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Abstract 8 

The endosperm, a product of double fertilization, is one of the keys to the evolution and success 9 

of angiosperms in conquering the land. While there are differences in endosperm development 10 

among flowering plants, the most common form is coenocytic growth, where the endosperm 11 

initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This 12 

complex process requires an interplay among networks of transcription factors such as MADS-13 

box, ARFs, and phytohormones. The role of cytoskeletal elements in shaping the coenocytic 14 

endosperm and influencing seed growth also becomes evident. This review offers a recent 15 

understanding of the molecular and cellular dynamics in coenocytic endosperm development and 16 

their contributions to the final seed size. 17 
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Introduction 21 

Seed development in flowering plants begins with a complex process known as double 22 

fertilization [1,2]. One sperm cell fertilizes the egg cell, giving rise to the embryo, while the other 23 

fertilizes the central cell, initiating endosperm formation. The endosperm is vital for nourishing 24 

the embryo; in monocots, the majority of the endosperm persists throughout seed development, 25 

also serving as a nutrient supply for germination. On the other hand, the endosperm in dicots 26 

diminishes as the embryo becomes mature. The developmental trajectory of the endosperm in 27 

most plants unfolds through two distinct phases: the coenocytic phase, marked by divisions of 28 

endosperm nuclei without cytokinesis, resulting in a multinucleate single-cell structure, followed 29 

by cellularization, transforming into a structured cellular endosperm [3-6,7**] (Figure 1). The 30 

duration of the coenocytic endosperm phase has been shown to highly correlate with the final 31 

seed size, with a shorter duration resulting in smaller seeds and a longer duration producing larger 32 

seeds [8-12]. The supply of more nutrients from the mother plant to the endosperm, which 33 

supports embryo development, ultimately leads to larger seeds [13-15]. 34 

While the general understanding of endosperm development spans various plant species, 35 

the early stages of seed development in Arabidopsis thaliana, particularly the formation of 36 

coenocytic endosperm, stand out as extensively studied. This model system serves as a 37 

cornerstone for unraveling the molecular and cellular dynamics of endosperm development, and 38 

this review aims to provide an overview of endosperm development in flowering plants with an 39 

emphasis on recent discoveries that illustrate the dynamic nature of Arabidopsis coenocytic 40 

endosperm development.  41 



Endosperm development in flowering plants 42 

Distinct types of endosperms are observed across flowering plants; morphologically, three 43 

forms of endosperm development are present in flowering plants: cellular, coenocytic, and 44 

helobial [16]. In the coenocytic form, the endosperm undergoes nuclear divisions without 45 

cytokinesis. In the helobial form, the endosperm consists of both a cellular part and a free nuclear 46 

or coenocytic part. In many flowering plants like Oryza sativa (rice), Zea mays (maize), Glycine 47 

max (soybean), and Arabidopsis, fertilization of the central cell results in a triploid endosperm, 48 

composed of two maternal polar nuclei and one sperm nucleus [17]. In the basal angiosperm 49 

Nymphaeaceae, the female gametophyte possesses only one polar nucleus, and double 50 

fertilization results in the formation of a diploid cellular endosperm [17,18]. Endosperm 51 

development in Nymphaeaceae is minimal, and embryo nourishment is carried out by the 52 

sporophyte-derived tissue called perisperm, which surrounds the endosperm (Figure 1a). The 53 

perisperm accumulates starch, while the chalazal endosperm (CZE) protrudes into the perisperm 54 

and has been speculated to function like haustoria (Figure 1a), providing nourishment to the 55 

embryo [19]. Other basal angiosperms, such as Amborella, possess two polar nuclei that fuse to 56 

form a homo-diploid central cell nucleus, resulting in a triploid cellular endosperm after 57 

fertilization [20,21]. Although examining basal angiosperms provides insights, endosperm 58 

evolution is dynamic, and it still remains unclear what constitutes the ancient form of endosperm. 59 

