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A high-quality hydrographic observational database is essential for ocean and
climate studies and operational applications. Because there are numerous global
and regional ocean databases, duplicate data continues to be an issue in data
management, data processing and database merging, posing a challenge on
effectively and accurately using oceanographic data to derive robust statistics
and reliable data products. This study aims to provide algorithms to identify the
duplicates and assign labels to them. We propose first a set of criteria to define
the duplicate data; and second, an open-source and semi-automatic system to
detect duplicate data and erroneous metadata. This system includes several
algorithms for automatic checks using statistical methods (such as Principal
Component Analysis and entropy weighting) and an additional expert (manual)
check. The robustness of the system is then evaluated with a subset of the World
Ocean Database (WOD18) with over 600,000 in-situ temperature and salinity
profiles. This system is an open-source Python package (named DC_OCEAN)
allowing users to effectively use the software. Users can customize their settings.
The application result from the WOD18 subset also forms a benchmark dataset,
which is available to support future studies on duplicate checks, metadata error
identification, and machine learning applications. This duplicate checking system
will be incorporated into the International Quality-controlled Ocean Database
(IQuOD) data quality control system to guarantee the uniqueness of ocean
observation data in this product.

KEYWORDS

duplicate checking, ocean data infrastructure, ocean in-situ observations, ocean data
quality improvement, temperature and salinity
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1 Introduction

Ocean in-situ observational data, such as ocean temperature and
salinity profiles, are essential for understanding changes in the ocean
and climate. Within the ocean science community, researchers deploy
various instruments and sensors, such as CTD (Conductivity,
Temperature, Depth), XBT (Expendable Bathythermographs), MBT
(Mechanical Bathythermograph), Argo, APB (Autonomous Pinniped
Bathythermographs), and moored buoys, to gather data from the
surface to the deep ocean (Boyer et al, 2018). These profiles are
crucial for research in monitoring ocean warming, ocean stratification,
vertical mixing, circulation, etc., and also invaluable for policy-makers
and science outreach (Mackenzie et al., 2019). For this purpose, the
international ocean data exchange centers, such as the World
Meteorological Organization (WMO) and the National Oceanic and
Atmospheric Administration (NOAA), play crucial roles in data
collecting, integration, standardizing, formatting, duplicates removal,
quality control and distribution of oceanographic data from various
institutions around the world (Boyer et al., 2018; Goni et al, 2019;
Abraham et al, 2013; Tan et al, 2023). These actions ensure the
oceanographic data are reliable, comparable, and accessible, therefore,
supporting multi-disciplines from ocean-related climate research,
ocean and weather forecasting to marine ecosystem management
(IPCC, 2021).

However, a major challenge in data integration is duplicate
checking and removal, which is a major part of quality control of
ocean data. The duplicates can occur from the start of data ingestion
into a database to data distribution at the end. For example, during
the data assembly stage, integrating the same data from multiple data
centers in slightly different forms is a frequently encountered problem
in ocean data management (Locarnini et al., 2019). During the data
transmission, the same records can be transmitted to different
decimals, leading to two “different” profiles (Boyer et al, 2018).
How to identify the duplicates and then remove duplicates is still a
major challenge in the operational oceanography community
(Cowley et al., 2023), as the need for duplicate checking becomes
especially evident when integrating data from different infrastructures
into a more comprehensive database, particularly when consolidating
various data sources.

For example, merging data from the Global Temperature-Salinity
Profile Program (GTSPP) and data from other sources into the
World Ocean Database (WOD) (a project of the International
Oceanographic Data Exchange - IODE), will inevitably result in the
generation of data with the same observations in the same location at
the same time. These duplicates especially have a non-negligible
impact on the ocean state estimates (Levitus, 1982; Boyer and Levitus,
1994; Ishii et al., 2017; Simoncelli et al., 2021; 2022; Good et al., 2023;
Cheng et al, 2024) and the data assimilation in ocean reanalyzes
(Escudier et al., 2021; Carton and Giese, 2008; Balmaseda et al., 2015).
One example is the ocean temperature field reconstruction and ocean
heat content estimates, which will be illustrated in the following
section. At present, some activities in different countries exist for
duplicate checking work, for instance, Copernicus Marine Service
(Szekely et al., 2024), EN4 from Met Office of the United Kingdom
(Good et al, 2013), and Chinese Academy of Sciences Ocean
Database (Zhang et al., 2024), etc. Furthermore, analyzing the
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duplicate checking result serves as a crucial process in identifying
problematic data or errors in metadata (Cowley et al., 2023).

To identify duplicated data, some automatic or manual duplicate-
checking algorithms or systems (a collection of various algorithms)
have been proposed to keep the best data version and to remove or
label the duplicates. For example, Gronell and Wijffels (2008) defined
“exact duplicated data” and “near duplicated data” and proposed a
semi-automatic approach that combines expert manual quality control
techniques and automatic statistical checks to identify these two kinds
of duplicates. This approach has been used to construct the fourth
version of the “EN” series of datasets by Good et al. (2013). Cabanes
etal. (2021) also applied this method to Delayed-Mode Quality Control
(DMQC) analysis for Argo data. The National Oceanic and
Atmospheric Administration (NOAA)/National Centers for
Environmental Information (NCEI) data centers designed a system
to identify duplicates in various data sources, which is used in the real-
time update stream of the WOD database (Garcia et al., 2018). Durack
and Wijffels (2010) attempted to identify duplicate salinity profiles by
finding matches in time and location within 1 day and 0.02 degrees (in
both latitude and longitude). Ji et al. (2022) used a set of specific
location, time, and depth thresholds to identify and remove duplicate
data for different instruments. Schmidtko et al. (2017) defined
duplicated profiles as data pairs within a 5 km distance and 25
hours. However, previous approaches have limitations:

1. Algorithms that rely only on limited metadata (like
geographical coordinates) might not be applicable to
errors in that metadata, for instance, comparing each
profile to the co-located profiles within a 0.1° latitude and
longitude box (Gronell and Wijffels, 2008). However, in
many cases, duplicate data are widely separated in
geographical locations, i.e. the longitude and latitude of
two profile data may be opposite, while the rest of the
metadata information remains the same. Such profiles have
long been neglected as duplicate data.

