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Abstract—Atomic force microscopy (AFM) is a powerful tool
for investigating the topographical and mechanical properties
of a wide range of samples. However, the process of data ac-
quisition and analysis using AFM is time-consuming and labor-
intensive, and can be prone to error. Mistaken imaging of the
wrong sample, damage to the sample, and tip wear are just a few
examples of potential sources of error. Currently, the integration
of artificial intelligence (AI) with AFM operations for identifying
and classifying sample images is still under investigation. In
this paper, we propose a novel deep learning (DL) framework
for the classification of AFM images. The key component of
the proposed AI framework is a DL neural network model
that is trained using the AFM images with various types of
blemishes labeled by experts. Then the trained network will be
used to analyze future AFM images of the same type of samples.
Specifically, the proposed DL model consists of a defect detection
layer and a feature extraction and classification layer to ensure
the classification accuracy. The Performance of the proposed AI
framework was demonstrated in terms of defect detection and
classification accuracies in both training and validation. The
proposed AI approach will greatly reduce the time and labor
cost in AFM quality analysis, and can be potentially extended to
other applications, such as manufacturing, material engineering,
and biomedical engineering.

Index Terms—AFM, deep learning, image analysis, identifi-
cation, classification

I. INTRODUCTION

As an important member of the “scanning probe micro-
scope” family, the atomic force microscopy (AFM) [1] [2] is
broadly used to investigate the surface structure and mechan-
ical properties of solid materials. AFM is able to function in
various environments, including low temperatures, liquids, a
vacuum, and the atmosphere. AFM can capture the topogra-
phy images of sample surfaces in three dimensions with high
resolution. Although the superiority of AFM in terms force
and time resolutions and versatility makes it a powerful tool
[3] for material studies, this technique is time consuming and
requires specific skill sets and constant human supervision.
This is because AFM operations are often accompanied with
such as cantilever tip breakage after prolonged functional-
ization and damage to the soft samples (like living cells)
due to lack of optimization of the loading forces, which
make this method low throughput. For example, the system
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cannot stop and report an error automatically. Instead, the
experimentalist must manually screen and identify the defects
for each sample image. Therefore, it is necessary to explore
alternative methodologies in AFM applications to address
these issues.

Remarkable progress in the area of artificial intelligence
(AI) and deep learning (DL) over the past few years has
left its mark on material imaging, especially in post pro-
cessing and image analysis of various samples to enhance
the quality of the data and process of material mechanical
characterization. Over the past couple of years, researchers
in the material science community have begun to combine
AI approaches with AFM for various pattern recognition
and data post processing tasks [4] [5] [6]. Furthermore,
some initial research happened to select appropriate AFM
scanning areas and data modeling using deep learning [7]
[8]. However, these approaches are either limited to certain
types of samples, or only focus on post operation data pro-
cessing. Therefore, the integration of AI with AFM real-time
operations are still under development. In this paper, an AI-
enabled AFM operational framework is proposed to address
the current AFM limitations in the image classification and
identification of various samples, thereby reducing the labor
and time cost.

In the proposed framework, AFM images are analyzed
using DL-based object detection and localization methods
to automatically select defect locations based on the user-
selected defect shape. This idea will help the researchers
significantly by speeding up the AFM experiments. Specifi-
cally, the proposed DL model consists of a defect detection
layer, a feature extraction and classification layer. The DL
model has been trained by a large data set of AFM images
with various types of blemish shapes annotated by experts.
Once trained, the DL network will be applied to detect and
classify the AFM images in real time operations. In this
work, the trained DL focuses on identifying and marking
three distinct blemish shapes: scratches, wobbles, and cracks.
As an example, the DL network model in this work chooses
You Only Look Once (YOLOv5) [9] as the defect detector,
and ResNet-34 [10] as the enhanced feature extractor and
classifier. The former is known for its faster processing time,
better detection accuracy, and more compact model size.
The latter is specifically designed for feature extraction and
identification classification. The output of the trained model
includes both the type (e.g., shape) of the detected defect
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Fig. 1. Overview of the proposed AI AFM image classification framework.

and its location in the image, which can be further used
for downstream sample analysis and decision-making. In
addition, the proposed AI framework is made available for
users to add newly classified AFM images to the DL model
database to improve the model’s accuracy and versatility. This
feature enables the model to learn from new and diverse
sample images, thus enhancing its capability to detect and
classify various blemish shapes.

The proposed AI framework has been validated and tested
using AFM images acquired from samples with complex
features. The high validation accuracy demonstrates the po-
tential of using DL-based approaches for defect detection
and quality control in AFM applications. It also provides a
comprehensive pipeline for implementing such approaches in
practice.

II. METHODS

An overview of the proposed AI framework is illustrated
in Fig. 1.

