
Citation: Koehl, P.; Orland, H. A

General Statistical Physics Framework

for Assignment Problems. Algorithms

2024, 17, 212. https://doi.org/

10.3390/a17050212

Academic Editor: Roberto

Montemanni

Received: 30 April 2024

Revised: 9 May 2024

Accepted: 11 May 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A General Statistical Physics Framework for
Assignment Problems
Patrice Koehl 1,* and Henri Orland 2

1 Department of Computer Science, University of California, Davis, CA 95616, USA
2 CNRS, CEA, Institut de Physique Théorique, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;

henri.orland@cea.fr
* Correspondence: koehl@cs.ucdavis.edu

Abstract: Linear assignment problems hold a pivotal role in combinatorial optimization, offering a
broad spectrum of applications within the field of data sciences. They consist of assigning “agents” to
“tasks” in a way that leads to a minimum total cost associated with the assignment. The assignment is
balanced when the number of agents equals the number of tasks, with a one-to-one correspondence
between agents and tasks, and it is and unbalanced otherwise. Additional options and constraints
may be imposed, such as allowing agents to perform multiple tasks or allowing tasks to be performed
by multiple agents. In this paper, we propose a novel framework that can solve all these assignment
problems employing methodologies derived from the field of statistical physics. We describe this
formalism in detail and validate all its assertions. A major part of this framework is the definition of
a concave effective free energy function that encapsulates the constraints of the assignment problem
within a finite temperature context. We demonstrate that this free energy monotonically decreases
as a function of a parameter β representing the inverse of temperature. As β increases, the free
energy converges to the optimal assignment cost. Furthermore, we demonstrate that when β values
are sufficiently large, the exact solution to the assignment problem can be derived by rounding off
the elements of the computed assignment matrix to the nearest integer. We describe a computer
implementation of our framework and illustrate its application to multi-task assignment problems
for which the Hungarian algorithm is not applicable.

Keywords: assignment problems; statistical physics; discrete optimization

1. Introduction

An assignment problem can be interpreted as a problem of resource allocation in
which a certain number of “tasks” are performed by some “agents” so that the total cost of
pairing tasks with agents is minimized. There are many ways to constrain this problem,
such as imposing one-to-one mapping (the balanced problem), searching for a specific
number of assignments (the k-cardinality assignment problem), imposing constraints on
the resources (the generalized assignment problem), or allowing agents to perform multiple
tasks or reversely having some tasks performed by more than one agent. For reviews
on the variety of assignment problems and the algorithms that have been proposed to
solve them, we refer the reader to Refs. [1–3] and references therein. Assignment problems
are fundamental combinatorial optimization problems. As such, solving such problems
is a significant concern in operational research, economics, and data sciences, among
other disciplines. Assignment problems have been and continue to be a focal point of
investigation for mathematicians, statisticians, computer scientists, and even physicists. In
this paper, we propose a general framework that regroups all the assignment problems
mentioned above. We develop an approximate solution to this problem based on statistical
physics and prove that it converges efficiently to an exact solution for non-degenerate as
well as degenerate assignment problems.

Algorithms 2024, 17, 212. https://doi.org/10.3390/a17050212 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050212
https://doi.org/10.3390/a17050212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0908-068X
https://orcid.org/0000-0002-6983-2951
https://doi.org/10.3390/a17050212
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050212?type=check_update&version=1

Algorithms 2024, 17, 212 2 of 31

Let us first define the assignment problem. Let T be the set of tasks and A the set of
agents, with possibly different cardinalities |T| = N2 and |A| = N1. If we define C(i, j) as
the cost of assigning task i to the agent j, the balanced assignment problem can be stated
as finding a transportation matrix G between T and A whose elements are non-negative
integer numbers and that minimizes

U = ∑
i∈T

∑
j∈A

C(i, j)G(i, j). (1)

In the special case of N1 = N2, with a one-to-one assignment of tasks to agents (the
balanced assignment problem), G corresponds to a permutation of {1, . . . , N}. In the more
general case, N1 and N2 can be different (unbalanced assignment), the number of pairings
k may be imposed with 0 < k ≤ min(N1, N2) (k-cardinality assignment problem), and/or
tasks and agents may be assigned to more than one agents and tasks, respectively. In those
general cases, G remains binary but may not be a permutation matrix (in the specific case
of the k-cardinality problem, for example, G is a partial permutation matrix of rank k).

As mentioned above, assignment problems are basically combinatorial optimization
problems that can be solved numerically using a linear programming model or, more specif-
ically, a linear integer programming method. Those methods, however, are theoretically
NP-complete. There are fast heuristics that can solve such problems, such as Dantzig’s sim-
plex method [4]. The assignment problem, however, is a specialized case of integer linear
programming that can be recast and solved by an exact polynomial algorithm. For example,
the most common algorithm for solving the balanced assignment problem has its origin
in the work of Jacobi [5]. It was “rediscovered” 60 years later by [6] and is now dubbed
the Hungarian algorithm. It is a global algorithm that iteratively identifies assignments
between agents and tasks. It is polynomial in running time (O(N4) or O(N3) depending on
the implementation). While it is serial by nature, there are many recent efforts to parallelize
this algorithm (see, for example [7–9], and references therein).

The Hungarian algorithm can be adapted to many unbalanced assignment problems.
If there are N2 tasks and N1 agents, with N2 > N1, for example, it is possible to add
N2 − N1 “dummy” agents, solve the balanced assignment problem of size N2, and then
only retain the assignments to the actual N1 agents. If each agent can perform up to M
tasks, the textbook solution is then to create M copies of each agent prior to using the
Hungarian algorithm. This approach, however, may not lead to the expected solution.
Consider a problem with fiv tasks and three agents, with each agent allowed to perform
up to three tasks. The option of creating three copies of each agent and then solving the
corresponding unbalanced assignment problem may lead to one agent performing two
tasks, a second agent performing three tasks, and the last agent not performing any task,
possibly violating a constraint that each agent needs to perform at least one task. Several
methods have been proposed to circumvent this problem, either by dividing the problem
into multiple subproblems [10,11] or by using random algorithms such as the ant colony
algorithms [12,13]. It is unclear whether these algorithms can identify the optimal solution
(they have been shown to fail in some cases, see for example [14]) or how they scale for
large problems.

In this paper, we propose a radically different approach to solving a general class of
assignment problems using continuous systems. Our approach is motivated by statistical
physics. It is a full generalization of the method developed in a previous paper to solve
balanced assignment problems [15]. In the following, we will use the generic term “multi-
assignment” to represent an assignment problem with agents possibly performing multiple
tasks, or with tasks assigned to multiple agents. In this paper, we aim to

• Introduce and substantiate a continuous framework for addressing potentially multi-
faceted assignment problems involving multiple tasks and/or multiple agents, lever-
aging principles from statistical physics;

• Demonstrate that, under generic circumstances where the multi-assignment problem
possesses a unique solution, the aforementioned framework ensures convergence to

Algorithms 2024, 17, 212 3 of 31

that solution with arbitrarily high accuracy, in terms of both cost (referred to as energy)
and assignment matrix,

• Present a modified approach capable of identifying at least one solution for degenerate
multi-assignment problems that feature multiple solutions;

• Demonstrate that the implementation of this framework can be efficiently parallelized.

We emphasize that this formalism is not a mere adaptation but a full generalization
of the framework we develop for solving assignment problems [16]. In particular, new
features of this paper are as follows:

• A method to account for the fact that each task can be assigned to a variable number
of agents and, on the other hand, that each agent can be assigned a variable number of
tasks. To that end, we introduce indicator functions over the sets of tasks and agents
that are optimized along with the transportation plan.

• The establishment of proofs of validity and convergence of our algorithm for those
general multi-assignment problems. The main results are provided in the text, while
the proofs themselves are relegated to the Appendices for more clarity. For the
balanced assignment problem, these proofs rely heavily on the fact that the corre-
sponding transportation matrices are permutation matrices that are the extreme points
of the well-characterized convex set of doubly stochastic matrices (according to the
Birkhoff–von Neumann theorem [17,18]). For more general multi-assignment prob-
lems, the transportation matrices also belong to a convex set, with properties akin to
the Birkhoff–von Neumann theorem (these properties are discussed in Appendix A).
The use of these properties to derive the convergence of our algorithm for solving
multi-assignment problems is new.

The paper is organized as follows. In sections 2 to 4, we describe in detail the general
framework we propose for solving multi-assignment problems. Proofs of all important
properties of this framework are provided in the appendices. Section 5 briefly describes the
implementation of the method in a C++ program, Matching V1.0. In Section 6, we present
some applications, along with a comparison to current algorithms.

2. A General Formulation of the Assignment Problem

We consider two sets of points, S1 and S2, with cardinalities N1 and N2, respectively.
We represent the cost of transportation between S1 and S2 as a matrix C whose elements
C(i, j) are positive, for all (i, j) ∈ [1, N1] × [1, N2]. We set the number of assignments
between points in S1 and S2 to be a strictly positive integer number k, a constant given
as input to the problem. A point i is assigned to n1(i) points in S2, with n1(i) belonging
to [pmin(i), . . . , pmax(i)], where pmin(i) and pmax(i) are non-negative integers satisfying
0 ≤ pmin(i) ≤ pmax(i) ≤ N2. Similarly, a point j is assigned to n2(j) points in S1, with n2(j)
belonging to [qmin(j), . . . , qmax(j)], where qmin(j) and qmax(j) are non-negative integers
integers satisfying 0 ≤ qmin(j) ≤ qmax(j) ≤ N1. Using the traditional “task-agent” for the
formulation of an assignment problem, S1 represents the tasks, and S2 the agents. n1(i) is
the number of agents needed to perform task i, while n2(j) is the number of tasks that can be
performed by agent j. pmin(i) and pmax(i) represent the minimum and maximum number
of agents that are assigned to a task i, respectively, while qmin(j) and qmax(j) represent the
minimum and maximum number of tasks that can be assigned to an agent j, respectively.
We use a general definition of these boundaries, in that we allow each task and each agent
to have their own limits. The multi-assignment problem is then framed as the search for an
assignment matrix G that defines the correspondence between points in S1 and points in
S2. This matrix is found by minimizing the assignment cost U, defined as

U(G, C) = ∑
i,j

G(i, j)C(i, j). (2)

The summations encompass all i in S1 and j in S2. The objective is to locate the
minimum of U given the values of G(i, j) that adhere to the following constraints:

Algorithms 2024, 17, 212 4 of 31

∀i, ∑
j

G(i, j) = n1(i)

∀j, ∑
i

G(i, j) = n2(j)

∑
i

∑
j

G(i, j) = k

∀(i, j), G(i, j) ∈ {0, 1}
∀(i), n1(i) ∈ [pmin(i), . . . , pmax(i)]
∀(j), n2(j) ∈ [qmin(j), . . . , qmax(j)],

(3)

where k is the actual number of task–agent pairs. The numbers pmin(i), pmax(i), qmin(j),
qmax(j), and k are problem-specific and given. They do satisfy some constraints, such as
0 ≤ pmin(i) ≤ pmax(i) ≤ N2 and 0 ≤ qmin(j) ≤ qmax(j) ≤ N1, as described above, as well as
0 < k ≤ ∑N1

i=1 pmin(i) and k ≤ ∑N2
j=1 qmin(j). We store those numbers in four vectors, Pmin =

(pmin(1), . . . , pmin(N1)), Pmax = (pmax(1), . . . , pmax(N1)), Qmin = (qmin(1), . . . , qmin(N2)),
Qmax = (qmax(1), . . . , qmax(N2)).

