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The phase-space approach (PSA), which was originally introduced in Lacroix et al. [Phys. Rev. D 106,
123006 (2022)] to describe neutrino flavor oscillations for interacting neutrinos emitted from stellar objects
is extended to describe arbitrary numbers of neutrino beams. The PSA is based on mapping the quantum
fluctuations into a statistical treatment by sampling initial conditions followed by independent mean-field
evolution. A new method is proposed to perform this sampling that allows treating an arbitrary number of
neutrinos in each neutrino beams. We validate the technique successfully and confirm its predictive power
on several examples where a reference exact calculation is possible. We show that it can describe many-
body effects, such as entanglement and dissipation induced by the interaction between neutrinos. Due to the
complexity of the problem, exact solutions can only be calculated for rather limited cases, with a limited
number of beams and/or neutrinos in each beam. The PSA approach considerably reduces the numerical
cost and provides an efficient technique to accurately simulate arbitrary numbers of beams. Examples of
PSA results are given here, including up to 200 beams with time-independent or time-dependent
Hamiltonians. We anticipate that this approach will be useful to bridge exact microscopic techniques with
more traditional transport theories used in neutrino oscillations. It will also provide important reference
calculations for future quantum computer applications where other techniques are not applicable to
classical computers.
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I. INTRODUCTION AND NOTATIONS

Neutrinos emitted during astrophysical processes such
as the core-collapse supernovae or the neutron star mergers
offer an important source of information on physical
phenomena occurring inside dense stellar objects [1–3].
Once emitted, high neutrino flux might interact with ma-
tter through the Mikheïev-Smirnov-Wolfenstein (MSW)
effect [4,5]. Neutrinos themselves can interact with each
other [6–8]. The problems of neutrinos escaping from
stellar emitters correspond to many particles interacting at
the early stage with the surrounding matter. These effects
tend to influence the highly coherent flavor oscillation
process by inducing entanglement between particles. Due

to the large number of particles involved, neutrino propa-
gation is usually treated through hydrodynamical or semi-
classical transport theories [1,3].
Alternatively, by grouping neutrinos in beams and by

making simplifying assumptions on their interaction [9], one
can also attack the problem from a many-body perspective
and try to solve the Hamiltonian dynamics exactly by full
configuration interaction techniques. This is usually done by
neglecting the MSW effects and focusing on neutrino-
neutrino interactions [9–21]. These brute-force approaches
are useful to study quantum effects like entanglement
between neutrinos [22–25]. This strategy brings new infor-
mation compared to other transport theories but becomes
extremely challenging for classical computers when the
number of beams or neutrinos per beam increases.
In recent years, an effort has been made to apply the full

configuration interaction approach to quantum computers
[26–31], and the neutrino flavors oscillations problem has
emerged as possible early pilot applications for quantum
technologies. In the present work, we briefly discuss the
quantum algorithm used to perform neutrino propagation.
However, the main scope of the article is different.
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Our objective is to extend the phase-space method, origi-
nally proposed in Ref. [16] for two neutrino beams to treat
the problem of many beams, with varying numbers of
neutrinos per beam ranging from very few to any large
number of particles. The approach is validated using
available existing exact calculations, indicating very good
predictive power while allowing the description of a very
large number of neutrinos. After presenting the phase-space
approach (PSA) and various new aspects introduced in this
work, we show several examples of applications changing
the number of beams and/or the number of neutrinos
per beam.

II. HAMILTONIAN SIMULATION
OF NEUTRINO OSCILLATIONS

We consider an ensemble of neutrinos and assume that
each neutrino can oscillate between different flavors.
Specifically, we are interested in neutrinos emitted by
stellar objects like neutron stars and, following a previous
work [9], we assume that particles can be grouped into
subsets having similar properties, i.e., similar initial states,
momentum, and energy. Each group of neutrinos forms a
“neutrino beam” where, within a beam, neutrinos are
permutation invariant. This simplified approximation is
particularly suitable to benchmark the phase-space
approach that we discuss here. Indeed, as will be illustrated
below, it was widely used previously to focus on the effect
of neutrino-neutrino interaction, like entanglement. In
addition, exact solution can be numerically performed
for not too large beam/neutrino numbers, which will be
crucial here to benchmark our approach. Although some
critical discussion on this Hamiltonian and on the beam
approach have been recently made [32–34], and more
general Hamiltonian have been recently proposed [35],
testing the PSA approach to the “neutrino beam”
Hamiltonian is an important milestone for this approach.
It is also a crucial test for pushing the limit of classical
computer compared to quantum computer capabilities
where this Hamiltonian can be can regarded as a pilot
application. Noteworthy, and although it is beyond the
scope of the article, the PSA approach can a priori
accommodate with more general or alternative many-body
formulations.
In the neutrino beam approximation, the total system is

formed by α ¼ 1;…; nB beams, and each beam α contains
a number Nα of neutrinos. In the present work, we assume
the so-called two-flavor approximation. We denote by
fj0; i; αi; j1; i; αig that the two eigenstates of the mass
(mass basis) associated with the neutrino i in the beam α.
The notation fjf0;i;αi; jf1;i;αig is introduced for the two
states in the flavor basis. These states are associated,
respectively, with the two sets of creation operators
fa†0;iðαÞ; a†1;iðαÞg [mass basis] and ff†0;iðαÞ; f†1;iðαÞg [flavor
basis]. Within a beam, the Bogolyubov transformation from

one basis to another is described by two angles ðθfα;ϕf
αÞ and

reads

8<
:
f†0;iðαÞ¼ cos

�
θfα
2

�
a†0;iðαÞþ sin

�
θfα
2

�
eiϕ

f
αa†1;iðαÞ

f†1;iðαÞ¼−sin
�
θfα
2

�
e−iϕf;αa†0;iðαÞþcos

�
ϕf
α
2

�
a†1;iðαÞ

: ð1Þ

Note that, here, we use a general case with two angles
defining the transformation between the mass and flavor
basis, but in examples below, we often assume ϕf

α ¼ 0 and
only one angle is used.
Within the two-flavor approximations, the neutrino

oscillation problem can be mapped onto a set of interacting
two-level systems that can be identified as particles with
spins 1=2 or qubits. Then, the Hamiltonian can be written
as a function of the associated Pauli matrices acting on the
two levels. A compact form of the Hamiltonian is given by

H ¼
XnB
α¼1

ωα
 b ·  Jα þ

XnB
α≠β

GαβðtÞ  Jα ·  Jβ; ð2Þ

where  Jα denotes the total spin vector of the beam α,
defined as

 Jα ¼ ðJxα; Jyα; JzαÞ≡ 1

2

XNα

i¼1

 σi;α:

Here  σi;α ¼ ðσi;αx ; σi;αy ; σi;αz Þ denote the three Pauli matrices
associated to the neutrino i in the beam α. Below, we will
solve the problem on the mass basis, where these Pauli
matrices are linked to the single-particle mass states
according to8>><