2. Some algorithms only consider certain metadata (e.g., time,
latitude, longitude, and depth) as key information to
identify duplicates (Ji et al.,, 2022), thus are only capable
of identifying a subset of duplicate.

3. Previous research has primarily focused on identifying and
deleting duplicate data (Gronell and Wijffels, 2008) but
there is no available benchmark dataset for duplicate-
checking. Detailed analyses of the underlying reasons for
the occurrence of duplicates are not always documented.

4. Identifying potential duplicate pairs in previous studies was
typically viewed as a time-consuming task due to the
necessity of conducting one-by-one comparisons, where
each profile had to be individually compared against every
other, leading to a substantial number of comparisons in
large amounts of data (Ji et al., 2022).

5. The lack of open-source algorithms limits duplicate
checking for further use and broader applications.

The goal of this paper is to present some criteria for identifying

duplicates and then develop a new duplicate checking algorithm for
ocean in-situ profiles (Section 2). The method consists of a semi-
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automatic procedure, based on crude screening and target screening,
which is followed by a manual expert check to review the identified
duplicates. This method is developed in an open-source Python
package (named DC_OCEAN (https://pypi.org/project/DC-
OCEANY/). We incorporate two steps for the automatic checks: 1)
Crude screening: it aims to identify as many possible duplicates as
feasible by using the Profile Summary Score metric; 2) Targeted
screening: it aims to refine the analysis by further selecting possible
duplicates based on the results of the crude screening and then by
classifying them into various categories. In addition to the
automatic checks, outputs from manual duplicate checking
(expert screening) are included in the package to validate results
of the automatic duplicate checking process. The proposed method
is validated (Section 3) by utilizing data sourced from WOD (Boyer
et al., 2018; downloaded in February 2022), and a benchmark
dataset containing the resulting duplicate flags is released (Section
4). Section 5 encompasses the conclusion and discussion, followed
by Section 6 which provides a summary of the data and code
developed within this study.

2 Methods
2.1 Definitions

The following two types of duplicates are defined and used in
this study:

1. Possible duplicates (the results of automatic algorithms in
section 2.3): refer to profiles in which not all the metadata
information is identical (Gronell and Wijffels, 2008) or to
profiles with erroneous data/metadata.

2. Exact duplicates: refer to profiles with identical measurements
and metadata (Gronell and Wijftels, 2008) or “possible
duplicates” that have been checked by experts and
confirmed to be “exact duplicates”.

Because the data accompanied by metadata issues or data
problems do not qualify as duplicates, once the identified problems
have been resolved or corrected, the data will be either confirmed as
exact duplicates or determined to be non-duplicates by experts. This
step involves manual duplicate checking (Section 2.2.3). We
categorize data with identified data/metadata errors during manual
duplicate checking as non-duplicates, while the other data confirmed
by experts are considered to be “exact duplicates”. For example,
profiles close in time and space may be due to metadata errors (our
algorithm will find them). If manual duplicate checking reveals that
there is indeed an error in the time or location information of the
profiles, these profiles will be considered non-duplicates; otherwise,
they will be considered exact duplicates.

2.2 Criteria to identify duplicates

We establish seven criteria to identify duplicates based on
expert experience and oceanographic knowledge.
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2.2.1 Criteria 1

If all the metadata and measurements of depth, temperature,
salinity, dissolved oxygen, etc., in two or more profiles are identical,
they are directly classified as exact duplicates, and no manual check
is required.

2.2.2 Criteria 2

Profiles observed at nearly the same location (within 1 km,
considering the resolution of old instruments), at nearly the same
time (less than one hour), by the same ship, with the same
instrument, are classified as possible duplicates. One of the typical
cases is when a vessel has repeated observations at a given spot
within a short period for calibration purposes; these data will be
identified as possible duplicates.

2.2.3 Criteria 3

Profiles observed by the same ship, at the same time (difference
less than one hour, empirically), but at different locations (with a
distance threshold of >=30km, which is an empirical choice) are
classified as possible duplicates that require further expert
validation as a vessel cannot be in multiple places simultaneously.

2.2.4 Criteria 4

Some data originators are known to store and/or distribute data
after applying a numerical scaling (i.e., multiplying by a constant
factor) or an offset (e.g., adding a constant). These data are
measured near the same locations (<=500m, empirically chosen)
with the same instrument. Such modified data are identified as
possible duplicates here but will be further assessed with
expert check.

2.2.5 Criteria 5

Profiles are collected at nearly the same time (<=1 hour) and at
nearly the same location/station (within 1 km), but their records are
rounded off or truncated. This arises mainly because of the data
processing methods by different data originators. These profiles are
classified as possible duplicates.

2.2.6 Criteria 6

Measurements are identical, but some parts of the metadata are
different. In this case, the profiles are classified as having metadata
error requiring further expert review. These profiles are considered
as possible duplicates.

2.2.7 Criteria 7

Some measurements are missing, or the values have been
interpolated. Because of storage limitations or data processing
policies (e.g., practice applied back in time), some data may have
been resampled or interpolated before being submitted to data centers.
If 85% (an empirical choice) of the measurements are identical in two
profiles, these profiles are classified as possible duplicates.

2.2.8 Instrument specific processes
In addition, the position accuracy of the coordinate information
for modern Conductivity-Temperature-Depth (CTD), Autonomous
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Pinniped (APB), Profiling Float (PFL), and Glider (GLD) is much
higher than other instruments due to the use of GPS systems. In such
cases, if the longitude or latitude of the profiles differ by four decimal
places (empirical chosen), they cannot be classified as possible
duplicates (i.e., not passed to the expert check if none of the
previously listed criteria is fulfilled).

