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Abstract—It is widely recognized that the number of switching 

turn-on/off actions is proportional to the switching loss. However, 

Y-Matrix Modulated (YMM) based Modular Multi-level 

Converter (MMC) has a significantly larger number of switching 

actions in each fundamental cycle compared to phase shift and 

level shift modulation methods in order to achieve self-voltage 

balancing. Given the large amount of switching patterns provided 

by high level MMCs, the analytical methods make it hard to find 

the optimal switching scheme. In this paper, a general approach 

for finding the N-level switched capacitor MMC (SC-MMC) 

optimal switching scheme using Genetic Algorithm (GA) is 

proposed. The main objective is to propose a heuristic method to 

minimize the switching actions with self voltage balancing for SC-

MMC. Case studies have been implemented on four-level, eleven-

level, and fifty-level SC-MMCs. The optimal solution has also been 

evaluated in terms of the computational complexity, capacitor 

voltage ripple, and total harmonic distortion (THD) to validate the 

effectiveness of the proposed method. The simulation results 

demonstrate the computational efficiency of the proposed 

algorithm in comparison to the analytical method. Moreover, the 

proposed algorithm can achieve a substantial 22% reduction in 

switching actions compared to the original switching pattern. 

Keywords—Modular multi-level converter, Y-matrix 

modulation, Genetic Algorithm 

I. INTRODUCTION 

Switched Capacitor Modular Multi-level Converter (SC-
MMC) has shown promising advantage over the conventional 
MMC in terms of self-voltage balancing and passive component 
reduction [1]. However, to secure a self-voltage balancing, the 
SC-MMC needs to be operated at high switching frequency (a 
few tens kilohertz), which leads to a significant increase of 
switching loss compared to conventional MMCs that are 
operated at fundamental frequency. It is widely recognized that 
the switching losses of a converter is proportional to the number 
of switching turn-on/-off events of the converter.  

Conventional methods of reducing switching events rely on 
evaluating the low frequency components of the current and 
calculating the voltage ripple of the capacitor [2]. This method 
is generally valid for conventional MMC with a relatively large 
arm inductor that can filter out the switching-frequency 
harmonics. However, for Y matrix modulated SC-MMC [3] or 
other switching-cycle based MMC [4], the switching loss 
reduction greatly depends on the simulation results due to the 
rich switching-frequency harmonics in the arm inductor currents. 
Because of the challenges in modeling the high frequency 
harmonics in arm inductors, no analytical methods, to the best 

of our knowledge, have been developed for the switching 
actions reduction of switching-cycle based SC-MMC. 

To address this issue, a reduced switching-frequency voltage 
balance algorithm has been proposed in [5]. However, it does 
not account for potential deviations in the submodule (SM) 
voltage that may occur during each control period. Although 
reduced switching frequency (RSF) voltage balancing algorithm 
has also been introduced in [6], [7], and [8], there is still room 
for improvement in reducing capacitor ripple. In order to reduce 
the power loss of YMM based SC-MMC while ensuring 
capacitor voltage balancing, one needs to carefully select the Y 
matrix of the SC-MMC so that the minimal switching events can 
be achieved.  

However, conventional analytic methods may not be 
applicable to high-level SC-MMCs. In [9], an analytical 
approach has been proposed for identifying the optimal 
switching strategy with the goal of minimizing switching 
frequency. While this method ensures voltage balancing under 
specified constraints, it is noted for its time-consuming nature. 
MMCs, especially high-level MMCs widely used in HVDC 
systems, have an astronomical number of switching states. For 

instance, a 100-level MMC may have approximately 2.5×1057 

feasible switching states to generate an output voltage at level 
50. In high-voltage DC (HVDC) transmission applications, 
MMCs are typically constructed with 200 to 400 levels [10]. As 
the MMC level increases, the number of feasible switching 
states expands exponentially, making it nearly impossible for 
analytical methods to determine the optimal switching patterns.  

To overcome the limit of the analytical methods in 
processing the large pool of feasible switching patterns of high-
level SC-MMCs, this paper proposes a heuristic method with 
self voltage balancing to minimize the switching actions for SC-
MMC. The simulation results show the proposed algorithm can 
reduce 22% switching actions compared to the original 
switching pattern [1].  

