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Networks as tools for defining emergent
properties of microbiomes and their stability
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Abstract

The potential promise of the microbiome to ameliorate a wide range of societal and ecological challenges, from dis-
ease prevention and treatment to the restoration of entire ecosystems, hinges not only on microbiome engineering
but also on the stability of beneficial microbiomes. Yet the properties of microbiome stability remain elusive and chal-
lenging to discern due to the complexity of interactions and often intractable diversity within these communities

of bacteria, archaea, fungi, and other microeukaryotes. Networks are powerful tools for the study of complex micro-
biomes, with the potential to elucidate structural patterns of stable communities and generate testable hypotheses

ity and validity of future work.

for experimental validation. However, the implementation of these analyses introduces a cascade of dichotomies
and decision trees due to the lack of consensus on best practices. Here, we provide a road map for network-based
microbiome studies with an emphasis on discerning properties of stability. We identify important considerations

for data preparation, network construction, and interpretation of network properties. We also highlight remain-

ing limitations and outstanding needs for this field. This review also serves to clarify the varying schools of thought
on the application of network theory for microbiome studies and to identify practices that enhance the reproducibil-
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Introduction

With the advancement of new technologies applied to
the field of biology, a new perspective has emerged of our
place in the biosphere. We now recognize that microbes
underpin the function of all sectors of the planet, and we,
in fact, live in a microbial world [1]. From mountains to
oceans and from the bottom to the top of all food webs,
ecosystem and organismal health rely upon the microbi-
ome (communities of bacteria, archaea, fungi, and other
microeukaryotes). Thus, harnessing the beneficial prop-
erties of microbiomes that support the health of hosts and
habitats is an increasingly important pursuit as we seek
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more personalized medicine, as global change continues
to disrupt ecosystems, and as access to nutritious food
and clean water is challenging even among some of the
wealthiest nations. However, fundamental to the success
of efforts such as microbiome engineering is understand-
ing microbiome stability, the ability of a microbiome to
resist or recover from disturbances. Stable microbiomes
are commonly assessed via DNA sequencing to identify
compositional or functional traits that persist in the face
of disturbances, ranging from oral antibiotics in humans
affecting the gut microbiome [2] to the ability of corals
to withstand thermal stress [3]. However, these methods
do not necessarily consider the diversity and complexity
of interactions that characterize microbial life and poten-
tially foster community stability [4]. To address this,
co-occurrence networks have emerged by way of graph
theory as a way to model communities in the context of
their potential interactions [5]. Co-occurrence analy-
ses have long been used in community ecology to study
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the architecture of food webs, and many of the concepts
used to study microbiome co-occurrence networks origi-
nate from these works [6—9]. Given that no microbe acts
in isolation, network stability research offers pertinent
insights to guide future research for microbiome design
and engineering [10, 11].

The co-occurrence networks discussed here are com-
posed of nodes and edges, where nodes can represent
microbial taxa, genes, metabolites, or other composi-
tional properties of the microbiome and edges indicate
statistically significant relationships between them. In
brief, networks are constructed via pairwise comparisons
to determine whether there is a significant likelihood that
the given microbes tend to co-occur or trend towards
mutual exclusion. Edges can be classified as either posi-
tive or negative and by the strength of the predicted
association. Negative edges potentially represent rela-
tionships such as competition or predation, and positive
edges could indicate mutualism or commensalism, and
experimental co-cultivation has previously supported
the fidelity of some edges inferred in silico [12—14]. Each
resulting network represents a snapshot of the microbi-
ome that can be used to characterize potential interac-
tion patterns and to predict stability and be comparable
to other networks similarly constructed [15]. However,
the path to implementing network construction and
downstream analyses like stability is littered with con-
siderations, and few standards currently exist among the
research community. Beyond this, the network topologi-
cal metrics used as indicators of stability (e.g., degree,
connectivity, or clustering coefficient) often co-correlate
[16] or are associated with multiple plausible but con-
flicting interpretations, further challenging the interpre-
tation of these analyses.

The following comprises a user’s guide for generating
co-occurrence networks and implementing downstream
analyses such as the assessment of stability (Fig. 1). From
raw DNA sequencing data to network stability analysis,
we outline considerations for data curation and software
selection, as well as collate network topological metrics
and network properties used to study stability. We high-
light areas of congruence and incongruence on which
metrics and properties indicate stability, review the
remaining challenges in this area of study, and share sug-
gestions for future work.