Equation (3) recap most of the standard linear assignment problems:

(i) If k = N1 = N2 and pmin(i) = pmax(i) = qmin(j) = qmax(j) = 1 for all i and j, we
recover the balanced assignment problem,

(ii) If pmin(i) = qmin(j) = 0 and pmax(i) = qmax(j) = 1 for all i and j, the equations
correspond to the k-cardinality assignment problem [19–21].

In Equation (3), G(i, j), n1(i) and n2(j) are unknown, defining a total of N1N2 + N1 +
N2 variables. The solution to the general assignment problem is given by the functions n∗

1
and n∗

2 on S1 and S2, respectively, which identify which tasks and which agents are involved
in the optimal assignment, the transportation matrix G∗ that defines these correspondences,
and the minimum assignment cost U∗ = U(G∗, C).

Optimizing Equation (2) subject to the constraints Equation (3) constitutes a discrete
optimization challenge, specifically an integer linear programming problem. To address this
challenge, we employ a statistical physics methodology, transforming it into a temperature-
dependent problem involving real variables. The integer optimal solution is then obtained
as the temperature approaches zero.

2.1. Effective Free Energy for the General Assignment Problem

Solving the multi-assignment problem entails determining the minimum of the func-
tion defined in Equation (2) across the potential mappings between the two discrete sets
of points under consideration. Identifying this minimum is tantamount to identifying the
most probable state of the system it characterizes. This “system” encompasses the various
binary transportation plans, also referred to as assignment matrices, between S1 and S2
that adhere to the constraints Equation (3). Each state within this system corresponds to
assignment matrix G with its associated energy U(G, C) as defined in Equation (2). The
probability P(G) linked with an assignment matrix G is given by

P(G) =
1

Z(β)
e−βU(G,C). (4)

In this equation, β is the inverse temperature, namely β = 1/kBT, where kB is the
Boltzmann constant and T is the temperature, and Z(β) is the partition function computed
over all states of the system. As this system is defined by the assignment matrices G and by
the marginals of G, n1, and n2, the partition function is equal to

Zβ = e−βFβ

=
1

∑
G(i,j)=0

pmax(i)

∑
n1(i)=pmin(i)

qmax(j)

∑
n2(j)=qmin(j)

e−βU(G,C), (5)

Algorithms 2024, 17, 212 5 of 31

where F (β) is the free energy of the system. The practicality of this free energy is limited
due to the inability to compute it explicitly. We develop a method for approximating it
through the saddle point approximation technique.

Taking into account the constraints in Equation (3), the partition function can be
written as

Zβ =
1

∑
G(i,j)=0

pmax(i)

∑
n1(i)=pmin(i)

qmax(j)

∑
n2(j)=qmin(j)

e
−β ∑

i,j
C(i,j)G(i,j)

∏
i

δ

(
∑

j
G(i, j)− n1(i)

)
∏

j
δ

(
∑

i
G(i, j)− n2(j)

)

δ

(
∑
i,j

G(i, j)− k

)
. (6)

The three sums impose that G(i, j), n1(i), and n2(j) take integer values within some
ranges defined by the constraints Equation (3). The additional constraints are imposed
through the delta functions. We employ the Fourier representation of those delta functions,
thereby introducing additional auxiliary variables x, λ(i), and µ(j), with i ∈ [1, N1] and j ∈
[1, N2]. The partition function is then given, after reorganization, by (up to a multiplicative
constant) by

Zβ =
∫ +∞

−∞
∏

i
dλ(i)

∫ +∞

−∞
∏

j
dµ(j)

∫ +∞

−∞
dxeßβkx

pmax(i)

∑
n1(i)=pmin(i)

qmax(j)

∑
n2(j)=qmin(j)

e
β

(
∑
i

ßλ(i)n1(i)+∑
j

ßµ(j)n2(j)

)

1

∑
G(i,j)=0

e
−β ∑

i,j
G(i,j)(C(i,j)+ßλ(i)+ßµ(j)+ßx)

, (7)

where ß is the imaginary unit (ß2 = −1). Note that we have rescaled the variables x, λ, and
µ by a factor β for consistency with the energy term. Conducting the summations over the
variables G(i, j), n1(i), and n2(j), we get

Zβ =
∫ +∞

−∞
∏

i
dλ(i)

∫ +∞

−∞
∏

j
dµj

∫ +∞

−∞
dxe−βFβ(λ,µ,x),

where Fβ(λ, µ, x) is a functional, or effective free energy, that depends on the variables λ, µ,
and x and is defined by

Fβ(λ, µ, x) =

− 1
β ∑

i
ln

(
eßβpmin(i)λ(i) − eßβ(pmax(i)+1)λ(i)

1 − eßβλ(i)

)

− 1
β ∑

j
ln

(
eßβqmin(j)µ(j) − eßβ(qmax(j)+1)µ(j)

1 − eßβµ(j)

)

− 1
β ∑

i,j
ln
[
1 + e−β(C(i,j)+ßλ(i)+ßµ(l)+ßx)

]
− ßkx. (8)

In contrast to the expression of the internal energy U defined in Equation (2) that
depends on the N1N2 + N1 + N2 constrained binary variables G(i, j), n1(i), and n2(j), the
expression for the effective free energy Fβ(λ, µ, x) depends only on N1 + N2 + 1 uncon-

Algorithms 2024, 17, 212 6 of 31

strained variables, namely λ(i), µ(j), and x. Below, we demonstrate how identifying the
extremum of this function enables us to address the multi-assignment problem.

2.2. Optimizing the Effective Free Energy

Let G(i, j), n1(i), and n2(j) represent the expected values of G(i, j), n1(i), and n2(j),
respectively, in accordance with the Gibbs distribution specified in Equation (4). Comput-
ing these expected values directly is unfortunately not feasible as the partition function
defined in Equation (8) lacks an analytical expression. Instead, we derive a saddle point
approximation (SPA) by seeking extrema of the effective free energy with respect to the
variables λ, µ, and x:

∂Fβ(λ, µ, x)
∂λi

=
∂Fβ(λ, µ, x)

∂µj
=

∂Fβ(λ, µ, x)
∂x

= 0. (9)

After some rearrangements, these two equations can be written as

∀i, ∑
j

X(i, j) = d1(i), (10a)

∀j, ∑
i

X(i, j) = d2(j), (10b)

∑
i,j

X(i, j) = k, (10c)

where

X(i, j) = h[β(C(k, l) + ßλ(i) + ßµ(j) + ßx),]
d1(i) = g(ßβλ(i), pmin(i), pmax(i)),

d2(j) = g(ßβµ(j), qmin(j), qmax(j)), (11)

and

h(x) =
1

ex + 1
,

g(x, a, b) =
(b − a + 1)

e(b−a+1)x − 1
+

1
1 − ex + b.

Note that

(i) g(x, a, a) = a. If a = 1 and N1 = N2 = 1, we recover Equation (11) from [16]
corresponding to the balanced assignment problem.

(ii) g(x, 0, 1) = h(−x). In this case, Equation (11) refers to the k-cardinality problem.

As frequently encountered, the saddle point may be purely imaginary. In this instance,
it is evident from Equations (10) and (11) that the variables ßλ(i), ßµ(j), and ßx must be
real. Consequently, we will replace {ßλ(i), ßµ(j), ßx} by {λ(i), µ(j), x} below.

In order to analyze the saddle point approximation, SPA, it is necessary to verify the
existence and evaluate the uniqueness of the extrema of the effective free energy. The
following theorem proves that Fβ(λ, µ, x) is strictly concave.

Theorem 1. The Hessian of the effective free energy Fβ(λ, µ, x) is negative definite if pmin(i) <
pmax(i) for all i and qmin(j) < qmax(j), for all j, and negative semidefinite otherwise. The free
energy function Fβ(λ, µ, x) is then strictly concave in the first case and concave in the second case.

Proof. See Appendix B.

The following property establishes a relationship between the solutions of the SPA
system of equations and the expected values for the assignment matrix and for the indicator
functions:

Algorithms 2024, 17, 212 7 of 31

Proposition 1. Let Sβ be the expected state of the system at the temperature β with respect to the
Gibbs distribution given in Equation (4). Sβ is associated with an expected transportation plan Gβ

and expected indicator functions n1β and n2β. Let λMF(i), µMF(j), and xMF be the solutions of
the system of Equation (10). Then the following identities hold:

Gβ(i, j) = h(β(C(i, j) + λMF(i) + µMF(j) + xMF))

= XMF(k, l)

n1β(i) = g(βλMF(i), pmin(i), pmax(i)) = dMF
1 (i) (12)

n2β(j) = g(βµMF(j), qmin(j), qmax(j)) = dMF
2 (j).

To indicate that the solutions are mean field solutions, we use the superscript MF.

Proof. The proof of this proposition is virtually identical to the proof of the same results
for the assignment problem, found in Appendix B of [15].

For a given value of the parameter β, n1β(i) and n2β(j) are the numbers of elements of
S2 and the number of elements in S1 that are in correspondence with i and j, respectively,
and Gβ forms a transportation plan between S1 and S2 that is optimal with respect to the
free energy defined in Equation (8). Note that these values are mean values and fractional.
The matrix Gβ belongs to a polytope, which we define as U k(Pmax

min , Qmax
min) (see Appendix A

for a full characterization of this polytope). We can link the mean field assignment matrix Gβ

to an optimal free energy FMF
β and to an optimal internal energy UMF

β = ∑i,j Gβ(i, j)C(i, j).
These values serve as mean field approximations of the exact free energy and internal
energy of the system, respectively. Here are the key properties of UMF

β and FMF
β :

Proposition 2. FMF
β and UMF

β are monotonic increasing and monotonic decreasing functions,
respectively, of the parameter β.

Proof. See Appendix C for FMF
β and Appendix D for UMF

β .

Theorem 1 and Proposition 2 outlined above underscore several advantages of the
proposed framework, which reframes the multi-assignment problem as a temperature-
dependent process. Firstly, at each temperature, the multi-assignment problem with
a generic cost matrix is transformed into a concave problem with a unique solution.
This problem exhibits linear complexity in the number of variables, contrasting with
the quadratic complexity of the original problem. The concavity facilitates the utilization of
straightforward algorithms for identifying a minimum of the effective free energy function
(Equation (8)). Additionally, Equation (12) offers robust numerical stability for computing
the transportation plan and the functions n1 and n2, owing to the characteristics of the
functions h(x) and g(x). Lastly, the convergence with respect to temperature is monotonic.

