
Nucleic Acids Research , 2024, 52 , W256–W263 
https://doi.org/10.1093/nar/gkae421 
Advance access publication date: 23 May 2024 
Web Server issue 

MinA ctionPath2: path g ener ation betw een different 

conformations of large macromolecular assemblies by 

action minimization 

P atr ice Koehl 1 , Raf ael Nav aza 

2 , Mustaf a Tekpinar 3 and Marc Delar ue 

3 , * 

1 Department of Computer Science and Genome Centre, University of California, Davis, CA 95616, USA 

2 Plateforme de Cristallographie, C2RT, Institut Pasteur, Université Paris Cité, UMR 3528 du CNRS, 75015 Paris, France 
3 Unité Architecture et Dynamique des Macromolécules Biologiques, Institut Pasteur, Université Paris Cité, UMR 3528 du CNRS, 75015 Paris, 
France 
* To whom correspondence should be addressed. Tel: +33 1 45 68 86 05; Fax: +33 1 45 68 86 96; Email: delarue@pasteur.fr 
Present address: Mustafa Tekpinar, Van Yüzüncü Yil University, Department of Physics, Faculty of Science, Kampus, Van 65080, Turkey. 

Abstract 

Recent progress in solving macromolecular str uct ures and assemblies by cryogenic electron microscopy techniques enables sampling of their 
conformations in different states that are rele v ant to their biological function. Knowing the transition path between these conformations would 
pro vide ne w a v enues f or drug disco v ery. While the e xperimental study of transition paths is intrinsically difficult, in-silico methods can be used 
to generate an initial guess for those paths. The Elastic Network Model (ENM), along with a coarse-grained representation (CG) of the str uct ures 
are among the most popular models to explore such possible paths. Here we propose an update to our software platform MinActionPath that 
generates non-linear transition paths based on ENM and CG models, using action minimization to solve the equations of motion. The new 

website enables the study of large str uct ures such as ribosomes or entire virus en v elopes. It pro vides direct visualization of the trajectories 
along with quantitative analyses of their behaviors at http://dynstr .pasteur .fr/servers/minactionpath/minactionpath2 _ submission . 
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Introduction 

To accomplish their biological function, most of the enzymes
and macromolecular assemblies involved in the fundamental
processes of a cell cycle undergo a series of conformational
changes during their functional cycle ( 1 ). For instance, most
DNA polymerases switch from an open form to a closed form
upon binding the correct incoming nucleotide. This serves as
Received: March 12, 2024. Revised: April 25, 2024. Editorial Decision: May 7, 2
© The Author(s) 2024. Published by Oxford University Press on behalf of Nuclei
This is an Open Access article distributed under the terms of the Creative Comm
which permits unrestricted reuse, distribution, and reproduction in any medium, 
a check point for the enzyme, as this transition occurs only 
rarely for the incorrect nucleotide and catalysis can occur only 
in the closed form ( 2 ). More complex nanomachines such as 
the ribosome go through a series of large-scale rearrangements 
that involve the sliding of the mRNA upon completion of 
the peptide synthesis step ( 3 ). Using cryogenic electron mi- 
croscopy, it is now possible to generate experimentally the 
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c Acids Research. 
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ifferent structures adopted by a given nanomachine in the
resence of different substrates. The question remains as to
ow these conformational changes are achieved and which
ransition path is followed. 
As transitions between allosteric conformations occur in

he range of 1 μs–1 ms, capturing experimentally transient
tructures at the atomic level along their trajectories is a diffi-
ult task. The knowledge of such structures, however, would
onsiderably enlarge the scope of structure-inspired drug de-
ign. For example, drugs could be designed to prevent the tran-
ition in many more ways than permitted by the knowledge of
ust the endpoints of the transition. In addition, knowledge of
he structure of the transition state itself would reveal how
xactly catalysis is achieved by a given enzyme. 
While computational methods can be used to simulate such

ransitions, it is important to remember that those transitions
re intrinsically rare events. As such, sampling exhaustively
he conformational space of the molecule of interest is es-
ential, a sampling that is difficult to obtain with traditional
olecular dynamics (MD) simulations. Many new methods
re being developed to circumvent this problem ( 4 ). In prac-
ice, a full atom description of large macromolecular nanoma-
hines is currently difficult to achieve and one must resort to
oarse-grained models ( 5–7 ). Note that several methods have
een developed to go from a coarse-grained representation of
iological macromolecules back to their full atomic models
 8–10 ). 
In this paper, we derive transition paths between two con-

