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A high-quality hydrographic observational database is essential for ocean and

climate studies and operational applications. Because there are numerous global

and regional ocean databases, duplicate data continues to be an issue in data

management, data processing and database merging, posing a challenge on

effectively and accurately using oceanographic data to derive robust statistics

and reliable data products. This study aims to provide algorithms to identify the

duplicates and assign labels to them. We propose first a set of criteria to define

the duplicate data; and second, an open-source and semi-automatic system to

detect duplicate data and erroneous metadata. This system includes several

algorithms for automatic checks using statistical methods (such as Principal

Component Analysis and entropy weighting) and an additional expert (manual)

check. The robustness of the system is then evaluated with a subset of the World

Ocean Database (WOD18) with over 600,000 in-situ temperature and salinity

profiles. This system is an open-source Python package (named DC_OCEAN)

allowing users to effectively use the software. Users can customize their settings.

The application result from the WOD18 subset also forms a benchmark dataset,

which is available to support future studies on duplicate checks, metadata error

identification, and machine learning applications. This duplicate checking system

will be incorporated into the International Quality-controlled Ocean Database

(IQuOD) data quality control system to guarantee the uniqueness of ocean

observation data in this product.
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1 Introduction

Ocean in-situ observational data, such as ocean temperature and

salinity profiles, are essential for understanding changes in the ocean

and climate. Within the ocean science community, researchers deploy

various instruments and sensors, such as CTD (Conductivity,

Temperature, Depth), XBT (Expendable Bathythermographs), MBT

(Mechanical Bathythermograph), Argo, APB (Autonomous Pinniped

Bathythermographs), and moored buoys, to gather data from the

surface to the deep ocean (Boyer et al., 2018). These profiles are

crucial for research in monitoring ocean warming, ocean stratification,

vertical mixing, circulation, etc., and also invaluable for policy-makers

and science outreach (Mackenzie et al., 2019). For this purpose, the

international ocean data exchange centers, such as the World

Meteorological Organization (WMO) and the National Oceanic and

Atmospheric Administration (NOAA), play crucial roles in data

collecting, integration, standardizing, formatting, duplicates removal,

quality control and distribution of oceanographic data from various

institutions around the world (Boyer et al., 2018; Goni et al., 2019;

Abraham et al., 2013; Tan et al., 2023). These actions ensure the

oceanographic data are reliable, comparable, and accessible, therefore,

supporting multi-disciplines from ocean-related climate research,

ocean and weather forecasting to marine ecosystem management

(IPCC, 2021).

However, a major challenge in data integration is duplicate

checking and removal, which is a major part of quality control of

ocean data. The duplicates can occur from the start of data ingestion

into a database to data distribution at the end. For example, during

the data assembly stage, integrating the same data from multiple data

centers in slightly different forms is a frequently encountered problem

in ocean data management (Locarnini et al., 2019). During the data

transmission, the same records can be transmitted to different

decimals, leading to two “different” profiles (Boyer et al., 2018).

How to identify the duplicates and then remove duplicates is still a

major challenge in the operational oceanography community

(Cowley et al., 2023), as the need for duplicate checking becomes

especially evident when integrating data from different infrastructures

into a more comprehensive database, particularly when consolidating

various data sources.

For example, merging data from the Global Temperature-Salinity

Profile Program (GTSPP) and data from other sources into the

World Ocean Database (WOD) (a project of the International

Oceanographic Data Exchange - IODE), will inevitably result in the

generation of data with the same observations in the same location at

the same time. These duplicates especially have a non-negligible

impact on the ocean state estimates (Levitus, 1982; Boyer and Levitus,

1994; Ishii et al., 2017; Simoncelli et al., 2021; 2022; Good et al., 2023;

Cheng et al., 2024) and the data assimilation in ocean reanalyzes

(Escudier et al., 2021; Carton and Giese, 2008; Balmaseda et al., 2015).

One example is the ocean temperature field reconstruction and ocean

heat content estimates, which will be illustrated in the following

section. At present, some activities in different countries exist for

duplicate checking work, for instance, Copernicus Marine Service

(Szekely et al., 2024), EN4 from Met Office of the United Kingdom

(Good et al., 2013), and Chinese Academy of Sciences Ocean

Database (Zhang et al., 2024), etc. Furthermore, analyzing the

duplicate checking result serves as a crucial process in identifying

problematic data or errors in metadata (Cowley et al., 2023).