3. Solving Generic Assignment Problems

In the previous section, we proposed an effective free energy, Fβ(λ, µ, x), that depends
on N1 + N2 + 1 unconstrained variables and on the inverse of the temperature, β, whose
extremum identifies the solution of a possibly multi-job, multi-agent assignment problem.
We have shown that the trajectory of this extremum is monotonic, increasing with respect
to β. We now relate these values to the optimal assignment energy U∗:

Algorithms 2024, 17, 212 8 of 31

Theorem 2. Let FMF
β and UMF

β be the mean field approximations of the exact free energy and
internal energy of the system at the inverse temperature β. The optimal assignment energy U∗ is
then given by,

U∗ = lim
β→+∞

FMF
β ,

U∗ = lim
β→+∞

UMF
β , (13)

namely, the optimal assignment energy, U∗, is equal to the infinite limit with respect to the inverse
temperature of both the mean field free energy and the internal energy.

Proof. See Appendix E.

This theorem illustrates that as the inverse temperature approaches infinity (or equiv-
alently, as the temperature tends towards zero), the internal energy and free energy of
the system converge to the optimal assignment energy. This confirms the validity of our
statistical physics approach, particularly emphasizing the effectiveness of the saddle-point
approximation. Note, however, that it does not define the behavior of the coupling matrix
Gβ = XMF. As Gβ(i, j) = h(β(C(i, j) + λMF(i) + µMF(j) + xMF)) and 0 < h(x) < 1, the
coupling matrix at any finite temperature is fractional. We need to show that as β → +∞,
the corresponding matrix G∞ does converge to the solution matrix G∗ and not to a fractional
matrix that would lead to the same low energy U∗.

We first establish bounds on the internal energy and free energy at the SPA. Let
us define

A(N1, N2) = N1N2 ln(2) +
N1

∑
i=1

ln(pmax(i)− pmin(i) + 1)

+
N2

∑
j=1

ln(qmax(j)− qmin(j) + 1). (14)

Theorem 3. FMF
β and UMF

β , the mean field approximations of the exact free energy and internal
energy of the system at the inverse temperature β, satisfy the following inequalities:

U∗ − A(N1, N2)

β
≤ FMF

β ≤ U∗, (15)

U∗ ≤ UMF
β ≤ U∗ +

A(N1, N2)

β
, (16)

where U∗ is the optimal assignment energy and A(N1, N2) is defined in Equation (14).

Proof. See Appendix F.

Now, let us assume that the multi-assignment problem linked with the N1 × N2 cost
matrix C possesses a unique optimal assignment matrix, denoted as G∗. We have the
following theorem:

Theorem 4. Let Gβ be the coupling matrix solution of the SPA equations at the inverse temperature
β. We assume that the multi-assignment problem has a unique solution, with G∗ being the associated
coupling matrix. If ∆ is the difference in total cost between the optimal solution and the second-best
solution, then

max
i,j

∣∣Gβ(i, j)− G∗(i, j)
∣∣ ≤ A(N1, N2)

β∆
. (17)

Algorithms 2024, 17, 212 9 of 31

Proof. See Appendix G.

This theorem validates that, in the generic case in which the solution to the assignment
problem is unique, the converged solution matrix G∞ is this unique solution.

4. Solving Degenerate Assignment Problems

The method we propose is basically a relaxation approach to the general assign-
ment problem. Indeed, we build a collection of transportation matrices Ḡβ that belong
to U k(Pmax

min , Qmax
min)∖P k(Pmax

min , Qmax
min) (see Appendix A). Entries of these matrices are non-

integer, strictly in the interval (0, 1). If the general assignment problem is known to have
a unique integer solution, we have shown that these matrices converge to an element
of P k(Pmax

min , Qmax
min) when β → +∞. The question remains as to what happens when the

problem is degenerate, i.e., when it may have multiple integer solutions.
The general assignment problem is a linear programming problem. Checking if such

a problem is degenerate is unfortunately often NP-complete ([22,23]). The degeneracies
occur due to the presence of cycles in the linear constraints, i.e., in the cost matrix for the
assignment problem. If this is the case, we propose randomly perturbing that matrix to
bring it back to the generic problem. Megiddo and colleagues [24] have shown that an
ε-perturbation of a degenerate linear programming problem reduces this problem to a
non-degenerate one.

5. Matching: A Program for Solving Assignment Problems

We have implemented the multi-assignment framework described here in a C++
program, Matching, that is succinctly described in Algorithm 1.

Matching relies on an iterative process in which the parameter β is gradually increased.
At each value of β, the nonlinear system of equations defined by Equation (10) is solved.
We write this system as 

Aλ = 0,
Aµ = 0,
Ax = 0,

where A = (Aλ, Aµ, Ax) is a vector of predicates defined as

Aλ(i) = ∑
j

h(β(C(i, j) + λ(i) + µ(j) + x))

−g(βλ(i), pmin(i), pmax(i)),

Aµ(j) = ∑
i

h(β(C(i, j) + λ(i) + µ(j) + x))

−g(βµ(j), qmin(j), qmax(j)),

Ax = ∑
i,j

h(β(C(i, j) + λ(i) + µ(j) + x))− k.

This system has N1 + N2 + 1 equations, with the same number of variables. It is solved
using an iterative Newton–Raphson method (for details, see, for example [16,25]). Once
the SPA system of equations is solved, the assignment matrix Gβ, the functions n1β, n2β,
and the corresponding transportation energy UMF(β) are computed. The iterations over
β are stopped if the mean field energy UMF

β does not change anymore (within a tolerance

TOL usually set to 10−6). Otherwise, β is increased, and the current values of λ, µ and x
are used as input for the following iteration. At convergence, the values of the assignment
matrix are rounded to the nearest integer (indicated as ⌊⌉ in the output of Algorithm 1).
The minimal energy is then computed using the corresponding integer matrix.

Algorithms 2024, 17, 212 10 of 31

The primary computational expense of this algorithm arises from solving the nonlinear
set of equations corresponding to the SPA at every β value. We use for this purpose an
iterative Newton–Raphson method (see [15]).

Algorithm 1 Matching: a temperature-dependent framework for solving the multi-
assignment problem

Input: N1 and N2, the number of agents and tasks; pmin(i) and pmax(i), the minimum
and maximum number of agents needed to perform task i, and qmin(j) and qmax(j), the
minimum and maximum number of tasks that can be performed by an agent j; k, the
expected number of assignments; the cost matrix C. Initial value β0 for β, the inverse of
the temperature
Initialize: Initialize arrays λ and µ to 0 and initialize x = 0. Set STEP =

√
10.

for i = 1, . . . until convergence do
(1) Initialize βi = STEP ∗ βi−1.

(2) Solve non linear Equation (10) for λ, µ and x at saddle point

(3) Compute corresponding Gi
β, ni

1β, ni
2β, and Ui,MF

β

(4) Check for convergence: if |Ui,MF
β − Ui−1,MF

β | < TOL, stop
end for
Output: The converged assignment matrix

⌊
Gβ

⌉
, the functions

⌊
n1β

⌉
,
⌊
n2β

⌉
over the

agents and tasks, and the minimal associated cost Uβ.

As for any annealing scheme, the initial temperature, or, in our case, the initial value
β0, is a parameter that significantly impacts the efficiency of the algorithm. Setting β0 to
be too small (i.e., a high initial temperature) will lead to inefficiency as the system will
spend a significant amount of time at high temperatures, while setting β0 too high will
require many steps to converge at the corresponding low temperature, thereby decreasing
the efficiency brought about by annealing. The value of β scales the cost matrix C and as
such is related to the range of this matrix, more specifically to its largest value, Cmax. We
found that setting β0Cmax = 1 provides satisfactory annealing efficiency. The value for
STEP was chosen empirically.

6. Examples

The framework we propose is general: it allows us to solve balanced and unbalanced
assignment problems, including those that allow for multi-agent or multi-task assignments.
We illustrate our method on the latter types of problems, as, to our knowledge, there are
currently no solutions to those that are guaranteed to reach the optimal assignment.

As a first illustration of our framework, we ran Matching on the cost matrix C1 given
in Table 1. This matrix has been used in previous studies of multi-agent assignment
problems [10,11,13,14,26,27]. Matching was run with the following parameters: pmin = 0
for all agents (i.e., some agents may stay idle), pmax = 4 for all agents (i.e., an agent can
perform up to 4 tasks), qmin = qmax = 1 (i.e., a task is only performed by one agent), and
k = 8 (all tasks are performed). In Figure 1, we show the corresponding trajectories of the
internal energy UMF

β and free energy FMF
β .

Algorithms 2024, 17, 212 11 of 31

Table 1. The cost matrix C1.

Tasks

Agents T1 T2 T3 T4 T5 T6 T7 T8

A1 300 250 180 320 270 190 220 260
A2 290 310 190 180 210 200 300 190
A3 280 290 300 190 190 220 230 260
A4 290 300 190 240 250 190 180 210
A5 210 200 180 170 160 140 160 180

(A) (B)

10 -2 10 -1 100 101
-2000

-1500

-1000

-500

0

500

1000

1500

In
te

rn
al

 E
n

er
g

y

β
10 -2 10 -1 100 101

-5000

-4000

-3000

-2000

-1000

0

1000

F
re

e
E

n
er

g
y

β

Figure 1. Convergence of the internal energy UMF
β (A) and free energy FMF

β (B) as a function of β

when solving the multi-task assignment problem with the cost matrix C1 , such that each agent can
perform up to 4 tasks, may be idle, and all 8 tasks are performed. On both panels, we show the
bounds on the expected value for the optimal cost U∗ as shaded areas (see text for details).

As expected, the internal energy is monotonically decreasing while the free energy is
monotonically increasing, and both converge to the same value, 1440. Theorem 3 provides
bounds on those energy values. Note that it can be rewritten as

UMF
β − A(N1, N2)

β
≤ U∗ ≤ UMF

β ,

FMF
β ≤ U∗ ≤ UMF

β +
A(N1, N2)

β
,

i.e., at each value of β, we have bounds based on internal energy and free energy for the
actual optimal cost of the assignment problem. These bounds are shown as shaded areas
in Figure 1. Note that the widths of the intervals defined by the bounds are inversely
proportional to β and therefore decrease monotonically as β increases.

In Table 2, we compare the assignment found by Matching on C1 with pmax set to 4
(i.e., up to four tasks per agent), and pmin = 0 (agents can be idle) or pmin = 1 (each agent
must execute at least one task). The removal of the latter constraint leads to a better optimal
assignment in which agent 3 remains idle. When we maintain this constraint, our results
are the same as those found by Wang et al. [13].