Stage 1: Data preparation

Networks can be used to ask a range of biological and
ecological questions, offering a window, for example,
into the predicted importance of certain taxa in an eco-
system [12], potential drivers of community assembly
[17], or the robustness of the entire system across dis-
turbance gradients [18, 19]. To ask such questions, the
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data must first be curated to ensure that the inferred
network is biologically and ecologically relevant to the
study system and questions. This involves meeting the
statistical expectations for inferring the network, mini-
mizing the likelihood of spurious connections, and
constructing networks in a manner that ensures reliable
comparisons between them.

Taxonomic agglomeration
Many microbiome network studies cluster sequences into
operational taxonomic units (OTUs) at 97% sequence
similarity (e.g., [18-20]), or amplicon sequence vari-
ants (ASVs) delineated by single-nucleotide differences
[21-25], while some examine networks among higher
taxonomic groupings such as genera or classes [26, 27].
The level at which microbial sequencing reads are binned
and the taxonomic grouping affects what each node rep-
resents and what is indicated by edges between nodes.
For example, cross-domain networking among classes of
bacteria and fungi may represent higher-level ecological
and biological interactions, whereas networks built from
barcode loci ASVs may indicate distinct patterns among
more closely related microbes. Researchers should con-
sider what level of taxonomic resolution and sequence
agglomeration is appropriate for their questions of inter-
est [28-30]. It is also possible to cluster ASVs into OTUs
while maintaining ASV seed sequences, which enables
conversions between groupings as desired (as in [31]).
Binning taxa into 97% similarity OTUs or higher taxo-
nomic groupings instead of ASVs also brings the benefit
of reduction in dataset size and zero inflation (discussed
in the next section). Feasible richness levels for network
construction generally range in the order of hundreds to
thousands of taxa (e.g., [24, 32]). The larger the dataset,
in terms of taxa and/or samples, the more computational
resources and time will be needed to build a network.
Certain software have workarounds for batching out iter-
ations or using lossy processes to speed up runtimes [33],
though generally the pairwise nature of co-occurrence
calculations makes network construction less amenable
to parallelization.

Data filtering

Microbiome data are often zero-inflated, which can cause
erroneous predictions and lowered precision in correla-
tion-based network methods, such as Spearman’s and
Pearson’s correlations, SparCC, and the maximal infor-
mation coefficient (MIC) [34]. Previous recommenda-
tions include taxa filtering to at least a 20% prevalence
threshold to ensure that the interactions represented in
the network are most likely to be biologically real and
meaningful, though these cutoffs remain arbitrary and
a subject of debate [35, 36], ranging anywhere from 10%
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Fig. 1 Example workflow for microbial network stability analyses. To prepare amplicon sequencing data for network assembly, data are commonly
center-log ratio transformed, clustered into 97% operational taxonomic units (OTUs; or kept at 100% amplicon sequence variants, ASVs),
prevalence filtered, and controlled for uneven sequencing and sampling bias (via rarefaction or other normalization). General data preparation
steps apply to other data types as well. To construct networks, researchers should spend time comparing the strengths and weaknesses of various
co-occurrence network software and then fine-tune their parameters. After networks are built, we suggest that they be tested for nonrandomness.
Analyses should center on network modularity, robustness, vulnerability, fragmentation, and the presence of keystone nodes, as these have

the most consistent interpretations with network stability

[19, 21] to>60% [37]. Depending on the question, more
stringent filters may be appropriate, for example, network
comparisons made within-host on human skin and lung
microbiomes discarded taxa present in less than 33% of
samples [13], while a comparison of soil microbiomes
across different environments applied a 10% prevalence
filter [19]. Data may also be pre-filtered to exclude pair-
ings that cannot be reliably tested due to zero inflation
[36], as a high incidence of zeroes not only complicates
the detection of negative associations but can also arti-
ficially inflate positive correlations [35]. These filter-
ing steps inevitably cull members of the rare biosphere,
which has been touted in various systems for its ecologi-
cal importance [38]. The spectrum of prevalence filtering
thresholds from low to high generally represents a trade-
off between inclusivity and accuracy. Data filtering will

also reduce the dataset and subsequent computational
burden of network construction. Here, as elsewhere in
this guide, researchers are urged to consider these trade-
offs in deciding what parameters make the most sense for
their questions and systems.

Sequencing or sampling bias

Rarefaction, the process of randomly subsampling to a
set number of sequencing reads across samples, is com-
monly used in microbial network studies to address une-
ven sequencing depth [22, 24, 39]. There is strong debate
on the appropriateness of rarefaction with regard to
diversity analyses [40, 41], but the effects of rarefying in
networks vary by data association algorithms used dur-
ing network construction [42]. A comparison of corre-
lation-based methods found that rarefying caused tools
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like CoNet and Spearman’s and Pearson’s correlations
to suffer a decrease in precision, but that others such as
SparCC, Bray—Curtis dissimilarity, and MIC could still
reliably infer interactions [34]. The robustness of other
network inference methods to rarefaction, such as graph-
ical probabilistic models, has yet to be benchmarked.