ormations of a macromolecular system that correspond to
 minimum of an action functional, governed by the over-
amped Langevin equation. At finite temperature, it is known
hat such transition paths are found as the trajectories that
inimize the Onsager–Machlup action functional ( 11 ). Find-

ng such minimum action path (MAP) is equivalent to solving
 two-point boundary differential equation. The complexity
f this problem is directly related to the complexity of the po-
ential energy considered. Many definitions of this potential
ave been considered, such as mixing two harmonic poten-
ials centered on each structure ( 7 ,12 ). As our goal is to gen-
rate transition paths for large molecular systems (in the hun-
reds of thousands of atoms), we will consider coarse-grained
otentials such as those associated with the elastic network
odel (ENM) ( 13 ). 
In a preliminary study ( 14 ), we proposed MinActionPath,

 method for computing the MAP between two conforma-
ions of a proteins on a simplified, two-wells free energy sur-
ace derived from the ENMs of the two conformations. The
nergy in each well is computed as a second order Taylor ex-
ansion of the corresponding ENM. Using this energy func-
ional, the equations of motion corresponding to the MAP are
olved analytically in each well, and continuity conditions at
he crossing between the two wells define the transition point.
here were, however, limitations to our implementation of this
ethod. It could not handle structures with loosely connected
omains, nor could it always maintain correct stereochemistry
ver the trajectory using a traditional Tirion elastic network
 13 ). The new implementation, MinActionPath2, also referred
o as MAP2, provides a solution to those two problems. First,
t allows to define the neighbours in the pairwise sums of the
nergy function using Delaunay triangulation ( 15 ), and sec-
nd, it provides the option of using a Go-like model to define
he potential in proteins ( 16 ). It has been shown that the use
f such potential reduces the number of covalent bonds with
unreasonable stereochemistry during the transition ( 17 ). The
code has been entirely rewritten to enable the study of very
large systems and the web interface now offers a user-friendly
visualization of the resulting trajectory in the output. 

MinactionPath2 is not the only tool currently available
to generate transition paths between two conformations of
a protein. The software ProDy is a very useful open-source
package that is simple to use ( 18 ). It is available for down-
load at http:// prody.csb.pitt.edu/ comd/ . It includes coMD, a
tool for generating trajectories using normal mode analysis
with a Monte Carlo sampling algorithm that selects the modes
that guide the initial structure towards the target structure
( 19 ). We note that coMD requires that the input files for the
end points of the trajectory must contain the same number of
atoms and that those atoms are in the same order. iMODS is
a web server that allows for the study of protein dynamics us-
ing internal coordinates, i.e. dihedral angles. ( 20 ). It includes
a morphing tool based on normal modes to generate trajecto-
ries, akin to coMD, but with the normal modes parameterized
with internal coordinates; we note that it is limited by the size
in large macromolecules. Recently, the web server eBDIMS,
available at https:// ebdims.biophysics.se/ , proposes to gener-
ate transition paths using Brownian dynamics ( 21 ). As Mi-
nActionPath2, it is based on elastic networks. It is currently
limited to medium-size molecular systems and does not han-
dle inputs with different numbers of atoms, two limitations
that are relaxed in MinActionPath2. 

In the Materials and methods section, we give details on the
formalism and the algorithm itself, followed by a description
of the web server and the needed input files and parameters.
In the Result section, we present 3 examples: a protein-DNA
complex, a ribosome and an entire virus shell. A short Discus-
sion outlines the perspectives. 

Materials and methods 

A minimum action path between two 

conformations 

The MinActionPath algorithm was described in details in ( 14 )
and ( 22 ). Here, we provide a brief overview for the sake of
completeness. 

Let us consider a molecule with N atoms, described by a po-
sition vector X. Assuming that we are only interested in effects
over long time scales, the dynamic behavior of this molecule
can be described by the overdamped Langevin equation. 