Endosperm development in Brassicaceae undergoes three distinct phases (Figure 1b): 60 

coenocytic, cellularization, and maturation [4,22,23]. In the coenocytic phase, the endosperm 61 

establishes three subregions based on nuclear positioning [24] with a differential gene expression 62 

pattern [25**,26**] – Micropylar Endosperm (MCE), confined to the region surrounding the 63 



developing embryo; Peripheral Endosperm (PEN), thought to play a major role in endosperm 64 

expansion through rapid nuclear divisions; and Chalazal Endosperm (CZE), forming at the chalazal 65 

pole of the endosperm, acting as a link between maternal tissue and filial tissue (seed) (Figure 66 

1b) [4,27]. The large central vacuole residing in PEN pushes the nuclei and cytoplasm to the 67 

plasma membrane, whereby these nuclei form an individual nuclear cytoplasmic domain (NCD) 68 

(Figure 1b). Similar to the Nymphaeaceae, CZE in Brassicaceae is recognized as the site where 69 

nutrients are absorbed from the mother plant and transported into the endosperm [28,29]. 70 

Endosperm cellularization causes the central vacuole to shrink, leading the embryo to switch as 71 

a sink for all the nutrients [30]. As the embryo begins to expand, it initiates invasion into the 72 

endosperm. This embryonic growth is accompanied by both the weakening of the endosperm 73 

wall and programmed cell death [31,32*]. The endosperm eventually remains as a thin aleurone-74 

like layer (Figure 1b) [33]. 75 

Monocot endosperm development resembles Arabidopsis until cellularization and 76 

diverges after cellularization. Differentiation of tissues such as the basal endosperm transfer layer 77 

(BETL) for grain filling, aleurone layer, embryo surrounding region (ESR) for nutrient transfer to 78 

the embryo [34], and starchy endosperm occur in cereal crops (Figure 1c). These tissues are not 79 

only major food sources (e.g., rice, maize, wheat), but also nourish the embryo during 80 

embryogenesis and seed germination  [35*].  81 

An anomalous case of degenerating endosperm occurs in the family Orchidaceae [36]. The 82 

orchid endosperm undergoes a few rounds of nuclear divisions but diminishes as the zygote 83 

develops. Some orchid species fail to initiate nuclear division, resulting in no endosperm 84 

formation [37]. Despite the lack of endosperm, orchid seeds germinate normally, indicating 85 



modifications in the orchid embryo's developmental or germination program [32*]. Orchid 86 

embryos form a protocorm establishing a symbiotic association with mycorrhizal fungi to support 87 

germination and survival [36,38]. Orchids without endosperm, thus, still require an alternative 88 

system to support the embryo, further highlighting the essential role of nutrient storage and 89 

supply in flowering plant endosperm. 90 

 91 

Molecular dynamics of endosperm 92 

Transcriptional profiling, coupled with laser capture microdissection, has been conducted 93 

in diverse species to elucidate the functions of subregions within the coenocytic and cellularized 94 

endosperm [25**,39-49]. A recent advancement involves single-nuclei RNA sequencing (snRNA-95 

seq) in Arabidopsis endosperm, providing a comprehensive map of transcriptomes and unraveling 96 

distinct gene imprinting patterns among the endosperm subregions [26**]. The endosperm 97 

displays gene imprinting, a phenomenon in which gene expression is biased depending on the 98 

parent of origin. Genes that show preferential expression from the maternal allele are referred to 99 

as maternally expressed imprinted genes (MEGs), whereas genes preferentially expressed from 100 

the paternal allele are referred to as paternally expressed imprinted genes (PEGs)  [50,51]. The 101 

Arabidopsis endosperm is triploid, with a parental genome contribution ratio of maternal 2n to 102 

paternal 1n. Disrupting this parental genome balance, either through interploidy crosses or using 103 

mutants that can alter the ploidy levels [52], results in a change in the deregulation of gene 104 

imprinting in the endosperm, the mechanisms for which still remains unknown [53]. Disrupting 105 

parental genome balance also alters the seed sizes [11,40,54] (Figure 2). The parental conflict 106 



theory for nutrient allocation suggests that paternal genome expression leads to more resource 107 

allocation to the progeny from the mother plant, while maternal genome expression restricts the 108 

flow of nutrients to the endosperm [55-57], thereby maintaining a balance required for all 109 

progeny seeds to survive. Notably, CZE exhibits a very high level of imprinting of the paternal 110 

genome, presumably acting as the region of active conflict for resource accumulation from the 111 

mother plant [26**]. The impact and mechanism of endosperm gene imprinting have been 112 

extensively reviewed [51,58,59], providing valuable insights into the regulatory processes 113 

governing endosperm development and its interaction with maternal and paternal genetic 114 

contributions. 115 

Manipulation of parental genome balance in the endosperm has also led to the 116 

identification of genes with altered expression levels in the endosperm compared to the wild type 117 