>>:
σi;αx ¼ j1; i; αih0; i; αj þ j0; i; αih1; i; αj
σi;αy ¼ ij1; i; αih0; i; αj − ij0; i; αih1; i; αj
σi;αz ¼ j0; i; αih0; i; αj − j1; i; αih1; i; αj

: ð3Þ

The one-body term in the Hamiltonian (2) depends on the
vacuum oscillation frequency ωα ¼ Δm2

01=ð2EαÞ, which is
expressed in terms of the difference in squared masses of
neutrinos Δm2

01 and of the beam energy Eα.  b in the mass
basis identifies with ð0; 0;−1Þ.
The second term in (2) describes the two-body inter-

action between neutrinos after emission from a compact
stellar object. The two-body strength interaction is given by

GαβðtÞ ¼
μ

N
½1 − cosðθαβðtÞÞ�; ð4Þ

where the coupling constant μ ¼ ffiffiffi
2

p
GFρν is proportional

to Fermi’s constant GF, and to the neutrino number density
ρν. N ¼ P

α Nα is the total number of neutrinos. θαβðtÞ is
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the relative angle between two neutrino beams ðα; βÞ that
tends to zero as neutrinos escape from their emitter, also
leading to GαβðtÞ ⟶ 0 at large distance. Notably, the
MSW effect that describes the interaction between neu-
trinos and matter before emission is neglected here [4,5]. In
the first part of this work, we will assume that the set of
angles fθαβg does not depend on time, corresponding to a
time-independent Hamiltonian. This hypothesis will be
relaxed in Sec. III B 1.
One of the great advantages of treating the neutrino

problem as a set of coupled spins is that the permutation
invariance within each beam is automatically accounted for
using the standard fjJ;MiαgM¼−J;…;þJ basis associated to
the total spin j  Jj2 and Jz component of the beam α (with
J ¼ Nα=2). This significantly reduces the numerical effort
to perform a full configuration interaction (FCI) exact
treatment of interacting neutrinos. In recent years, several
FCI applications have been made, giving insight into the
effect of beam interaction on entanglement and thermal-
ization [13–21]. This brute-force numerical solution, which
takes advantage of the problem’s symmetry, still becomes
rapidly prohibitive as the number of beams increases and/or
as the number of neutrinos in each beam also increases.
Applications of FCI have been made assuming several
beams but with only one neutrino per beam (see, for
instance, [19–21]). When more neutrinos are considered
within a beam, as far as we know, only the case of two and,
more recently, three beams [18] have been studied. When
the number of neutrinos per beam and/or the number of
beams increases, quantum computers can be the only
alternative to perform exact simulations. Some illustration
of neutrino evolution obtained on the IBM emulator of
quantum computers will be shown in the present work.
Approximate methods have also been explored, offering
better numerical scaling with the number of particles such
as Bethe ansatz [9–11] or tensor network [17,25]. These
techniques remain rather involved when increasing the
number of beams/neutrinos. In Ref. [16], an alternative
approach, called the PSA, has been proposed, which keeps
the simplicity of mean-field theory, successfully reproduces
the FCI calculation effect of correlations and entanglement
for the case of two interacting beams. One of the objective
of this work is to further assess its predictive power in more
general situations.

A. Phase-space approach to neutrino oscillations

The PSA technique was originally proposed in the
nuclear physics model to circumvent the failure of
mean-field to describe quantum fluctuations beyond mean
field [36,37] (see also the review [38]). Several successful
applications have been made so far in different fields of
physics [37,39–43]. There are two important ingredients in
this approach: (i) The quantum fluctuations of the initial
system can be mapped into a statistical initial sampling
problem leading to a set of initial conditions that, on

average, reproduces the exact quantum problem, and
(ii) each set of the initial sampling can be evolved
independently from the others using simple equations of
motion (EoM) that are supposed to identify with the time
mean-field EoM. This technique is efficient, provided the
interferences between different mean-field trajectories are
not too strong [44] (see Ref. [45] for extension of PSA
allowing to correct for the missing interferences). A
recurrent observation is that, even when these interferences
play a non-negligible role, the approach still provides the
correct early stage entropy growth and average asymptotic
behavior, and might be useful for understanding thermal-
ization or decoherence processes. Here, we first recall the
mean-field EoM that will be used to perform the evolution
after sampling and then focus on the sampling itself.

1. Mean-field equations of motion

The exact evolution of the different spins f  Jαgα¼1;nB
expectations values are given by

iℏ
dh  Jαi
dt

¼ h½  Jα; H�i; ð5Þ

which gives

d
dt
h  Jαi ¼ ωα

 b ∧ h  Jαi þ
X
β≠α

GαβðtÞh  Jβ ∧  Jαi: ð6Þ

These equations show that the second moments of the spins
appear on the left-hand side. The exact solution to the
problem requires completing the evolutions of the average
spin by the evolutions of their second-order moments.
These moments are themselves coupled to the third
moment, and so on and so forth. Solving such coupled
equations becomes rapidly prohibitively expensive, and
some truncation schemes are generally necessary. The
mean-field theory is the simplest approximation and can
be obtained by neglecting quantum fluctuations altogether,
i.e., by assuming hJx;y;zα Jx;y;zβ i ≃ hJx;y;zα ihJx;y;zβ i.
Defining the polarization vector components for each

beam as  Pα ¼ 2h  Jαi=Nα ¼ ðPα
x; Pα

y; Pα
z Þ, the mean-field

EoM can be written as

d
dt

 Pα ¼ ωα
 b ∧  Pα þ

1

2

XnB
β≠α

NβGαβðtÞ  Pβ ∧  Pα: ð7Þ

The mean-field approximation is simple to solve numeri-
cally compared to the original problem since, for each
beam, it only requires following the corresponding three
polarization vector components, independently from the
number of neutrinos in the beam. However, neglecting
quantum fluctuations beyond the mean field is a drastic
approximation that prevents the proper description of
true many-body effects or entanglement between particles.
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Such entanglement happens in the physics of neutrino
oscillations when neutrinos interact with each other (see
illustrations in [13,16] for the case of two beams).