γ
dX 

dt 
= −∇ ( U ( X ) ) + B (1)

where γ is a friction coefficient, U(X) is the potential energy
of the system, ∇( U( X) ) is the gradient of U, and B is an un-
correlated random force with zero mean. By rescaling the unit
of time, it is possible to set γ= 1. The probability p that this
equation would have generated a path P over a time interval
[0, F] is given by ( 11 ) 

p = α exp ( −βS ( P ) ) (2)

where α is a normalizing constant, β = 1 / ( k b T ) , T is the tem-
perature, k b the Boltzmann constant, and S(P) the action along
the path P defined by: 

S = 

1 
2 

F 
∫ 

0 

(
dX 

dt 
+ ∇ ( U ( X ) ) 

)2 

dt (3)

http://prody.csb.pitt.edu/comd/
https://ebdims.biophysics.se/
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Given two possible configurations X A and X B for the
molecule, the minimum action path that connects these two
configurations is the one that maximizes the probability
given by Equation ( 2 ). This path satisfies the Euler–Lagrange
equation: 

d 2 X 

dt 2 
= ∇∇ ( U ( X ) ) ∇ ( U ( X ) ) (4)

where ∇ ∇ ( U( X) ) is the Hessian of the potential energy com-
puted at X . 

In the neighborhood of X A , the potential is given by a
second-order expansion of the potential at X A : 

U A ( X ) = ( X −X A ) 
T H A ( X A ) ( X −X A ) (5)

where H A ( X A ) is the Hessian of the potential energy at posi-
tion X A . A similar equation defines the potential in the neigh-
borhood of X B . The total energy U is defined as: 

U = min ( U A + �E, U B ) (6)

where �E accounts for a difference in free energy between the
two configurations X A and X B . 

The format of the total energy (equation 6 ) provides a sim-
ple strategy for generating a trajectory under Equation ( 4 ): (i)
find the transition time for which a trajectory starting at X A

under equation ( 4 ) based on U A alone and a trajectory starting
at X B under equation ( 4 ) based on U B alone meet. Note that
there are analytical solutions to equation ( 4 ) at the left, and at
the right of the transition (see 14,22). The point of intersec-
tion of the two trajectories needs to be continuous in position,
velocity , and energy . We find this point using a conjugate gra-
dient minimizer. It can usually be found in 10–15 iterations.
(ii) Once the transition state is known, generate the trajecto-
ries on the left (from X A ) and on the right (from X B ) of the
transition state. 

Algorithm 

The full algorithm to generate the minimum action path be-
tween two conformations based on elastic network models
has been described elsewhere ( 14 ). Here, we describe a mod-
ification that has proved essential to enable generating paths
for very large molecular systems ( 22 ). 

From Equations ( 4 ) and ( 5 ), the equation of motion close
to the start conformation X A is: 

d 2 X 

dt 2 
= H A ( X A ) 

2 ( X −X A ) (7)

with the two boundary conditions X(0) = X A and X( t s ) =
X ts , where t s is the transition time and X ts the transition state.
The matrix H A ( X A ) is a real symmetric matrix. As such, it can
be diagonalized: 

H A ( X A ) = P A D A P T A (8)

where P A is an orthogonal matrix and D A a diagonal matrix.
The solution of Equation ( 8 ) is then: 

X A ( t ) = P A f A ( D A , t ) P T A ( X ts −X A ) + X A (9)

where f A ( x, t ) is defined as: 

f A ( x, t ) = 

sinh ( xt ) 
sinh ( xt s ) 

(10)

This approach is limited to macromolecules with less than
a few thousand atoms as the diagonalization becomes im-
practical for larger structures in both computing time and
space constraints. There is, however, an alternate approach 
to diagonalization that is based on the concept of Krylov 
subspace. For the sake of simpler notations, let us define 
A = H A ( X A ) , v = X ts −X A , and f = f A ( x, t ) . We build an or-
thogonal base V m = [ v 1 , · · · , v m ] of the Krylov space K m = 

{ v , Av , · · · , A 
m −1 v } and a tridiagonal matrix T m of dimension 

m such that 

AV m = V m T m + βm v m +1 e T m 
(11) 

where e i is the i th unit vector in R 
m , and βm is an estimate of

the error from this process. It then follows that, 

f ( A ) v ≈ | | v | | V m f ( T m ) e 1 (12) 

Note that m , the order of the Krylov space, is taken to be 
much smaller that the dimension of the matrix A , usually in 
the order of a few tens. In addition, computing V m and T m 

only requires computing matrix vector multiplications which 
can be performed efficiently using either the sparse structure 
of the Hessian A , or its tensor representation ( 23 ). Finally, the 
matrix T m is a small tridiagonal matrix of size m that can easily 
be diagonalized. 