(Figure 2) [40,60-62]. Many of the genes encode MADS-box transcription factors (TFs), proteins 118 

involved in phytohormone pathways, and cell cycle-related proteins [40,60-62]. For example, 119 

among the MADS-box TF encoding genes, AGAMOUS LIKE 62 (AGL62), which is not imprinted, 120 

exhibits a decrease in expression level in the case of maternal excess cross, while showing an 121 

increase in expression level in the case of paternal excess cross (Figure 2) [40]. MADS-box TFs 122 

constitute an ancient gene family conserved across kingdoms [63], and plant MADS-box TFs are 123 

divided into two classes, type I and type II. Initially, type II MADS-box TFs were identified as 124 

regulators of floral development and organization [64]. On the other hand, type I MADS-box TFs 125 

remained not well-characterized until transcriptomic studies provided insights into their 126 

predominant expression in the endosperm [39,40,65] and the female gametophyte [66]. 127 

Molecular and phylogenetic analyses further classified type I MADS-box TFs into four groups – 128 



Mα, Mβ, Mγ, and Mδ [67]. Mγ and Mγ-interacting Mα show specific expression in the endosperm, 129 

and interestingly, these Mγ and Mα are unique to flowering plants [68*]. Given that the 130 

endosperm is also unique to flowering plants, this may suggest a special genome reprogramming 131 

in flowering plants involving the significance of MADS-box TFs in the evolution and/or 132 

development of the endosperm.  133 

In Arabidopsis, mutation of AGL62, belonging to the Mα type, causes precocious 134 

endosperm cellularization, serving as a negative regulator for endosperm cellularization [8]. 135 

Additionally, agl91 (Mγ type) and agl40 (Mα type) mutants produce smaller seeds, while 136 

overexpression of AGL40 leads to the development of larger seeds [69]. Before the initiation of 137 

cellularization, there is a noticeable decrease in the expression of a subset of type I MADS-box 138 

genes such as AGL62, AGL40, PHE1, and PHE2 in the endosperm (Figure 2) [40,62,65]. Consistent 139 

with the role of AGLs as negative regulators for endosperm cellularization, higher paternal dosage 140 

endosperm (resulting in larger seeds with delayed cellularization) shows elevated and prolonged 141 

expression of these genes [40,62,65,70], and higher maternal dosage endosperm (resulting in 142 

smaller seeds with small endosperm showing early cellularization) exhibits downregulation 143 

[40,71,72] .  144 

Using the R2D2 auxin sensor [73], it was demonstrated that fertilization triggers auxin 145 

production in the fertilized central cell (primary endosperm). Increasing auxin levels in the central 146 

cell, achieved by overexpression of auxin biosynthesis genes, initiated nuclear divisions in the 147 

central cell without fertilization [74]. Mutants associated with auxin biosynthesis and signaling 148 

exhibit defects in endosperm proliferation [74]. Additionally, the endosperm-specific expression 149 

of the dominant-negative IAA32, which impedes auxin signaling and thus induces auxin deficiency 150 



phenotypes, manifests a similar defect in endosperm proliferation [74]. Conversely, higher 151 

paternal dosage endosperm displays auxin overproduction, resulting in a delay in endosperm 152 

cellularization, and the overproduction of auxin in the endosperm also shows the same 153 

cellularization delay phenotype [61]. Collectively, these findings emphasize the essential role of 154 

auxin in endosperm development and highlight its regulatory role in the timing of endosperm 155 

cellularization (Figure 2) [61,74]. 156 

The Arabidopsis agl62 mutant reduces the auxin level in the endosperm compared to the 157 

wild-type [75*]. Similarly, in the case of Fragaria vesca (strawberry), Fveagl62 showed reduced 158 

expression of auxin biosynthesis genes [75*]. The interplay between auxin and AGL62 post-159 

fertilization becomes evident, playing a crucial role in endosperm proliferation. Auxin response 160 

factors (ARFs) govern the expression of auxin-responsive genes both in positive and negative 161 

manners [76,77]. A cluster of ARFs (cARFs) is expressed in the coenocytic endosperm [61]. 162 