To identify duplicated data, some automatic or manual duplicate-

checking algorithms or systems (a collection of various algorithms)

have been proposed to keep the best data version and to remove or

label the duplicates. For example, Gronell and Wijffels (2008) defined

“exact duplicated data” and “near duplicated data” and proposed a

semi-automatic approach that combines expert manual quality control

techniques and automatic statistical checks to identify these two kinds

of duplicates. This approach has been used to construct the fourth

version of the “EN” series of datasets by Good et al. (2013). Cabanes

et al. (2021) also applied this method to Delayed-ModeQuality Control

(DMQC) analysis for Argo data. The National Oceanic and

Atmospheric Administration (NOAA)/National Centers for

Environmental Information (NCEI) data centers designed a system

to identify duplicates in various data sources, which is used in the real-

time update stream of the WOD database (Garcia et al., 2018). Durack

and Wijffels (2010) attempted to identify duplicate salinity profiles by

finding matches in time and location within 1 day and 0.02 degrees (in

both latitude and longitude). Ji et al. (2022) used a set of specific

location, time, and depth thresholds to identify and remove duplicate

data for different instruments. Schmidtko et al. (2017) defined

duplicated profiles as data pairs within a 5 km distance and 25

hours. However, previous approaches have limitations:

1. Algorithms that rely only on limited metadata (like

geographical coordinates) might not be applicable to

errors in that metadata, for instance, comparing each

profile to the co-located profiles within a 0.1° latitude and

longitude box (Gronell and Wijffels, 2008). However, in

many cases, duplicate data are widely separated in

geographical locations, i.e. the longitude and latitude of

two profile data may be opposite, while the rest of the

metadata information remains the same. Such profiles have

long been neglected as duplicate data.

2. Some algorithms only consider certain metadata (e.g., time,

latitude, longitude, and depth) as key information to

identify duplicates (Ji et al., 2022), thus are only capable

of identifying a subset of duplicate.

3. Previous research has primarily focused on identifying and

deleting duplicate data (Gronell and Wijffels, 2008) but

there is no available benchmark dataset for duplicate-

checking. Detailed analyses of the underlying reasons for

the occurrence of duplicates are not always documented.

4. Identifying potential duplicate pairs in previous studies was

typically viewed as a time-consuming task due to the

necessity of conducting one-by-one comparisons, where

each profile had to be individually compared against every

other, leading to a substantial number of comparisons in

large amounts of data (Ji et al., 2022).

5. The lack of open-source algorithms limits duplicate

checking for further use and broader applications.

The goal of this paper is to present some criteria for identifying

duplicates and then develop a new duplicate checking algorithm for

ocean in-situ profiles (Section 2). The method consists of a semi-
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automatic procedure, based on crude screening and target screening,

which is followed by a manual expert check to review the identified

duplicates. This method is developed in an open-source Python

package (named DC_OCEAN (https://pypi.org/project/DC-

OCEAN/). We incorporate two steps for the automatic checks: 1)

Crude screening: it aims to identify as many possible duplicates as

feasible by using the Profile Summary Score metric; 2) Targeted

screening: it aims to refine the analysis by further selecting possible

duplicates based on the results of the crude screening and then by

classifying them into various categories. In addition to the

automatic checks, outputs from manual duplicate checking

(expert screening) are included in the package to validate results

of the automatic duplicate checking process. The proposed method

is validated (Section 3) by utilizing data sourced fromWOD (Boyer

et al., 2018; downloaded in February 2022), and a benchmark

dataset containing the resulting duplicate flags is released (Section

4). Section 5 encompasses the conclusion and discussion, followed

by Section 6 which provides a summary of the data and code

developed within this study.

2 Methods

2.1 Definitions

The following two types of duplicates are defined and used in

this study:

1. Possible duplicates (the results of automatic algorithms in

section 2.3): refer to profiles in which not all the metadata

information is identical (Gronell and Wijffels, 2008) or to

profiles with erroneous data/metadata.

2. Exact duplicates: refer to profiles with identical measurements

and metadata (Gronell and Wijffels, 2008) or “possible

duplicates” that have been checked by experts and

confirmed to be “exact duplicates”.