2.3 Duplicate checking workflow

The semi-automatic algorithm, schematized in Figure 1,
consists of two parts: (1) automatic duplicate checking (NOO
processes, NO1 crude screen and MO0 targeted screen) and (2)
manual (expert) duplicate checking. Criteria 1 to Criteria 7 are
applied in MOO.

2.3.1 Automatic checking

Based on the criteria proposed above, we developed an automatic
duplicate checking system that calculates a “Profile Summary Score
(PSS)” for each profile by integrating measurements and various
metadata such as country, time, location, instrument type, etc. These
metrics allow us to efficiently compare profiles. This study assumes that
the profiles with similar PSS have a large probability to be duplicats.

Program NOO in Figure 1 is used for pre-processing metadata
and secondary processing data (e.g., the sum of temperature, sum of
salinity, if available). Table 1 shows all the available metadata and
secondary processing data used to calculate the Profile Summary
Score. During this stage, numerical metadata such as time,

10.3389/fmars.2024.1403175

longitude, and latitude are retained, while string metadata
information (such as country and platform) is converted into
numerical values by using the ASCII code table (e.g., letter “A” is
65) and then summing these ASCII code values of each string to
derive final numerical values. For example, the sum of ASCII code
for string “NODC” is 292 (78 + 79 + 68 + 67).

Numerical values outside the range set in Table 1 are set to NaN
(i.e, ‘np.snan’ in Python). The missing string values are set to
empty values (i.e., “ in Python; empty). These two types of missing
values will be ignored during the calculation of the PSS.

Program NOI includes multiple screening processes to detect
possible duplicates. This program consists of three independent
strategies: 1) Arithmetic Mean; 2) Entropy Weight Method; 3)
Principal Component Analysis (PCA) method. The three
independent strategies are summed up to a final score because
they leverage different statistical techniques to synthesize the Profile
Summary Score from complex and varied metadata and
measurements. From this program, information on each profile
can be reduced to a single numerical value as a flag so that the
comparison between profiles is no longer a rigid comparison of one-
by-one correspondence between metadata. This approach enhances
the robustness of our duplicate detection by ensuring that multiple
facets of the profiles are considered and thereby catching multi-
types of duplicates as much as possible, with minimizing the
likelihood of overlooking duplicates that only one strategy might
miss. The order to perform these three independent strategies does
not change the result because they are summed up to give a
final score.

and metadata info

Preprocessing measurements

NOO:Preprocess

-

| I g=————t———— S R
r——————————lf —————————— Vo —————— — 1
Normalization PCA
Strategy 1 Strategy 2 k Strategy 3 l
PSS: Arithmetic PSS: Entropy ) ‘
mean ‘ Weight Method PSS: PCA NO1: Crude screen

Compute PSS dissimilarities between profiles,
identifying the pairs with minimal PSS discrepancy

(Potential duplicates )

Spatial-temporal
checks

Data récords
checks
T

MOO: Targeted screen

[
( Possible duplicates )

B oo o o o e o s o o, o S, . + _____

(Criteria 1- Criteria 7)

[ Manual (Expert) checking ]

T

v

Data/metadata Non-duplicates

error

Exact
duplicates

PSS: Profile Summary Score

FIGURE 1
Flow chart of the DC_OCEAN duplicate checking.
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TABLE 1 Metadata and secondary processing data extracted from the WOD profiles and used to calculate the Profile Summary Score in the duplicate
checking system (DC_OCEAN).

Data Type Long_name Dimension
Z float depth 1D 0 m~12000 m
Temperature float Sea water temperature 1D -2 °C ~40 °C
Salinity float Sea water salinity 1D 0 psu~50 psu
Oxygen float Sea water dissolved oxygen 1D -
Chlorophyll float Chlorophyll 1D -
lat float latitude - -90°~90°
lon float longitude - -180°~180°
time float time - -
country string country name - -
Temperature_Instrument string Temperature Instrument - -
need_z_fix string Instruction for fixing depths for XBT bias correction - -
recorder string Recorder - -
GMT_time float GMT_time - -
WMO_ID integer WMO identification code - -
dbase_orig string original database - -
project_name string Project name - -
Platform string Platform name - -
ocean_vehicle string Ocean vehicle name - -
accession_number integer NODC accession number - -
Institute string Institute name - -
WOD_cruise_identifier string WOD cruise identifier - -
dataset_id string dataset name - -
sum_temp float Sum of temperature - -
sum_salinity float Sum of salinity - -
sum_depth float Sum of depth - -
std_temp float Standard deviation of temperature - -
std_salinity float Standard deviation of salinity - -
std_depth float Standard deviation of depth - -
depth_number float Number of depth - -
maximum_depth float Maximum depth - -
cor_temp_depth float Correlation coefficient between temperature ~ -
and depth
cor_sal_depth float Correlation coefficient between salinity and depth - -
The details to calculate the Profile Summary Score are shown normalization process for all numerical metadata to better
as follows: homogenize the information and reduce the influence of
differences in dimensions and units in profiles and their
1. Strategy 1 (Arithmetic Mean): we calculate the simple metadata. For example, the accession number of the profile
average of metadata numerical values (converted in the is “9700235”, which is much larger than other metadata
Program NO00) for each profile for comparison purposes. values (e.g., latitude — 2.5°N). Without normalization, the
Here, before calculating the mean, the algorithm includes a accession number information will dominate the results.
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2. Strategy 2 (Entropy Weight Method): here we calculated the
weighted average by using the entropy weight method
(Zeleny, 1998) to determine the weight. This method
provides an objective perspective in calculating weights by
leveraging entropy values to gauge the discreteness level of
variables. A lower entropy value indicates heightened
discreteness in variable measurements, resulting in a
proportionately larger weight. The weight calculation
process is shown in Appendix 1. Similarly, a normalization
process for all numerical metadata is done before deploying
the Entropy Weight Method. The relevant part of Strategy 2
is the “math_util_functions.entropy_weight” function.