2. Mapping initial quantum fluctuations
to statistical fluctuations

A method that turns out to be rather efficient in treating
quantum fluctuations while keeping the simplicity of mean-
field EoM is to replace the above deterministic method with
a stochastic method leading to a set of mean-field trajecto-
ries to be considered [38], where the randomness stems
from the sampling of the initial conditions. A key feature of
the PSA is that quantum mean expectation values and their
quantum variances identify with the mean and variance
obtained by performing the classical average over the initial
conditions. Explicitly, we consider a set of observables
fÂmg and an initial state described by a densityDð0Þ. These
observables are usually one-body observables when many-
body problems are considered, as is the case here. The
quantum mean and variance of these operators at initial
time are given by

hÂmi ¼ TrðÂmDð0ÞÞ;
σ2Am

¼ TrðÂ2
mDð0ÞÞ − TrðÂmDð0ÞÞ2:

When replacing the problem by a statistical ensemble,
for each operator, a set of complex numbers denoted

by fAðλÞ
m gλ¼1;…;Nevt

is randomly generated. Here, λ ¼
1;…; Nevt labels the events, and the total number of events
isNevt. A statistical average over the sampling then replaces
the quantum expectation values of observables:

AðλÞ
m ¼ 1

Nevt

XNevt

λ¼1

AðλÞ
m ; Σ2

Am
¼ AðλÞ

m AðλÞ
m − AðλÞ

m
2
: ð8Þ

As pointed out in [40], the sampling strategy is not unique,
but it is constrained to reproduce the first and second
moments of the selected observables, i.e.,

AðλÞ
m ¼ hÂmi; Σ2

Am
¼ σ2Am

: ð9Þ

For the neutrino problem, the natural choice for the
observables is the different total spin components for the
different beams, leading to a set of initial conditions  JðλÞα , or
equivalently a set of initial values for the polarization vector

components fðPαðλÞ
x ð0Þ; PαðλÞ

y ð0Þ; PαðλÞ
z ð0ÞÞgα¼1;…;nB

. Each
initial sample is then evolved according to its own mean-
field evolution given by Eq. (7). Then, any mean values or
fluctuations are calculated through a classical average of
observables along the different sampled trajectories. There
are several great advantages of the PSA technique:

(1) First, the stochastic process only arises from the
initial conditions, considerably limiting the number
of events sampled to achieve statistical accuracy for
observable calculations. This is at variance with
most other quantum stochastic methods, such as
quantum Monte Carlo or quantum state diffusion
[46–48].

(2) Ultimately, only mean-field evolution is needed and
this scales linearly with the number of observable
retained. This has to be compared with the expo-
nential increase of the number of degrees of freedom
to follow when treating exactly a many-body prob-
lem. In the neutrino case with two flavors, each event
requires to solve 3nB nonlinear coupled equation,
independently of the number of neutrinos per beam.
Noteworthy, going to the three-flavor case would
lead to 8nB coupled equations.

(3) Finally, since the trajectories are independent of each
other, calculations can be straightforwardly paral-
lelized by sending different trajectories on different
CPUs.

Despite its apparent simplicity, the PSA approach is
generally able not only to describe quite accurately the
propagation of fluctuations where mean-field alone fails but
also to incorporate the effect of fluctuations on the one-
body evolution. It was shown in Ref. [16], for instance, to
be able to describe the one- and two-neutrino entanglement
entropies. As shown in Refs. [42,45], this success stems
from the fact that the PSA approach is equivalent to solving
a nontruncated Bogolyubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy [49–52], where the difference with the
exact BBGKY only arises at the level of two-body
observables due to the neglect of the Pauli exclusion
principle in some terms. Additionally, it is interesting to
mention that, in the context of open quantum systems, the
fluctuations and dissipation terms appearing in quantum
Brownian motion are obtained from the absence of knowl-
edge of the initial condition for the environment that is
treated by a sampling of the environment’s initial con-
ditions that propagate in time (see for instance the dis-
cussion in chapter 3 of Ref. [53]). A similar idea is
proposed in PSAwith the great difference that we consider
a closed finite many-body system here.
In this section, we highlighted the philosophy and

strategy behind the PSA method. Below, we focus on
the practical aspects of sampling, and several applications
are given, proving its predictive power in the context of
neutrino physics. Two major improvements are made
compared to our previous applications: (i) We explored
several methods to perform the initial sampling, in par-
ticular, to be able to apply the PSA method from the
extreme case of one particle per beam to many; (ii) we
extend the method to be able to treat an arbitrary number of
beams nB. In Ref. [16], only the case nB ¼ 2 with at
maximum 50 neutrinos per beam was considered.
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3. Different methods for sampling initial conditions

Most applications using a simplified Hamiltonian given
by Eq. (2) assume that different beams are initially
uncorrelated and that each beam’s initial states identify
with a coherent state. We focus here on this case. The initial
state is then given by

jΨð0Þi ¼ ⊗
nB

α¼1
jΩαi; ð10Þ

where Ωα ¼ ðθα;ϕαÞ, with θα ∈ ½0; π� and ϕα ∈ ½0; 2π�,
defines an orientation in the Bloch sphere. Starting from
the mass basis, a SU(2) coherent state jΩαi corresponds to a
Slater determinant written as

jΩαi ¼
YNα

i¼1

c†i;αj−i: ð11Þ

Here j−i stands for the Fock space vacuum. Note that in the
PSA approach, a more general initial state can be consid-
ered like systems at finite temperature or initially correlated
systems (see, for instance, Refs. [36,38,40]). We, however,
restrict to this specific case here because this was the
assumption made in most of the recent studies aiming at
solving exactly the neutrino beam problems.
The creation operators in Eq. (11) obey similar trans-

formations as the one given in Eq. (1) and creates a set of

single-particle states denoted by jφi;αi. Eventually, these
states identify with one of the flavor states if ðθα;ϕαÞ ¼
ðθfα;ϕf

αÞ [0 flavor state] or ðθα;ϕαÞ ¼ ðπ − θfα;ϕ
f
αÞ [1 flavor

state] according to the convention of Eq. (2).
Because the initial state is a tensor product of different

beam states, sampling different polarization components
can be made independently for each beam. Three different
methods have been employed in the present work, the last
one being new. These methods are called hereafter
Gaussian, Husimi, and bivalued samplings and are detailed
below.
Gaussian sampling. The Gaussian sampling technique

was the original sampling method implemented in PSA. It
calculates the quantum mean and variance of the observ-
ables of interest. Then, the sampling of the initial values of
the observables is made assuming a multidimensional
Gaussian probability distribution where the mean values
and variances both identify with the quantum ones, as
imposed by Eq. (9). For a given coherent state jΩαi, it is
first convenient to introduce SU(2) generators  J α ¼
ð  J α

x;  J
α
y;  J

α
z Þ in the rotated frame attached to the state.

