actin
679  (cyan, proFWA::Lifeact-Venus) and nuclei (magenta, proFWA::H2B-mRuby?2) in the Arabidopsis coenocytic
680  endosperm. F-actin forms aster-shaped structures around nuclei. In DN-ACTIN, the absence of F-actin aster
681  formations disrupts nuclei organization. Conversely, OX-ACTIN exhibits a higher F-actin abundance and
682 larger endosperm compared to the wild-type (WT). The central vacuole in the endosperm pushes nuclei
683  to the periphery, forming nuclear cytoplasmic domains (NCDs). In DN-ACTIN, the vacuole structure is
684  affected, resulting in less pushing of nuclei to the periphery compared to the WT. In OX-ACTIN, NCDs are
685 more spaced, potentially influencing endosperm volume and size. These vacuole morphology and NCD
686 alterations may contribute to variations in endosperm size and turgor pressure, possibly explaining diverse
687 seed sizes among F-actin-manipulated lines