The rest of the paper is organized as follows: Section II 
introduces the basic principle of a four-level SC-MMC and then 
expand to N-level SC-MMC. The Y matrix modulation 
technique has also been introduced in this section. Section III 
formulates SC-MMC optimal switching scheme using GA. 
Section IV presents the case studies results for four-level, 
eleven-level, and fifty-level SC-MMCs in terms of the 
computational complexity, capacitor voltage ripple, and THD 
values. The conclusion of this paper is summarized in Section 
V. 



II. YMM-BASED N-LEVEL SC-MMC CAPACITOR VOLTAGE 

BALACING  

A. Basic priciple of MMC 

Fig. 1 shows the topology of a three-phase SC-MMC [1]. 
The MMC normally converts the DC system to three-phase AC 
system, and feeds an ac load. In the MMC, the three-phase AC 
system connects to the mid-point of each leg (va, vb, vc). Each 
leg of the MMC is divided into the upper arms and lower arms. 
The upper arms connect to the positive rail, and the lower arms 
connect to the negative rail. Each arm contains a series of SMs 
and an inductor (L). The arm inductor, connected in series with 
the SMs, serves to limit the current resulting from the 
instantaneous voltage difference between the SMs and the DC 
system. 

For a N=4-level SC-MMC, there are N-1=3, and only three, 
out of 2N-2=6 SMs at inserting mode at any instant. The other 
three SMs are at by-pass mode meanwhile. The pole voltage va 
of a four-level MMC can either be 3Vdc, Vdc, or –Vdc, 3Vdc, if all 
capacitor voltages are Vdc. If the voltage drop on arm inductors 
could be neglected, the sum of the voltages of the three inserting-
mode SMs are clamped to the dc source voltage. 

For a four-level SC-MMC, there is a total of 𝐶6
3 = 20 

possible states when there are half SMs at inserting mode. The 
capacitor voltage of six possible states can be formulated as: 
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The 20 possible states of (1) can be re-written into matrix 
form below: 
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where Y1
(4) and Y4

(4) are 1-by-6 matrices, Y2
(4) and Y3

(4) are 9-
by 6 matrices with a rank of 5. The switching patterns of every 
SM in a single phase leg are provided by the Y matrix, where 1 
denotes the inserting and 0 denotes the bypass mode. The 
number of inserted SMs in each phase leg is always (N-1) since 
the total of all the items in each row of the Y matrix equals (N-
1). The 4 submatrices can be expressed as the following matrix 
form:  
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Fig. 1. The topology of a three-phase SC-MMC [1]. 

The rank of each two adjacent matrices is 6. Therefore, to 
reduce the number of switching events, Y2

(4) and Y3
(4) should be 

able to extract the 5-by-6 core submatrices which hold the same 
rank 5. Extract 5 rows from Y2

(4) and Y3
(4) to maintain the full 

rank condition, we can obtain: 
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If Y matrix is in full rank, Y is linearly independent, the 
capacitor voltage has no more than one solution. When any of 
two adjacent levels are in full rank, the unique solution for VC is: 

 

1

2

3

4

5

6

dcC

dcC

C dc

C dc

C dc

C dc

VV

VV

VV

V V

V V

V V

  
  
  
  
  
  
  
  
  
  
    

=  () 



Therefore, the capacitor voltages in the four-level MMC are 
naturally balanced. 

B. N-level SC-MMC 

Fig. 2 shows a signle-phase N-level SC-MMC with different 
pole voltage for 1st level, 2nd level, and Nth level [11]. For each 
level, there are N – 1, and only N – 1, out of 2N – 2 SMs at 
inserting mode at a time. The other N – 1 SMs are at bypass 
mode meanwhile. 
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Fig. 2. N-level SC-MMC with pole voltage of (a) (N – 1) 𝑉𝑑𝑐 (Level 1); 
(b) (N – 3) 𝑉𝑑𝑐 (Level 2); and (c) – (N – 1) 𝑉𝑑𝑐 (Level N) [11]. 
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Fig. 3 Numbering of levels in an N-level MMC, when (a) N is an odd 
number; and (b) N is an even number [11]. 