Increased paternal dosage reduces and delays cARFs expression, while higher maternal dosage 163 

increases expression of cARFs (Figure 2) [78*]. Furthermore, overexpression of cARFs in the 164 

endosperm also causes early cellularization [78*], functioning in a dosage-dependent manner, 165 

positively regulating endosperm cellularization [78*]. An antagonistic relationship exists between 166 

auxin and cARFs in regulating endosperm cellularization; higher auxin levels prolong the 167 

coenocytic phase, causing a delay in cellularization, while cARFs initiate their expression just 168 

before cellularization, restricting the auxin signaling and promoting cellularization (Figure 2).  169 

Another phytohormone, cytokinin, which promotes nuclear and cell division in plant cells 170 

[79], has also been observed in the Arabidopsis coenocytic endosperm. Cytokinin-synthesizing 171 

genes AtIPT4 and AtIPT8 are expressed in the coenocytic endosperm [80], and indeed, the 172 



cytokinin reporter TCS::erGFP [81] showed the highest activity in the early stage, gradually 173 

decreasing as development progresses, and ultimately only remaining in the CZE [80]. To maintain 174 

steady-state cytokinin homeostasis, the coenocytic endosperm also sustains the expression of 175 

cytokinin oxidase/dehydrogenases (CKX) [82], which serve as negative regulators of cytokinin by 176 

catalyzing irreversible catabolizing actions. The expression of CKXs goes down with the 177 

progression of coenocytic development and they remain active only in MCE at the late globular 178 

embryo stage [80]. Mutants of HAIKU1 (IKU1), which codes for VQ motif protein [83], and HAIKU2 179 

(IKU2), which encodes a leucine-rich repeat kinase [84], show a reduced seed size phenotype with 180 

early cellularization [12]. In iku1 and iku2 mutants, CKX2 expression is inhibited compared to the 181 

wild type, resulting in higher cytokinin levels in the endosperm [80]. Conversely, mutants that 182 

block cytokinin signaling exhibit a larger seed phenotype [85-87]. Although the detailed molecular 183 

mechanism remains unclear and further investigation into the timing of endosperm 184 

cellularization in these lines is necessary, these results demonstrate the importance of 185 

maintaining intricate cytokinin balance in endosperm development; increased cytokinin levels 186 

prompt early cellularization, whereas reduced levels and signaling of cytokinin lead to larger 187 

seeds.  188 

Brassinosteroid (BR) is broadly present in the developing seed [88] and plays a positive 189 

role in gene expressions that promote seed size, such as SHORT HYPOCOTYL UNDER BLUE1, 190 

MINISEED3, and IKU2 in the endosperm [89]. Simultaneously, BR represses the expression of 191 

negative regulators of seed size, such as APETAL2 and ARF2 in the integuments and endosperm 192 

[89]. In addition to these extensively studied factors, other factors and pathways have been 193 

identified to be involved in endosperm development and seed size control [90]. A complex 194 



interplay and regulation among hormones and TFs likely occur in the coenocytic endosperm, 195 

governing its development and ultimately determining the final seed size. Further exploration of 196 

the connections among these factors and pathways will contribute to unraveling this unique and 197 

essential aspect of development, with implications for both biology and agriculture.  198 

Cellular dynamics of endosperm  199 

In addition to examining gene expressions and their associated phenotypes as described 200 

in the previous section, researchers have also intensively investigated the cellular dynamics of the 201 

unique coenocytic endosperm to further understand its development and have elucidated its link 202 

with seed size determination. In barley (Hordeum vulgare) [5], Lesser Swine Cress (Coronopus 203 

didymus) [91], and Arabidopsis [28,92,93], immunostaining revealed a distinctive microtubule 204 