As a second more general test of our method, we compared the results of the frame-
work we propose with the results of our own version of the Hungarian algorithm, as well
as with those found in previous studies. We used both the matrix C1 and the matrix C2
given in Table 3 in those computing experiments.

Algorithms 2024, 17, 212 12 of 31

Table 2. Assignments for C1 with pmax = 4.

pmin = 0 pmin = 1 Wang a

A1 → T3 A1 → T3 A1 → T3
A2 → T4, T8 A2 → T8 A2 → T8
A3 A3 → T4 A3 → T4
A4 → T7 A4 → T7 A4 → T7
A5 → T1, T2, T5, T6 A5 → T1, T2, T5, T6 A5 → T1, T2, T5, T6

Total cost 1440 1450 1450
a Assignment based on an ant colony algorithm [13].

Table 3. The cost matrix C2.

Tasks

Agents T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

A1 10 2 14 9 6 7 21 32 18 11
A2 7 12 9 3 5 6 9 16 54 12
A3 4 8 6 12 21 9 21 14 45 13
A4 21 9 12 9 32 10 19 25 16 10
A5 10 12 30 15 12 17 30 12 12 9
A6 15 7 34 17 7 16 14 17 9 5

We ran Matching as follows. For all tasks j, we set qmin(j) = qmax(j) = 1, i.e., a task is
only performed by one agent, and all tasks are expected to be executed. The latter is further
enforced by setting k to be the total number of tasks (8 for C1 and 10 for C2). For an agent i,
we either set all pmin(i) to be 1 (in which case all agents must perform at least one task) or 0
(in which case some agents may not be assigned). We considered all pmax(i) to be equal
to a given value p and ran Matching with p varying from 1 to k. Note that both matrices
C1 and C2 contain cycles. As such, optimal assignments based on those matrices are not
unique. To remove the degeneracy, we added random uniform noise between [0, ϵ] with
ϵ = 0.001 to all values of the cost matrices (see Section 4 for details).

The Hungarian algorithm remains a standard for solving balanced as well as unbal-
anced assignment problems. It needs to be adapted, however, when solving multi-task
assignment problems. The corresponding textbook solution that was used, for example,
in Ref. [14] is to make copies or clones of the agents, solve the augmented unbalanced
assignment problem using the Hungarian algorithm, and then regroup all clones of an
agent to define the tasks that it is assigned to. We consequently created multiple versions of
the cost matrices C1 and C2, with all agents copied p times, where p defines the maximum
number of tasks that an agent can perform. We ran our own version of the Hungarian
algorithm on those matrices. This version is adapted from the serial code written by C.
Ma and is publicly available at https://github.com/mcximing/hungarian-algorithm-cpp,
(accessed on 1 May 2021).

Comparisons of the results of Matching, of the Hungarian algorithm, and of previous
studies are provided in Table 4 for the cost matrix C1 and in Table 5 for the cost matrix C2.

Table 4. Solving the multi-task assignment problems defined by the cost matrix C1.

Method \p a 2 3 4 5 6 7 8

Matching, pmin = 1 1520 1470 1450 1450 1450 1450 1450
Matching, pmin = 0 1520 1470 1440 1420 1410 1400 1400
Hungarian 1520 1470 1440 1420 1410 1400 1400
Majumdar GA b 1520 1470 1450 NA c NA NA NA
Wang AC d 1520 1470 1450 NA NA NA NA

a Each agent is allowed to execute up to p tasks. Note that as there are 8 tasks and 5 agents only, the minimum
value of p is 2 if all the tasks must be executed. b Genetic algorithm [26]. c Not available in either [26] or [13].
d Ant colony algorithm [13].

https://github.com/mcximing/hungarian-algorithm-cpp

Algorithms 2024, 17, 212 13 of 31

Table 5. Solving the multi-task assignment problems defined by the cost matrix C2.

Method \p a 2 3 4 5 6 7 8

Matching, pmin = 1 66 65 65 65 65 65 65
Matching, pmin = 0 66 62 61 61 61 61 61
Hungarian 66 62 61 61 61 61 61
Majumdar GA b 66 67 66 74 NA c NA NA
Wang AC d 66 65 65 NA NA NA NA

a Each agent is allowed to execute up to p tasks. Note that as there are 10 tasks and 6 agents only, and the
minimum value of p is 2 if all the tasks must be executed. b Genetic algorithm [26]. c Not available in either [26]
or [13]. d Ant colony algorithm [13].

The results of Matching have been proven to be optimal (see Section 3). As expected,
those results are strongly dependent on the constraints imposed on the problem: we can
find assignments with a lower total cost if we allow agents to remain idle by setting pmin
to 0. For example, for the cost matrix C1, in the extreme case with pmin = 0 and pmax = 8
for all agents, we find that all eight tasks have been assigned to agent 5, while the other
agents have no task to perform, with a total cost of 1400. If instead we set pmin = 1 and
keep pmax = 8, we find that agent 5 is assigned tasks 1, 2, 5, and 6; agent 1 is assigned
task 3; agent 2 is assigned task 8; agent 3 is assigned task 4; and agent 4 is assigned task
7, for a total cost of 1450. If we instead run the Hungarian algorithm with agents that
have been cloned to allow for multi-task assignments, we find optimal assignments that
match those found by Matching with pmin set to 0 for both cost matrices. For matrix C1,
for example, if each agent is represented with 8 clones, we find that agent 5 is assigned
tasks 1, 2, 4, 5, 6, 7, and 8 while agent 1 is assigned task 3, for a total cost of 1400. This
illustrates two points. First, as expected, the optimal assignment is not unique, as we find
two different assignments with the same cost, 1400. Second, and more importantly, this
shows the difficulty of applying the Hungarian algorithm for such problems. It works fine
if we want to find the optimal assignment without consideration of constraints, such as the
constraint each agent needs to perform at least one task, but does not fit if such a constraint
is necessary.

The optimal solutions found by Matching when pmin is set to 1 match those found by
Wang et al. [13] for both matrices and are better than those found by Majumdar et al. [26]
for matrix C2. Note that the latter are obtained using either an ant colony algorithm or a
genetic algorithm. Both are probabilistic algorithms that do not guarantee that the true
minimum is found.

7. Conclusions

We have developed a general framework for solving balanced and unbalanced and
constrained and unconstrained assignment problems. Given two sets of points S1 and S2
with the possibly different cardinalities N1 and N2, constraints on the number of possible
assignments for each element of S1 and of S2, and a cost matrix defining the penalties of
on assignment, we have constructed a concave free energy parameterized by temperature
that captures those constraints. The definition of this free energy is general enough that it
includes balanced and unbalanced cases. Its extremum establishes an optimal assignment
between the two sets of points. We have demonstrated that this free energy consistently
decreases as a function of β (the inverse of temperature) towards the optimal assignment
cost. Moreover, we have established that for sufficiently large β values, the precise solution
to the generic multi-assignment problem can be directly derived through straightforward
rounding to the nearest integer of the elements of the assignment matrix linked to this
extremum. Additionally, we have developed a method that guarantees convergence for
addressing degenerate assignment problems.

The formalism introduced in this paper was designed to generalize the Hungarian
algorithm for a large range of assignment problems. We expect it to be useful for a much
larger set of problems, especially those associated with graphs. Graphs capture data

Algorithms 2024, 17, 212 14 of 31

relationships and, as such, are essential to numerous applications. They are particularly
useful in domains such as Web search [28], neural [29] and social network analysis [30],
gene networks [31], etc. More generally, they are designed to represent complex knowledge.
The scale of modern graphs leads to a need to develop more efficient methods to process
very large graphs. The formalism we propose is well adapted to tackle this problem for
applications such as bipartite or simple graph matching. We will also consider extensions
to higher-order matching problems, such as k-matching problems [32] (for example the
three-assignment problem [33]) that are known to be NP-complete [34]. These problems
have their own applications for graph analyses.

Author Contributions: Conceptualization, P.K. and H.O.; methodology, P.K. and H.O.; software,
P.K.; validation, P.K.; formal analysis, P.K. and H.O.; investigation, P.K. and H.O.; writing—original
draft preparation, P.K. and H.O.; writing—review and editing, P.K. and H.O. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created for this study.

Acknowledgments: The work discussed here originated from visits by P.K. at the Institut de Physique
Théorique, CEA Saclay, France, during the falls of 2022 and 2023. He thanks them for their hospitality
and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. A Generalized Birkhoff–von Neumann Theorem

An N × N matrix A = (a(i, j)) is said to be doubly stochastic if and only if it satisfies
the following conditions,

a(i, j) ≥ 0,
N

∑
i=1

a(i, j) = 1,
N

∑
j=1

a(i, j) = 1,

for all (i, j) ∈ [1, N]2. The set ΩN of doubly stochastic matrices is a convex polytope whose
vertices are the permutation matrices with the same size. This is expressed by the following
theorem, established by [17,18]:

Theorem A1. An N × N matrix A is doubly stochastic if and only if it can be written as a weighted
sum of permutation matrices, i.e.,

A = ∑
π∈ΠN

aππ,

where ΠN is the set of permutation matrices of size N, aπ is a positive real number and ∑
π∈ΠN

aπ = 1.

Doubly stochastic matrices and their properties associated with the Birkhoff–von
Neumann theorem above proved useful to establish convergence properties of statistical
physics frameworks for solving the balanced assignment problem [15,35].

For the more general assignment problem considered here, however, we need to con-
sider a different but related set of matrices, defined as follows. Let N and M be two natural
numbers. Let Rmin = (r(1), . . . , r(N)), Rmax = (R(1), . . . , R(N)), Cmin = (c(1), . . . , c(M)),
and Cmax = (C(1), . . . , C(M)) be four non-negative integral vectors satisfying

∀i, 0 ≤ r(i) ≤ R(i),

∀j, 0 ≤ c(j) ≤ C(j).

Algorithms 2024, 17, 212 15 of 31

Let A be a non-negative matrix of size N × M, and let us denote the row sum vector of
A as RA and the column sum vector of A as CA. Let us also define σ(A) as the sum of all
elements of A, i.e., σ(A) = ∑N

i=1 ∑M
j=1 A(i, j). The transportation polytope U (Rmax

min , Cmax
min) is

the set of N × M matrices A that satisfy

∀(i, j), 0 ≤ A(i, j) ≤ 1,

∀i, r(i) ≤ RA(i) ≤ R(i),

∀j, c(j) ≤ CA(j) ≤ C(j).

The transportation polytope U k(Rmax
min , Cmax

min) is the set of N × M matrices A that satisfy

U k(Rmax
min , Cmax

min) = {A ∈ U (Rmax
min , Cmax

min)| σ(A) = k}

Denote P(Rmax
min , Cmax

min) as the set of all matrices in U (Rmax
min , Cmax

min) whose entries are
either 0 or 1 with a similar definition for P k(Rmax

min , Cmax
min) with respect to U k(Rmax

min , Cmax
min).