To address sampling bias, sampling intensity may be
held constant across treatments. For example, research-
ers may standardize samples to the lowest common repli-
cate number across plots or individuals or use frequency
distributions of reads by taxon or sample to maintain a
standard proportion of the sampling effort [24]. As with
prevalence filtering, these normalization methods will
likely remove rare taxa.

Compositional data bias

Microbiome data are compositional, in that counts rep-
resent proportions of taxa relative to the total number
of sequencing reads in a sample, and not absolute abun-
dances [43]. Observations in microbiome data are thus
not independent, which breaks the assumptions of tra-
ditional correlation analysis and can result in a network
with many false-positive signals [44, 45]. A common
solution is to use the center-log ratio transformation to
remove dependencies between proportions [45], either
applied to the entire data table (as in SPIEC-EASI, a
graphical method [33]) or to pairs of taxa (as in SparCC,
a correlation method [44]). Alternatively, software using
Dirichlet multinomial models aims to directly account
for compositional data [46, 47].

Inter-kingdom data

Specific data pre-processing steps are needed to create
networks involving multiple domains of life, such as bac-
teria, archaea, fungi, and other microeukaryotes [13, 48—
52], as their compositions are specific to each dataset and
not the concatenated whole [53]. The SPIEC-EASI pack-
age automatically accommodates inter-kingdom data by
independently transforming datasets with the center-log
ratio transformation, which satisfies the equations to
generate the inverse covariance matrix [13, 33]. Datasets
used to make correlation-based networks should also
be transformed independently before concatenation to
avoid introducing bias and spurious edges [53].

Stage 2: Network construction

Software selection

At the time of writing, a broad suite of software is avail-
able for network generation, with each option offering
different underlying models suitable for different needs
[54]. Correlation-based methods are commonly used to
infer links in microbial network construction [21, 24]
but can be prone to issues involving compositionality
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and arbitrary significance cutoffs [54]. To promote sta-
tistical integrity in a correlation-based network, users
may involve null models [55] or random matrix theory-
imposed correlation cutoffs to separate organized infor-
mation from noise [56]. The package CoNet employs an
ensemble approach to reduce false positives, preserving
only those edges supported across multiple correlation,
similarity, or dissimilarity methods [57]. When using cor-
relation-based methods, a false discovery rate should be
used to correct for multiple comparisons (e.g., [58]).

Network software using probabilistic graphical models
have also emerged to mediate several of the aforemen-
tioned challenges, along with the issue of indirect edges,
or edges that arise due to shared responses to other taxa
instead of a direct interaction. Graphical methods infer
edges based on conditional dependencies, where an asso-
ciation is drawn between two nodes when there is a lin-
ear relationship between them, given all other nodes in
the network [33], and an edge will not be drawn if that
relationship can be explained by external taxa. Calculat-
ing networks in this manner often requires additional
computational power [54]. One well-known algorithm in
this family, SPIEC-EASI, was also designed to address the
high dimensionality of microbiome data, where samples
are often far outnumbered by taxa, which can otherwise
result in overfitting [33].

Indirect edges may also result from common responses
to environmental effects, such as pH, water availabil-
ity, or mineral levels [42, 59]. Some packages are able to
accommodate environmental data [57, 60], while other
studies include environmental variables in their corre-
lation analyses, either to observe how the environment
structures co-occurrence patterns or to cancel them out
[61-63]. Other suggestions to account for environmental
effects include generating separate networks in instances
where environmental data are expected to vary, for exam-
ple, across water depths, as indirect edges should be less
prevalent within a given environment [64]. It may also
be possible to discern certain indirect edges resulting
from geographic or environmental variation using phy-
logenetic distances to assess whether inferred edges are
consistent with habitat filtering, dispersal limitation, or
biotic interactions [65].

For an in-depth review on contemporary co-occur-
rence network software and their advantages and pitfalls,
including packages suitable for metagenomic data, see
[54]. Overall, difficulties remain across the gamut of net-
work software in accounting for computational complex-
ity and zero-inflated data [34, 54].