Because the data accompanied by metadata issues or data

problems do not qualify as duplicates, once the identified problems

have been resolved or corrected, the data will be either confirmed as

exact duplicates or determined to be non-duplicates by experts. This

step involves manual duplicate checking (Section 2.2.3). We

categorize data with identified data/metadata errors during manual

duplicate checking as non-duplicates, while the other data confirmed

by experts are considered to be “exact duplicates”. For example,

profiles close in time and space may be due to metadata errors (our

algorithm will find them). If manual duplicate checking reveals that

there is indeed an error in the time or location information of the

profiles, these profiles will be considered non-duplicates; otherwise,

they will be considered exact duplicates.

2.2 Criteria to identify duplicates

We establish seven criteria to identify duplicates based on

expert experience and oceanographic knowledge.

2.2.1 Criteria 1
If all the metadata and measurements of depth, temperature,

salinity, dissolved oxygen, etc., in two or more profiles are identical,

they are directly classified as exact duplicates, and no manual check

is required.

2.2.2 Criteria 2
Profiles observed at nearly the same location (within 1 km,

considering the resolution of old instruments), at nearly the same

time (less than one hour), by the same ship, with the same

instrument, are classified as possible duplicates. One of the typical

cases is when a vessel has repeated observations at a given spot

within a short period for calibration purposes; these data will be

identified as possible duplicates.

2.2.3 Criteria 3

Profiles observed by the same ship, at the same time (difference

less than one hour, empirically), but at different locations (with a

distance threshold of >=30km, which is an empirical choice) are

classified as possible duplicates that require further expert

validation as a vessel cannot be in multiple places simultaneously.

2.2.4 Criteria 4

Some data originators are known to store and/or distribute data

after applying a numerical scaling (i.e., multiplying by a constant

factor) or an offset (e.g., adding a constant). These data are

measured near the same locations (<=500m, empirically chosen)

with the same instrument. Such modified data are identified as

possible duplicates here but will be further assessed with

expert check.

2.2.5 Criteria 5
Profiles are collected at nearly the same time (<=1 hour) and at

nearly the same location/station (within 1 km), but their records are

rounded off or truncated. This arises mainly because of the data

processing methods by different data originators. These profiles are

classified as possible duplicates.

2.2.6 Criteria 6
Measurements are identical, but some parts of the metadata are

different. In this case, the profiles are classified as having metadata

error requiring further expert review. These profiles are considered

as possible duplicates.

2.2.7 Criteria 7

Some measurements are missing, or the values have been

interpolated. Because of storage limitations or data processing

policies (e.g., practice applied back in time), some data may have

been resampled or interpolated before being submitted to data centers.

If 85% (an empirical choice) of the measurements are identical in two

profiles, these profiles are classified as possible duplicates.

2.2.8 Instrument specific processes

In addition, the position accuracy of the coordinate information

for modern Conductivity-Temperature-Depth (CTD), Autonomous
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Pinniped (APB), Profiling Float (PFL), and Glider (GLD) is much

higher than other instruments due to the use of GPS systems. In such

cases, if the longitude or latitude of the profiles differ by four decimal

places (empirical chosen), they cannot be classified as possible

duplicates (i.e., not passed to the expert check if none of the

previously listed criteria is fulfilled).

2.3 Duplicate checking workflow

The semi-automatic algorithm, schematized in Figure 1,

consists of two parts: (1) automatic duplicate checking (N00

processes, N01 crude screen and M00 targeted screen) and (2)

manual (expert) duplicate checking. Criteria 1 to Criteria 7 are

applied in M00.

2.3.1 Automatic checking
Based on the criteria proposed above, we developed an automatic

duplicate checking system that calculates a “Profile Summary Score

(PSS)” for each profile by integrating measurements and various

metadata such as country, time, location, instrument type, etc. These

metrics allow us to efficiently compare profiles. This study assumes that

the profiles with similar PSS have a large probability to be duplicats.

Program N00 in Figure 1 is used for pre-processing metadata

and secondary processing data (e.g., the sum of temperature, sum of

salinity, if available). Table 1 shows all the available metadata and

secondary processing data used to calculate the Profile Summary

Score. During this stage, numerical metadata such as time,

longitude, and latitude are retained, while string metadata

information (such as country and platform) is converted into

numerical values by using the ASCII code table (e.g., letter “A” is

65) and then summing these ASCII code values of each string to

derive final numerical values. For example, the sum of ASCII code

for string “NODC” is 292 (78 + 79 + 68 + 67).

Numerical values outside the range set in Table 1 are set to NaN

(i.e., ‘np.isnan’ in Python). The missing string values are set to

empty values (i.e., ‘‘ in Python; empty). These two types of missing

values will be ignored during the calculation of the PSS.