Relaxed solutions to the general assignment problem considered in this paper belong to
U k(Pmax

min , Qmax
min), while integer solutions belong to P k(Pmax

min , Qmax
min), where Pmin, represents

the vectors containing the constraints on the number of tasks that can be assigned to an
agent or the number of agents that can be assigned to a task. In Koehl [36], we show the
following theorem:

Theorem A2. U k(Rmax
min , Cmax

min) is the convex hull of all matrices in P k(Rmax
min , Cmax

min).

Theorem A2 can be stated as any matrix in U k(Rmax
min , Cmax

min) that can be written as a
linear combination of matrices in P k(Rmax

min , Cmax
min). This result will be useful for some of the

proofs below.

Remark A1. (i) If Rmin = Rmax = 1N , Cmin = Cmax = 1M (where 1N and 1N are vectors
of one of size N and M, respectively, N = M = k, U (Rmax

min , Cmax
min) is the set of doubly

stochastic matrices, P k(Rmax
min , Cmax

min) is the set of permutation matrices, and Theorem A2 is
then equivalent to the Birkhoff–von Neumann theorem for doubly stochastic matrices [17,18].

(ii) If Rmin = 0n, Cmin = 0m, Rmax = 1n, Cmax = 1m, U k(Rmax
min , Cmax

min) is the set of doubly
sub-stochastic matrices with sum k and P k(Rmax

min , Cmax
min) is the set of sub-permutation matrices

of rank k; a specific version of Theorem A2 was established by Mendelssohn and Dulmage for
square matrices ([37]), and later by Brualdi and Lee for rectangular matrices ([38]).

Appendix B. Proof of Theorem 1: Concavity of the Effective Free Energy

The free energy associated with the multi-assignment problem can be written as

Fβ(λ, µ, x) = − 1
β ∑

i
G(βλ(i), pmin(i), pmax(i))

− 1
β ∑

j
G(βµ(j), qmin(j), qmax(j))

+
1
β ∑

i,j
H(β(C(i, j) + λ(i) + µ(l) + x))− kx,

with:

H(x) = − ln(1 + e−x),

G(x, a, b) = ln

(
eax − e(b+1)x

1 − ex

)
.

Algorithms 2024, 17, 212 16 of 31

where a and b are two positive integers with 0 ≤ a ≤ b. The functions H(x), its derivatives,
and some associated functions have been fully characterized in [15]. In parallel, the func-
tions G(x, a, b), its derivatives, and associated functions are characterized in Appendix H.

We prove that this free energy is weakly concave by showing that its Hessian HE is
negative-definite. HE is a symmetric matrix of size (N1 + N2 + 1)× (N1 + N2 + 1), such
that its rows and columns correspond to all N1 λ values first, followed by all N2 µ values,
and finally to the value x. Let h(x) = H′(x), and let h′ be its derivative, i.e.,

h′(x) = − ex

(1 + ex)2 . (A1)

In [15], we have shown that h′(x) ∈ [−1
4 , 0) ∀x ∈ R, i.e., that h′(x) is always strictly

negative. Similarly, let g(x) = G′(x), and let g′ be its derivative, i.e.,

g′(x, a, b) = − (b − a + 1)2e(b−a+1)x

(e(b−a+1)x − 1)2
+

ex

(ex − 1)2 (A2)

In Appendix H, we show that when b = a, g′(x, a, a) = 0 ∀x ∈ R, and, when b > a,
g′(x, a, b) is strictly positive ∀x ∈ R.

We define the matrix X′ and the vector d′
1 and d′

2 such that

X′(i, j) = h′(β(C(i, j) + λ(i) + µ(j) + x),

d′1(i) = g′(βλ(i), pmin(i), pmax(i)),

d′2(j) = g′(βµ(j), qmin(j), qmax(j)).

From Equation (10), we obtain

HE(i, i′) =
∂2Fβ(λ, µ, x)
∂λ(i)∂λ(i′)

= βδii′

(
∑

j
X′(i, j)− d′1(i)

)
,

HE(i, j) =
∂2Fβ(λ, µ, x)
∂λ(i)∂µ(j)

= βX′(i, j),

HE(i, N) =
∂2Fβ(λ, µ, x)

∂λ(i)∂x
= β ∑

j
X′(i, j),

HE(j, j′) =
∂2Fβ(λ, µ)

∂µ(j)∂µ(j′)
= βδjj′

(
∑

i
X′(i, j)− d′2(j)

)
,

HE(j, N) =
∂2Fβ(λ, µ, x)

∂µ(j)∂x
= β ∑

i
X′(i, j),

HE(N, N) =
∂2Fβ(λ, µ, x)

∂x2 = β ∑
i

∑
j

X′(i, j),

where δ are Kronecker functions, the indices i and i′ belong to [1, N1] and the indices j and
j′ belong to [1, N2], and we have defined N = N1 + N2 + 1.

Let x = (x1, x2, x3) be an arbitrary vector of size N. The quadratic form Q(x) = xT Hx
is equal to

Algorithms 2024, 17, 212 17 of 31

Q(x) = ∑
i,i′

x1(i)HE(i, i′)x1(i′) + ∑
j,j′

x2(j)HE(j, j′)x2(j′) +

x3HE(N, N)x3 + 2 ∑
i,j

x1(i)HE(i, j)x2(j) +

2 ∑
i

x1(i)HE(i, N)x3 + 2 ∑
j

x2(j)HE(j, N)x3

= β ∑
i,j
(x1(i) + x2(j) + x3)

2X′(i, j)

−β

(
∑

i
x1(i)2d′1(i) + ∑

j
x2(j)2d′2(j)

)
.

As X′(i, j) is based on the function h′ that is negative and d′1(i), and d′2(j) are based on
the function g′ that is positive, the summands in the equation above are all negative for all
i ∈ [1, N1] and j ∈ [1, N2], and therefore, Q(x) is negative for all vector x. The Hessian H is
negative, semidefinite.

To check for definitiveness, let us note first that as Q(x) is a sum of negative terms, it
is 0 if and only if all the terms are equal to 0. As the function h′(x) is strictly negative, this
means that ∀(i, j),

(x1(i) + x2(j) + x3)
2 = 0. (A3)

For the two other terms, we consider two cases:

(i) pmin(i) < pmax(i) ∀i and qmin(j) < qmax(j) ∀j. Then g′(x, pmin(i), pmax(i)) < 0 and
g′(x, qmin(j), qmax(j)) < 0. This leads to ∀(i, j):

x1(i)2 = 0,

x2(j)2 = 0, (A4)

Equations (A3) and (A4) are satisfied when all x1(i), x2(j), and when x3 are zero,
namely that x = 0. Therefore in this case, H is negative, definite, and the free energy
Fβ(λ, µ, x) is strictly concave.

(ii) For all i pmin(i) = pmax(i) or for all j qmin(j) = qmax(j). Then, either d′1(x) = 0 ∀x ∈
RN1 or d′2(x) = 0 ∀x ∈ RN2 , or both. There are then non-zero solutions to the
equation Q(x) = 0. The Hessian is then only semidefinite.

Appendix C. Monotonicity of FMF
β

The effective free energy Fβ(λ, µ, x) defined in Equation (8) is a function of the cost
matrix C and of real unconstrained variables λ(i), µ(j), and x. For the sake of simplicity,
for any (i, j) ∈ [1, N1]× [1, N2], we define

y(i, j) = C(i, j) + λ(i) + µ(j) + x,

yMF(i, j) = C(i, j) + λMF(i) + µMF(j) + xMF.

The effective free energy is then

Algorithms 2024, 17, 212 18 of 31

Fβ(λ, µ, x) = − 1
β ∑

i
G(βλ(i), pmin(i), pmax(i))

− 1
β ∑

j
G(βµ(j), qmin(j), qmax(j))

+
1
β ∑

i,j
H(βy(i, j))− kx.

As written above, Fβ(λ, µ, x) is a function of the independent variables β, λ(i), µ(j),
and x. However, under the saddle point approximation, the variables λ(i), µ(j), and x are
constrained by the conditions

∂Fβ(λ, µ, x)
∂λ(i)

=
∂Fβ(λ, µ, x)

∂µ(j)
=

∂Fβ(λ, µ, x)
∂x

= 0,

and the free energy under those constraints is written as FMF
β . In the following, we use the

notations
dFMF

β

dβ and
∂FMF

β

∂β to differentiate between the total derivative and partial derivative

of FMF
β with respect to β, respectively. It can be shown easily that (see Appendix C of [15])

dFMF
β

dβ
=

∂Fβ

(
λMF, µMF, xMF

)
∂β

,

namely that the total derivative with respect to β is, in this specific case, equal to the
corresponding partial derivative, which is easily computed to be

∂FMF
β

∂β
=

1
β2 ∑

i
G(βλMF(i), pmin(i), pmax(i))−

1
β

λMF(i)g(βλMF(i), pmin(i), pmax(i)) +

1
β2 ∑

j
G(βµMF(j), qmin(j), qmax(j))−

1
β

µMF(j)g(βµMF(j), qmin(j), qmax(j))

− 1
β2 ∑

i,j

[
H(βyMF(i))− βyMF(i, j)h(βyMF(i, j))

]
.

Let t(x) = H(x)− xh(x). The function t(x) is continuous and defined over all real
values x and is bounded above by 0, i.e., t(x) ≤ 0 ∀x ∈ R. Similarly, let us define
l(x, a, b) = G(x, a, b)− xg(x, a, b). In Appendix H, we show that l(x, a, b) is positive over
R. As

Algorithms 2024, 17, 212 19 of 31

dFMF
β

dβ
=

1
β2 ∑

i
l(βλMF(i), pmin(i), pmax(i)) +

1
β2 ∑

j
l(βµMF(j), qmin(j), qmax(j))

− 1
β2 ∑

i,j
t(βyMF(i, j)), (A5)

we conclude that

dFMF
β

dβ
≥ 0,

namely that FMF
β is a monotonically increasing function of β.

Appendix D. Monotonicity of U MF
β

Let

Uβ(λ, µ, x) = ∑
i,j

C(i, j)Ḡ(i, j),

and let the corresponding mean field approximation of the internal energy at the saddle
point,

UMF
β = Uβ

(
λMF, µMF, xMF

)
.

Before computing
dUMF

β

dβ , we prove the following property

Proposition A1.

UMF
β = FMF

β + β
dFMF

β

dβ
, (A6)

i.e., it extends the well-known relationship between the free energy and the average energy to their
mean field counterparts.

Proof. The proof of this proposition is virtually identical to the proof of the same results
for the assignment problem, found in Appendix C of [15].

Based on the chain rule,

dUMF
β

dβ
=

∂UMF
β

∂β
+ ∑

i

∂UMF
β

∂λ(i)
∂λ(i)

∂β
+ ∑

j

∂UMF
β

∂µ(j)
∂µ(j)

∂β
+

∂UMF
β

∂x
∂x
∂β

.