Software parameterization
The parameters of a set of successfully constructed net-
works should have been fine-tuned so that the networks
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achieve a suitable balance in interpretability, biological
relevance, and computational complexity, and are com-
parable among treatments. This may include choosing
between Spearman’s or Pearson’s correlations, defining
cutoffs for what is deemed a significant interaction, regu-
lating network sparsity, or setting how many iterations of
the calculation to perform [33, 56]. Different datasets will
likely call for different parameters, but the selected val-
ues should always be biologically justifiable. For example,
microbiome studies often favor Spearman’s correlations
over Pearson’s, as the latter assumes normally distributed
data with linear relationships, to which microbial data
may not conform [55], and Pearson’s correlations may
be less sensitive to detecting negative associations [36].
Networks resulting from the same type of model can also
display a great deal of variation due to the freedom of
choice inherent in parameterization [35]; thus, if different
networks are to be compared, they should be constructed
using identical parameters.

Nonrandomness in networks

Finally, it is useful to confirm that the resulting net-
works differ from random networks, which have Poisson
degree distributions [66, 67]. Networks are sometimes
considered non-random if their topology differs from a
distribution of topological values derived from random
networks with the same node and edge numbers [56].
Often, studies have called networks non-random if they
follow a power-law degree distribution (i.e., they are
scale-free) and are considered small-world, or formed of
more tightly knit clusters connected by relatively short
paths [68]. However, nonrandom networks need only be
non-Poisson and can take many different forms. Biologi-
cal networks may also organize themselves similarly to
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random networks [69, 70], but are generally expected to
be non-random [68]. Confirmatory studies with empiri-
cal and synthetic datasets are warranted to better define
statistical expectations for non-random network struc-
ture in microbiomes especially, as these may differ from
the macro-organismal, gene, and protein networks from
which many of these tests are derived [68, 71].

Stage 3: Network topology implies properties
related to stability

After networks are constructed, their topology and other
properties can be used to assess factors such as stability,
though their interpretations can be clouded by different,
even contradictory explanations for what values imply a
stable network. The following sections describe various
network metrics (Fig. 2) and how microbiome studies
have positioned them in the context of stability (Table 1).

Network topological metrics and properties

Modularity

Modularity is a measurement of network partitioning
into distinct and highly connected subcommunities or
modules. Members of modules are thought to associ-
ate with one another due to shared functions, strate-
gies, or environmental preferences [19, 61] and are only
weakly connected to nodes in other modules. For exam-
ple, in plant-pollinator networks, modules circumscribe
coevolutionary units of taxonomically related species
with convergent traits [80]. In microbiomes, modules
may imply niche partitioning [64] and have been used to
study habitat preferences [81]. Modules are desirable in
terms of network stability because local disturbances are
more likely to be contained within the module and not
propagate. This idea of compartmentalization imparting

Fig. 2 Visualization of network metrics commonly used to assess stability. The hypothetical network is partitioned into five modules, each
distinguished by color. Nodes are much more connected within-module than among modules. The dark red module has a higher incidence

of edges, indicating a relatively higher connectivity and linkage density compared to the navy blue module. Modules in dark red, orange, and green
have higher clustering coefficients than modules in turquoise and navy blue, as they cluster into multiple “triangles! The node in dark orange

is an example keystone, as it has a high degree (connections to other nodes) and high betweenness centrality (it frequently lies on the shortest
path between all pairs of nodes) and low relative prevalence (not shown). The node in light blue has relatively high vulnerability, in that its removal
has a large effect on network efficiency or how traversable the network is. The loss of the vulnerable light blue node also leads to fragmentation

of the turquoise module and a decrease in overall network robustness
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Table 1 Network topological metrics and network properties used in microbial network stability studies, with references. The majority
of the listed metrics can be calculated in the igraph package [72]. For calculating network robustness, we suggest the packages
brainGraph [73] or NetSwan [https://cran.r-project.org/web/packages/NetSwan/index.html]

Metric

Definition

High value =stable

Low value =stable

Average path length
Betweenness centrality

Connectivity

Clustering coefficient/transitivity

Degree
Linkage density

Modularity

Network size
Vulnerability

Cohesion

Complexity
Fragmentation

Inter-kingdom associations

Keystone taxa

The average shortest path (number of edges)
between all pairs of nodes

Of a node, frequently occurring on the shortest path
between all pairs of nodes

A measurement of how many connections are formed
between nodes in a network

The degree to which nodes in a network cluster
together

The number of edges connected to a node

The ratio of realized network edges to the total possible
number of edges

The partitioning within network communities into dis-
tinct and highly connected subcommunities

The total numbers of nodes in a network

The maximum impact of a node’s removal on network
efficiency

A measurement of the abundance-weighted positive
and negative correlations in a network, standardized

by a null model. Or more simply, the ratio of negative
to positive edges

Various definitions (see Table 2)

The number of disconnected subgraphs network
divided by the total number of nodes, upon stepwise
node removal

Networks involving interactions between microorgan-
isms from different kingdoms (e.g., fungi with bacteria)