Description of the web server 

Initial and final states X A and X B 

Input files 
The two input files can be either in PDB format or mmCIF for- 
mat. Hydrogen atoms and HET A TM cards are ignored. There 
is no limit on the number of atoms or on the number of chains.
Chain names are coded with only one character in PDB files,
and this is obviously a limitation for macromolecules with 
more than 62 chains. Chain names using two characters are al- 
lowed in the PDBx file format, which is supported in our inter- 
face. We found that the best way to handle models with many 
chains (e.g. in ribosomes or viruses) is to use the mmCIF for- 
mat with no limitation on the format of the chain name. While 
mmCIF files are preferred on input, both PDB and PDBx files 
are accepted and transformed into mmCIF files at this stage.
If there are more than one model for each chain, the user can 
specify to keep only the first one. 

Choosing the coarse graining 
If requested by the user, the program will extract only CA 

atoms for proteins and C3’ for DNA (or C4’ for RNA); oth- 
erwise, the program will use all atoms present in the input 
files (again, except for hydrogen atoms and ligands identified 
with a HET A TM card). This selection of one specific atom 

per residue or nucleotide is dictated by the NGL viewer ( 24 ).
From a simple perspective of mass, however, a nucleotide is 
on average three times heavier than an amino acid. Users may 
want to account for this by representing each nucleotide with 
three atoms. Currently, this needs to be done as a preprocess- 
ing prior to using MinActionPath2. Among the three atoms,
there should at least be one C3’ atom per residue for DNA 

(C4’ for RNA) and one CA atom for a protein, to have a cor- 
rect trace representation of the chains by NGL. 

Handling a different number of atoms in the two input files 
In the previous version of this web site, there was a strict 
requirement that the two input files contain the same num- 
ber of atoms. In the new version, we relax this constraint 
by preprocessing the input files through USAlign ( 25 ), with 



Nucleic Acids Research , 2024, Vol. 52, Web Server issue W 259 

Input Files 

Filter
Atoms?

Coarse
GrainNo

Same # 
Atoms?

Energy
Model

MinAc�onPath

Write & Display

USAlign

Yes

No

Yes

Preprocessing

No

Neighbors
Defini�on

Figure 1. A flo w chart of the MAP2 web site. 
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he option –Tmscore 5, which is essentially a sequence align-
ent, all chains against all chains (option –ter 0). Following
his, the common atoms of the aligned residues with the same
hysico-chemical characters, defined by 5 classes ((P,A,G,S,T),
D,N,E,Q), (H,K,R), (F ,Y ,W), (V ,L,I,C,M)), are extracted and
orwarded to the algorithm generating the trajectory itself. 
We maintain the possibility for the user to bypass this step,

.e. to generate a trajectory based on the input files without
ny processing by USAlign. This bypass assumes that the two
les have the same number of atoms. 
The general workflow and organization of the web server

s summarized in Figure 1 . 

he elastic network model 

nergy 
e follow the concept of isotropic elastic network ( 5 ,13 ). 
In this model, the energy of a macromolecule is set to be the

armonic energy associated with springs attached to a prede-
ned set of pairs of atoms. Let us consider for example the
tart conformation X A . The energy at a conformation X near
 A is set to: 

V ( X ) = 

1 
2 
k 1 

∑ 

( i, j ) 

(
r i j − r 0 i j 

)2 
(13)