Using Proposition A1, we find that the partial derivatives of UMF
β with respect to λ, µ,

and x are all zeros, and therefore,

dUMF
β

dβ
=

∂UMF
β

∂β
.

Algorithms 2024, 17, 212 20 of 31

Using again Proposition A1, we obtain

dUMF
β

dβ
=

dFMF
β

dβ
+

d
dβ

(
β

dFMF
β

dβ

)

= 2
∂FMF

β

∂β
+ β

∂

∂β

(
∂FMF

β

∂β

)
.

Using Equation (A5),

β2
dUMF

β

dβ
= ∑

i
βλ(i)l′(βλMF(i), pmin(i), pmax(i))

+∑
j

βµMF(j)l′(βµMF(j), qmin(j), qmax(j))

−∑
i,j

βyMF(i, j)t′(βyMF(i, j)),

where t(x) and l(x, a, b) are the functions defined above, and t′(x) and l′(x, a, b) are their
derivatives with respect to x. Let us define r(x) = xt′(x) and s(x, a, b) = xl′(x, a, b). Then,

β2
∂UMF

β

∂β
= ∑

i
s(βλMF(i), pmin(i), pmax(i)) +

∑
j

s(βµMF(j), qmin(j), qmax(j))−

∑
i,j

r(βyMF(i, j)).

Note that r(x) =
x2ex

(1 + ex)2 . Therefore, r(x) is positive, bounded below by 0. In

Appendix H, we show that s(x, a, b) is negative, bounded above 0. Therefore,

dUMF
β

dβ
=

∂UMF
β

∂β
≤ 0,

and the function UMF
β is a monotonically decreasing function of β.

Appendix E. Proof of Theorem 2: Convergence of the Mean Field Free Energy and the
Internal Energy to the Optimal Assignment Cost

For simplicity in notation, we define FMF(∞) = limβ→+∞ FMF
β and UMF(∞) =

limβ→+∞ UMF
β .

Appendix E.1. Defining Entropy

Recall that we have defined

y(i, j) = C(i, j) + λ(i) + µ(j) + x,

X(i, j) = h(βy(i, j)),

d1(i) = g(βλ(i), pmin(i), pmax(i)),

d2(j) = g(βµ(j), qmin(j), qmax(j)).

Algorithms 2024, 17, 212 21 of 31

The free energy is given by

Fβ(λ, µ, x) = − 1
β ∑

i
G(βλ(i), pmin(i), pmax(i))

− 1
β ∑

j
G(βµ(j), qmin(j), qmax(j))

+
1
β ∑

i,j
H(βy(i, j))− kx,

while the internal energy is

Uβ(λ, µ, x) = ∑
i,j

C(i, j)X(i, j).

By adding and subsequently subtracting the internal energy in the equation defining
the free energy, and then replacing C(i, j) with y(i, j)− λ(i)− µ(j)− x, we obtain (after
some reorganization),

Fβ(λ, µ, x) = Uβ(λ, µ, x)

− 1
β ∑

i
l(βλ(i), pmin(i), pmax(i))

− 1
β ∑

j
l(βµ(j), qmin(j), qmax(j)) +

1
β ∑

i,j
t(βy(i, j))

+x

(
∑
i,j

X(i, j)− k

)
+ ∑

i
λ(i)

(
∑

j
X(i, j)− d1(i)

)

+∑
j

µ(j)

(
∑

i
X(i, j)− d2(j)

)
,

where t(x) and l(x, a, b) are defined above. Let us define

Sβ(λ, µ, x) = ∑
i

l(βλ(i), pmin(i), pmax(i)) +

∑
j

l(βµ(j), qmin(i), qmax(i))− ∑
i,j

t(βy(i, j)). (A7)

Then,

Fβ(λ, µ, x) = Uβ(λ, µ, x)− 1
β

Sβ(λ, µ, x)

+x

(
∑
i,j

X(i, j)− k

)
+ ∑

i
λ(i)

(
∑

j
X(i, j)− d1(i)

)
+

∑
j

µ(j)

(
∑

i
X(i, j)− d2(j)

)
. (A8)

The form of the free energy given in Equation (A8) has an intuitive physical interpre-
tation. The first term is the original unbalanced assignment energy, the second is -T times
an entropy term (defined in Equation (A7)), and the third, fourth, and fifth terms impose
the constraints via Lagrange multipliers. At the saddle point, these constraints are satisfied,
and the free energy has the form

FMF
β = UMF

β − 1
β

SMF
β . (A9)

Algorithms 2024, 17, 212 22 of 31

Let us find the bound for the entropy term. t(x) is negative, bounded below by
− ln(2). Similarly, in Appendix H, we show that l(x, a, b) is positive, bounded above by
ln(b − a + 1). Let us define

A(N1, N2) = N1N2 ln(2) +
N1

∑
i=1

ln(pmax(i)− pmin(i) + 1) +

N2

∑
j=1

ln(qmax(j)− qmin(j) + 1). (A10)

Then, the entropy satisfies the following constraints:

0 ≤ SMF
β ≤ A(N1, N2). (A11)

Appendix E.2. FMF(∞) = UMF(∞)

Proof. Using Equation (A22), after rearrangements, we obtain

UMF
β − 1

β
A(N1, N2) ≤ FMF

β ≤ UMF
β .

Taking the limits when β → +∞, we obtain

FMF(∞) = UMF(∞). (A12)

Appendix E.3. U∗ ≤ FMF(∞)

Proof. Let UMF(β) be the mean field internal energy at the inverse temperature β:

UMF
β = ∑

i,j
C(i, j)XMF

β (i, j),

where XMF
β is the solution the the SPA system of equations. At a finite inverse temperature

β, XMF
β is strictly non-integral. In addition, XMF

β satisfies constraints on row sums and

column sums that make it an element of U k(Rmax
min , Cmax

min); see appendix A for details. Based
on Theorem A2, XMF

β can be written as a linear combination of matrices in P k(Rmax
min , Cmax

min),

XMF
β = ∑

π∈P k(Rmax
min ,Cmax

min)

aππ,

with all aπ ∈ [0, 1] and ∑π∈P k(Rmax
min ,Cmax

min)
aπ = 1. Therefore,

UMF
β = ∑

i,j
C(i, j)XMF

β (i, j)

= ∑
π∈P k(Rmax

min ,Cmax
min)

aπ ∑
i,j

C(i, j)π(i, j). (A13)

As U∗ is the minimum matching cost over all possible matrices in P k(Rmax
min , Cmax

min), we
have

∑
i,j

C(i, j)π(i, j) ≥ U∗, (A14)

Algorithms 2024, 17, 212 23 of 31

for all π ∈ P k(Rmax
min , Cmax

min). Combining Equations (A13) and (A14), we obtain

UMF
β ≥ ∑

π∈P k(Rmax
min ,Cmax

min)

aπU∗

≥

 ∑
π∈P k(Rmax

min ,Cmax
min)

aπ

U∗,

from which we conclude that at each β,

U∗ ≤ UMF
β .

Therefore U∗ ≤ UMF(∞), and consequently U∗ ≤ FMF(∞), based on Equation (A12).

Appendix E.4. U∗ ≥ FMF(∞)

Proof. Let us first recall the definition of the free energy,

Fβ(λ, µ, x) = − 1
β ∑

i
ln

(
eβpmin(i)λ(i) − eβ(pmax(i)+1)λ(i)

1 − eβλ(i)

)

− 1
β ∑

j
ln

(
eβqmin(j)µ(j) − eβ(qmax(j)+1)µ(j)

1 − eβµ(j)

)

− 1
β ∑

i,j
ln
[
1 + e−βy(i,j)

]
− kx.

Note these two properties of limits:

lim
β→+∞

ln(1 + e−aβ)

β
=

{
0 if a ≥ 0
−a if a ≤ 0,

and

lim
β→+∞

1
β

ln

(
exaβ − ex(b+1)β

1 − exβ

)
=

{
xb if x ≥ 0
xa if x ≤ 0,

when a and b are non-negative integers. Therefore,

lim
β→+∞

Fβ(λ, µ, x) =

− ∑
i|λ(i)≥0

pmax(i)λ(i)− ∑
i|λ(i)<0

pmin(i)λ(i)

− ∑
j|µ(j)≥0

qmax(j)µ(j)− ∑
j|µ(j)<0

qmin(j)µ(j)

+ ∑
(i,j)|y(i,j)≤0

y(i, j)− kx. (A15)

Let us consider now a matrix π in P k(Rmax
min , Cmax

min) (see above). We can write

∑
i,j

C(i, j)π(i, j) = ∑
i,j

y(i, j)π(i, j)− ∑
i

λ(i)RS(i)

−∑
j

µ(j)CS(j)− kx, (A16)

Algorithms 2024, 17, 212 24 of 31

where RS and CS are the row sums and column sums of π, respectively. For each index i,
the summand included in the first term on the right is always larger than or equal to the
sum of all the corresponding terms that are negative:

∑
i,j

y(i, j)π(i, j) ≥ ∑
i|y(i,j)≤0

y(i, j). (A17)

As π belongs to P k(Rmax
min , Cmax

min), its row sums satisfy the constraints:

pmin(i) ≤ RS(i) ≤ pmax(i). (A18)

We multiply this equation separately for positive and negative λ(i). We find

∑
i|λ(i)>0

pmin(i)λ(i) ≤ ∑
i|λ(i)>0

λ(i)RS(i) ≤ ∑
i|λ(i)>0

pmax(i)λ(i)

∑
i|λ(i)<0

pmax(i)λ(i) ≤ ∑
i|λ(i)<0

λ(i)RS(i) ≤ ∑
i|λ(i)<0

pmin(i)λ(i).

Therefore,

−∑
i

λ(i)RS(i) ≥ − ∑
i|λ(i)≥0

pmax(i)λ(i)− ∑
i|λ(i)<0

pmin(i)λ(i).

(A19)

Similarly, we can show that

−∑
j

µ(j)CS(j) ≥ − ∑
j|µ(j)≥0

qmax(j)µ(j)− ∑
j|µ(j)<0

qmin(j)µ(j).

(A20)

Combining Equations (A15)–(A17), (A19) and (A20), we obtain

∑
i,j

C(i, j)π(i, j) ≥ lim
β→+∞

Fβ(λ, µ, x). (A21)

Equation (A21) is valid for all matrices π in P k(Rmax
min , Cmax

min). It is therefore valid for
the optimal π∗ that solves the general assignment problem. Since U∗ = ∑i,j C(i, j)π∗(i, j),
we have

U∗ ≥ lim
β→+∞

Fβ(λ, µ, x).

As this equation is true for all λ, µ, and x, it is true in particular for λ = λMF, µ = µMF,
and x = xMF, leading to

U∗ ≥ lim
β→+∞

FMF
β = FMF(∞).

We have shown that U∗ ≤ FMF(∞) and FMF(∞) ≤ U∗, and therefore U∗ = FMF(∞).
The corresponding result for the internal energy, U∗ = UMF(∞) follows directly from
Equation (A12).