A taxon with disproportionate importance on ecosys-

[23, 26] [39]
[23] [20, 24, 74]
[18, 26] [20, 25, 39, 58, 75]
[26,39,71,76] [20, 58]
[76,77] [20, 58, 75]
[18,24] [58,75]
[18-20, 23-25, 39,58, 77-79] [75]
[24, 39, 76]
[39,77]

[18,19,23,24,77,79]

[20, 21, 26, 39, 48, 58, 75]

[18,19,21,26,39,77] [25,58,75]
[22,24]
[13,23] [48]

[24,39,39,76,77,79]

tem function and stability in relation to its biomass.
In networks, nodes with high betweenness centrality
and degree or high connectivity within and among

modules

Robustness
removal

Networks able to resist collapse upon targeted node

[13,22,23,25,39,48, 58, 75-77]

stability is echoed in food web theory [82-85]. Other
than one study that found stable networks to possess
fewer modules [75], the literature is in strong agreement
that high modularity indicates increased stability [18-20,
23-25, 39, 58, 77-79], though all of these studies were
system-specific, with the majority focused on soil.

Modularity is considered a component of network
complexity [18, 77, 77] and is sometimes itself a crite-
rion for measuring stability [19, 58, 79]. There are many
ways to delineate modules, and community detection
remains an active area of research in network science [86,
87]. Commonly used algorithms in microbiome analysis
include fast greedy clustering [88], random walks [88],
and simulated annealing [89], ordered approximately by
speed (high to low) and potential precision (low to high).
See [11] and [90] for more in-depth comparisons of mod-
ularity algorithms in microbiome networks.

Betweenness centrality
Centrality is a metric that positions the contributions of
individual nodes to network structure. Along with degree
centrality (often reported simply as degree, see below),
betweenness centrality is one of the most commonly
used metrics in microbiome network studies. A node
has high betweenness centrality if it frequently occurs on
the shortest path between all pairs of nodes. Between-
ness centrality has been used to computationally identify
putative microbial keystone taxa [13, 91]. Nodes with
high betweenness centrality have been termed “gatekeep-
ers,” as their loss disproportionately affects the fragmen-
tation of the network [24, 74]. These nodes may serve
important roles in bridging network modules or distinct
subcommunities [52].

Betweenness centrality can also be assessed as a global
network property, for example, as the average or maxi-
mum betweenness centrality across all nodes [20, 39].
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Low global betweenness centrality is often associated
with higher stability [20, 24], although one study com-
paring networks across anthropogenic and natural dis-
turbances found the opposite [23]. Thus, the relationship
between betweenness centrality and network stability
tends to be negative but is yet unresolved.

Connectivity
Network connectivity refers to the degree of connections
formed between nodes in a network. Although this is a
specific metric that can be calculated for individual ver-
tices [72], studies often use this term while referring to
other metrics such as degree (the number of connections
to a node), linkage density (the proportion of realized
links relative to the total possible number of links), or the
total number of links (edge number). These metrics are
described in further detail below. A more connected net-
work may have a higher incidence of generalist species
with broader niche preferences and potentially broader
interaction breadths; for example, in plant-animal inter-
action networks, generalists are more densely linked [92].
To date, studies have not reached a consensus on the
role of connectivity in stability. Some have postulated
that high connectivity is stabilizing because it offers
redundancy, where a higher density of connections
between nodes and network compartments compensates
for the loss of certain edges in the event of disturbance
[26]. Connectivity has been described as increasing sta-
bility because a higher density of links may increase net-
work complexity, which has been tied to stability [18].
Others argue that a high level of connectivity makes a
system less stable since it is more vulnerable to cascade
effects, where disturbances may propagate more easily
through the network [39]. Connectivity may also reduce
stability more indirectly, by decreasing the specificity of
links (i.e., a highly connected node exhibits more “gener-
alist” characteristics), which in turn reduces modularity
[25, 92].

Degree

Node degree, or degree centrality, measures the num-
ber of edges connected to a node and is either taken as
is or normalized by the total number of connections in
the network. When the average node degree is used as
a proxy for connectivity, networks with low degrees are
usually associated with stability [20, 58, 75]. Degree can
also be used to identify important nodes, in which a high
degree indicates a hub and potential keystone taxon, and
a higher incidence of keystones may indicate increased
global network stability [76, 77]. High average degree
may also indicate high network complexity [25], but vari-
ous interpretations of stability with complexity abound
(see “Complexity” section).
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Network size

The size of a network is measured by the total number
of nodes. A large network may increase its resistance to
perturbation [76], and in general, this metric is seen in
association with stable networks [24, 39]. However, the
level of network stability is predetermined by other met-
rics such as robustness (i.e., network size itself does not
suggest stability).