(MT) arrangement known as the radial MT system in the coenocytic endosperm during 205 

interphase, forming an aster-shaped pattern around the nucleus. This radial MT system 206 

orchestrates cell wall placement during endosperm cellularization by generating phragmoplast at 207 

the border of nuclear-cytoplasmic domains (NCDs) [5,91,92,94]. Advances in confocal microscopy 208 

and live-cell imaging have allowed a detailed exploration of the dynamics and functions of both 209 

MT and actin filament (F-actin) in the entire coenocytic endosperm development [7**]. Similar 210 

to the radial MT, F-actin also generates an aster-shaped structure around each nucleus soon after 211 

the third nuclear division (Figure 3), with this pattern being more prominent in the PEN subregion 212 

[7**]. Perturbation of F-actin, achieved through the expression of the semi-dominant negative 213 

ACTIN transgene (DN-ACTIN) (Figure 3) [95], or treatment with the actin inhibitor latrunculin B 214 

(Lat B), caused irregular nuclei positioning and random, bouncing-like movement in the 215 

endosperm immediately after nuclear division [7**]. Overexpression of the wild-type ACTIN gene 216 



(OX-ACTIN) led to an increased number of actin cables around each nucleus (Figure 3), 217 

maintaining an overall similarity to wild-type F-actin structures and nuclear movement. 218 

Interestingly, the distance between nuclei increased further in OX-ACTIN compared to the wild-219 

type, generating a larger endosperm/seed, with DN-ACTIN resulting in the shortest distance and 220 

smaller endosperm/seed [7**]. Taken together, one of the F-actin functions in the coenocytic 221 

endosperm is to retain the newly divided nuclei at proper positions and maintain coenocytic 222 

endosperm subregions as well as distinct NCDs. During interphase in the Arabidopsis coenocytic 223 

endosperm, the radial MTs co-localize with F-actin asters [7**]. During nuclear division, MT forms 224 

spindles, and concurrently, the aster structures of F-actin become disorganized. Treatment with 225 

the MT inhibitor oryzalin, followed by drug washout, further demonstrated the dependence of F-226 

actin aster organization on radial MT [7**]. On the other hand, Lat B treatment does not exhibit 227 

any effect on MT structures, and nuclear divisions proceed normally in DN-ACTIN, indicating that 228 

MT function is independent of F-actin [7**].  229 

Growth dynamics of endosperm and seed 230 

Changes in the cellular dynamics of endosperm can influence the final seed size, and 231 

understanding how the seed translates these cellular changes in the endosperm to impact the 232 

ultimate seed size is also crucial. As plant cells undergo dynamic growth, the regulation of 233 

differential turgor pressure emerges as a pivotal mediator for maintaining plant cell shape and 234 

promoting cell expansion during growth and development [96-98]. The rapid expansion of a 235 

developing seed raises critical questions about the role of turgor pressure in this process. To 236 

measure turgor pressure in the coenocytic endosperm, a strategy was developed utilizing the 237 

tissue indentation technique generating force versus displacement curves of the developing seed 238 



to determine the seed stiffness [99,100]. The slope of these curves is shown to be correlated to 239 

the turgor pressure [100]. Seeds containing the early stage of the coenocytic endosperm exhibit 240 

high seed stiffness, indicative of high turgor pressure in the endosperm. As the endosperm 241 

develops, the stiffness (i.e., coenocytic endosperm turgor pressure) gradually decreases, 242 

undergoing a significant reduction at cellularization [99]. The fis2 mutant, characterized by larger 243 

seeds with the prolonged coenocytic endosperm phase, displays higher seed stiffness compared 244 

to WT at the early coenocytic stage, indicating higher turgor pressure [99]. By contrast, the iku2 245 

mutant, which produces smaller seeds with early endosperm cellularization, initially shows no 246 

difference in seed stiffness compared to WT; however, the stiffness persists even after endosperm 247 

cellularization [101**]. In iku2, the walls of the testa have a higher presence of demethylesterified 248 

pectins [101**], likely contributing to the persisted seed stiffness observed after endosperm 249 

cellularization. Taken together, the results from fis2 and iku2 mutants suggest that at the early 250 

stage of coenocytic endosperm, turgor pressure positively regulates seed growth, while at the 251 

later stage, the persisted pressure mediates testa stiffening, thereby restricting seed size 252 