Algorithms 2024, 17, 212 25 of 31

Appendix F. Proof of Theorem 3: Bounds on the Internal Energy and Free Energy

Appendix F.1. Bounds on the Free Energy

Proposition A1 from Appendix D states that

β
dFMF

β

dβ
= −FMF

β + UMF
β .

Using this equation and the relationship between free energy, energy, and entropy at
SPA (see Equation (A22)), we obtain

dFMF
β

dβ
=

1
β2 SMF

β .

From the bounds on the entropy (Equation (A11)),

0 ≤
dFMF

β

dβ
≤ A(N1, N2)

β2 .

By integrating over β between +∞ and β,

0 ≤ FMF(∞)− FMF
β ≤ A(N1, N2)

β
.

Finally, as FMF(∞) = U∗,

U∗ − A(N1, N2)

β
≤ FMF

β ≤ U∗. (A22)

Appendix F.2. Bounds on the Energy

As UMF
β = FMF

β + 1
β SMF

β , using the bounds on the free energy and on the entropy,
we obtain

UMF
β ≤ U∗ +

A(N1, N2)

β
. (A23)

In addition, UMF
β is monotonic, decreasing, with the limit U∗ as β → +∞, U∗ ≤ UMF

β .
Therefore,

U∗ ≤ UMF
β ≤ U∗ +

A(N1, N2)

β
.

Appendix G. Proof of Theorem 4: Bounds on the Transportation Matrix Gβ

This proof is inspired by the proof of Theorem 6 in Appendix 2 of [35] and by Appendix
F of [15].

We first recall that Gβ belongs to U k(Rmax
min , Cmax

min) (see above), with σ(Gβ) = k. As such,
it can be written as a linear combination of the matrices π ∈ P k(Rmax

min , Cmax
min),

Gβ = ∑
π∈P k(Rmax

min ,Cmax
min)

aππ,

with all aπ ∈ [0, 1] and ∑
π∈P k(Rmax

min ,Cmax
min)

aπ = 1.

We assume that the general assignment problem considered has a unique solution. We
want to prove that max

i,j

∣∣Gβ(i, j)− G∗(i, j)
∣∣ ≤ A(N1,N2)

β∆ , where G∗ is the optimal solution of

the assignment problem, ∆ = U2∗ − U∗ is the difference in total cost between the second

Algorithms 2024, 17, 212 26 of 31

best solution and the optimal solution, and A(N1, N2) is defined in Equation (A10). We use
for that a proof by contradiction. We assume that there exists a pair (i, j) such that

A(N1, N2)

β∆
<
∣∣Ḡβ(i, j)− G∗(i, j)

∣∣.
Let us denote B(i, j) =

∣∣Ḡβ(i, j)− G∗(i, j)
∣∣. As G∗ is a binary matrix, G∗(i, j) = 0 or

G∗(i, j) = 1.
In the first case,

B(i, j) = Ḡβ(i, j)

= ∑
π∈P k(Rmax

min ,Cmax
min)

aππ(i, j).

Since G∗ belongs to P k(Rmax
min , Cmax

min), it is included in the decomposition of Gβ, and
therefore,

B(i, j) = aG∗G∗(i, j) + ∑
π∈P k(Rmax

min ,Cmax
min)−{G∗}

aππ(i, j)

= ∑
π∈P k(Rmax

min ,Cmax
min)−{G∗}

aππ(i, j)

< ∑
π∈P k(Rmax

min ,Cmax
min))−{G∗}

aπ = 1 − aG∗ ,

where the final equality follows from the fact that the sum of all coefficients a is equal to 1.
In the second case, G∗(i, j) = 1,

B(i, j) = 1 − Gβ(i, j)

= 1 − ∑
π∈P k(Rmax

min ,Cmax
min)

aππ(i, j).

Again, as G∗ is included in the decomposition of Gβ,

B(i, j) = 1 − aG∗G∗(i, j)− ∑
π∈P k(Rmax

min ,Cmax
min)−{G∗}

aππ(i, j)

= 1 − aG∗ − ∑
π∈P k(Rmax

min ,Cmax
min)−{G∗}

aππ(i, j)

< 1 − aG∗ ,

where the final inequality follows from the fact that ∑π∈P k(Rmax
min ,Cmax

min)−{G∗} aππ(i, j) is posi-
tive.

In conclusion, in both cases, we have

A(N1, A2)

β∆
< 1 − aG∗ . (A24)

Now, let us look at the energy associated with Ḡβ:

Algorithms 2024, 17, 212 27 of 31

UMF
β = ∑

i,j
C(i, j)Gβ(i, j)

= ∑
π∈P k(Rmax

min ,Cmax
min)

aπ ∑
i,j

C(i, j)π(i, j)

= aG∗U∗ + ∑
π∈P k(Rmax

min ,Cmax
min)−{G∗}

aπ ∑
i,j

C(i, j)π(i, j)

≥ aG∗U∗ +

 ∑
π∈P k(Rmax

min ,Cmax
min)−{G∗}

aπ

U2∗

≥ aG∗U∗ + (1 − aG∗)U2∗

≥ U∗ + (1 − aG∗)∆.

In Theorem 3, we have shown that

U∗ ≤ UMF
β ≤ U∗ +

A(N1, N2)

β
.

Therefore,

U∗ + (1 − aG∗)∆ ≤ U∗ +
A(N1, N2)

β
,

i.e.,

(1 − aG∗) ≤ A(N1, N2)

β∆
, (A25)

as ∆ is strictly positive.
We have shown that A(N1,N2)

β∆ < 1 − aG∗ (Equation (A24)) and (1 − aG∗) ≤ A(N1,N2)
β∆

(Equation (A25)); i.e., we have reached a contradiction. Our hypothesis is wrong, and
therefore max

i,j

∣∣Ḡβ(i, j)− G∗(i, j)
∣∣ ≤ A(N1,N2)

β∆ .

Appendix H. Properties of the General Function G(x, a, b) and Its Derivatives

Theorem A3. Let G(x, a, b) be the function defined by,

G(x, a, b) = ln

(
eax − e(b+1)x

1 − ex

)
.

where a and b are two positive integers with 0 ≤ a < b. Let g(x) = G′(x), l(x, a, b) =
G(x, a, b)− xg(x, a, b), and s(x, a, b) = xl′(x, a, b). We have the following properties:

(1) g′(x, a, b) > 0 ∀x ∈ R.
(2) 0 ≤ l(x, a, b) ≤ ln(b − a + 1) ∀x ∈ R.
(3) s(x, a, b) ≤ 0 ∀x ∈ R.

Note that in Theorem A3, we consider a, b non-negative, with a < b. The result can
be trivially expanded to the case a = b, with G(x, a, a) = ax and therefore g(x, a, a) = a,
g′(x, a, a) = 0, l(x, a, a) = 0, and s(x, a, a) = 0. In the following, we only consider a < b.

Algorithms 2024, 17, 212 28 of 31

Appendix H.1. The Function G(x, a, b)

Note first that

G(x, a, b) = ln

(
eax − e(b+1)x

1 − ex

)

= ln

(
b

∑
k=a

ekx

)
.

G(x, a, b) is therefore defined, continuous, and differentiable over R. Some special values:

G(0, a, b) = ln(b + a − 1),

lim
x→−∞

G(x, a, b) = −∞,

lim
x→+∞

G(x, a, b) = +∞.

Appendix H.2. g(x, a, b) and Its Derivative g′(x, a, b)

Note that

g(x, a, b) =
(b − a + 1)

e(b−a+1)x − 1
+

1
1 − ex + b,

g′(x, a, b) = − (b − a + 1)2e(b−a+1)x

(e(b−a+1)x − 1)2
+

ex

(ex − 1)2 ,

g and its derivative g′ are defined when e(b−a+1)x − 1 ̸= 0 and ex − 1 ̸= 0, i.e., when x ̸= 0.
They can be extended by continuity at 0:

g(0, a, b) =
a + b

2
,

g′(0, a, b) =
(b − a + 1)2 − 1

12
.

We have g′(0, a, b) > 0 as b − a + 1 > 1. In addition,

lim
x→−∞

g(x, a, b) = a,

lim
x→+∞

g(x, a, b) = b,

lim
x→−∞

g′(x, a, b) = 0,

lim
x→+∞

g′(x, a, b) = 0.

Figure A1 shows a few examples of g and g′ for different values of a and b.

-5 0 5
x

0

0.5

1

1.5

2

2.5

3

3.5

4

g
(x
,a
,b
)

a = 1, b = 1

a = 1, b = 2

a = 1, b = 4

(A)

-5 0 5
x

0

0.5

1

1.5

g
'(
x
,a
,b
)

a = 1, b = 1

a = 1, b = 2

a = 1, b = 4

(B)

Figure A1. Examples of g(x, a, b) (A) and its derivative g′(x, a, b) (B) for a = 1, b = 1 (black),
a = 1, b = 2, (red), and a = 1, b = 4 (blue).

Algorithms 2024, 17, 212 29 of 31

We now prove property 1 of Theorem A3.

Proof. Let us define m = b − a + 1. As a < b, we have m > 1. Let x be a real number; then,

g′(x, a, b) = − m2emx

(emx − 1)2 +
ex

(ex − 1)2 ,

which we can rewrite as

g′(x, a, b)

=
1
4

(
− m2

sinh2(mx
2)

+
1

sinh2(x
2)

)

=
1
4

(
sinh2(mx

2)− m2 sinh2(x
2)

sinh2(mx
2) sinh2(x

2)

)

=
1
4

(
(sinh(mx

2)− m sinh(x
2))(sinh(mx

2) + m sinh(x
2))

sinh2(mx
2) sinh2(x

2)

)
.

From this formulation, it is clear that g′(x, a, b) is even. As g′(0, a, b) is strictly positive
(see above), we only need to consider x > 0. Let us define y = x/2. For y > 0, the
denominator of g′(x, a, b) and the term sinh(my) + m sinh(y) are strictly positive. The only
remaining term is sinh(my)− m sinh(y), which we call f (y). We have

f ′(y) = m(cosh(my)− cosh(y))
= 2m sinh((m + 1)y) sinh((m − 1)y).

As m > 1, sinh((m + 1)y) and sinh((m − 1)y) are strictly positive when y > 0: f (y) is
monotonically increasing for y ≥ 0. As f (0) = 0, we obtain f (y) > 0 for y > 0. Therefore
g′(x, a, b) > 0 for all x > 0, and since it is an even function and g′(0, a, b) > 0, we find that
∀x ∈ R g′(x, a, b) > 0.

Appendix H.3. The Function l(x, a, b) = G(x, a, b)− xg(x, a, b)

Recall that

l(x, a, b) = G(x, a, b)− xg(x, a, b).

We nowprove property 2 of Theorem A3.