There are N levels for pole voltage va. Assume that all 
capacitor voltages are Vdc. The pole voltage va of an N-level 
MMC is an element of { (N–1)Vdc/2, (N–3)Vdc/2, (N–5)Vdc/2, …, 
Vdc, 0, –Vdc,…, –(N–3)Vdc/2, –(N–1)Vdc/2}, if N is an odd 
number. The pole voltage va of an N-level MMC is an element 
of {(N–1)Vdc/2, (N–3)Vdc/2, (N–5)Vdc/2, …, Vdc/2, –Vdc/2,…, –
(N–3)Vdc/2, –(N–1)Vdc/2}, if N is an even number. Fig. 3 [1] 
shows the numbering of levels in an N-level MMC, starting from 

the first level to the Nth level when N is an odd and even number. 
It is noted that the pole voltage va can be zero when N is an odd 
number. 

The Y matrix contains N submatrices, starting from Y1 to YN. 
All capacitor voltage balancing could be formulated as: 
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C. Y Matrix Modulated SC-MMC 

One equation in (6) is satisfied at a time when MMC visits 
one SM pattern. MMC is considered to have completed one 
iteration when it has visited every SM pattern in the Y. The 
voltages of MMC capacitors should converge after a number of 
iterations. This chapter focuses on developing an effective 
modulation, namely Y-Matrix Modulation (YMM) [11] and 
[12], to realize the self voltage balancing feature for MMC. 

The N-level MMC modulation can also be explained in Fig. 
4 [1]. For example, when the pole voltage va at first level, the 
level pointer pointes to level 1, Y1

(N) is chosen as the sub-module 
pattern to implement this first-level pole-voltage. Similarly, 
When the pole voltage va at kth level, where 2 ≤ k ≤ N – 1, the 
level pointer pointes to level k, Yk

(N) is chosen as the sub-module 
patterns to implement this kth level pole voltage. The rank of Yk

(N) 
is 2N –3, which means Yk

(N) only has 2N – 3 linearly independent 
rows. To reduce the number of switching events, Yk

(N) should be 

able to extract the core submatrix ( )ˆ N
kY  while maintaining the 

same rank. 
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Fig. 4 Y-matrix modulation strategy for N-level MMC [11]. 

The procedure of YMM for N-level MMC can also be 
summarized as below: 

(1) Determine the level of va by level shifted modulation (LSM); 

(2) Assign the level number to the level pointer at every 
switching cycle; 



(3) Locate the Y-matrix pointer that the level pointer pointes to; 

(4) Read the row (SM pattern) which the Y matrix pointer points 
to; 

(5) Generate the gating signal for each SM that corresponds with 
the SM pattern; 

(6) Reassign the Y-matrix pointer to the next row and wait for 
the next call from level pointer. 

III. N-LEVEL SC-MMC OPTIMAL SWITCHING SCHEME VIA GA 

As the SC-MMC level increases, Y matrix expands rapidly. 
The analytical methods make it hard to find the optimal 
switching scheme. Genetic Algorithm (GA) [13] is a heuristic 
optimization algorithm inspired by the principles of natural 
selection and genetics. It is used to find optimal solutions to 
complex problems by simulating the process of natural 
evolution. GA is well-suited for optimizing MMC switching 
scheme because of the ability to efficiently search large, 
complex spaces for optimal solutions. GAs mimic natural 
evolutionary processes such as selection, crossover, and 
mutation to evolve solutions towards greater fitness, which in 
the case of MMCs would involve optimizing the switching to 
minimize switching losses and ensure voltage balance. The 
benefits of using GAs for this purpose include the capability to 
handle the complex and large-scale optimization problems 
typical in high-level MMCs without exhaustive searching. This 
approach is particularly advantageous when the search space is 
vast and not easily navigable by traditional analytical methods. 