Program N01 includes multiple screening processes to detect

possible duplicates. This program consists of three independent

strategies: 1) Arithmetic Mean; 2) Entropy Weight Method; 3)

Principal Component Analysis (PCA) method. The three

independent strategies are summed up to a final score because

they leverage different statistical techniques to synthesize the Profile

Summary Score from complex and varied metadata and

measurements. From this program, information on each profile

can be reduced to a single numerical value as a flag so that the

comparison between profiles is no longer a rigid comparison of one-

by-one correspondence between metadata. This approach enhances

the robustness of our duplicate detection by ensuring that multiple

facets of the profiles are considered and thereby catching multi-

types of duplicates as much as possible, with minimizing the

likelihood of overlooking duplicates that only one strategy might

miss. The order to perform these three independent strategies does

not change the result because they are summed up to give a

final score.

FIGURE 1

Flow chart of the DC_OCEAN duplicate checking.
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The details to calculate the Profile Summary Score are shown

as follows:

1. Strategy 1 (Arithmetic Mean): we calculate the simple

average of metadata numerical values (converted in the

Program N00) for each profile for comparison purposes.

Here, before calculating the mean, the algorithm includes a

normalization process for all numerical metadata to better

homogenize the information and reduce the influence of

differences in dimensions and units in profiles and their

metadata. For example, the accession number of the profile

is “9700235”, which is much larger than other metadata

values (e.g., latitude – 2.5°N). Without normalization, the

accession number information will dominate the results.

TABLE 1 Metadata and secondary processing data extracted from the WOD profiles and used to calculate the Profile Summary Score in the duplicate

checking system (DC_OCEAN).

Name Data Type Long_name Dimension Range

z float depth 1D 0 m~12000 m

Temperature float Sea water temperature 1D -2 °C ~40 °C

Salinity float Sea water salinity 1D 0 psu~50 psu

Oxygen float Sea water dissolved oxygen 1D –

Chlorophyll float Chlorophyll 1D –

lat float latitude – -90°~90°

lon float longitude – -180°~180°

time float time – –

country string country name – –

Temperature_Instrument string Temperature Instrument – –

need_z_fix string Instruction for fixing depths for XBT bias correction – –

recorder string Recorder – –

GMT_time float GMT_time – –

WMO_ID integer WMO identification code – –

dbase_orig string original database – –

project_name string Project name – –

Platform string Platform name – –

ocean_vehicle string Ocean vehicle name – –

accession_number integer NODC accession number – –

Institute string Institute name – –

WOD_cruise_identifier string WOD cruise identifier – –

dataset_id string dataset name – –

sum_temp float Sum of temperature – –

sum_salinity float Sum of salinity – –

sum_depth float Sum of depth – –

std_temp float Standard deviation of temperature – –

std_salinity float Standard deviation of salinity – –

std_depth float Standard deviation of depth – –

depth_number float Number of depth – –

maximum_depth float Maximum depth – –

cor_temp_depth float
Correlation coefficient between temperature

and depth
–

–

cor_sal_depth float Correlation coefficient between salinity and depth – –
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2. Strategy 2 (Entropy Weight Method): here we calculated the

weighted average by using the entropy weight method

(Zeleny, 1998) to determine the weight. This method

provides an objective perspective in calculating weights by

leveraging entropy values to gauge the discreteness level of

variables. A lower entropy value indicates heightened

discreteness in variable measurements, resulting in a

proportionately larger weight. The weight calculation

process is shown in Appendix 1. Similarly, a normalization

process for all numerical metadata is done before deploying

the Entropy Weight Method. The relevant part of Strategy 2

is the “math_util_functions.entropy_weight” function.

3. Strategy 3 (Principal Component Analysis; PCA): PCA

serves as a technique to decrease the dimensionality of

data while retaining those that contribute most to variance

(Jolliffe, 2002). The PCA initially calculates the eigenvalues

and eigenvectors of the data matrix (Z described in

Appendix 1) containing the metadata information

(variables shown in Table 1) for all profiles. Then, we

rank the variables based on the eigenvalues. Variables

with larger eigenvalues are considered more significant

because they account for a greater amount of variance.

We then select the first variables that can explain 95% of the

total variance (95% is an empirical choice), which are

defined as “key variables”. These “key variables” are then

used in the entropy weight method to compute PSS.

Applying PCA to each profile helps to identify metadata

information that more effectively captures variations

between profiles. The relevant part of Strategy 3 is the

call the “math_util_functions.PCA_PSS_profiles” function.

