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Sequence-to-sequence LSTM-based Dynamic System Identification of
Piezo-electric Actuators
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Abstract—During the past few year, recurrent neural net-
work (RNN) has been proposed to model the nonlinear dy-
namics of various dynamic systems, such as nano positioning
systems (e.g, piezo electric actuators (PEAs)). Although high
modeling accuracy has been demonstrated using RNNs, it has
been found that the conventional RNNs (such as vanilla RNN)
are susceptible to gradient vanishing or exploding issue and
hence difficult to train. Deep RNNs, such as Long short-term
memory (LSTM), have been proposed to address these issues.
However, due to the conventional training data construction,
the training is susceptible to overfitting and the computation
is extensive. In this paper, we propose a new type of LSTM
in the application of PEA system identification: a sequence-
to-sequence learning approach (namely, LSTMseq2seq). The
structure of LSTMseq2seq and its training data construction
are presented in detail. The efficacy of LSTMseq2seq in terms
of modeling accuracy and computation speed is demonstrated
by applying it for PEA system identification and comparing its
performance with that of vanilla RNN.
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I. INTRODUCTION

Nano-positioning devices, such as piezoelectric actuators
(PEAs), have been widely used in many high-precision
industries, products, and systems due to its fast response
and mechanical stability. For example, the atomic force
microscope (AFM) [1] [2], micro forming [3], and adaptive
optics [4] have many applications of PEAs. However, due
to the nonlinear dynamics of PEA (e.g., hysteresis and
creep), the real-time positioning control of PEA is always
challenging at high frequency and/or large motion range.
This is because the PEA nonlinearity is more pronounced
and the system modeling accuracy in real-time control is
limited in these circumstances.

With the development of machine learning, neural net-
works, such as feedforward neural network (FNN) [5] and
recurrent neural network (RNN) [6], have been proposed
for dynamic system identification in real-time control of
PEAs during recent years to overcome the aforementioned
issues. However, applying the neural networks in the control
modeling may introduce other problems that originated from
the neural networks while taking advantage of machine
learning. The issue with FNN is that it does not treat the FNN
input as time series during the training process regardless of
the time sequence of input and can affect the behavior of
PEAs greatly. In the previous work from our team [6], a
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vanilla RNN model was originally proposed and integrated
with a model predictive controller for PEA position tracking
control. RNN can recognize the inter-temporal dependencies
of a system, and satisfying PEA nonlinear dynamics identi-
fication was achieved in the tested frequency and amplitude
ranges. However, one limitation of vanilla RNN is that it is
not capable of considering and understanding the system’s
long-term dependencies of the sequential input and hence
cannot capture the correct dynamics of the system over
the entire band of operating frequency [7], [8], especially
with variable frequency drive inputs. Moreover, RNNs are
susceptible to gradient vanishing, or exploding issues [9],
[10] and hence difficult to avoid overfitting problem.

To overcome these issues in dynamic system identification
using RNN, a deep learning RNN approach-the long short-
term memory (LSTM)-has been proposed [7], [8]. The
LSTM was proposed by Hochreiter and Schmidhuber in
1997 for the purpose of minimizing the negative effects of
the Vanishing Gradient Problem [8]. In traditional RNN, the
Vanishing Gradient Problem is mostly caused by repetitive
multiplication with the recurring weight with the hidden
states during the progress of back propagation [8], [11].
To overcome this issue, in the LSTM, a memory cell was
added into the network neurons to establish another path to
convey the time-relevant information to the next time instant.
Moreover, this also makes LSTM able to take into account
both long-term memory and short-term memory and recog-
nize the importance of historical data in future prediction
[71, [12]. LSTM regards each time step in the sequence
of input with the consideration of the long-term temporal
dependencies, so that it can possess a better ability to handle
more complex nonlinear time series during learning, and
thus be more capable for dynamic system identification of
complex nonlinear systems, such as PEAs. However, one
known issue is that LSTM is prone to overfitting [13],
[14], especially when used for nonlinear system modeling
[15]. This is because the nonlinear LSTM model is tradi-
tionally trained using single (input, output) time sequence
pair which tends to be very long if the learning data must
cover broad frequency ranges [7], [12]. At the same time,
such a training process is extremely time consuming. This
limits the application of LSTM in dynamic modeling of the
nonlinear systems which are highly frequency-dependent,
such as PEAs. Therefore, in order to take the advantages
of LSTM in nonlinear system identification, particularly for
PEA systems, we aim to develop a new learning mechanism
to address these issues.