Clustering coefficient or transitivity

Clustering coeflicient, also known as transitivity, meas-
ures the degree to which nodes’ neighbors are connected
with one another, which indicates the communicability
of the network. In microbiomes, higher clustering coeffi-
cients have been speculated to suggest cross-feeding rela-
tionships [92], especially when predicted associations are
positive [62]. A high clustering coefficient coupled with
low path length suggests a small-world structured net-
work [77], which is efficient but potentially less stable due
to vulnerability to node loss [39]. Indeed, increased effi-
ciency may imply that these networks are less error-tol-
erant, making them more vulnerable to extinction events
[68, 93]. High clustering coefficients have been associated
with increasing levels of network degradation and the
reduction of modularity, which by extension reduces sta-
bility [58].

High clustering coefficients also suggest a more com-
pact/aggregated co-occurrence pattern, which has been
seen as stabilizing due to more efficient resource transfer
[76]. Similarly, [26] found compactness to be a feature of
their stable networks.

Average path length

The average path length is another measure of network
efficiency and is measured as the average shortest path
between all pairs of nodes. The interpretation of path
length with stability depends on whether studies posi-
tion efficiency as enhancing or diminishing stability. A
smaller average path length indicates a more compact
network, which has been associated with more efficient
resource sharing and thus higher stability [26], as well as
the opposite, with increased vulnerability to node losses
[39]. Higher average path lengths have also been associ-
ated with stable sites compared to disturbed sites [23].

Linkage density

Linkage density, also known as graph density or net-
work density, is the ratio of realized edges to the total
possible number of edges. Higher linkage density may
increase the complexity of a network, increasing its sta-
bility [18]. However, May’s 1972 theorem indicates the
opposite [83], where systems become less stable as com-
plexity increases; a microbiome network study across
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a permafrost degradation gradient supports this [58].
Both schools of thought originate from food web the-
ory [9], and both are found in microbiome networks,
where lower [75] and higher [24] levels of density are
said to describe stable networks. When linkage den-
sity is weighted by association strength, it is referred to
as connectance (not to be confused with connectivity),
and increased connectance has been associated with
increased stability [18, 39].

Vulnerability

Vulnerability is calculated as how strongly a node con-
tributes to the global efficiency of the network, where
a node’s vulnerability is the loss in network efficiency
when the node and all of its edges are removed [16].
The maximum node vulnerability represents the vulner-
ability of the entire network. Low vulnerability indicates
a more stable network [39, 77]. Given that vulnerability
is calculated on the basis of network efficiency (i.e., the
compactness of the network, see “Average path length”
section), this viewpoint also assumes a positive relation-
ship between efficiency and stability.

Complexity

The complexity-stability debate stems from decades ear-
lier in the food web literature, where MacArthur [94]
purported that an increased number of species and links
increased stability, while May [83] found the opposite.
Beyond degree and connectivity, network complexity has
been described in many ways over the years, from com-
binations of topological metrics [18, 25, 39, 75, 77] to the
diversity in interaction strength [18, 77] or interaction
sign [19, 23, 77, 79].

As a result, there is no single, accepted way to define
a complex network (Table 2), but other than a few stud-
ies that found stable networks to be less complex [25,
58, 75], the literature has more or less converged on the
viewpoint that increased complexity confers stability in
microbiome networks [18, 19, 21, 26, 39, 77], with sup-
port in macroecological food webs [84, 95-97]. See [9]
for an in-depth review of complexity and stability in eco-
logical networks.

Robustness

Robust networks are those that are able to resist rapid
collapse in the face of disturbance. It is one of the few
metrics with strong agreement in the literature, where
greater network robustness equates to greater stability
(13, 22, 23, 25, 39, 48, 58, 75-77].

Disturbances are imposed computationally via tar-
geted node removal (usually in order of decreasing node
importance, or randomly), and the remaining largest
structure in the network is divided by its starting size
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Table 2 Network metrics and properties used to indicate

complexity

Metric References
Cohesion [19,77]
Connectance [18,39]
Connectivity [18, 39, 75]
Degree [21,25]
Evenness of association strength 18]
Linkage density [18,58]
Modularity [18, 25]
Network size [25, 39, 75]
Number of keystones [39]

Ratio of edges to nodes [26]

after each node removal [98]. Larger proportions are
considered more robust, as the network has maintained a
greater extent of its connections despite the loss of highly
connected nodes. This method is likened to the idea of
extinction cascades, where the loss of one species leads to
the loss of others dependent on it [97].