With the Profile Summary Score value calculated by the above

three strategies separately, we then utilize the neighborhood

ordering method (Elmagarmid et al., 2007) to identify “possible

duplicate pairs” as follows: firstly, sorting the Profile Summary

Score of all profiles in ascending order, and then comparing each

score with the following scores in turn. This action enhances

screening efficiency. When the difference between the two scores is

less than 0.0001% (an empirical chosen value), we consider these

two corresponding profiles as “potential duplicates”. Compared

with the algorithm that analyzes profiles one by one, this method

changes the time complexity from O(n2) to O(n). The “potential

duplicate pairs” obtained by the three strategies separately are

then merged together, as a single “possible duplicate pairs”

list (Figure 1).

With the “potential duplicates” list, Programs M00 are targeted

screening by performing manual one-by-one duplicates checks or

automatic checks on the list of “potential duplicates” created during

the crude screening (i.e., N01). These checks can help us determine

whether the “potential duplicates” identified in the crude screening

are “exact duplicates” or fall into other categories of duplicates. This

code checks for duplicates, triplicates, quadruplicates, etc.

According to the seven criteria proposed in the Section 2.2, seven

corresponding checks have been implemented here (adapted from

Gronell and Wijffels (2008) and expertise within IQuOD).

The checks can be categorized into two groups: “spatial-temporal

checks” and “data record checks”, as illustrated in Figure 2. During

spatial-temporal checks, we assess whether the identified data is

measured simultaneously but at different locations or if it is

measured simultaneously and is co-located. The data record

checks include correlation, truncation, layer-by-layer, exact

duplicates, and interpolation (missing data) checks. The

correlation check determines whether the correlation coefficients

of temperature (or salinity) and depth of the profiles are consistent.

If they are identical, it indicates that data is contaminated by

numerical scaling or translation.

The output of this step is the classified list of possible duplicates

and non-duplicates. This list is then used as input for the expert

manual check (see section 2.3.2).

2.3.2 Manual checks

Manual (expert) checks are aimed at assessing the possible

duplicates identified by the automatic algorithm. This step could

also be used to analyze the reasons for duplication. Special attention

is required for date, time, and location, as they are essential

information, which is very important to identify errors. If any of

these three variables is missing or wrong, the measurements of the

profiles are of no use. Here, based on some potential reasons for

duplication and metadata/data issues, the International Quality-

controlled Ocean Database (IQuOD) task team members

(Simoncelli et al., 2024) recommend additional criteria for all the

identified pairs output from the automatic checking. For instance,

for duplicate profiles in the Mediterranean Sea, the regional experts

among the IQuOD members will review the original database for

potential errors. If there is a high confidence that certain cruises or

vessels have submitted duplicate data, the member associated with

those cruises will check the original details about the vessel and its

instruments. This includes gaining insights into the operational

status of instruments during data collection by operators.

This manual checking process determines if they are true

duplicates or if there are errors in the data and/or metadata. The

criteria recommended by IQuOD include:

1. Repeated submissions to the data center, either submitted

at different times or through repeated submissions by

different organizations (i.e. data providers participating to

the same cruise or project), lead to data repetition

(Lawrimore et al., 2011; Simoncelli et al., 2022).

2. Some organizations in some countries may have submitted

data with incorrect country codes. For example, data from

Japanese fishery sectors may have been assigned non-

Japanese country codes.

3. Submitting raw data first and the post-processed data later.

4. Data adjustments for confidentiality purposes by the

military, such as modifications of latitude, longitude, year,

or time. The adjusted data is then re-submitted by different

organizations [personal communications from the Institute

of Oceanology, Chinese Academy of Sciences (IOCAS)].

5. Constraints related to the submission timeframe for the

Global Telecommunications System (GTS). Due to limited
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transmission capability, some historical data might have

been heavily subsampled. For instance, real-time data from

SOOP (Ship of Opportunity) XBT released within 12 hours

of collection, albeit at the expense of substantial vertical

sub-sampling of the profiles (Manzella et al., 2003).

6. Data delivered to the GTS (Global Transmission System)

resulted in missing data or even wrong metadata

information in these real-time profiles. From the 1990s,

GTS data was reduced in size by creating inflection-point

ASCII formats. More recently, full-resolution data has been

delivered to the GTS in BUFR (Binary Universal Form for

the Representation of meteorological data) format which

includes more metadata and data, however, mismatches in

GTS data and delayed-mode delivered data still occur.