In this equation, k 1 is the isotropic force constant of all the
prings formed by the pairs of atoms i and j , r i j and r 0 i j are
he distances between i and j in the conformation X and in
he reference conformation X A , respectively, and the summa-
ion extends to all pairs ( i ,j ) included in the network. A similar
quation describes the energy of a conformation X near X B ,
he target conformation, with k 1 replaced by a different con-
tant k 2 . We will refer to this energy as the Tirion energy. 
Note that the energy defined by Equation ( 7 ) does not ac-
count for stereochemistry and as such dynamics that are based
on such an energy may undergo too large deviations from ac-
ceptable stereochemistry, especially if the two end conforma-
tions differ by a large rmsd value. To circumvent this prob-
lem, more terms are needed in the energy. The Go Model has
been parametrized with this purpose in mind, including terms
that are based on bond lengths, torsion angles, dihedral an-
gles, and a van-der-Waals-like term ( 16 ,17 ). Note that the Go
model only considers CA atoms and currently works only for
proteins. It is available as an option for MinActionPath2. 

The geometry of the elastic network 
Several criteria have been used to define the set of atom pairs
that are included in Equation ( 6 ). In standard elastic network
models, a cutoff distance R c is defined such that all pairs of
atoms separated by less than this cutoff are included in the
network. There are, however, no guidelines as to which values
for R c are best. Typical values for R c are in the range 13–15
Å when the network is based on CA only, and in the range
7–9 Å for all atoms ( 26 ). An alternate method is to build
a geometric structure on the sets of positions of the atoms;
the Delaunay complex is well suited for this purpose ( 15 ,27 ).
The advantage of the last criterion is that it is a parameter-
free method that handles well possible ‘dangling parts’ of
the model, which appear for instance in AlphaFold models
for loosely connected domains of large proteins or macro-
molecular complexes. These two criteria, i.e. a cutoff-based
or Delaunay-based elastic network (the default choice), are
available in MinActionPath2. 

Choosing k 1 and k 2 for the Tirion energy 

In principle k 1 can have a different value from k 2 : this will
influence the position of the transition point, as described in
the Results section. The usual way to choose an isotropic k
value for the Tirion energy is to impose the relationship, 

k = 

A 

〈 B 〉 (14)

in kcal / mol / Å2 where < B > is the average B -factor of the
structure and A is a proportionality factor that contains the
temperature-dependence of the elastic constant. The smaller
the average B -factor, the higher the elastic constant k , expected
to be in the range 0.16 ± 0.09 kcal / mol / Å2 . 

Note that MinActionPath2 calculates < B > for both the
start and target structures, if those values are available in the
input files, and these values are reported in the log file, so that
they may be used to define the ratio of k 1 and k 2 in a subse-
quent run. 

Output 

First the matching of chains found by USAlign is provided,
including the sequence alignment of each chain; then the log
file of MinActionPath2 is given, which contains details on the
convergence of the algorithm as well as a quick analysis of the
trajectory in terms of the energy of each frame, its rmsd ver-
sus each of the starting and ending states, as well as the Q 1
and Q 2 quantities (percentage of specific contacts present in
the initial or final state(s), respectively). This allows Q 1 ver-
sus Q 2 plots to be built; those plots have been found useful
when comparing geometrically all sorts of trajectories ( 14 ,28 ).
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Figure 2. Illustration of the Example 1 with the Klenow fragment of DNA Polymerase I from E. coli in complex with DNA . 
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A link to download the mmCIF file of the transition state as
well as of the trajectory itself is provided. The entry files to
MinActionPath2 (mmCIF) are also provided. 

Finally, a window based on the NGL viewer ( 24 ) is auto-
matically open on output, where the trajectory can be played,
with the possibility to rotate, translate and zoom in the
molecule(s). 

Results 

MinActionPath2 generates a transition path with minimum
action between two conformations of a molecular systems. Its
interface has been designed to limit the number of parameters
required from the user, to improve the ease of use, without
loss of quality. The main inputs include the files containing the
start and end conformations for the trajectory, the definition
of the elastic networks that represent the structure, as well as
the length of time for the trajectory. As described above, the
elastic networks can be derived from a cut-off criterium, or
by defining a Delaunay complex over the molecule. The en-
ergies associated with those networks are based either on a
Tirion potential, in which case the user is expected to provide
values for the elastic constants associated with the start and
target conformations, or a Go-like potential. In the following,
we describe a set of worked examples available on the Min-
ActionPath2 web page that are associated with proteins and
protein–DNA complexes, as well as brief analyses of the im-
portance of the choices the user needs to make when running
our program. 