Robustness is alternatively measured by “natural
connectivity, a method also involving targeted node
removal [99]. Both forms of robustness are generally
plotted as a curve tracking values of network “whole-
ness” (e.g., the fractional size of the largest remaining
network component; y-axis) over the number of nodes
removed, ranging from zero to the total number of
nodes in the network (x-axis). A larger area under the
curve [13, 48] or lower absolute value of the slope [23]
indicates greater robustness. To derive a single robust-
ness value for a network, some studies have used the
number of remaining connections after removing a
certain proportion of nodes, for example, 50% of nodes
[77] or five module hubs [22, 39].

Fragmentation

Fragmentation is calculated by dividing the number of
disconnected subgraphs in a network (i.e., a network
whose nodes and edges are subsets of a larger graph)
by the total number of nodes following stepwise node
removal [100]. Lower fragmentation values are indicative
of greater stability [22, 24]. The loss of potential “gate-
keeper” nodes with high betweenness centrality can lead
to greater fragmentation of networks [100].

Cohesion (negative-to-positive interaction ratio)

Though many of the aforementioned metrics rely on non-
negative edges to calculate, positive and negative edge
weights can be incorporated when assessing cohesion.
Cohesion measures the abundance-weighted positive
and negative correlations in a network, standardized by
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a null model [101], though sometimes studies will calcu-
late the ratio of negative-to-positive interactions alone to
assess stability [23, 24]. A higher ratio of predicted nega-
tive interactions is thought to impart stability to a net-
work because such a network is better able to contain the
negative effects of disturbances [102]. Positive interac-
tions can lead to strong positive feedback loops, in which
the loss of one species leads to the mutual downfall of
all others with which it is linked. Approximately half of
surveyed studies using this metric found a higher rate of
negative interactions to be indicative of stable networks
[18, 19, 23, 24, 77, 79]. This is also consistent with the
stress-gradient hypothesis [103], where positive interac-
tions increase in adverse conditions thought to destabi-
lize communities. In microbiomes, this effect may occur
via a proliferation of stress-tolerant species and/or facili-
tative associations [19].

Other studies find a greater incidence of positive inter-
actions to either underpin [21, 26, 39, 48, 75] or describe
[20, 58] more stable networks. Under this paradigm,
greater levels of cooperation may increase the overall effi-
ciency of resource transfer and imply stable coexistence
across species [21, 48].

Keystone taxa

Keystone taxa were those originally hypothesized by
Paine [104] to be disproportionately important for eco-
system function and stability in relation to their preva-
lence or biomass. Unlike in macro-organismal systems,
where a potential keystone organism may be physically
removed or naturally absent, the keystone phenomenon
is challenging to directly apply and observe in microbial
systems due to their often diverse and ephemeral nature.
Instead, networks have been adopted to identify potential
keystone taxa, or highly important nodes, which are then
removed computationally as a test of their importance
for maintaining network structure. To date, the literature
is in agreement that keystones have a positive relation-
ship with stability [24, 26, 39, 75, 77, 79].

Keystones are thought to be important for network
stability because they uphold important structures in
the network. Various methods exist to identify putative
keystones. Some are based on network topology met-
rics, such as using degree to pinpoint hubs, while others
use a combination of degree and betweenness centrality
[13, 91]. These nodes are then further filtered by relative
abundance to maintain low-abundance candidates as a
parallel to macro-organismal keystone species proper-
ties. Another method ascribes topological roles to nodes
based on within- and among-module connectivity [80,
89]. Keystones identified with this method are not neces-
sarily screened for low abundance.
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As with some other ecological “rules” primarily derived
from the study of macro-organisms [105], it may be that
the traditional definition of a keystone species does not
directly apply to microorganisms, or at least warrants
flexibility [106]. Microbial metacommunities do not seem
to be defined by habitable patches but rather stepping
stones that facilitate dispersal across distance and dis-
junct suitable habitats [107], and as such, microbes may
not be restricted to the contexts (i.e., hosts, habitats, or
environments) in which keystone-like behavior is likely
to be observed [106]. Experimental validation is neces-
sary to determine the plausibility of microbial keystones
[12, 14], as network-based simulations of putative key-
stone removal rely on the assumption that network edges
represent biotic associations, which may not be the case
in co-occurrence networks [35].