Here, we noted that some parts of the above criteria also served

as a supplement or references to the physical reason for the manual

duplicate checking.

Beyond confirming the exactness of possible duplicates and

analyzing their causes, the results of the manual (expert) checks are

FIGURE 2

Flow chart of targeted screening. (A) Spatial-temporal checks. (B) Data records checks.
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also invaluable for further refining and optimizing the automatic

algorithm. For instance, analysis of the duplicates in 1992-1993

XBT, as manually identified by experts, revealed a novel type of

duplicates arising from interpolation or missing data (see

Figure 3F). By incorporating the distinctive characteristics of

these duplicates, the capability to detect similar instances of

duplicates is enhanced.

3 Results

3.1 Validation

World Ocean Database (WOD) (Boyer et al., 2018) is an

international effort to collect and archive in-situ oceanographic data

in a unified format. The WOD converts data, received at the National

FIGURE 3

Example of some duplicated pairs. (A) Simultaneously and co-located (B) Observations are rounded off or truncated (C) Wrong location (D) Exact

duplicates (E) Part of the profile data is missing/interpolated (F) Multiple submissions of different versions. Metadata information inserted into the

subfigures are instrument types, WOD unique identifier, cruise identifier, platform name, latitude, longitude, year, month, day, hour, and

minute, respectively.
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Centers for Environmental Information (NCEI) from different sources,

into the internal format and quality controlled for inclusion in the

database. In the process of integrating data from different sources,

platforms and instruments, there might be a large amount of duplicate

data. In the WOD, these duplicate data has not been fully resolved. To

validate the proposed duplicate checking system, we used some in-situ

temperature and salinity profiles from the WOD18 (downloaded in

February 2022) for the years 1975, 1995, and 2011. We choose these

three years of data to represent different periods of the global ocean

observing system. We also incorporated 1992-1993 XBT (eXpendable

BathyThermograph) from the Gulf of Mexico with duplicated data (the

total amount is 28 duplicated pairs), which has been under the rigorous

expert-validated manual check, to validate the proposed system’s

robustness. In these data, the duplicates are known because they

have already been screened by experts.

The results of duplicate checking showed that there were 95, 28,

494 and 831 duplicated groups for 1975, 1992-1993, 1995 and 2011,

respectively (Table 2). Here, a duplicated group refers to either a double

pair (i.e., two profiles), or triplicates, quadruplicates, etc. In the 1975

subset, exact duplicates (Figure 3D) accounted for approximately 2.8%

of all duplicated groups, while possible duplicates comprised 97.2%

(Table 3). Among the duplicated groups, a significant proportion fell

into categories such as simultaneously and co-located profiles with

identical measured values but different locations or dates. For example,

Figure 3A displays two profiles measured simultaneously at the same

place. In comparison, Figure 3C shows two profiles with identical

metadata except for a mismatch in the sign and rounding precision in

their recorded latitude/longitude metadata.

In the 1995 subset, the exact duplicates comprised 8.0%, while the

remaining 92.0% were possible duplicates (Table 2). In the possible

duplicated group, duplications due to rounding off or truncation

dominate (38.4%), while profiles with interpolation also account for a

large proportion (32.7%). Figure 3B shows an example of possible

duplicates resulting from rounding or truncating temperature

measurements. Additionally, Figure 3E represents possible

duplicates caused by missing data or interpolation.

In the 2011 subset, nearly all duplicates were classified as

possible duplicates (99.8%), with simultaneously and co-located

duplicates being the predominant types of duplicates. For the Gulf

of Mexico XBT data in 1992-1993, all duplicates are detected as

possible duplicates, which serves as an indication of the robustness

of the Profile Summary Score algorithm with the expert-validated

data. In Figure 3F, we observe a possible duplicate resulting from

multiple submissions of different versions. In those cases, one of this

pair has more temperature records than the other one.

In summary, our algorithms identified 1,448 duplicated groups

in total within a dataset comprising over a total of 600,000 profiles

investigated in this study.

3.2 Benchmark dataset

A benchmark dataset is constructed by combining the results of

checks for the 1975, 1995, and 2011 WOD data and the data from

the Gulf of Mexico (Boyer et al., 2018). This dataset is available to

the community as a benchmark for new methods that are going to

resolve duplicates, such as training of machine learning models.