3. Strategy 3 (Principal Component Analysis; PCA): PCA
serves as a technique to decrease the dimensionality of
data while retaining those that contribute most to variance
(Jollifte, 2002). The PCA initially calculates the eigenvalues
and eigenvectors of the data matrix (Z described in
Appendix 1) containing the metadata information
(variables shown in Table 1) for all profiles. Then, we
rank the variables based on the eigenvalues. Variables
with larger eigenvalues are considered more significant
because they account for a greater amount of variance.
We then select the first variables that can explain 95% of the
total variance (95% is an empirical choice), which are
defined as “key variables”. These “key variables” are then
used in the entropy weight method to compute PSS.
Applying PCA to each profile helps to identify metadata
information that more effectively captures variations
between profiles. The relevant part of Strategy 3 is the
call the “math_util_functions.PCA_PSS_profiles” function.

With the Profile Summary Score value calculated by the above
three strategies separately, we then utilize the neighborhood
ordering method (Elmagarmid et al., 2007) to identify “possible
duplicate pairs” as follows: firstly, sorting the Profile Summary
Score of all profiles in ascending order, and then comparing each
score with the following scores in turn. This action enhances
screening efficiency. When the difference between the two scores is
less than 0.0001% (an empirical chosen value), we consider these
two corresponding profiles as “potential duplicates”. Compared
with the algorithm that analyzes profiles one by one, this method
changes the time complexity from O(n*) to O(n). The “potential
duplicate pairs” obtained by the three strategies separately are
then merged together, as a single “possible duplicate pairs”
list (Figure 1).

With the “potential duplicates” list, Programs MO0O are targeted
screening by performing manual one-by-one duplicates checks or
automatic checks on the list of “potential duplicates” created during
the crude screening (i.e., NO1). These checks can help us determine
whether the “potential duplicates” identified in the crude screening
are “exact duplicates” or fall into other categories of duplicates. This
code checks for duplicates, triplicates, quadruplicates, etc.
According to the seven criteria proposed in the Section 2.2, seven
corresponding checks have been implemented here (adapted from
Gronell and Wijffels (2008) and expertise within IQuOD).
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The checks can be categorized into two groups: “spatial-temporal
checks” and “data record checks”, as illustrated in Figure 2. During
spatial-temporal checks, we assess whether the identified data is
measured simultaneously but at different locations or if it is
measured simultaneously and is co-located. The data record
checks include correlation, truncation, layer-by-layer, exact
duplicates, and interpolation (missing data) checks. The
correlation check determines whether the correlation coefficients
of temperature (or salinity) and depth of the profiles are consistent.
If they are identical, it indicates that data is contaminated by
numerical scaling or translation.

The output of this step is the classified list of possible duplicates
and non-duplicates. This list is then used as input for the expert
manual check (see section 2.3.2).

2.3.2 Manual checks

Manual (expert) checks are aimed at assessing the possible
duplicates identified by the automatic algorithm. This step could
also be used to analyze the reasons for duplication. Special attention
is required for date, time, and location, as they are essential
information, which is very important to identify errors. If any of
these three variables is missing or wrong, the measurements of the
profiles are of no use. Here, based on some potential reasons for
duplication and metadata/data issues, the International Quality-
controlled Ocean Database (IQuOD) task team members
(Simoncelli et al., 2024) recommend additional criteria for all the
identified pairs output from the automatic checking. For instance,
for duplicate profiles in the Mediterranean Sea, the regional experts
among the IQuOD members will review the original database for
potential errors. If there is a high confidence that certain cruises or
vessels have submitted duplicate data, the member associated with
those cruises will check the original details about the vessel and its
instruments. This includes gaining insights into the operational
status of instruments during data collection by operators.

This manual checking process determines if they are true
duplicates or if there are errors in the data and/or metadata. The
criteria recommended by IQuOD include:

1. Repeated submissions to the data center, either submitted
at different times or through repeated submissions by
different organizations (i.e. data providers participating to
the same cruise or project), lead to data repetition
(Lawrimore et al., 2011; Simoncelli et al., 2022).

2. Some organizations in some countries may have submitted
data with incorrect country codes. For example, data from
Japanese fishery sectors may have been assigned non-
Japanese country codes.

3. Submitting raw data first and the post-processed data later.

4. Data adjustments for confidentiality purposes by the
military, such as modifications of latitude, longitude, year,
or time. The adjusted data is then re-submitted by different
organizations [personal communications from the Institute
of Oceanology, Chinese Academy of Sciences (IOCAS)].

5. Constraints related to the submission timeframe for the
Global Telecommunications System (GTS). Due to limited
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FIGURE 2

Flow chart of targeted screening. (A) Spatial-temporal checks. (B) Data records checks.
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transmission capability, some historical data might have
been heavily subsampled. For instance, real-time data from
SOOP (Ship of Opportunity) XBT released within 12 hours
of collection, albeit at the expense of substantial vertical
sub-sampling of the profiles (Manzella et al., 2003).

. Data delivered to the GTS (Global Transmission System)
resulted in missing data or even wrong metadata
information in these real-time profiles. From the 1990s,
GTS data was reduced in size by creating inflection-point
ASCII formats. More recently, full-resolution data has been

Frontiers in Marine Science

delivered to the GTS in BUFR (Binary Universal Form for
the Representation of meteorological data) format which
includes more metadata and data, however, mismatches in
GTS data and delayed-mode delivered data still occur.

Here, we noted that some parts of the above criteria also served

as a supplement or references to the physical reason for the manual

duplicate checking.