Inter-kingdom interactions

When inter-kingdom interactions including both prokar-
yotic and eukaryotic microbes are included in co-occur-
rence networks, it is often found that stability increases,
generally as a result of the addition of fungi [13, 23],
which act as connectors between network modules [79].
Multiple hypotheses may explain this phenomenon:
fungi may produce metabolites that bacteria may exploit
when nutrients are limited [108], provide physical space
for bacterial colonization and dispersal [109], or sup-
port bacterial resistance to hydric stress [23]. One study
of host evolution in wild and domesticated rice found a
different effect, where the addition of fungi to bacterial
networks decreased network robustness but increased
transitivity (i.e., clustering coefficient) and modular-
ity [48]. In this study, stability was indicated by network
robustness, and the reduction of stability in the presence
of fungi was attributed to the loss of fungal-bacterial
modules [48]. More integrative microbiome research is
needed, as many studies focus on bacteria alone [18, 24,
39, 76, 77, 79], but the addition of multiple guilds and/or
kingdoms may change stability assessments [52].

Remaining challenges

One of the largest shortcomings of contemporary net-
work analyses is the inability to make robust statistical
comparisons between networks. Networks require a
sufficient sample size to reliably infer interactions [33],
but this often means every sample is put towards meet-
ing a suitable sample-to-feature ratio and not towards
generating replicate networks that would be needed to
create distributions of topological metrics or other prop-
erties. Thus, we often cannot say that one network is
significantly more modular than another, for example,
because only one modularity value can be calculated
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per network. Some studies have used subnetworks cor-
responding to individual plots from a single empirical
network to make statistical comparisons across sites
[18]. Researchers must take care to not pseudoreplicate
if taking this approach, ensuring that spatial autocorrela-
tion and proper replication are considered with respect
to their questions.

When interpreting co-occurrence networks, it is
important to consider the biological or ecological rel-
evance of a given pattern, or the degree to which such
relevance is attainable [64]. Data preprocessing can help
to reduce spurious and indirect edges (see above), but
even then, networks have limitations in representing
biotic signals, as correlations may not capture asymmet-
ric, directional associations such as trophic interactions
[110]. Network structure may also be driven by various
factors, including environmental filtering, dispersal limi-
tation, stochastic processes, or biotic interaction, and the
interpretations of a given network metric or property
should consider the role of these factors. For example,
when most links are driven by abiotic variation, calculat-
ing network robustness via simulated species extinction
may not be biologically relevant. However, it remains dif-
ficult to determine which edges and network structures
are governed by specific ecological processes (but see
[65]); thus, future network interpretations will likely be
constrained by this caveat.

Co-occurrence networks should be used to generate,
and not validate hypotheses [35], especially those that
assume biotic interactivity (e.g., ratios of cooperation to
competition). Regardless, networks have proven utility
in studying ecological theory (e.g., [106]), allow complex,
species-rich microbial communities to be more inter-
pretable, and will likely remain useful tools to guide the
direction of resources in more intensive pursuits, such as
co-culturing or whole genome sequencing.

The development of comprehensive tools for network
generation will help ensure that resulting networks rep-
resent “interactomes” to the greatest possible extent [61].
Current tools offer some, or most, but not all of the func-
tionality needed to do this, including the ability to handle
rare species, the compositionality and high dimension-
ality of microbiome data, indirect edges, environmental
effects, multiple domains of life, and large amounts of
taxa, while minimizing the use of arbitrary thresholds.
Added functionality will require more computational
power, so options to compute networks in batches or in
a lossy manner may be necessary. As methods evolve and
converge, there will hopefully be less variability among
software in what edges are inferred [34].
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Conclusions

Research into microbiome networks is challenged by a
forked path of decision-making and the existence of mul-
tiple plausible interpretations and few accepted stand-
ards. For example, of the network properties described
in this review, it is generally agreed that stable networks
are those partitioned into many distinct modules (high
modularity, [18-20, 23, 25, 39, 48, 58, 75-77]) that are
resilient in the face of targeted node removal (high
robustness [13, 22, 23, 25, 39, 48, 58, 75-77]), have low
vulnerability [39, 77] and low fragmentation [22, 24], and
are held together by keystone taxa [24, 26, 39, 75-77, 79].
Although certain network metrics correlate with these
properties (e.g., degree with robustness or keystone des-
ignation), a suite of topological metrics should be consid-
ered when describing stable networks.

One potential reason for the lack of convergence
between network metrics and their interpretations across
studies is that the majority of studies looked at single
sample types (mostly soil; [18-21, 23, 25, 26, 39, 75, 78,
79]) and single domains of life (mostly bacteria; [18, 24,
39, 76, 77, 79]). A strong need for the field is to assess
networks representing the diversity of ecosystems in situ
to differentiate system-specific stability quirks from uni-
versal traits.

With further confirmatory experiments, benchmarking
work on microbiome data, and computationally scalable
tools able to handle the multidimensionality of the data
[42, 54], co-occurrence networks can transform from
being an incredibly informative tool to one capable of
robust hypothesis generation and testing.
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