Note that here we refer to the original frame, the one
associated to the creation operators fa†0;iðαÞ; a†1;iðαÞg, i.e.,
the mass frame. The two sets of operators, i.e., the one in
the original and rotate frames are linked through the
following:

8>><
>>:

J α
x ¼ þ½c2α − s2α cosð2ϕαÞ�Jαx − s2α sinð2ϕαÞJαy − sinðθαÞ cosðϕαÞJαz

J α
y ¼ −s2α sinð2ϕαÞJαx þ ½c2α þ s2α cosð2ϕαÞ�Jαy − sinðθαÞ sinðϕαÞJαz

J α
z ¼ sinðθαÞ cosðϕαÞJαx þ sinðθαÞ sinðϕαÞJαy þ cosðθαÞJαz

; ð12Þ

with the compact notations cα ¼ cosðθα=2Þ and sα ¼ sinðθα=2Þ. We also have the inverse transformation:8>><
>>:

Jαx ¼ þ½c2α − s2α cosð2ϕαÞ�J α
x − s2α sinð2ϕαÞJ α

y þ sinðθαÞ cosðϕαÞJ α
z

Jαy ¼ −s2α sinð2ϕαÞJ α
x þ ½c2α þ s2α cosð2ϕαÞ�J α

y þ sinðθαÞ sinðϕαÞJ α
z

Jαz ¼ − sinðθαÞ cosðϕαÞJ α
x − sinðθαÞ sinðϕαÞJ α

y þ cosðθαÞJ α
z

: ð13Þ

The state jΩαi corresponds to the eigenstate jJ α;−J αi
in the rotated frame. In this frame, it has simple mean and
fluctuations properties:

( hJ α
xi ¼ hJ α

yi ¼ 0; hJ α
z i ¼ −J α ¼ − Nα

2

σ2J α
x
¼ σ2J α

y
¼ N2

α
4
; σ2J α

z
¼ 0:

ð14Þ

The sampling is then performed following the scheme:

(1) A set of initial values ðJ αðλÞ
x ;J αðλÞ

y ;J αðλÞ
z Þ is gen-

erated assuming that the two first components follow
a Gaussian probability with mean zero and variance

equal to N2
α=4, while J αðλÞ

z is a nonfluctuating
quantity equal to −Nα=2.

(2) These components are then transformed back to the
original frame using Eq. (13), leading to a set of
events ðJαðλÞx ; JαðλÞy ; JαðλÞz Þ.

(3) The initial values for the polarization vector are then
obtained simply using  PðλÞ

α ¼ 2  JðλÞα =Nα.
(4) Each initial polarization vector is then evolved

according to the mean-field equation (7).
Husimi sampling. This sampling was originally pro-

posed in Ref. [40] and is based on the Husimi probability
distribution (also called Q probability). In particular, this
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approach does not require going back and forth from the
mass to the rotated frame. The Husimi distribution asso-
ciated with a coherent state is given by

Qαðθ;ϕÞ ¼
�
1þ cosθ cosθα þ sinθ sinθα cosðϕ−ϕαÞ

2

�
Nα

:

In practice, a set of values of ðθðλÞ;ϕðλÞÞ values can be
obtained using a Metropolis sampling with this probability
distribution. One subtle aspect of this approach is that the
expectation value of an observable O acting on the beam α
is obtained through the following average:

hOi ¼ Nα þ 1

4π

Z
Ω
WOðΩÞQαðΩÞdΩ; ð15Þ

whereWOðΩÞ is the expectation value of the Weyl operator
associated with the observable and denoted by ŴO,
i.e., WOðΩÞ ¼ hΩjŴOjΩi. For spin systems, we have
specifically [54]

WJαx;y;z ¼
Nα þ 2

Nα
Jαx;y;z: ð16Þ

In particular, using the Metropolis sampling technique and
expression (16), the sampling of angles leads to three random
variables:

WðλÞ
Jαx

¼ Nα þ 2

2
sinðθðλÞÞ cosðϕðλÞÞ;

WðλÞ
Jαy

¼ Nα þ 2

2
sinðθðλÞÞ sinðϕðλÞÞ;

WðλÞ
Jαz

¼ Nα þ 2

2
cosðθðλÞÞ:

The classical average over events of these quantities properly
matches the expectation value of the  Jα components, but it
does not reproduce the fluctuations. To be able to take
advantage of theHusimi technique and still properly describe
the first and second moments of the spin components, we
follow the prescription ofRef. [40] and define the component
 JðλÞα according to

JαðλÞx;y;z ¼ WðλÞ
Jαx;y;z

þ
ffiffiffiffiffiffiffiffiffiffi
σ2Jx;y;z
Σ2
x;y;z

s
δWðλÞ

x;y;z; ð17Þ

where we use the following shorthand notations:

δWðλÞ
x;y;z ≡WðλÞ

Jαx;y;z
− hJαx;y;zi

and

Σ2
x;y;z ≡ δWðλÞ

x;y;zδW
ðλÞ
x;y;z:

This procedure consists in renormalizing the fluctuations to
match the quantum fluctuations while keeping the first

moment unchanged. Again, each initial set of ðJαðλÞx ;

JαðλÞy ; JαðλÞz Þ is then used to obtain initial values of the
polarization followed by mean-field EoM.
Measurement-inspired sampling or “bivalued sam-

pling.” Besides the approximation made by mapping a
quantum problem into a statistical problem, one potential
shortcoming of the two previous sampling techniques is
that the sampling only ensures that the two first moments of
the distribution are reproduced. The Husimi is expected to
be less constraining since it does not presuppose that the
probability distribution is Gaussian but is close to the
Husimi quasiprobability. In the present work, we are
eventually interested in the extreme limit of one particle
per beam for which the Gaussian limit dramatically breaks
down. Indeed, considering this limit, the spin components
 J α ¼ ð  J α

x;  J
α
y;  J

α
z Þ in the rotated frame becomes simply

proportional to the Pauli matrices ðXα; Yα; ZαÞ in this
frame. In particular, Pauli matrices verify

O2k
α ¼ Iα; O2kþ1

α ¼ Oα; ð18Þ

whereO ⊂ fX; Y; Zg, and Iα is the identity operator. These
properties invalidate the Gaussian approximation as can be
seen by computing different moments. For instance, the
fourth-centered moment of anyOα is not 3 times the square
of the second-centered moment as expected for a Gaussian.
A distribution properly describing the different moments
can be inspired by measurement theory and quantum state
tomography in quantum computing [55–58].