GA evolves towards finding the optimal value through a 
series of iterative processes, each designed to mimic natural 
evolutionary mechanisms [14]. The process begins with a 
randomly generated population of potential solutions, known as 
individuals. Each individual represents a possible switching 
scheme for the MMC and is evaluated using a fitness function 
that measures its performance based on criteria such as 
minimizing switching losses and ensuring voltage balance. 

The evolution process in GA involves several key steps [15]: 

(1) Selection: Individuals are selected based on their fitness 
scores, with higher fitness individuals having a greater 
chance of being chosen. This mimics natural selection where 
the fittest individuals are more likely to reproduce and pass 
on their genes. 

(2) Crossover: Selected individuals are paired, and parts of their 
solution representations (genes) are exchanged to create new 
offspring. This process introduces new combinations of 
genes, potentially leading to better solutions. 

(3) Mutation: To maintain genetic diversity within the 
population and to avoid local optima, some genes in the 
offspring are randomly altered. This mutation step ensures 
that the algorithm explores a wider search space. 

(4) Replacement: The new generation of individuals (offspring) 
replaces the old generation. The process of selection, 
crossover, and mutation is repeated over many generations, 
with each generation ideally having individuals that are more 
fit than the previous one. 

Through these iterative processes, the population of potential 
solutions evolves over time, converging towards an optimal or 
near-optimal switching scheme for the MMC. This evolutionary 
approach allows GA to efficiently navigate large and complex 
search spaces, making it a powerful tool for solving optimization 
problems that are intractable for traditional analytical methods. 

Define the objective function as the minimum number of 
switching actions denoted by 𝑁𝑠𝑤  during one switching cycle 
𝑇𝑐. For each submodule, if the switching state changes, then one 
switching event occurs. Consider one phase of the SC-MMC 
which has 2N-2 SMs, then the objective function can be written 
as: 
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where ,s   represent the switching state of th  SM in the th  

control period. switchingT is the switching period. 

Since Y1
(N) and YN

(N) are 1-by-(2N – 2) matrices. There is no 
need to extract submatrices from these two. Therefore, we only 
need to find the remaining (N-2) levels’ submatrices Yk

(N). The 
dimension for the (N-2) levels’ submatrices Yk

(N) is mk-by-(2N-
2). Since the rank for each submatrix Yk

(N) is (2N-3), to make 
sure each submatrix Yk

(N) is in full rank and reduce the number 

of switching events, we only need to find the core matrix ( )ˆ N
kY , 

which dimension is (2N-3)-by-(2N-2). 
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Fig. 5 is an example to show the 𝑘𝑡ℎ level decision variable 
xk vector, which consists of (2N-3) decision variables. For the 

𝑘𝑡ℎ level submatrix Yk
(N) which dimension is a mk-by-(2N-2). 

GA helps randomly select (2N-3) rows and assign the row 
number to 𝑥𝑘,𝑗. The value of 𝑥𝑘,𝑗 should not exceed mk. The rank 

for each core matrix ( )ˆ N
kY after selection should be (2N-3). 
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Fig. 5 The 𝑘𝑡ℎ level core matrix selection process. 

where s is the switching state, ‘0’ represents switching off, and 
‘1’ represents switching on. 

Take the 4-level MMC as an example, for the 1st and last 4th 
level, there are only one row for these two submatrices. For the 
2nd and 3rd level, where 𝑚2 = 𝑚3 = (𝑐3

1)2 = 9. The dimension 
of Y2

(4) and Y3
(4) shown in (3) is mk-by-(2N-2) which equals to 

9×6. When N=4, the decision variable x is a 2×5 matrix. 
Following is an example to show how GA find the core 

submatrix ( )4
2Ŷ . When k=2, 𝒙2

𝑇  is a 5×1 matrix. Once GA 

randomly determined the initial row indicator to 𝒙2
𝑇  such as 

shown in (10), then take the row from Y2
(4) according to each 

element in 𝒙2
𝑇, the core submatrix ( )4

2Ŷ can be selected as (11). 