[99,101**,102]. 253 

Vacuoles actively participate in the control of plant cell turgor pressure and play an 254 

important role in turgor pressure-dependent cell elongation [97,103]. Changes in the vacuole 255 

structure in actin-dependent manner have been reported in plant cells [104]. Disrupting F-actin 256 

in the coenocytic endosperm (DN-ACTIN) resulted in smaller seeds and defects in the vacuole 257 

morphology (Figure 3). By contrast, OX-ACTIN shows no such defects in the vacuole morphology 258 

and rather produces larger seeds [7**]. These results suggest that F-actin dynamics during the 259 

coenocytic stage influence vacuole structure, potentially altering its function and leading to 260 



changes in turgor pressure in the early stage of the coenocytic endosperm (Figure 3). 261 

Alternatively, F-actin may also control the distance between NCDs in the peripheral endosperm 262 

and establish the volume of the coenocytic endosperm, potentially contributing to seed size 263 

changes (Figure 3). Nevertheless, these works set the stage for exploring how turgor pressure in 264 

the coenocytic endosperm is regulated and, in turn, how turgor pressure may govern seed growth 265 

and development.  266 

Conclusion and perspectives  267 

The endosperm, a highly complex structure within the seeds of flowering plants, plays an 268 

essential role in nourishing the embryo during development and germination as well as the 269 

evolution of flowering plants. Further investigations on a genome-scale level regarding the 270 

emergence of newly duplicated genes, specific to flowering plants, and their expressions in the 271 

endosperm hold promise not only for uncovering the functions of yet unexplored genes in 272 

endosperm development but also shedding light on the evolution of flowering plants. 273 

Phytohormones, particularly auxin, have demonstrated a prominent role in endosperm 274 

development, with ongoing efforts to decipher the complex regulatory pathways. While the link 275 

between the MADS-box TF AGL62 and auxin has been explored, the roles of other AGL genes in 276 

phytohormone regulation remain uncharted territory. Cytokinin, another key phytohormone in 277 

endosperm development, is connected with the HAIKU pathway, which also involves epigenetics 278 

[80,84]. Understanding the spatiotemporal crosstalk among cytokinin, auxin, TFs, and imprinting 279 

during endosperm development will pave the way to unraveling additional layers of complexity 280 

in seed size regulation. 281 



In contrast to the endosperm, F-actin in the central cell forms a meshwork structure and 282 

displays constant inward movement from the plasma membrane to the central cell nucleus [95]. 283 

This dynamic F-actin movement aids in the migration of the sperm nucleus towards the central 284 

cell nucleus for karyogamy and is independent of MT functions [95]. Collectively, fertilization not 285 

only alters the dynamics of cytoskeletons but also influences interactions between F-actin and 286 

MT, posing a fundamental question of the transition in fate at the cellular dynamics level within 287 

the same cell (central cell to endosperm without cell division). 288 

Very recently, comparative transcriptomics among seeds with single fertilization of either 289 

the egg or central cell using the mutant producing single-sperm-cell pollens has revealed a set of 290 

endosperm genes that are dependent on embryo development and vice versa [105*]. The 291 

communications among the embryo, endosperm, and seed coat also orchestrate their 292 

development as a seed and influence the final seed size [32*,106-110]. Continued research into 293 

the highly complex mechanisms governing seed development, including this unique coenocytic 294 

endosperm, promises to unlock new avenues for improving seed traits and, consequently, 295 

enhancing yields per capita on a global scale. 296 
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both promotes and restricts seed growth and size. Nature Communications 2023, 14:67. 609 
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increasing and restricting seed growth depending on the timing.   612 
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105* Zhang Y, Maruyama D, Toda E, Kinoshita A, Okamoto T, Mitsuda N, Takasaki H, Ohme-Takagi M: 614 

Transcriptome analyses uncover reliance of endosperm gene expression on Arabidopsis 615 
embryonic development. FEBS letters 2023, 597:407-417. 616 