Let us consider that we transform the spin of a single
neutrino into a qubit using an SU(2) mapping as in
Refs. [26,30] with the convention that js; ssi ¼ fj 1

2
;− 1

2
i;

j 1
2
; 1
2
ig becomes fj0i; j1ig. For a single neutrino per beam,

the initial state in the rotated frame is j0i. Since the qubit
register is already in the Z basis by convention, one can
measure it repeatedly. In this simple case, one will always
get a 0. One can generate a single-valued probability
denoted by PZðrÞ ¼ δðrÞ by measurement. One can do
the same for the X and Y operators, with the difference that
one should go from the Z basis to the X or Y basis by
performing a unitary transformation before the measure-
ment. In both cases, provided that the state to measure is
j0i, one would get a random set of values in f0; 1g, with
probabilities to measure zero or one equal to 1=2.
Averaging over the measurements will properly match
all moments hXki or hYki if the measurement is made,
respectively, in the X or Y basis. Quantum measurement
theory leads to the simple conclusion that the generation of
a set of random numbers rðλÞ for the X and Y components
can be made from the bivalued probability

DENIS LACROIX et al. PHYS. REV. D 110, 103027 (2024)

103027-6



PX=YðrÞ ¼
1

2
ðδðrÞ þ δðr − 1ÞÞ: ð19Þ

Note that the possibility of using a bivalued distribution
has already been discussed in Ref. [43] using second-
quantization properties. Using measurement arguments
gives a simple prescription for sampling initial polarization
components for the case of a single neutrino per beam. In
the rotated frame, we can directly assume that

ðJ αðλÞ
x ;J αðλÞ

y ;J αðλÞ
z Þ≡ −

1

2
ðxðλÞα ; yðλÞα ; 1Þ;

where ðxðλÞα ; yðλÞα Þ are two random variables taking the
values ð1;−1Þ with probabilities 1=2 for each values.
This sampling can be extended to the case of Nα qubits
per beam simply by generating 2Nα random numbers

fðxðλÞi;α ; y
ðλÞ
i;αÞgi¼1;…;Nα

each having bivalued probabilities,
such that we have more generally

ðJ αðλÞ
x ;J αðλÞ

y ;J αðλÞ
z Þ≡ −

1

2

�XNα

i¼1

ðxðλÞα ; yðλÞα ; 1Þ
�
: ð20Þ

Again, one can transform the total spin in the mass frame
and perform the evolution with the mean-field EoM. Note

that, due to the central limit theorem, since both J αðλÞ
x and

J αðλÞ
y are sums of random variables, their probability

distribution will tend to a Gaussian distribution as Nα

increases.
As an illustrative example of the distribution obtained

with the different sampling methods, we show in Fig. 1 a
comparison of a set of events generated with the three
approaches for a single neutrino per beam case. As can be
seen from the figure, even though all probabilities have the
same mean values and fluctuations for the polarization
components, the initial sampling strongly depends on the
method used.

III. APPLICATIONS

The present work has several objectives: (i) First, we
would like to validate the PSA approach for cases with
nB > 2. (ii) Second, when exact solutions are doable, we
would like to compare them with PSA, and further prove
the predictive power of the approach, especially to repro-
duce many-body properties like entanglement. Provided
that these two objectives are reached, the PSA is promoted
to an extremely competitive tool to simulate the neutrino
beam evolution problem on a classical computer.
In recent years, several applications of the interacting

beam problem have been made on quantum computers,
assuming only one neutrino per beam [26,30]. These
applications are restricted to a rather low number of beams
(nB ≲ 20) [19,20] on quantum computer emulators due to
the numerical cost that rapidly exceeds the capability of
classical computers. In real quantum devices, with the extra
constraint of device noises, most recent simulations have
been made up to nB ≤ 8 over a rather short time [30]. For a
larger number of particles per beam, a few applications
have been made for nB ¼ 2 beams [13,14], and, as far as we
know, only one application for nB ¼ 3 was made in
Ref. [18]. Since the PSA approach has already been
validated for nB ¼ 2 in Ref. [16], we will concentrate on
larger nB and use Refs. [18,30] as benchmarks.

A. Interacting beam problem with
one particle per beam

For the case of one particle per beam, we use the
Hamiltonian proposed in Ref. [30]. This Hamiltonian
can be written in the form (2), where the coupling matrix
elements are given by

Gα;βðtÞ ¼
GðtÞ
nB

	
1 − cos

� jα − βj
ðnB − 1Þ arccosð0.9Þ

�

; ð21Þ

wherewe directly identify the beam label αwith the index on
the neutrinos i. Note that here nB identifies with the total
number of particles N if we consider one particle per beam.
Consistently with Ref. [30], the flavor to mass conversion
assumes ðθfα;ϕf

αÞ ¼ ð2 × 0.195; 0Þ,where the factors 2 stems

FIG. 1. Illustration of the ðPðλÞ
x ; PðλÞ

z Þ components in the mass
basis obtained for one beam with only one neutrino initialized in
the coherent state jθ ¼ π=8;ϕ ¼ π=3i using the Gaussian sam-
pling (blue squares), Husimi sampling (green circles), and
bivalued sampling (red triangles). For each sampling method,
1000 events are presented. The appearance of only four red
squares in Fig. 1 might appear mysterious at first sight. In this
sampling technique, all generated events falls down in one of
these four locations in the graph. This stems from the very
discretized nature of the bivalued sampling. With this sampling,
the proper mean values and widths of operators are obtained by
the statistical average of the 4 points that are initially sampled
with different weights.
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from the convention in the Bogolyubov transformation (1).
For instance,  b¼ðsinðθfαÞ;0;−cosðθfαÞÞwith our convention.

1. Time-independent Hamiltonian

The calculations of Ref. [30] uses a time-independent

Hamiltonian with ωα ¼ 2μ=nB and GðtÞ
nB

¼ 2 μ
nB

with the
additional convention that μ ¼ 1 which is equivalent to
write energies in μ units and time in μ−1 units.1

For the initial conditions, to compare with the work of
Ref. [30], we will consider an even number of beams/
neutrinos where the first half of the neutrinos are in one
flavor state (j0fαi for α ¼ 1;…; Nα=2, i.e., θα ¼ θfα), and
the other half is in the second flavor state (j1fαi for
α ¼ Nα=2;…; Nα, i.e., θα ¼ π − θfα).
We have performed systematic tests of the PSA method

with varying nB values. The mean-field EoM is solved
using a Runge-Kutta 2 algorithm with a numerical time step
Δt ¼ 0.05½μ−1�. For each PSA calculation, the evolution is
made by averaging over Nevt ¼ 104 trajectories, leading to
very small statistical deviation due to the finite number of
events. The associated error bars are too small to be
represented on figures. We also developed two codes
solving the exact solutions, one on a classical computer
and one on the Qiskit quantum computer emulator [59], the
two codes providing the same results as the one published
in [30]. These reference codes can emulate up to nB ¼ 20
beams with one neutrino per beam on a desktop computer.
Since in this first application, only one neutrino per beam

is considered, we omit the label “i” in the Pauli matrices
hσi;αx;y;zi and use the notations ðσi;αx ; σi;αy ; σi;αz Þ≡ ðXα; Yα; ZαÞ.
We also introduce in the flavor basis the equivalent matrices
ðXα;Yα;ZαÞ. One can single out the properties of one
specific neutrino/beam α by focusing on its one-body density
matrix ρα obtained by tracing the total density over other
neutrinos. The 2 × 2 density matrix has components in the
mass basis given by8>><