Beyond confirming the exactness of possible duplicates and

analyzing their causes, the results of the manual (expert) checks are
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also invaluable for further refining and optimizing the automatic 3 Resylts
algorithm. For instance, analysis of the duplicates in 1992-1993
XBT, as manually identified by experts, revealed a novel type of 3 1 \/glidation
duplicates arising from interpolation or missing data (see
Figure 3F). By incorporating the distinctive characteristics of World Ocean Database (WOD) (Boyer et al., 2018) is an
international effort to collect and archive in-situ oceanographic data

in a unified format. The WOD converts data, received at the National

these duplicates, the capability to detect similar instances of
duplicates is enhanced.
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Example of some duplicated pairs. (A) Simultaneously and co-located (B) Observations are rounded off or truncated (C) Wrong location (D) Exact
duplicates (E) Part of the profile data is missing/interpolated (F) Multiple submissions of different versions. Metadata information inserted into the
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minute, respectively.
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Centers for Environmental Information (NCEI) from different sources,
into the internal format and quality controlled for inclusion in the
database. In the process of integrating data from different sources,
platforms and instruments, there might be a large amount of duplicate
data. In the WOD, these duplicate data has not been fully resolved. To
validate the proposed duplicate checking system, we used some in-situ
temperature and salinity profiles from the WOD18 (downloaded in
February 2022) for the years 1975, 1995, and 2011. We choose these
three years of data to represent different periods of the global ocean
observing system. We also incorporated 1992-1993 XBT (eXpendable
BathyThermograph) from the Gulf of Mexico with duplicated data (the
total amount is 28 duplicated pairs), which has been under the rigorous
expert-validated manual check, to validate the proposed system’s
robustness. In these data, the duplicates are known because they
have already been screened by experts.

The results of duplicate checking showed that there were 95, 28,
494 and 831 duplicated groups for 1975, 1992-1993, 1995 and 2011,
respectively (Table 2). Here, a duplicated group refers to either a double
pair (i.e., two profiles), or triplicates, quadruplicates, etc. In the 1975
subset, exact duplicates (Figure 3D) accounted for approximately 2.8%
of all duplicated groups, while possible duplicates comprised 97.2%
(Table 3). Among the duplicated groups, a significant proportion fell
into categories such as simultaneously and co-located profiles with
identical measured values but different locations or dates. For example,
Figure 3A displays two profiles measured simultaneously at the same
place. In comparison, Figure 3C shows two profiles with identical
metadata except for a mismatch in the sign and rounding precision in
their recorded latitude/longitude metadata.

In the 1995 subset, the exact duplicates comprised 8.0%, while the
remaining 92.0% were possible duplicates (Table 2). In the possible
duplicated group, duplications due to rounding off or truncation
dominate (38.4%), while profiles with interpolation also account for a
large proportion (32.7%). Figure 3B shows an example of possible
duplicates resulting from rounding or truncating temperature
measurements. Additionally, Figure 3E represents possible
duplicates caused by missing data or interpolation.

In the 2011 subset, nearly all duplicates were classified as
possible duplicates (99.8%), with simultaneously and co-located
duplicates being the predominant types of duplicates. For the Gulf
of Mexico XBT data in 1992-1993, all duplicates are detected as
possible duplicates, which serves as an indication of the robustness
of the Profile Summary Score algorithm with the expert-validated

TABLE 2 Duplicate & metadata checking results of 1975, 1995, and 2011
data and 1992-1993 XBT data in the Gulf of Mexico obtained
from WOD18.

1992-1993

1975 (Gulf 1995

of Mexico)

Total number of

downloaded profiles 142537 -

142473 | 337651

Duplicated groups
(results of the 95 28 494 831

targeted screen)
0.067 - 0.347

Duplicate rate (%) 0.246
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TABLE 3 Proportion of exact duplicates and possible duplicates
per year.

1992-1993
1975 (Gulf 1995 2011
of Mexico)
Exact
Duplicated  duplicates 2.8 0.0 8.0 0.2
groups rate (%)
(results of
target Possible
screen) duplicates 97.2 100.0 92.0 99.8
rate (%)

data. In Figure 3F, we observe a possible duplicate resulting from
multiple submissions of different versions. In those cases, one of this
pair has more temperature records than the other one.

In summary, our algorithms identified 1,448 duplicated groups
in total within a dataset comprising over a total of 600,000 profiles
investigated in this study.

3.2 Benchmark dataset

A benchmark dataset is constructed by combining the results of
checks for the 1975, 1995, and 2011 WOD data and the data from
the Gulf of Mexico (Boyer et al., 2018). This dataset is available to
the community as a benchmark for new methods that are going to
resolve duplicates, such as training of machine learning models.
Two additional variables have been incorporated into the WOD
standard netCDF file format, while the metadata and observations
are all preserved as in WOD (see Table 4).

The benchmark dataset (Song et al., 2023) contains 1,448 groups
of duplicate data (each group comprising two or more profiles). 2,956
profiles were labeled, with 542 being labeled as 1 (constituting
18.336%), 1,222 as 2 (41.373%), and 1,192 as 0 (40.291%). The file
duplicate_list_pair.xlsx contains information about the Duplicate_flag
and Duplicate_pair_id related to the labeled profile data.

4 Conclusion and perspective

This study provides some criteria for defining the duplicates and
an open-access tool for identifying duplicate data. Currently, our code
can only detect duplicates for data with WOD format. If users possess
data in alternative formats, a format conversion is needed. We have
provided instructions in the user manual for data formats
requirements. The DC_OCEAN code base will become more
versatile and applicable to other input data formats in the future,
thanks to the continuous IQuOD community effort and the users
feedback and collaboration through the GitHub development
environment. In fact, although our program is currently targeted at
temperature and salinity data, with some modifications it can be
applied to other variables (e.g. dissolved oxygen, partial pressure of
carbon dioxide, etc.). Three years of data from WOD18 were chosen
to test and validate the newly developed algorithm with outcomes
published in the benchmark dataset, which will support future
activities. Possible reasons for duplication require further analysis
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TABLE 4 Details of the two additional variables in the benchmark dataset. Note the corresponding metadata and measurements are the same

as WOD18.