Two additional variables have been incorporated into the WOD

standard netCDF file format, while the metadata and observations

are all preserved as in WOD (see Table 4).

The benchmark dataset (Song et al., 2023) contains 1,448 groups

of duplicate data (each group comprising two or more profiles). 2,956

profiles were labeled, with 542 being labeled as 1 (constituting

18.336%), 1,222 as 2 (41.373%), and 1,192 as 0 (40.291%). The file

duplicate_list_pair.xlsx contains information about theDuplicate_flag

and Duplicate_pair_id related to the labeled profile data.

4 Conclusion and perspective

This study provides some criteria for defining the duplicates and

an open-access tool for identifying duplicate data. Currently, our code

can only detect duplicates for data withWOD format. If users possess

data in alternative formats, a format conversion is needed. We have

provided instructions in the user manual for data formats

requirements. The DC_OCEAN code base will become more

versatile and applicable to other input data formats in the future,

thanks to the continuous IQuOD community effort and the users

feedback and collaboration through the GitHub development

environment. In fact, although our program is currently targeted at

temperature and salinity data, with some modifications it can be

applied to other variables (e.g. dissolved oxygen, partial pressure of

carbon dioxide, etc.). Three years of data from WOD18 were chosen

to test and validate the newly developed algorithm with outcomes

published in the benchmark dataset, which will support future

activities. Possible reasons for duplication require further analysis

TABLE 2 Duplicate & metadata checking results of 1975, 1995, and 2011

data and 1992-1993 XBT data in the Gulf of Mexico obtained

from WOD18.

1975
1992-1993

(Gulf
of Mexico)

1995 2011

Total number of

downloaded profiles
142537 – 142473 337651

Duplicated groups

(results of the

targeted screen)

95 28 494 831

Duplicate rate (%) 0.067 – 0.347 0.246

TABLE 3 Proportion of exact duplicates and possible duplicates

per year.

1975
1992-1993

(Gulf
of Mexico)

1995 2011

Duplicated

groups

(results of

target

screen)

Exact

duplicates

rate (%)

2.8 0.0 8.0 0.2

Possible

duplicates

rate (%)

97.2 100.0 92.0 99.8
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by the IQuOD experts. The proposed approach is to flag the

identified duplicate data without removing it from the database,

according with the latest data management best practices, which

allows the user to trace back the detecting process with full

transparency. Users can decide whether to remove these duplicates

based on their research requirements. We highlight that the new

duplicate checking system (DC_OCEAN, Tan et al., 2024) could

enhance the uniqueness of in-situ ocean profiles and facilitate further

marine and climate science data applications. The obtained

benchmark dataset can serve as a valuable reference for testing and

improving other duplicate checking systems.

The duplicate checking system can potentially be useful in

various scientific applications, such as reconstructing historical

ocean temperature gridded fields. An example is, in the Northwest

Pacific region, after removing duplicate data in 1995 from the

abovementioned benchmark dataset, the difference in the gridded

averaged temperature can be as large as 0.1°C for 0-100 m and 0.06°C

for 0-300 m. After applying a gap-filling method by Cheng et al.

(2017) to reconstruct gridded fields with full ocean coverage, the

impact of the duplicate check can spread to a large area because the

reconstruction used nearby observations. The maximum temperature

difference in 1995 can reach 0.06°C (upper 100 m) and 0.05°C (upper

300 m). The major difference is mainly distributed along the east

coast of Japan, extending the difference to the Kuroshio extension due

to the spatial interpolation (mapping), which is characterized by

abundant eddy activities (Figure 4). This test, although simple,

indicates that duplicates may have a potential non-negligible

impact on regional ocean temperature (and ocean heat content)

estimates. Therefore, our duplicate checking software can support the

improvement of the data analysis, which will be fully investigated in

the future.

The system can also support international activities such as

IODE-project WOD, where there should be no duplicate data by

design. However, there were duplicates in WOD (as shown in this

paper), therefore the Duplicate checking system for ocean profile

(named DC_OCEAN) can fill the gap between the complete and the

incomplete duplicate checking in the WOD. The investigations (as

done in this study) are also valuable for improving the data quality

TABLE 4 Details of the two additional variables in the benchmark dataset. Note the corresponding metadata and measurements are the same

as WOD18.

Variable 1: Duplicate_flag Variable 2: Duplicate_pair_id

Duplicate_flag=0 Duplicate_flag=1 Duplicate_flag=2 Purpose Pair ID

Duplicate profiles, have been checked

by experts. Need to be kept in the

dataset by the user.