A. AFM Image Data Collection

The collected AFM sample topography images serve as
the foundation for training our DL model and validating
the overall framework. All AFM images that were used for
the training and validating the proposed DL model were
acquired during the topography imaging of various samples
by using commercial AFM systems (such as the BioResolve
and Dimension Icon AFM systems by Bruker Nano. Inc.).
An automatic script function in Python was written to convert
the raw AFM .spm files to jpeg images for the purpose of
reducing computation time of the DL model.

B. DL Model for Defect Detection

We utilized a state-of-the-art DL neural networkmodel to
achieve capabilities beyond traditional DL object detection

tasks, and trained it to detect various defect shapes in AFM
topography images.

1) Architecture of the DL defect detection model: the DL
model focuses on the detection of the presence of imaging
defects (blemishes) and classification of the common defect
types, such as cracks, scratches, and shakes, which are
commonly encountered in AFM applications. As shown in
Fig 1, the proposed DL model contains two key components:
a defect detector and a feature extractor and classifier.

The defect shape detection and localization could be
achieved using a framework with real-time object detection,
such as the You Only Look Once (YOLO) algorithm [11].
YOLOv5, newest edition, is used in this work, which is a
relative new version of the YOLO series and has several
improvements over its predecessors, including faster process-
ing times, better accuracy, and larger compact model size. It
is primarily designed for object detection, which involves
image feature detection and object localization. Specifically,
YOLOv5 uses a single convolutional neural network [12]
to perform both tasks by dividing the input image into a
grid of defects and using each defect to predict the presence
and location of objects in its area. Each grid cell predicts
multiple bounding boxes along with their positions and di-
mensions, the probability of an object in the underlying grid,
and conditional class probabilities. The class probabilities
are used for defect classification, and the bounding boxes
are used for defect localization. Thus, while YOLOv5 is
primarily designed for object detection, it can also perform
image classification to a certain extent by using the class
probabilities output of the network. However, it is less
suitable for image classification than other architectures, such
as ResNet [13], specifically designed for image classification
tasks.

The ResNet architecture is known for its ability to train
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Fig. 2. Architecture of the YOLOv5 neural network.

Fig. 3. Architecture of ResNet-34.

very deep neural networks without suffering from the van-
ishing gradient problem, a common issue in deep neural
networks [14]. The core idea behind ResNet is using “residual
connections”, which allows the model to learn a residual
mapping between the input and output of each layer instead
of trying to learn the full mapping from input to output
directly. As an example, Resnet-34 [15] [16] is used in this
work.

Therefore, to leverage the advantages of both YOLOv5
and ResNet-34, these two approaches seamlessly integrated
together into the proposed DL network, where YOLOv5 is
the “pipeline” of the defect detection involving both defect
detection and localization. In particular, YOLOv5 detects the
defects (blemishes) from the jpeg AFM images and identifies
their locations in the images (Fig. 2), and these detected
defects are then processed by the Resnet-34 for classification

of the defect types. This way, the high-level features extracted
and classified by ResNet-34 can be leveraged to improve the
overall classification performance.

2) DL Model Training Dataset: To train the DL model,
the converted jpeg images were used.

Data Annotation The phase-contrast images were gen-
erated from the jpeg files and used for defect annotation.
Accurate identification of defect shapes is crucial to the suc-
cess of the proposed DL network. We utilized an open-source
approach called OpenLabeling [17] for data annotation. The
images were annotated manually by drawing a bounding box
for each defect detected by the experimental executors. Using
OpenLabeling, the location and category of blemishes (i.e.,
defects) in each sample image were labeled (i.e., annotated).
After turning off the marker, a text .txt files that contains
the labeled defect information is generated. Specifically, each

449
Authorized licensed use limited to: Iowa State University. Downloaded on November 21,2024 at 21:32:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Training data Preparation.

defect has three sets of parameters: object class (i.e., defect
type) index, (x, y) coordinates that represents the center
position of the labeled defect, and the horizontal and vertical
dimension (i.e., width and height) of the defect. The location
and dimension parameters are the normalized values with
respect to the image size.

However, collecting sample images took a considerable
amount of time and effort since the user had to manually
scan the samples and capture the images. Despite our best
efforts, the annotated dataset was still relatively small.

Data Augmentation To overcome the challenge of
having a small dataset for training, we employed data
augmentation approaches. Specifically, the annotated images
mirroed, rotated, clockwise or counterclockwise by 90°, and
flipped, upside-down and left-right. These operations created
additional samples (with various orientations) to be added to
the training set. By adding more samples, the performance of
the DL network was improved and made to be more resilient
to the different orientations of defect shapes observed during
inference. The entire process of training data preparation is
shown in Fig. 4.

C. Training with Transfer Learning

The prepared training set that included both defect-free and
defective images samples was used for training the proposed
integrated DL model. Each imperfection in the images was
accurately annotated to achieve the highest possible training
performance.