>>:
ρα00ðtÞ ¼ 1

2
ð1þ Pα

z ðtÞÞ
ρα11ðtÞ ¼ 1

2
ð1 − Pα

z ðtÞÞ
ρα01ðtÞ ¼ 1

2
ðPα

xðtÞ − iPα
yðtÞÞ

: ð22Þ

In the exact case, the polarization vector is obtained from the
expectation of the three Pauli matrices. In the PSA case, one
computes these quantities from the statistical average given

inEq. (8) over trajectories. For instance, we havePα
x ¼ PαðλÞ

x .
We show in Fig. 2 the evolution of the z component of

the operator in the flavor basis that was shown in Ref. [30]

for small nB values, and that is related to the occupation of
the two flavor states as illustrated by the first two equations
in (22). We systematically compare this figure with the PSA
approach using the three sampling methods introduced
previously. Despite the difference in initial polarization
component values displayed in Fig. 1, the three sampling
methods give rather close results. The PSA method can
qualitatively reproduce the evolution up to 60 μ−1 and then
tends to overestimate the damping at a longer time. This
overestimation is a known feature of the PSA [37]. It should
also be kept in mind that (i) the semiclassical mapping
made in the PSA approach is supposed to be more and more
valid when the number of particles increases. From that
point of view, nB ¼ 8 is a rather extreme case. (ii) Although
some differences can be seen in individual particle proper-
ties, collective properties obtained by averaging over
particles might still be rather well reproduced. This will
be illustrated below.
Item (i) was one of the motivations for improving the

sampling method for small nB values. A careful analysis of
Fig. 2 shows that the Husimi and bivalued technique that
does not presuppose a Gaussian probability distribution is
slightly better/less damped than the Gaussian sampling
when focusing on time t ≤ 60μ−1. Still, all methods lead to
very close results in general, showing the robustness of the
approach. Note that a pure mean-field approximation
would fail to reproduce these evolutions. A second remark-
able feature is that, despite the differences observed on
individual properties of neutrinos in Fig. 2, the PSA is
highly predictive for collective observables, i.e., observ-
ables obtained by summing over individual observables.
Two examples are given below: quantum fluctuations and
the average one neutrino entropy.
To illustrate the average properties of neutrinos, the

average fluctuations of the Zα quantities, defined as

CZZðtÞ ¼
1

n2B

X
α;β

½hZαZβi − hZαihZβi�; ð23Þ

is shown as a function of time for an increasing number of
beams in Fig. 3. We see that all sampling methods, even for
the smallest nB, are able to reproduce the exact solutions
perfectly. Noteworthy, this quantity is linked to two-body
effects badly accounted for in the standard mean-field
approach. It is quite remarkable to observe that the
fluctuation evolution are almost independent of the sam-
pling method provided that the sampling leads to the proper
first and second moment of the initial conditions. This
underlines the robustness of the method to predict effects
beyond the mean-field approximation.
Dissipation and entanglement due to the interaction

between neutrinos are other important aspects of neutrino
physics. In [16], the PSA was shown to quantitatively
describe one- and two-body entropies for two beams with
many particles in the beam. This is confirmed here for

1Note that, there is also a factor 2 in the coupling matrix
elements and ωα. This factor stems from the fact that

P
α≠β is

considered compared to Ref. [30] and the fact that the Hamil-
tonian is written in terms of the spins  Jα, not the neutrinos Pauli
matrices.
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many beams and one particles per beam. We show in Fig. 4
the average one-neutrino entropy for an increasing number
of beams with one neutrino per beam. This quantity is
obtained from the following equation:

S ¼ −
1

nB

X
α

½λα0ðtÞlog2λα0ðtÞ þ λα1ðtÞlog2λα1ðtÞ�; ð24Þ

where ½λα0ðtÞ; λα1ðtÞ� are the two eigenvalues of ρα. Since all
one-body densities are rank 2 matrices, we have the upper
bound S ≤ 1. We see in Fig. 4 that PSA results reproduce

rather well the exact evolution of this quantity. For nB ¼ 4,
small deviations between the exact and approximate treat-
ments could be attributed to the deviations already seen in
Fig. 2. Still, a focus on time t ≤ 60μ−1 shows that the

(a)

(b)

(c)

FIG. 3. Evolution of the average fluctuations CZZðtÞ given by
Eq. (23), for (a) nB ¼ 4, (b) nB ¼ 8, and (c) nB ¼ 12 neutrinos. In
all cases, half of the neutrinos are assumed to be in one of the
states of the flavor basis and the other half in the other flavor state
at initial time. The exact evolution (black line-filled circle),
Gaussian sampling (blue solid line), bivalued (red solid line), and
Husimi sampling (green dotted line) are systematically shown.

(a)

(b)

(c)

FIG. 4. Average one neutrino entropy obtained for (a) nB ¼ 4,
(b) nB ¼ 8 and (c) nB ¼ 12 neutrino’s beam corresponding to
Fig. 3. The conventions for the curves are the same as in Fig. 3.

(a)

(b)

(c)

FIG. 2. Exact evolution of the quantity hZii components,
estimated in the flavor basis, as a function of time (filled symbols)
for the case of nB ¼ 8 coupled neutrinos. Different symbols
correspond to different neutrinos where half of the neutrinos are
initialized in one of the flavor states, while the other half are
initialized in the other. Exact evolutions (symbols) are compared
to the phase-space approximation (solid lines) using Gaussian (a),
Husimi (b), and bivalued (c) sampling for the initial conditions.
The reference calculations are obtained using the quantum
computer algorithm performed with the Qiskit emulator [59].
To simplify the figure we only show the neutrinos for which
initially hZii ¼ 1. Due to the symmetry of the problem, those
having hZii ¼ −1 are symmetric with respect to the y ¼ 0 axis.
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bivalued method is slightly better than the two other
sampling techniques. When nB increases, the PSA results
become more predictive, and, for nB ¼ 12, PSA results
cannot be distinguished from the exact evolution. In all
cases, PSA gives the upper envelope limits for the average
one-neutrino entropy.
The conclusion of the present example is that, as soon as

the number of beams increases and exceeds 10, the PSA
approach has very high predictive power for the
Hamiltonian case of Ref. [30]. In particular, it reproduces
many aspects of the exact evolution at a much lower
numerical cost. While the exact solution can hardly be
made for nB greater than 20, we illustrate the evolution of
the entropy obtained up to nB ¼ 200, for one neutrino per
beam in Fig. 5. These results have been obtained on a
standard desk computer.
Below, we give further validations of PSA for time-

dependent Hamiltonian that are relevant for the neutrino
problems, as well for increasing number of neutrinos.