Worked examples 

Protein–DNA complex 
The first example is the Klenow fragment of DNA polymerase
pol I from Esc heric hia coli in a binary or ternary complex with
DNA (Figure 2 ). The input files for the start and target confor-
mations have the PDB codes 2KTQ and 3KTQ, respectively.
The two structures have 551 atoms in common when keep-
ing only one atom per residue. The superposition by USAlign 
allows the extraction of the common residues in the protein 
(chain A) and in the DNA (Chains B and C, or B and D, which 
had to be re-matched). The DNA has the same sequence. We 
use a Delaunay elastic network and the Tirion potential with 
the default values for elastic constants k 1 = 0.1 and k 2 = 0.1.
Computing the trajectory between conformations 2KTQ and 
3KTQ takes only 17 s. This trajectory, and the associated in- 
formation such as rmsd between snapshots and the initial and 
final conformations, are available on the MAP2 web server 
under ‘Examples’. In comparison, computing the trajectory 
based on all atoms (4401 common atoms) takes 108 s. 

Ribosome 
The second example concerns two conformations of the same 
ribosome of E. coli (8G34.cif and 8G31.cif). Those two con- 
formations contain 52 chains and a total of 10474 atoms in 
common, after filtering and retaining one atom per residue.
The mapping of chains is successfully found by USAlign. We 
use a Delaunay elastic network and the Tirion potential with 
the default values for elastic constants k 1 = 0.1 and k 2 = 0.1.
The algorithm finds the transition time in 14 conjugate gradi- 
ent cycles. The total time to find the trajectory is 263 s. The 
trajectory is displayed as a movie in the result web page, with 
each chain colored with a different color. In comparison, com- 
puting the trajectory based on all atoms (144 244 common 
atoms) takes 9125 s. We were able to compute trajectories be- 
tween eukaryotic ribosomes whose sizes were at least up to 
200 000 atoms. 

Zika virus 
We considered two conformations of the entire envelope of 
the Zika virus, one at pH 5 (PDB code: 5H32) the other at 
pH 8 (PDB code: 5H37). Both structures represent the virus 
envelope in the presence of antibody C10 ( 29 ). We only re- 
tained the coordinates of the CA of the virus envelopes. The 
corresponding conformations include 180 chains (E proteins) 
for a total of 71340 atoms after retaining only one atom per 
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A

B

Figure 3. Comparison of the trajectories generated by MinActionPath2 for the pair of str uct ures 1ANF and 1OMP of maltodextrin binding protein. ( A ) Q 1 
versus Q 2 plots (where Q 1 and Q 2 are the percentage of native contacts within the str uct ures of the trajectories with respect to the start and target 
str uct ures) showing the effect of different elastic constants in the ENM of the initial and final states. ( B ) Same Q 1 versus Q 2 plots to compare the effect 
of using a Delauna y -based elastic network compared with a cutoff-based elastic network. 
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esidue. We used the Delaunay triangulation to define the ge-

metry of the elastic network. The Tirion potential was set
ith default values k 1 = 0.1 and k 2 = 0.1. The algorithm
ound a trajectory in 1984 seconds. The trajectory and as-
ociated information are available on the MAP2 web server
nder ‘Examples’. Note that in the NGL window, each chain
s colored with a different color. 

nfluence of k 1 versus k 2 for an ENM model 

 test was made to see the influence of choosing different
lastic constants k 1 and k 2 for the initial and final states of
he molecule of interest. We considered the pair of structures
ANF and 1OMP of maltodextrin binding protein. Those
onformations have 370 residues in common. The rsmd be-
ween the start and target conformations is 3.77 Å. As can
e seen in Figure 3 A, the two Q 1 versus Q 2 plots based on
k 1 = 5* k 2 and k 2 = 5* k 1 vary above and below the plot
k 1 = k 2 , respectively. For those two settings of k 1 and k 2 ,
the Energies at the transition point are much higher (about
60 kcal / mol) compared to the equivalent energy when k 1
is set equal to k 2 (30 kcal / mol). The transition times when
k 1 = 5* k 2 and k 2 = 5* k 1 are shifted to the left, or to the right,
respectively, compared to k 1 = k 2 , as expected. 