Comparative transcriptomics among seeds with single fertilization of either the egg or central 617 

cell have revealed a set of endosperm genes that are dependent on embryo development, and 618 

vice versa.  619 



 620 
 621 

Figure 1. Seed growth and development in flowering plants. a. Double fertilization leads to the formation 622 

of the embryo and diploid cellular endosperm in Nymphaeaceae. The perisperm (nucellus), a sporophytic 623 

tissue, stores starch and provides nourishment to the developing embryo via the endosperm. The chalazal 624 

endosperm forms a haustoria-like structure that transfers nutrients to the embryo. At seed maturity, the 625 

perisperm persists, possibly to support the embryo for germination. b. Double fertilization in Arabidopsis 626 

forms an embryo and a triploid nuclear endosperm. Endosperm development initially undergoes nuclear 627 

divisions without cytokinesis to form a coenocyte and then it cellularizes starting from the micropylar 628 

endosperm. In mature seeds, the endosperm is almost completely absorbed by the embryo and remains 629 

as a thin aleurone-like layer. c. In maize, the endosperm undergoes coenocytic development at an early 630 

stage and then starts to cellularize. After cellularization, the endosperm differentiates into the basal 631 

endosperm transfer layer (BETL) which acts as a barrier and supply route, embryo surrounding region 632 

(ESR), aleurone layer, and starchy endosperm. The endosperm is not absorbed by the embryo, and it 633 

supports the embryo during germination by providing all the necessary nutrients.  634 

  635 



Figure 2. Molecular Dynamics of 636 

Arabidopsis Endosperm 637 

Development. Endosperm 638 

development is orchestrated by an 639 

interplay between and the balance of 640 

transcription factors (TFs) and 641 

phytohormones. After double 642 

fertilization in the case of a balanced 643 

cross (2x X 2x), AGL62 levels increase, 644 

leading to an elevation in auxin levels. 645 

This increase in auxin levels induces 646 

the primary endosperm to initiate 647 

nuclear divisions. AGL62 and auxin 648 

levels remain high, correlating with the 649 

maintenance of the coenocytic 650 

endosperm phase. Before 651 

cellularization, TF ARFs come into play, 652 

acting as negative regulators for auxin 653 

signaling. This action by ARFs halt the 654 

coenocytic phase, initiating 655 

endosperm cellularization. In the case 656 

of a paternal excess cross (2x X 4x), 657 

both AGL62 and auxin exhibit elevated 658 

levels, resulting in a prolonged 659 

coenocytic phase duration. This delays 660 

the expression of ARFs, causing a 661 

subsequent delay in the cellularization 662 

of the endosperm. The expression of 663 

paternally expressed genes (PEGs) is 664 

higher than maternally expressed 665 

genes (MEGs) in the paternal excess 666 

cross. Conversely, in the case of a 667 

maternal excess cross (4x X 2x), AGL62 668 

and auxin levels remain low from the 669 

start of double fertilization. This leads 670 

to an early expression of ARFs, causing 671 

precocious endosperm cellularization. 672 

The expression of MEGs is higher than 673 

PEGs in the maternal excess cross. 674 

  675 



 676 

 677 

Figure 3. Cytoskeleton Dynamics in Coenocytic Endosperm. Z-projected confocal images depict F-actin 678 

(cyan, proFWA::Lifeact-Venus) and nuclei (magenta, proFWA::H2B-mRuby2) in the Arabidopsis coenocytic 679 

endosperm. F-actin forms aster-shaped structures around nuclei. In DN-ACTIN, the absence of F-actin aster 680 

formations disrupts nuclei organization. Conversely, OX-ACTIN exhibits a higher F-actin abundance and 681 

larger endosperm compared to the wild-type (WT). The central vacuole in the endosperm pushes nuclei 682 

to the periphery, forming nuclear cytoplasmic domains (NCDs). In DN-ACTIN, the vacuole structure is 683 

affected, resulting in less pushing of nuclei to the periphery compared to the WT. In OX-ACTIN, NCDs are 684 

more spaced, potentially influencing endosperm volume and size. These vacuole morphology and NCD 685 

alterations may contribute to variations in endosperm size and turgor pressure, possibly explaining diverse 686 

seed sizes among F-actin-manipulated lines 687 