Variable 1: Duplicate_flag

Duplicate_flag=0

Duplicate_flag=1

Duplicate profiles, have been checked Duplicate profiles, have been
by experts. Need to be kept in the

dataset by the user.

checked by experts, but uncertain
which one to keep.

by the IQuOD experts. The proposed approach is to flag the
identified duplicate data without removing it from the database,
according with the latest data management best practices, which
allows the user to trace back the detecting process with full
transparency. Users can decide whether to remove these duplicates
based on their research requirements. We highlight that the new
duplicate checking system (DC_OCEAN, Tan et al, 2024) could
enhance the uniqueness of in-situ ocean profiles and facilitate further
marine and climate science data applications. The obtained
benchmark dataset can serve as a valuable reference for testing and
improving other duplicate checking systems.

The duplicate checking system can potentially be useful in
various scientific applications, such as reconstructing historical
ocean temperature gridded fields. An example is, in the Northwest
Pacific region, after removing duplicate data in 1995 from the
abovementioned benchmark dataset, the difference in the gridded
averaged temperature can be as large as 0.1°C for 0-100 m and 0.06°C
for 0-300 m. After applying a gap-filling method by Cheng et al.
(2017) to reconstruct gridded fields with full ocean coverage, the
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FIGURE 4

Variable 2: Duplicate_pair_id

Duplicate_flag=2 Purpose Pair ID

Duplicate profiles, have been checked Used to indicate the duplicate Order
by experts. Need removal from the groups (which netCDF files from 1
dataset by the user. are duplicated). to 10000.

impact of the duplicate check can spread to a large area because the
reconstruction used nearby observations. The maximum temperature
difference in 1995 can reach 0.06°C (upper 100 m) and 0.05°C (upper
300 m). The major difference is mainly distributed along the east
coast of Japan, extending the difference to the Kuroshio extension due
to the spatial interpolation (mapping), which is characterized by
abundant eddy activities (Figure 4). This test, although simple,
indicates that duplicates may have a potential non-negligible
impact on regional ocean temperature (and ocean heat content)
estimates. Therefore, our duplicate checking software can support the
improvement of the data analysis, which will be fully investigated in
the future.

The system can also support international activities such as
IODE-project WOD, where there should be no duplicate data by
design. However, there were duplicates in WOD (as shown in this
paper), therefore the Duplicate checking system for ocean profile
(named DC_OCEAN) can fill the gap between the complete and the
incomplete duplicate checking in the WOD. The investigations (as
done in this study) are also valuable for improving the data quality

(b)
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The estimated differences in gridded averaged temperature and reconstructed temperature after applying a gap-filling approach in Cheng et al.
(2017), before and after excluding duplicate data in 1995. (A, B) The gridded averaged temperature at 100 and 300 m, respectively. (C, D) The
reconstructed temperature field at 100 m and 300 m after gap-filling approach, respectively. The unit is °C.
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and data management practices, which is a task of another IODE-
endorsed Project: the International Quality-controlled Ocean
Database. Furthermore, for some uses, some closely co-located
data (e.g., up + down casts of the same CTD station) identified by
the DC_OCEAN might not be considered a duplicate for WOD, but
might still skew the statistics (e.g., for gridded averages). So, the
software can identify and flag these cases for specific users who
would like to flag these co-located data in time and space.

The system developed in this study is part of the IQuOD project
for identifying duplicates, correcting metadata errors, and
eventually improving ocean data quality (Cowley et al., 2023).
Because fully implementing the duplicate checking for all
historical data requires substantial time and effort, our open-
source duplicate checking software is used as a tool for further
activities. In addition, the system could also support various efforts
in merging or in integrating data from different data sources or data
infrastructures, for instance, WOD, the Blue Cloud 2026 European
Project (Schaap et al., 2022), the Chinese Academy of Sciences
Ocean Data Center (CODC) database, EN4, etc (Zhang et al., 2024;
Boyer et al.,, 2018; Good et al., 2013). For this purpose, for example,
the Blue Cloud project has set up a synergy to cooperate with
IQuOD by using several data quality improvement tools (including
the duplicate checking algorithm purposed in this study) to provide
access to multi-disciplinary datasets from observations, and finally
generate qualified data collections by merging data from
various databases.

5 Future challenges

During the investigation, we found that many profiles lack parts
of metadata (such as country, time, location, instrument type, and
platform), posing challenges for duplicate checking because an
exhaustive metadata description is a requirement to identify the
best data version. Therefore, to facilitate the follow-on examination
of metadata, we have assigned the value of 99999 to the
Duplicate_pair_id variable for these data and included them in
our benchmark dataset. Tackling metadata errors has always been a
central task of ocean data centers, including IQuOD.

Additionally, identifying the duplicates within different data
infrastructures is more complicated due to the adoption of different
metadata format standards and vocabularies. Currently, the
duplicate checking system can only support detecting duplicates
within a unified metadata format framework (Here, we are based on
WOD format). Therefore, the unification and standardization of
metadata are very important for duplicate checking, and the
DC_OCEAN will adapt to more kinds of metadata formats in the
future (e.g., GTSPP or WMO format). Unifying metadata format
has also always been a central task of ocean data centers
including IQuOD.

Currently, our code can identify eight types of duplicates (see
Section 2.2). However, there may be other potential/new types of
duplicates that we may have missed. Therefore, considering the
feedback from manual (expert) checks and including the
characteristics of newly discovered duplicates will be the future
direction of improvement for DC_OCEAN.
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Moreover, many of our threshold settings are practical and
based on a limited amount of data. Despite achieving satisfactory
results when applied DC_OCEAN to data from WOD at 1975,
1995, and 2011, further verification of its performance in larger
database is needed.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author/s. The duplicate checking algorithm
(DC_OCEAN; https://github.com/IQuOD/duplicated_checking_
IQuOD) is available as an open-source Python package under the
Apache-2.0 license (https://doi.org/10.5281/zenodo.12662531; Tan
et al., 2024; https://pypi.org/project/ DC-OCEAN/). A full.cdl file of
the algorithm is https://github.com/IQuOD/duplicated_checking
IQuOD/blob/main/ocean_data_netCDF_format.cdl. The DOI of
the benchmark dataset presented in this study is http://dx.doi.org/
10.12157/I0CAS.20230821.001.