Influence of Delaunay- versus cutoff-defined 

neighbors 

In Figure 3 B, for the same system of maltodextrin binding pro-
tein, we show results obtained with elastic networks defined
with a cutoff R c set to either 12 or 15 Å, with those obtained
with an elastic network obtained from a Delaunay triangu-
lation. The first two cases show similar behaviors, illustrat-
ing the fact that similar results are obtained with the cutoff-
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defined method of defining neighbors provided that R c > 12,
while the latter (i.e. the Delaunay EN) departs more from the
diagonal, with a more non-linear behavior. Note that the en-
ergies at the transition point cannot be strictly compared as
the number of edges in the networks are different. 

Discussion 

Action minimization is recognized as an efficient method to
generate trajectories described by a Langevin equation (with
noise) under the constraint of a known starting and ending
points ( 4 ), with currently few practical implementations ( 30 ).
We have described a web site implementation of a faster and
more user-friendly version of our initial implementation of the
method under a simplified coarse-grained potential ( 14 ). The
new version, MinActionPath2 can handle large macromolec-
ular assemblies, including entire shells of viruses ( > 200 000
atoms). It allows for a direct visualization of the trajectory
with graphical tools on the output, as well as provides the op-
tion of downloading the full trajectory. 

The computed trajectory is usually characterized by a very
high energy of the transition state, which could appear at first
sight as a severe limitation of the program. We note, however,
that it is possible to relax this trajectory to improve the energy
at the transition, without modifying the overall trajectory sig-
nificantly ( 22 ). We intend to enable such relaxation with Mi-
nActionPath2 as future work. 

There are many applications that could easily benefit from
MinActionPath2. For example, the structures of snapshots
along a trajectory between two conformations of a protein can
be used to discover new ligand-binding pockets, in very much
the same way that normal modes are used to reveal cryptic
pockets ( 31 ). In addition, the MinActionPath2 trajectories can
be used as an input for other methods that requires an initial
guess of the trajectory, such as the string methods, for further
sampling of possible paths using an all-atom representation
and a more physical energy ( 32 ,33 ). 

We point out that new methods based on AlphaFold2 are
being developed to predict new structures from their sequence,
not only in the apo form but also in a holo form (bound to a
ligand), with encouraging results ( 34 ). Hence, the potential of
application of MAP2 is considerably larger than the pairs of
similar structures deposited in the PDB. 

MinActionPath2 was designed with minimal user inputs in
mind, namely the input files for the two structures considered,
information on the geometry of the elastic networks (cutoff-
based, or Delaunay-based), and information on the energies
associated with those networks (Tirion-based with isotropic
elastic constants, possibly different for the two input struc-
tures, or Go-like potentials that are parameter-free). There is
room for improvement with all those choices we have made.
First, note that we have chosen isotropic values for the elastic
constants associated with the Tirion potential. It is possible to
use instead anisotropic elastic constants (i.e. with the option
of setting different constants for different pairs of atoms), and
even refine those elastic constants based on the B -factors asso-
ciated with the structures (when those B-factors are available).
We refer the reader to ( 23 ) and ( 35 ) for a full discussion on
how to choose the elastic constants. We note that in this last
case the local elastic constants are set using the surface of inter-
action between atoms, calculated after Delaunay tessalation:
hence, we already have the elements to calculate and calibrate
such local elastic constants, both for proteins and nucleic acids
(and complexes thereof). Second, our current implementation 
of the Go-model is parameter free. While this reduces the num- 
ber of parameters, it may also negatively impact the quality of 
the trajectory (for example it would not correctly capture dif- 
ference in the internal dynamics of the two structures that is 
reflected in the B -factor). In future work, we will propose a 
Go-like potential that can be parameterized. On a side note,
our implementation of the Go-like potential is specific to pro- 
teins. As a result, the correct stereochemistry may not be main- 
tained during the trajectory, especially in complexes contain- 
ing nucleic acids. We will parameterize an equivalent potential 
for nucleic acids and complexes between them and proteins 
(see for example, ( 36 )). 

Data availability 

MinActionPath2 (MAP2) is free and open to all 
users at http://dynstr .pasteur .fr/servers/minactionpath/ 
minactionpath2 _ submission/. 
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