Duplicate profiles, have been

checked by experts, but uncertain

which one to keep.

Duplicate profiles, have been checked

by experts. Need removal from the

dataset by the user.

Used to indicate the duplicate

groups (which netCDF files

are duplicated).

Order

from 1

to 10000.

FIGURE 4

The estimated differences in gridded averaged temperature and reconstructed temperature after applying a gap-filling approach in Cheng et al.

(2017), before and after excluding duplicate data in 1995. (A, B) The gridded averaged temperature at 100 and 300 m, respectively. (C, D) The

reconstructed temperature field at 100 m and 300 m after gap-filling approach, respectively. The unit is °C.
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and data management practices, which is a task of another IODE-

endorsed Project: the International Quality-controlled Ocean

Database. Furthermore, for some uses, some closely co-located

data (e.g., up + down casts of the same CTD station) identified by

the DC_OCEANmight not be considered a duplicate for WOD, but

might still skew the statistics (e.g., for gridded averages). So, the

software can identify and flag these cases for specific users who

would like to flag these co-located data in time and space.

The system developed in this study is part of the IQuOD project

for identifying duplicates, correcting metadata errors, and

eventually improving ocean data quality (Cowley et al., 2023).

Because fully implementing the duplicate checking for all

historical data requires substantial time and effort, our open-

source duplicate checking software is used as a tool for further

activities. In addition, the system could also support various efforts

in merging or in integrating data from different data sources or data

infrastructures, for instance, WOD, the Blue Cloud 2026 European

Project (Schaap et al., 2022), the Chinese Academy of Sciences

Ocean Data Center (CODC) database, EN4, etc (Zhang et al., 2024;

Boyer et al., 2018; Good et al., 2013). For this purpose, for example,

the Blue Cloud project has set up a synergy to cooperate with

IQuOD by using several data quality improvement tools (including

the duplicate checking algorithm purposed in this study) to provide

access to multi-disciplinary datasets from observations, and finally

generate qualified data collections by merging data from

various databases.

5 Future challenges

During the investigation, we found that many profiles lack parts

of metadata (such as country, time, location, instrument type, and

platform), posing challenges for duplicate checking because an

exhaustive metadata description is a requirement to identify the

best data version. Therefore, to facilitate the follow-on examination

of metadata, we have assigned the value of 99999 to the

Duplicate_pair_id variable for these data and included them in

our benchmark dataset. Tackling metadata errors has always been a

central task of ocean data centers, including IQuOD.

Additionally, identifying the duplicates within different data

infrastructures is more complicated due to the adoption of different

metadata format standards and vocabularies. Currently, the

duplicate checking system can only support detecting duplicates

within a unified metadata format framework (Here, we are based on

WOD format). Therefore, the unification and standardization of

metadata are very important for duplicate checking, and the

DC_OCEAN will adapt to more kinds of metadata formats in the

future (e.g., GTSPP or WMO format). Unifying metadata format

has also always been a central task of ocean data centers

including IQuOD.

Currently, our code can identify eight types of duplicates (see

Section 2.2). However, there may be other potential/new types of

duplicates that we may have missed. Therefore, considering the

feedback from manual (expert) checks and including the

characteristics of newly discovered duplicates will be the future

direction of improvement for DC_OCEAN.

Moreover, many of our threshold settings are practical and

based on a limited amount of data. Despite achieving satisfactory

results when applied DC_OCEAN to data from WOD at 1975,

1995, and 2011, further verification of its performance in larger

database is needed.
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Appendix 1: The entropy
weight method

The entropy weight calculation process is introduced here. The

input metadata can be regarded as a data matrix Z,

Z =

z11 z12 ⋯ z1m

z21 z22 ⋯ z2m

⋮ ⋮ ⋱ ⋮

zn1 z12 ⋯ znm

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

,

where m is the number of variables (they are used to calculate

the Profile Summary Score for a profile) and n is the total amount of

input profiles.

The entropy value of each variable is defined as ej,

ej = −

1

ln (n)o
n

i=1

pij � ln pij, (j = 1; ::::::;m)

,

where pij =
zij

o
n

i=1

zij

, (i = 1; ::::::;n, j = 1; ::::::;m).

And the weight of the jth variable weightj(j = 1; ::::::;m) is:

weightj =
dj

o
m

j=1

dj

, (j = 1; ::::::;m)

,

where dj = 1 − ej.
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