Pre-trained weights from a traffic light identification
dataset were utilized to reduce the time cost for training
and improve the performance of the network. Then transfer
learning techniques were employed to fine-tune the network
based on changes in accuracy.

To train the network, the dataset was split into a training set
and a testing set. The training set contained 75% of the entire
dataset, while the testing set contained the remaining 25%.
The images were used as the input to the DL model. Note

that the training set was augmented as discribed previously
to further improve the performance of the network.

The network’s performance was evaluated based on the
loss computed after processing each image. The lost function
was used to optimize the network during training, which
improved its accuracy in detecting and classifying defects
in AFM images.

III. RESULTS AND DISCUSSION

AFM topography images of Highly Ordered Pyrolytic
Graphite (HOPG) and hard disk surface samples were used
for training and validation in this work. For each sample, 200
images were acquired initially before data augmentation.

The proposed DL-based approach was enabled to locate
defects and identify its specific shapes with improved accu-
racy and efficiency. As the performance, this approach paved
the way for automated quality control in various fields such
as manufacturing, materials science, and biomedical research.
During the data collection and annotation phase, we carefully
annotated them with the corresponding defect shapes. The
annotated datasets were then used for data augmentation,
which was involved applying various transformations to the
images to increase the size and diversity of the dataset.

A. DL Model Training and Optimization

To train the DL model, a transfer learning strategy was
implemented. Specifically, the pre-trained weights as afore-
mentioned, were used for the DL network. Then the model
was trained by using the high-pixel images in the dataset
before the learned weights were further refined through
additional training using images with mixed resolution.

To identify the optimal neural network configuration for
the proposed model, a series of tests have been conducted
with different permutations of network parameters. This in-
volved varying the training batch size, the epoch number, and
optimizer type, such as Adam [18] and stochastic gradient
descent (SGD) [19], for backpropagation, as well as the
learning rate. We evaluated each condition by using the mean

450
Authorized licensed use limited to: Iowa State University. Downloaded on November 21,2024 at 21:32:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Defection detection test results of the HOPG sample (a) and (b),
and hardisk surface sample (c) and (d).

average precision (mAP) metric for all defect shapes, and the
results of these tests are summarized in Table 1.

Based on the mAP scores, we selected the best-performing
parameters that achieved the highest accuracy. The optimized
model configuration is shown in the last row of Table 1. In
the training progress, it is noticeable that the learning rate
gradually increased to 0.001 and then decreased to 0.0002
over 500 epochs. This phenomenon indicates the over fitting
issue occurred once the epoch number was more than 500.

With these optimized model configuration, the overall
training and test accuracies were 89.3 % and 91.6%, respec-
tively. The total training time was 5 min. On the contrary,
directly training the model using the entire dataset did not
provide similar performance: both the training and validation
accuracy were less than 73%, and the training time was 6 to
9 min. Thus, the advantages of using the transfer learning
technique is clear. Finally, the defect detection test results
of the two aforementioned samples are shown in Fig. 5, in
which each the defect types and their locations and sizes are
accurately captured by the DL model.

Therefore, the performance of the proposed AI frame-
work for AFM image defect detection and classification was
demonstrated. Compared to manual blemish identification,
our proposed approach offers significant time savings with
high accuracy and can operate during the AFM real-time
operations other than the operation in data after-process.
Furthermore, the output of the framework includes the lo-
calization of the detected blemish spots. This feature can
provide useful guidance for AFM imaging location selection
and sample repair.

As for future work, we will explore other features of the
DL network in detection and classification to further improve

the performance of our approach. Moreover, the proposed
framework will be extended to include features such as defect
image repair, improper probe-sample interaction detection
which facilitates the prompt of the probe replacement and
reduces the risk of further damage to the sample.

Table 1. Performance of the DL model trained with different network
configurations. The mAP value over all defect shapes is used for selecting
the optimal configuration (highlited).

Optilizer Batch Epochs Learning mAP
SGD 16 1000 0.001 62.3
SGD 32 500 0.001 64.4
SGD 32 1000 0.001 66.1
SGD 16 500 0.0001 66.4
SGD 16 500 0.001 69.5
Adam 16 500 0.001 81.0
Adam 32 500 0.0001 83.4
Adam 32 1000 0.001 85.2
Adam 16 1000 0.001 86.2
Adam 32 500 0.001 90.2

IV. CONCLUSIONS

In this paper, a DL model for AFM image defect de-
tection and classification has been proposed. The proposed
DL model implements a YOLOv5 defect detector and a
Resnet-34 classifier. To improve the performance of the DL
model, data augmentation and a transfer learning scheme
were used to overcome the challenges of defect detection
using model trained with limited data size. High accuracy
of the proposed AI framework was demonstrated in terms of
defect detection and classification. The proposed AI approach
will greatly reduce the time and labor cost in AFM images
quality analysis, and has the potential to extended to other
applications, such as manufacturing, material engineering,
and biomedical engineering.
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