Proof. We prove first that l(x, a, b) is even. Note that

G(−x, a, b) = ln

(
e−ax − e−(b+1)x

1 − e−x

)

= ln

(
e(b+1)x − eax

ex − 1

)
+ ln

(
ex

e(b+1)xeax

)
= −bx − ax + G(x, a, b),

and

g(−x, a, b) =
(b − a + 1)

e−(b−a+1)x − 1
+

1
1 − e−x + b

=
(b − a + 1)e(b−a+1)x

1 − e(b−a+1)x
+

ex

ex − 1
+ b

= a + b − g(x, a, b).

Algorithms 2024, 17, 212 30 of 31

Therefore,

l(−x, a, b) = G(−x, a, b) + xg(−x, a, b)

= G(x, a, b)− xg(x, a, b)

= l(x, a, b).

Let now x be a positive real number. Then,

l′(x, a, b) = G′(x, a, b)− g(x, a, b)− xg′(x, a, b).

= −xg′(x, a, b)

We know that g′(x, a, b) is positive for all real numbers x (property 1 of Theorem A3);
therefore, l′(x, a, b) is negative on R+ and l(x, a, b) is monotonic decreasing on this domain.
Since:

l(0, a, b) = ln(b − a + 1),

lim
x→+∞

l(x, a, b) = 0,

we have 0 ≤ l(x, a, b) ≤ ln(b− a+ 1) for x ∈ R+, and since l(x, a, b) is even, 0 ≤ l(x, a, b) ≤
ln(b − a + 1) for x ∈ R, which concludes the proof of property 2 of Theorem A3.

Appendix H.4. The Function s(x, a, b) Is Negative

We now prove the property 3 of A3.

Proof. Recall that

l′(x, a, b) = −xg′(x, a, b).

Therefore,

s(x, a, b) = −x2g′(x, a, b).

We know that g′(x, a, b) is positive for all real numbers x (property 1 of Theorem A3);
therefore, s(x, a, b) is negative on R.

References
1. Dell’Amico, M.; Toth, P. Algorithms and codes for dense assignment problems: the state of the art. Discret. Appl. Math. 2000,

100, 17–48. [CrossRef]
2. Pentico, D.W. Assignment problems: A golden anniversary survey. Eur. J. Oper. Res. 2007, 176, 774–793. [CrossRef]
3. Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems; Society for Industrial and Applied Mathematics (SIAM):

Philadelphia, PA, USA, 2009.
4. Dantzig, G. Origins of the simplex method. In A History of Scientific Computing; Association for Computing Machinery: New

York, NY, USA, 1990; pp. 141–151.
5. Jacobi, C. De investigando ordine systematis aequationum differentialum vulgarium cujuscunque. J. Reine Angew. Math. 1890,

94, 292–320.
6. Kuhn, H. The Hungarian method for the assignment problem. Nav. Res. Logist. 1955, 2, 83–97. [CrossRef]
7. Date, K.; Nagi, R. GPU-accelerated Hungarian algorithms for the Linear Assignment Problem. Parallel Comput. 2016, 57, 52–72.

[CrossRef]
8. Lopes, P.A.; Yadav, S.S.; Ilic, A.; Patra, S.K. Fast block distributed CUDA implementation of the Hungarian algorithm. J. Parallel

Distrib. Comput. 2019, 130, 50–62. [CrossRef]
9. Yadav, S.S.; Lopes, P.A.C.; Ilic, A.; Patra, S.K. Hungarian algorithm for subcarrier assignment problem using GPU and CUDA. Int.

J. Commun. Syst. 2019, 32, e3884. [CrossRef]
10. Kumar, A. A modified method for solving the unbalanced assignment problems. Appl. Math. Comput. 2006, 176, 76–82. [CrossRef]
11. Yadaiah, V.; Haragopal, V. A New Approach of Solving Single Objective Unbalanced Assignment Problem. Am. J. Oper. Res. 2016,

6, 81–89. [CrossRef]
12. Costa, D.; Hertz, A. Ants can color graphs. J. Oper. Res. Soc. 1997, 48, 295–305. [CrossRef]

http://doi.org/10.1016/S0166-218X(99)00172-9
http://dx.doi.org/10.1016/j.ejor.2005.09.014
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1016/j.parco.2016.05.012
http://dx.doi.org/10.1016/j.jpdc.2019.03.014
http://dx.doi.org/10.1002/dac.3884
http://dx.doi.org/10.1016/j.amc.2005.09.056
http://dx.doi.org/10.4236/ajor.2016.61011
http://dx.doi.org/10.1057/palgrave.jors.2600357

Algorithms 2024, 17, 212 31 of 31

13. Wang, L.; He, Z.; Liu, C.; Chen, Q. Graph based twin cost matrices for unbalanced assignment problem with improved ant colony
algorithm. Results Appl. Math. 2021, 12, 100207. [CrossRef]

14. Betts, N.; Vasko, F.J. Solving the unbalanced assignment problem: Simpler is better. Am. J. Oper. Res. 2016, 6–9, 296. [CrossRef]
15. Koehl, P.; Orland, H. Fast computation of exact solutions of generic and degenerate assignment problems. Phys. Rev. E 2021,

103, 042101. [CrossRef] [PubMed]
16. Koehl, P.; Delarue, M.; Orland, H. Physics approach to the variable-mass optimal-transport problem. Phys. Rev. E 2021, 103, 012113.

[CrossRef]
17. Birkhoff, G. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman. Ser. A 1946, 5, 147 –154.
18. Von Neumann, J. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contrib. Theory Games

1953, 2, 5–12.
19. Dell’Amico, M.; Martello, S. The k-cardinality assignment problem. Discret. Appl. Math. 1997, 76, 103–121. [CrossRef]
20. Dell’Amico, M.; Lodi, A.; Martello, S. Efficient algorithms and codes for k-cardinality assignment problems. Discret. Appl. Math.

2001, 110, 25–40. [CrossRef]
21. Volgenant, A. Solving the k-cardinality assignment problem by transformation. Eur. J. Oper. Res. 2004, 157, 322–331. [CrossRef]
22. Chandrasekaran, R.; Kabadi, S.; Murty, K. Some NP-complete problems in linear programming. Oper. Res. Lett. 1982, 1, 101–104.

[CrossRef]
23. Greenberg, H.J. An analysis of degeneracy. Nav. Res. Logist. Q. 1986, 33, 635–655. [CrossRef]
24. Megiddo, N.; Chandrasekaran, R. On the ε-perturbation method for avoiding degeneracy. Oper. Res. Lett. 1989, 8, 305–308.

[CrossRef]
25. Koehl, P.; Delarue, M.; Orland, H. Finite temperature optimal transport. Phys. Rev. E 2019, 100, 013310. [CrossRef] [PubMed]
26. Majumdar, J.; Bhunia, A.K. An alternative approach for unbalanced assignment problem via genetic algorithm. Appl. Math.

Comput. 2012, 218, 6934–6941. [CrossRef]
27. Rabbani, Q.; Khan, A.; Quddoos, A. Modified Hungarian method for unbalanced assignment problem with multiple jobs. Appl.

Math. Comput. 2019, 361, 493–498. [CrossRef]
28. Heist, N.; Hertling, S.; Ringler, D.; Paulheim, H. Knowledge Graphs on the Web—An Overview. arXiv 2020, arXiv:2003.00719.
29. Veličković, P. Everything is connected: Graph neural networks. Curr. Opin. Struct. Biol. 2023, 79, 102538. [CrossRef] [PubMed]
30. Camacho, D.; Panizo-LLedot, A.; Bello-Orgaz, G.; Gonzalez-Pardo, A.; Cambria, E. The four dimensions of social network

analysis: An overview of research methods, applications, and software tools. Inf. Fusion 2020, 63, 88–120. [CrossRef]
31. Ideker, T. Network genomics. Ernst Scher. Res. Found. Workshop 2007, 61, 89–115.
32. Pierskalla, W.P. The multidimensional assignment problem. Oper. Res. 1968, 16, 422–431. [CrossRef]
33. Balas, E.; Saltzman, M.J. Facets of the three-index assignment polytope. Discret. Appl. Math. 1989, 23, 201–229. [CrossRef]
34. Spieksma, F.C. Multi index assignment problems: complexity, approximation, applications. In Nonlinear Assignment Problems:

Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–12.
35. Kosowsky, J.; Yuille, A. The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural Netw. 1994,

7, 477–490. [CrossRef]
36. Koehl, P. Extreme points of general transportation polytopes. arXiv 2024, arXiv:2404.16791.
37. Mendelsohn, N.S.; Dulmage, A.L. The convex hull of sub-permutation matrices. Proc. Am. Math. Soc. 1958, 9, 253–254. [CrossRef]
38. Brualdi, R.A.; Lee, G.M. On the truncated assignment polytope. Linear Algebra Its Appl. 1978, 19, 33–62. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rinam.2021.100207
http://dx.doi.org/10.4236/ajor.2016.64028
http://dx.doi.org/10.1103/PhysRevE.103.042101
http://www.ncbi.nlm.nih.gov/pubmed/34005932
http://dx.doi.org/10.1103/PhysRevE.103.012113
http://dx.doi.org/10.1016/S0166-218X(97)00120-0
http://dx.doi.org/10.1016/S0166-218X(00)00301-2
http://dx.doi.org/10.1016/S0377-2217(03)00205-4
http://dx.doi.org/10.1016/0167-6377(82)90006-2
http://dx.doi.org/10.1002/nav.3800330409
http://dx.doi.org/10.1016/0167-6377(89)90014-X
http://dx.doi.org/10.1103/PhysRevE.100.013310
http://www.ncbi.nlm.nih.gov/pubmed/31499816
http://dx.doi.org/10.1016/j.amc.2011.12.070
http://dx.doi.org/10.1016/j.amc.2019.05.041
http://dx.doi.org/10.1016/j.sbi.2023.102538
http://www.ncbi.nlm.nih.gov/pubmed/36764042
http://dx.doi.org/10.1016/j.inffus.2020.05.009
http://dx.doi.org/10.1287/opre.16.2.422
http://dx.doi.org/10.1016/0166-218X(89)90014-0
http://dx.doi.org/10.1016/0893-6080(94)90081-7
http://dx.doi.org/10.1090/S0002-9939-1958-0095128-8
http://dx.doi.org/10.1016/0024-3795(78)90004-6

	Introduction
	A General Formulation of the Assignment Problem
	Effective Free Energy for the General Assignment Problem
	Optimizing the Effective Free Energy

	Solving Generic Assignment Problems
	Solving Degenerate Assignment Problems
	Matching: A Program for Solving Assignment Problems
	Examples
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Defining Entropy
	FMF() = UMF()
	U* FMF()
	U* FMF()

	Appendix F
	Bounds on the Free Energy
	Bounds on the Energy

	Appendix G
	Appendix H
	The Function G(x,a,b)
	g(x,a,b) and Its Derivative g'(x,a,b)
	The Function l(x,a,b)=G(x,a,b)-xg(x,a,b)
	The Function s(x,a,b) Is Negative

	References