In this work, we propose a sequence-to-sequence LSTM



(namely, LSTMseq2seq) learning approach for accurate PEA
system identification. The proposed LSTMseq2seq contains
two layers of LSTM expanded time wise: LSTM encoder
and decoder, respectively. Sinusoidal waves are used as
the building blocks to generate the input (i.e., PEA drive
input) training dataset. Instead of concatenating the all the
sinusoidal waves together to generate a long time sequence
as in [6], [7], LSTMseq2seq takes each single frequency
training input as a sample and groups the samples into mini-
batches. Then the training process is proceeded batch-by-
batch. By adding the LSTM encoder and decoder, LSTM-
seq2seq regards the entire input mini-batch as an entity and
makes predictions for each sample in the mini-batch. Thus,
the training efficiency can be greatly improved, especially
when the dataset is large. The efficacy of LSTMseq2seq
in terms of modeling accuracy and computation speed is
demonstrated by applying it for PEA system identification
and comparing its performance with that of vanilla RNN.

II. SYSTEM IDENTIFICATION

In this section, the limitations of traditional RNN (e.g.,
vanilla RNN) and existing LSTM for PEA system identifi-
cation are discussed in detail. Then we provide the details of
the proposed LSTMseq2seq, including the architecture and
the process of constructing the training data set for LSTM
sequence-to-sequence learning.

A. Traditional RNN and Its Limitation in PEA System Iden-
tification

RNN is a class of neural network in which the connections
between nodes can create a cycle (i.e., feedback), allowing
output from some nodes to affect subsequent input to the
same nodes [2], [12]. This allows RNN to exhibit temporal
dynamic behavior and is thus suitable for dynamic system
identification.

Fig. 1 is a typical configuration of RNN structure, the
vanilla RNN, for modeling a SISO system (e.g., a single axis
PEA stage) [6]. It consists of three layers: an input layer, a
hidden layer, and an output layer, which are shown in Fig. 1
as the columns of black dots/solid circles, circles, and dashed
circles, respectively. The input layer always has one more
node than the hidden layer to take in the input signal u )z,
where k is the sampling instant. The remaining nodes in
the input layer take in the outputs of the hidden layer from
the calculation of the previous sampling instant. y, is the
RNN output and x; = [x¢1,%2,...,Xkn]” is the state vector.
A fully connected network is applied between the input layer
and the hidden layer. For nonlinear system identification,
nonlinear functions, such as the hyperbolic tangent (tanh)
function, can be used as the activation function in the hidden
layer, and the output layer can be defined using a linear state
output equation [6]. The entire RNN system in Fig. 1, can
be described as:

Xk+1 = tanh(Wlxk + B> + B I/l(,)}k)
Yk = Waxi + B3

where Wy, W,, and By are the N x N states weight, 1 x N
output weight, and N x 1 input weight matrices, respectively.
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Fig. 1: Vanilla RNN structure.

B2 and B3 are scalar parameters. It is clear that the output of
RNN, y(;) «» only depends on the input u(,; as the state
vector x; is computed internally through iterations at each
sampling instant.

Suppose Uy and Y are the input and output training
data sequences (e.g,. drive input and measured output of a
PEA system) of the above RNN, respectively, and Y, is
the output generated by the RNN subject to Uy, training
of the RNN is to find the optimal values of the parameters
parameters in Eq. 1 (W;, W», By, B> and B3) such that the
error Y(;5) — ¥{,) is minimized, i.e., |[¥;) — ¥y || < € for
any infinitesimal positive €. The optimization problem can
be formulated as

w0, 5 = [¥as) = Yirus)

subject to: xgy1 = tanh(Wixg + By + B1U(y) )
Y(rts),k = Whx; + B3

)

Typically, such an optimzation problem can be solved
by the Back Propagation Approach (BPTT) [9]. However,
the recurrent property of vanilla RNN makes the current
output y(); be affected by all of the previous hidden
states {x;|k =0,1,2,--- L —1}, L is the sequence length.
This brings a fundamental problem which is known as the
Vanishing Gradient Problem [9]. Because the weights of each
hidden layer node (also known as the recurring weights)
are the same, the hidden states could vanish by repetitive
multiplications with the recurring weights, especially if the
weights are small. Similarly, the same mechanism could
also affect the RNN in the back-propagation of the cost
function (J(,)) gradient. In other words, during the training
BPTT process, the cost function gradient of errors will
be decaying exponentially through hidden layers as time
elapses. A mathematical explanation can be presented as
follows:

aJ(r) N 8](V)J

duyy L2y g 3)
i) iy dx Oxy |
dugy) T dx; dxy dugy



Fig. 2: LSTM layer structure.