Each element in x should not exceed the total row number of 
submatrix Y2

(4) which is m2=9. The assigned value to 𝒙2
𝑇 should 

make ( )4
2Ŷ to full rank, which is 2N-3=5. 
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When k=3, 𝒙3
𝑇  is a 5×1 matrix. Once GA randomly 

determined the initial row indicator to 𝒙3
𝑇 such as shown in (12), 

then take the row from Y3
(4) according to each element in 𝒙3

𝑇, the 

core matrix ( )4
3Ŷ can be selected as (13). Each element in x 

should not exceed the total row number of submatrix Y3
(4) which 

is m3=9. The assigned value to 𝒙3
𝑇 should make ( )4

3Ŷ to full rank, 

which is 2N-3=5. 
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Then x can be formulates as a 2×5 matrix, which is given in 
(14). The core submatrices from the 2nd level to (N-1)th=3rd level 
are thus selected. Then the algorithm goes to GA iteration to 
calculate the number of switching events according to objective 
function (7). 
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The corresponding steps of YMM-based N-level MMC 
using GA are as follows: 

Step 1: Initialize (N-2) × (2N-3) decision variables x matrix, the 
value of 𝑥𝑘,𝑗 should not exceed 𝑚𝑘. 

Step 2: Select (2N-3) rows from each submatrix Yk
(N) in a 

random manner, and make sure it is in full rank. If it is 
not in full rank, back to initialization. 

Step 3: Start GA iteration, and run the YMM based SC-MMC 
simulation, calculate the objective function for each level 
according to (7). 

Step 4: Update decision variables for the entire (N-2) × (2N-3) 
matrix, then return to Step 3 and recalculate the fitness 



value according to (7) until reaches the maximum 
generations. 

Step 5: Save the optimal switching pattern results for each 
submatrix.  

The corresponding steps of YMM-based N-level MMC 
using GA can also be explained with the aid of Fig. 6.  
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Fig. 6. The flow chart of the optimization algorithm. 

IV. CASE STUDIES 

A. YMM Based Four-Level SC-MMC 

The simulation was conducted in Matlab/Simulink. There 
are 6 SMs in each phase for this 4-level SC-MMC. The 
switching frequency is 30 kHz. The key parameters are 
summarized in Table I [1]. After 500 iterations, the minimum 
number of switching actions during one cycle is 2044. 
Compared to the original switching pattern [1] which has 2527 
switching actions, the optimal switching scheme can lead to a 
reduction of 23.63%. All Y submatrices are in full rank. The 
optimization algorithm was completed in 0.84 hours. However, 
by using the analytical method, there are 6561 full-rank 
combinations. Among them, there are 14400 permutations in 

each combination, which takes 122.95 h to find the optimal 
solution.  

The optimal Y submatrices are as follows: 
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TABLE I 

FOUR-LEVEL MMC SIMULATION KEY PARAMETERS 

Apparent Power, S 150 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 30 kHz 

DC-Bus Voltage, Vdc 1000 V 

Phase Voltage, Va, Vb, Vc 964 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 18.6 Ω 

Line Inductance, Lline 1 mH  

Arm Inductance, Larm 0.1 µH  

Submodule Capacitance, Ci 171 µF 

Number of Submodules per Arm 3 

  where i = 1, 2, …, 18. 

The load phase voltage and load line current are shown in Fig. 
7. The total harmonic distortion (THD) is 1.99% for load phase 
voltage and line current.  

 

 

Fig. 7. Four-level MMC (a) load phase voltage and (b) load line current. 



 
Fig. 8. Four-level MMC mid-point voltage vab. 

    The mid-point voltage vab shown in Fig.8 has seven levels. 

Although the mid-point voltage of any single phase, va vb or vc, 

has only four levels, the differential voltage of any two phases, 

vab vbc or vca, has seven levels. 

The submodule capacitor voltage VC3 is shown in Fig.9. 

The capacitor voltage ripple is within 4.8%. The capacitor 

voltage is well balanced to the expected value (1000 V). 

However, the fundamental ripples still exist, which are 

introduced by the arm inductor and stray resistance. 

 
Fig. 9. Four-level MMC submodule capacitor voltage VC3. 