B. Application to three beams with many neutrinos

Our previous study demonstrated that PSA can simulate
the evolution of many interacting beams with one neutrino
in each beam. One attractive aspect of the PSA technique is

its numerical scaling when arbitrarily increasing the num-
ber of neutrinos in each beam. Specifically, the number of
equations of motion to be solved for nB beams is 3nB,
independently from the numbers of neutrinos in different
beams. For a given beam, the number of random numbers
to generate might depend on the neutrino number if we use
bivalued sampling but is independent of the number of
neutrinos in the beam in the two other methods.
Noteworthy, the three sampling methods lead to identical
results as soon as the number of neutrinos in the beam
exceeds a few. Here, we illustrate the predictive power of
the PSA with many neutrinos in each beam. We have
already shown in Ref. [16], by comparing to the exact
results of Ref. [13] for 2 beams with 50 or more neutrinos
per beam, that the PSA reproduced efficiently this exact
evolution.
As far as we know, the only attempt to perform an exact

simulation with relatively large numbers of neutrinos per
beam was in Ref. [18], and is restricted to nB ¼ 3. In this
case, the three beams interact through the Hamiltonian

H ¼
XnB
α≠β

GαβðtÞ  Jα ·  Jβ; ð25Þ

with

G12 ¼ G21 ¼
2

N
;

G13 ¼ G31 ¼
1

N
ð1 − cÞ;

G23 ¼ G32 ¼
1

N
ð1þ cÞ:

The initial state is assumed to be

jΨð0Þi ¼ j1Af i⊗NA ⊗ j0Bf i⊗NB ⊗ j1Cf i⊗NC; ð26Þ

with NA, NB, and NC as the number of neutrinos in the
beam A, B, and C, respectively, and N ¼ NA þ NB þ NC.
ðj0A=B;Cf i; j1A=B;Cf iÞ are schematic notations for the flavor
states in the three beams.
In Ref. [18], the exact evolution of the entropy of one of

the beams α∈ fA; B;Cg was obtained. This could be done
by first obtaining the reduced entropy of this beam through
a partial trace of the full density over the other beams. This
reduced density can then be diagonalized to compute the
entanglement entropy. An exact estimate of the entropy in
PSA is a priori possible. Still, it would require first building
the reduced density matrix of the beam, which becomes
rapidly intractable when the number of neutrinos increases
as this reduced density matrix has a size 2Nα . An illustration
of a strategy that can be used in PSA to obtain the two-
neutrino entropy can be found in Ref. [16]. As Nα

increases, the brute-force approach becomes difficult.

(a)

(b)

FIG. 5. Illustration of the average one neutrino entropy increase
as a function of time obtained with the phase-space method for
various numbers of beams nB. The case of one neutrino per beam
is considered in all cases, and the bivalued sampling method is
used. In (a) [respectively, (b)] the case of time-independent
(respectively, time-dependent) coupling between neutrinos is
displayed. For the time-dependent case, the interaction is given
by Eq. (29).
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Alternatively, one can follow the method proposed in
Ref. [18], where the entropy is approximately computed
from the second moment of the polarization vector. Using
the PSA method, where the quantum fluctuations are
replaced by classical average at all times, the entropy of
the beam α, denoted by SαðtÞ, can be estimated from the
following expression:

SαðtÞ ¼
1þ 2ΓαðtÞ
logð2Þ arccothð1þ 2ΓαðtÞÞ

þ 1

2
½log2 ΓαðtÞ þ log2 ð1þ ΓαðtÞÞ�: ð27Þ

Within the PSA approach, the quantity ΓαðtÞ is estimated
from the phase-space average:

ΓαðtÞ ¼
Nα

4
½1 − PαðλÞ

z ðtÞPαðλÞ
z ðtÞ�: ð28Þ

We show in Fig. 6 an illustration of results obtained with
some sets of parameters tested in Ref. [18] and should be
compared with the Fig. 12 of the same reference. The
results obtained with the PSA reproduces quantitatively
very well those obtained using the exact estimate of the
fluctuations.

1. Applications to time-dependent Hamiltonian case

Following Ref. [30] and with the objective to reproduce
the results presented in this work, we have previously
considered the unrealistic situation where the coupling
between neutrinos is kept constant in time. When emitted
from a stellar object, the coupling being proportional to the
relative angles in forward direction is expected to decrease
as the distance from the emitter increases. To account for
this effect, one can generalize Eq. (4) by introducing the
time-dependent coupling:

Gα;β ¼
μ

N

	
1 − cos

�
ΩmaxðtÞ

jα − βj
nB − 1

�

: ð29Þ

ΩmaxðtÞ is defined as a function of the radius of the emitter
denoted by Rν and rðtÞ the distance from the emitter:

ΩmaxðtÞ ¼ 2 arcsin

�
Rν

rðtÞ
�
: ð30Þ

Here we assume Rν ¼ 32.2μ−1 as in [23]. Note that even if
we set Rν to the same value as in this reference, the time-
dependent coupling is slightly different from the one used
in [23] and consists of a direct generalization of the time-
independent case considered in [30]. Specifically, it
accounts for the fact that the maximal relative angles
ΩmaxðtÞ between two neutrinos decrease in time after
emission from the same stellar source and assumes that
the relative angles between different beams are obtained by
a uniform discretization between 0 and ΩmaxðtÞ. The time-
independent calculations considered previously assume
ΩmaxðtÞ ¼ Ωmaxð0Þ ¼ arccosð0.9Þ, which corresponds with
starting the calculation at distance rð0Þ≡ r0 ¼ 144μ−1 and
keeping the coupling unchanged during the evolution.
To account for the reduction of the coupling, we assume

below that the initial distance is still r0, but now rðtÞ ¼
r0 þ t in Eq. (30), where t is given in ½μ−1� units. We
illustrate in Fig. 7 the effect of this reduction on the
individual properties of neutrinos. In this example, nB ¼
8 neutrino beams are considered with one neutrino per
beam, as in Fig. 2. We observe in this figure that, at the early
stage of the evolution, the damping of the hZαi evolutions is
similar to the time-independent case. Still, for longer times, a
significant difference is seen between the time-independent

FIG. 6. Many-body entropy estimated for the system B for the
three beams interacting through the Hamiltonian (25) for three
different values of the c parameters. The approximate entangle-
ment entropy is obtained using the expressions (27) and (28).
This figure reproduces the results obtained in Fig. 12 of Ref. [18].

FIG. 7. Evolution of the hZαi components obtained with the
PSA for each neutrino with the same initial condition as in Fig. 2
with nB ¼ 8 and one neutrino per beams. The reference result of
Fig. 2(c) for time-independent neutrino-neutrino interaction are
shown with thick lines, while the results obtained with time-
dependent coupling using Eq. (29) are shown with thin lines. In
both cases, the bivalued sampling technique was used.