Author contributions

XS: Writing - original draft, Writing - review & editing,
Methodology, Software, Visualization. ZT: Conceptualization,
Writing - original draft, Writing — review & editing, Data curation,
Methodology, Software. RL: Conceptualization, Writing — review &
editing, Data curation, Methodology. SS: Software, Writing — review
& editing. RC: Writing - review & editing, Software, Project
administration. SK: Writing - review & editing. TB: Writing -
review & editing. FR: Writing - review & editing, Data curation.
GC: Writing - review & editing, Software, Project administration.
VG: Writing - review & editing. LC: Conceptualization, Writing —
review & editing, Project administration, Methodology.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study is
supported by the National Natural Science Foundation of China (Grant
no. 42122046, 42076202), the Scientific Committee on Oceanic
Research (SCOR) Working Group 148, funded by national SCOR
committees and a grant to SCOR from the U.S. National Science
Foundation (Grant OCE-1546580). We thank the International
Oceanographic Data and Information Exchange (IODE) program of
the Intergovernmental Oceanographic Commission (IOC) for their
financial support.

Acknowledgments

We thank all the IQuOD members who manually checked for
possible duplicates. IQuOD is a Programme Activity of the

frontiersin.org



Song et al.

International Oceanographic Data and Information Exchange
(IODE) (https://www.iode.org) of IOC/UNESCO. We would
also thank Huifeng Yuan of Computer Network Information
Center, Chinese Academy of Sciences for his technical expertise
and innovative insights in refining and reviewing the code and
software. We also thank Huayi Zheng from the Institute of
Atmospheric Physics (IAP/CAS) for his efforts on the
independent review of the software. We would also like to thank
Edward King and Ann Thresher from CSIRO for their efforts/
contributions regarding the duplicate checking code for our
references. We would also like to express our gratitude to the
editor and reviewers of this manuscript for their valuable insights
and patience during the submission process.

References

Abraham, J., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A, et al.
(2013). A review of global ocean temperature observations: Implications for ocean heat
content estimates and climate change. Rev. Geophys. 51, 450-483. doi: 10.1002/
rog.20022

Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M., Alves, O., Shi, L., et al.
(2015). The ocean reanalyses intercomparison project (ORA-IP). J. Operational.
Oceanogr. 8, s80-s97. doi: 10.1080/1755876X.2015.1022329

Boyer, T. P, Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R.
A., et al. (2018). World ocean Database 2018. Eds. A. V. Mishonov and Technical,
(NOAA Atlas NESDIS), 87.

Boyer, T. P, and Levitus, S. (1994). Quality control and processing of historical
oceanographic temperature, salinity, and oxygen data (US Department of Commerce,
National Oceanic and Atmospheric Administration).

Cabanes, C., Angel-Benavides, I, Buck, J., Coatanoan, C., Dobler, D., Herbert, G.,
et al. (2021). DMQC cookbook for core Argo parameters (France: IFREMER Brest).

Carton, J. A., and Giese, B. S. (2008). A reanalysis of ocean climate using Simple
Ocean Data Assimilation (SODA). Monthly. Weather. Rev. 136, 2999-3017.
doi: 10.1175/2007MWR1978.1

Cheng, L., Pan, Y., Tan, Z., Zheng, H., Zhu, Y., Wei, W., et al. (2024). IAPv4 ocean
temperature and ocean heat content gridded dataset. Earth Syst. Sci. Data Discussions.
2024, 1-56. doi: 10.5194/essd-16-3517-2024

Cheng, L., Trenberth, K. E., Fasullo, J. T., Boyer, T., Abraham, ., and Zhu, J. (2017).
Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545.
doi: 10.1126/sciadv.1601545

Cowley, R., Macdonald, A., Good, S., Killick, R., Cheng, L., Tan, Z., et al. (2023).
IQuOD 7th Annual Workshop Report, 10-11 July 2023 Potsdam Institute for Climate
Impact Research, Potsdam, Germany 2023 International Quality-Controlled Ocean
Database (IQuOD) - 7th IQuOD Annual Workshop 8th IODE SG-IQuOD 4th SCOR
WG 148 10-11 July 2023 Potsdam Institute for Climate Impact Research, Potsdam,
Germany (AquaDocs: International Quality-Controlled Ocean Database (IQuOD).

Durack, P.J., and Wijffels, S. E. (2010). Fifty-year trends in global ocean salinities and
their relationship to broad-scale warming. J. Climate 23, 4342-4362. doi: 10.1175/
2010JCLI3377.1

Elmagarmid, A. K, Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate record detection:
A survey. IEEE Trans. Knowledge. Data Eng. 19, 1-16. doi: 10.1109/TKDE.2007.250581

Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A., et al.
(2021). A high resolution reanalysis for the mediterranean sea. Front. Earth Sci. 9, 9.
doi: 10.3389/feart.2021.702285

Garcia, H. E., Boyer, T. P., Locarnini, R. A., Baranova, O. K., and Zweng, M. M.
(2018). World Ocean Database 2018: User’s Manual. Eds. A. V. Mishonov and
Technical, (Silver Spring, MD: NOAA).

Goni, G., Sprintall, J., Bringas, F., Cheng, L., Cirano, M., Dong, S., et al. (2019). More
than 50 years of successful continuous temperature section measurements by the global
expendable bathythermograph network, its integrability, societal benefits, and future.
Front. Mar. Sci. 6, 452. doi: 10.3389/fmars.2019.00452

Good, S. A., Martin, M. J., and Rayner, N. A. (2013). EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with uncertainty
estimates. J. Geophys. Res.: Oceans. 118, 6704-6716. doi: 10.1002/2013JC009067

Good, S., Mills, B., Boyer, T., Bringas, F., Casteldo, G., Cowley, R,, et al. (2023).
Benchmarking of automatic quality control checks for ocean temperature profiles and
recommendations for optimal sets. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.1075510

Frontiers in Marine Science

12

10.3389/fmars.2024.1403175

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Gronell, A., and Wijffels, S. E. (2008). A semiautomated approach for quality
controlling large historical ocean temperature archives. J. Atmospheric. Oceanic.
Technol. 25, 990-1003. doi: 10.1175/JTECHO539.1

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge University Press).

Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K. (2017). Accuracy
of global upper ocean heat content estimation expected from present observational data
sets. Sola 13, 163-167. doi: 10.2151/s0la.2017-030

Ji, F., Dong, M, Liu, Y., Xu, S., Wan, F., Shi, X, et al. (2022). “A study on the method
of eliminating duplication of ocean temperature and salinity data,” in AIIPCC 2022;
The third international conference on artificial intelligence, information processing and
cloud computing. IEEE. 1-7.

Jollifte, I. T. (2002). Principal component analysis for special types of data (New York:
Springer), 338-372.

Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose,
R. S, etal. (2011). An overview of the Global Historical Climatology Network monthly
mean temperature data set, version 3. J. Geophys. Res. 116. doi: 10.1029/2011]JD016187

Levitus, S. (1982). Climatological atlas of the world ocean (US Department of
Commerce, National Oceanic and Atmospheric Administration).

Locarnini, R. A., Mishonov, A. V., Baranova, O. K, Boyer, T. P., Zweng, M. M.,
Garcia, H. E,, et al. (2019). World Ocean Atlas 2018, Volume 1: Temperature. Eds. A.
Mishonov and Technical, (NOAA Atlas NESDIS 81), 52pp.

Mackenzie, B., Celliers, L., Assad, L. P. D. F., Heymans, J. J., Rome, N., Thomas, J.,
et al. (2019). The role of stakeholders in creating societal value from coastal and ocean
observations. Front. Mar. Sci. 6, 137. doi: 10.3389/fmars.2019.00137

Manzella, G. M. R, Scoccimarro, E,, Pinardi, N., and Tonani, M. (2003). Improved near
real-time data management procedures for the Mediterranean ocean Forecasting System-
Voluntary Observing Ship program. Ann. Geophys. 21, 49-62. doi: 10.5194/angeo-21-49-2003

Schaap, D., Assante, M., Pagano, P., and Candela, L. (2022). Blue-Cloud: Exploring
and demonstrating the potential of Open Science for ocean sustainability 2022 IEEE
International Workshop on Metrology for the Sea; Learning to Measure Sea Health
Parameters (MetroSea) (IEEE), 198-202.

Schmidtko, S., Stramma, L., and Visbeck, M. (2017). Decline in global oceanic oxygen
content during the past five decades. Nature 542, 335-339. doi: 10.1038/nature21399

Simoncelli, S., Coatanoan, C., Myroshnychenko, V., Bick, O., Sagen, H., Scory, S.,
et al. (2021). “SeaDataCloud data products for the european marginal seas and the
global ocean,” in 9th EuroGOOS International conference (Brest, France).

Simoncelli, S., Cowley, R, Tan, Z., Killick, R., Casteldo, G., Cheng, L., et al. (2024).
The International Quality-controlled Ocean Database (IQuOD) Vol. 80 (Miscellanea
INGV), 139-140. doi: 10.13127/MISC/80/50

Simoncelli, S., Manzella, G. M. R,, Storto, A., Pisano, A., Lipizer, M., Barth, A., et al.
(2022). “A collaborative framework among data producers, managers, and users,” in
Ocean Science Data. Eds. G. Manzella and A. Novellino (Elsevier), 197-280.

Song, X., Tan, Z., Locarnini, R., Simoncelli, S., Cowley, R., Kizu, S., et al. (2023). A
benchmark dataset for ocean profiles duplicate checking. Marine Science Data Center of
the Chinese Academy of Sciences. doi: 10.12157/I0OCAS.20230821.001

Szekely, T., Gourrion, J., Pouliquen, S., and Reverdin, G. (2024). CORA, Coriolis
Ocean Dataset for Reanalysis (SEANOE).

Tan, Z., Cheng, L., Gouretski, V., Zhang, B., Wang, Y., Li, F,, et al. (2023). A new
automatic quality control system for ocean profile observations and impact on ocean

frontiersin.org



Song et al. 10.3389/fmars.2024.1403175

warming estimate. Deep. Sea. Res. Part I: Oceanogr. Res. Papers. 194, 103961. Zeleny, M. (1998). Multiple criteria decision making: Eight concepts of optimality.
doi: 10.1016/j.dsr.2022.103961 Hum. Syst. Manage. 17, 97-107. doi: 10.3233/HSM-1998-17203

Tan, Z., Song, X., Yuan, H., Cowley, R., Cheng, L., and Castelao, G. (2024). IQuOD/ Zhang, B., Cheng, L., Tan, Z., Gouretski, V., Li, F., Pan, Y., et al. (2024). CODC-v1: a
duplicated_checking_IQuOD: DC_OCEAN: v1.3.3 (v1.3.3). (Zenodo). doi: 10.5281/ quality-controlled and bias-corrected ocean temperature profile database from 1940-
zenodo.13819929 2023. Sci. Data 11, 666. doi: 10.1038/s41597-024-03494-8

Frontiers in Marine Science 13 frontiersin.org



Song et al.

Appendix 1: The entropy
weight method

The entropy weight calculation process is introduced here. The
input metadata can be regarded as a data matrix Z,

211 212 " Zim

21 222t Zom

LZn1 212 " Znm |
where m is the number of variables (they are used to calculate

the Profile Summary Score for a profile) and # is the total amount of
input profiles.

The entropy value of each variable is defined as ¢;,

1

ej:—mzpijxlnpij,(j:l, ...... ,m)
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where p; = 5"—,(i=1,..... Mj=1 ... ,m).
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And the weiéht of the jiy, variable weight;(j =1, ......,m) is:

where dj =1-e,.

Frontiers in Marine Science

14

10.3389/fmars.2024.1403175

frontiersin.org