B. YMM Based Eleven-Level SC-MMC 

Even when randomly select 2N-3 rows from 11-level 
submatrix Y2

(11), there could be 1.3234×1020 combinations. Such 
massive data become impossible for computers to process using 
analytical method. Hence, we proposed an approximate 
estimation for higher level SC-MMC by randomly pick 5000 
full-rank samples, and run 100 times to find an approximate 
estimation results. The key parameters for eleven-level SC-
MMC are summarized in Table II [1].  

TABLE II 

ELEVEN-LEVEL MMC SIMULATION KEY PARAMETERS 

Apparent Power, S 500 kVA 

Fundamental Frequency, f0 60 Hz 

DC-Bus Voltage, Vdc 1000 V 

Phase Voltage, Va, Vb, Vc 3200 V 

Line Current, Ia, Ib, Ic 52 A 

Arm Inductance, Larm 0.1 µH  

Submodule Capacitance, Ci 770 µF 

Number of Submodules per Arm 10 

  where i = 1, 2, …, 60. 

The minimum number of switching actions during one cycle 
is 6514. The dimension of eleven-level Y matrix is 173×20. 
Compared to the original switching pattern [1] which has 7992 
switching actions, the optimal switching scheme can lead a 
reduction of 22.69%. The load phase voltage and load line 
current are shown in Fig. 10.  The THD value is 0.75% for load 
phase voltage and line current. The mid-point voltage of eleven-
level SC-MMC vab given in Fig.11 has 17 levels. The capacitor 
voltage ripple shown in Fig.12 is within 5%. The capacitor 
voltage is well balanced and converging to the expected value 
(1000 V). 

 

 

Fig. 10. Eleven-level MMC (a) load phase voltage and (b) load line current. 

 

Fig. 11. Eleven-level MMC mid-point voltage vab. 

 

Fig. 12. Eleven-level MMC submodule capacitor voltage VC10. 



C. YMM Based Fifty-Level SC-MMC 

A 50-level SC-MMC has also been tested and demonstrated 
the effectiveness of proposed method. There are 98 submodules 
in each phase for this fifty-level SC-MMC. The dimension for 
submatrix Y24

(50) is (1.3234×1020)-by-98. A matrix of such large 
dimensions is impossible for computers to process using 
analytical methods. The key parameters for fifty-level SC-MMC 
are summarized in Table III.  

TABLE III 

FIFTY-LEVEL MMC SIMULATION KEY PARAMETERS 

Apparent Power, S 2500 kVA 

Switching Frequency, fsw 100 kHz 

DC-Bus Voltage, Vdc 1000 V 

Phase Voltage, Va, Vb, Vc 15.71 kV 

Line Current, Ia, Ib, Ic 52 A 

Arm Inductance, Larm 0.1 µH  

Submodule Capacitance, Ci 4.1 mF 

Number of Submodules per Arm 49 

  where i = 1, 2, …, 294. 

It achieves a significant reduction in switching actions by 
approximately 22.33%. Additionally, the load phase voltage 
shown in Fig.13 has a low THD value of 0.89%, and the 
capacitor voltage ripple presented in Fig. 14 is within 5%. 

 

Fig. 13. Load phase voltage of fifty-level MMC. 

 

Fig. 14. Fifty-level MMC submodule capacitor voltage VC49. 

V. CONCLUSIONS 

This paper proposed a general approach to find the optimal 
switching scheme for SC-MMC using heuristic algorithm GA. 
A mathematical analysis of the converter switching pattern 

considering Y matrix modulation has been conducted to 
formulate an optimization problem for minimizing the number 
of switching actions of SC-MMC. Case studies have been 
implemented on different levels of SC-MMC. Compared to the 
analytical method which cannot handle the massive data, the 
heuristic method can find the optimal solution within an 
acceptable time 1 h for four-level SC-MMC. As a result, 
compared to the original switching pattern, the proposed method 
can reduce around 22% switching actions. The harmonic 
analysis confirms the proposed method can result THD value is 
below 1%. The capacitor voltage deviation is maintained below 
5% of the nominal value.  
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