PHASE-SPACE METHODS FOR NEUTRINO OSCILLATIONS: … PHYS. REV. D 110, 103027 (2024)

103027-11



and time-dependent case. In particular, the time-dependent
coupling case has less beating and tends to stabilize towards
harmonic oscillations. Note surprisingly, the damping effect
induced by the coupling between beams is less pronounced.
This is further illustrated in Fig. 5(b), where the average
entropy is shown and compared to the time-independent
case [Fig. 5(a)]. In the time-independent coupling case,
provided that the system is evolved for a sufficient time that
increases with nB, the average one-neutrino entropy is
always reaching its maximum value Smax ¼ 1 asymptoti-
cally. When time-dependent coupling is considered, we see
that the entropy saturates at a value lower than 1. This
indicates that the interaction vanishes before reaching the
maximum disorder accessible to the full system. In parallel,
we also expect that the reduction of interaction will quench
the entanglement between different neutrino beams.
Notably, this quenching and/or absence of reaching the
maximum entropy will significantly depend on the initial
time (or distance r0) used. Future studies with the phase-
space approach might allow us to investigate this depend-
ence systematically. In particular, r0 is sometimes taken
large enough so that adiabatic approximation holds,
allowing the exact evolution to be performed when nB is
not very large. The phase-space method does not invoke
adiabaticity and can be used in the nonadiabatic regime.

C. Increasing the number of neutrinos and
impact of the initial conditions

Contrary to the exact solution, increasing the number of
particles in each beam does not lead to additional numerical
cost since the number of equations to solve remains 3nB,
whatever the number of neutrinos per beam. When using
the Hamiltonian (2) where the couplings are normalized
to the total number of neutrinos N, it is easy to realize that
the phase-space method results when applied with the
Gaussian sampling method will be unchanged if one
increases N while keeping all ratios frα ¼ Nα=Ng
unchanged. This stems from the fact that (i) in the
mean-field equation of motion given by Eq. (7), only these
ratios appear once using the expressions (4) for the Gα;β,
and (ii) the Gaussian sampling given by Eq. (14) leads to a
Gaussian sampling on the polarization vector components
that is independent of the Nα values. Said differently, the
numerical cost to consider 1 or 10 million neutrinos for
each beam will be unchanged since in both cases Nα=N ¼
nB−1 for both cases. In the case of bivalued distribution,
only the properties (i) hold, but due to the central limit
theorem, as we illustrated already, the evolution becomes
rapidly independent of the sampling method as soon as
more than N ¼ 10 particles are considered, i.e., as soon as
the total number of particles increases.
Similarly to what was done in Sec. III B when changing

the c parameters in the coupling constants, one can change
the different ratios frαg while keeping the total number of
particles fixed.

In the simulation shown previously for the time-
dependent Hamiltonian, we always assumed that the beams
separate into two sets, one set of beams where all neutrinos
are initially in one of the flavor states while the other set of
beams are in the other flavor state at the initial time. We
also assumed that all beams have the same number of
neutrinos. We now consider a different situation where we
have an imbalanced population between the two initial
flavor states. Specifically, we still consider that the nB=2
first beams all have neutrinos initialized in the j0fαi and the
other beams have neutrinos initialized in the j1fαi state. But
now we assume that each beam in the first set of beams
contain n0 neutrinos while the others contains n1 neutrinos.
Accordingly, we have the following ratios:

frαgα¼1;…;nB=2 ¼
2n0

nBðn0 þ n1Þ
;

frαgα¼nB=2þ1;…;nB ¼ 2n1
nBðn0 þ n1Þ

In the illustration shown below, we fix both the number of
beams nB and the total number of particles N ¼ nB

2
ðn0 þ

n1Þ and vary the ratio n0=n1. Specifically, we consider the
case of nB ¼ 10 beams and vary the number of particles
such that we have n0nB=2 ¼ 10;…; 50 that is equivalent to
having 10%;…; 50% of the total number of neutrinos
initially in the state j0fαi. Note that due to the symmetry of
the problem with the exchange between j0fαi and j1fαi
higher percentage can be deduced from the one simulated
here. Results corresponding to different percentages of

FIG. 8. One neutrino average entropy evolution obtained for
nB ¼ 10 coupled neutrinos beams with the time-dependent
coupling given by Eq. (29). initially, the first i ¼ 1;…; nB=2
(respectively, last i ¼ nB=2þ 1;…; nB) beams are initialized
with n0 ¼ 2, 4, 6, 8, and 10 (respectively, n1 ¼ 18, 16, 14,
12, and 10) in the state j0fαi (respectively, j1fαi), so that the total
number of neutrinos is N ¼ 100 in all simulations. The different
ðn0; n1Þ values corresponds respectively to 10%, � � �, 50% of the
total number of neutrinos in the state j0fαi.
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states initially in different flavor states are shown in Fig. 8.
We observe in this figure that the nonequilibrium entropy
is significantly affected by the initial population of the
j0fαi compared to the j1fαi state population. Changing
the percentage compared to an equal initial population
leads to quenching the asymptotic entropy. An equal
population gives the absolute maximum entropy that can
be reached. This behavior is what one would expect based
on previous calculations on unbalanced initial states but
time-independent Hamiltonians [13,60].
This illustrative example points out the significant effect

of the initial conditions on the entanglement of neutrinos.
Most of the many-body applications performed today
assume rather simple initial states. The sensitivity to initial
conditions observed in Fig. 8 clearly indicates the necessity
to perform future applications with more realistic initial
states.

IV. CONCLUSION

In this work, the phase-space approach proposed
recently to simulate neutrino oscillation [16] is further
illustrated and benchmarked. To treat neutrino beams with
several neutrinos varying from one to millions of neutrinos,
a novel statistical sampling method is used to prepare a set
of initial conditions used later for the time evolution. This
method is compared to existing sampling methods based on
Gaussian probability assumption or Husimi quasiprobabil-
ities. We show that the new method improves the repro-
duction of the evolution when very few particles are used.
The three sampling methods give identical results when the
total number of particles exceeds ten.
The phase-space approach is confronted with exact results

obtained when available. We show that in all cases, it is
possible at a much lower numerical cost to reproduce these
exact results well. Only small deviations are seen in the limit
where very few neutrinos are considered. The capacity of the
phase-space approach to treat a large number of beams with
a large number of neutrinos or to treat the problem of
realistic time-dependent couplings between neutrinos is
illustrated here. In particular, we identified several sources

of quenching of the average one-neutrino entropy either
induced by the time-dependence of the neutrino-neutrino
interaction and/or by the different population of each
neutrino flavor state at initial time. In both cases, we argue
that a precise description of realistic initial conditions will be
necessary to achieve meaningful conclusions on the neutrino
oscillations or entanglement patterns.
We concentrate here on the proof that the PSA approach

can be highly predictive for the neutrino oscillation
problem and can be used as an alternative to the exact
solution when this last solution is undoable. It will, for
instance, be a useful tool to compare simulations made with
quantum computers when these technologies will surpass
classical computers.
The phase-space approach is applied to rather simple

initial condition where the system is prepared in a pure
state. However, it can easily be extended to treat the
emission from a thermal statistical ensemble [36,38]. We
also anticipate that it could be improved by accounting for
the MSW effect and/or by going beyond the SU(2)
approximation.
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