9J, (s Ox; dxy

dx; x> au(r)
ponent or temporal contributions [9]. Any of these variables
having an initial value that is close to zero could lead to
Vanishing Gradient Problem. Similarly, the gradient may

explode if the weights of the hidden layers are big.

where and

are regarded as the temporal com-

B. Long Short-term Memory (LSTM) Structure and Training
To overcome this problem, LSTM [8] was proposed by
adding a memory cell to the structure. As shown in Fig. 2,
the LSTM has four key elements to control the signal flow of
the unit: input gate, output gate, forget gate, and memory cell,
where u(,) ;. and x(, ;. respectively denote the input u(,) and
the hidden states x(,) at the sampling instant k. ¢ represents
the gate nonlinear activation function. Thus, the gate outputs
can be formulated as
Forget Gate:
Ji=0(Wrla_1,uq ] +by)
Input Gate:
ix = 0 (Wilxk_1,u(r) 4] + i)
Output Gate:
or = 6(Wolxr—1,u() ] +bo)
Memory cell input and output:
ék = tanh(Wc[xk_l,u(,))k} +bc)

Cr = fiCr—1 +ixCrs
X = Ok - tanh(Ck)

“4)

where Wy, W;, W,, and W¢ are the corresponding weights
in different gates and operators, respectively. by, b;, b,, and
bc are the corresponding bias in each different gates and
operators, respectively. In general, the activation function for
the memory cell is the hyperbolic tangent, and ¢ for the three
gates are sigmoid function.

The final output of the entire LSTM is computed by
adding a fully connect network layer after the LSTM layer,
mathematically presented as

Yk = Wiy X+ by,
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where W, is the weight of the fully connected network and
b(y is the bias.

According to the equations above, for the gates with
sigmoid function, the range of the gates is between 0 and
1. If the forget gate keeps a value of 1, the memory cell
fully reserves its stored information. Therefore, LSTM can
achieve memorize or discard stored information actively.

Training set generation and limits: In existing work
[6], [7], both the vanilla RNN and LSTM constructed the
training data using the same approach. The training input
(i.e., the drive voltage to PEA), U, was constructed by con-
catenation the single period sinusoidal signals defined using
different (f,A) (frequency, amplitude) pairs, i.e., S(f,A) =
Alsin(2mft + 3) +1],t € [0, %] Thus, the training input is

U S(fad, 5)

(fiA)eQ

Uss)

where Q is the set of the selected (f;,A;) pairs, and |J
denotes concatenation. Then the corresponding PEA output
is collected by measuring the PEA displacement subject to
the input U. The (f;,A;) pairs can be selected using the
approach developed in [6].

Although both the frequency and amplitude-dependent
behavior of PEA is considered in forming Uj;). In this case,
one limitation of using the concatenated time series is that
it may result in different training results due to the order of
sinusoidal signal concatenation. Furthermore, concatenation
can result in an extra long training time sequence if the size
of Q is big, and thus, make the training extremely time
consuming and lead to possible overfitting issues. There-
fore, we propose a sequence-to-sequence regression learning-
based LSTM approach for the system identification of PEA
for large data set handling and more efficient training.

C. Sequence-to-sequence LSTM System Identification

The architecture of the proposed LSTMseq2seq contains
two layers of LSTM expanded time-wise, LSTM encoder and
decoder, respectively, as shown in Fig. 3. The input sequence
u(y send its all elements u(,); at each time step into the
encoder layer. The output sequence y,) is generated by the
decoder layer, and all elements y(,; are the output of the
decoder layer for each time step. The basic mathematical
logic of the LTSMseq2seq is derived from the aforemen-
tioned equations for both RNN and LSTM. Specifically, the
LSTMseq2seq2 model can be formulated as

Encoder:

Xe (k) = J (Xe (k1) U(r) &)
Decoder
Xa,6) = F(Xa,(k—1)> V() k—155)

Y(r)k—1= g(xd,(k))

Here, x; and x, are the hidden states in the encoder
and decoder at sampling instant k, respectively. The unit
function f used in both the encoder and decoder layers is
a nonlinear activation function. It can be as simple as the
RNN with an activation function like Eq. 1, or as complex
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Fig. 3: Sequence-to-sequence LSTM structure.

as the aforementioned LSTM as presented in Eq. 4. It has
been selected to use LSTM as the unit function f(-) in this
study for better performance. The function g(-) represents
the output layer of the decoder unit, and it can be varied
with different complexity compare to f(-). C, is the final
state of the encoder layer as well as the initial state of the
decoder layer, which is also known as the context vector or
the summary information since it memorizes the information
of the hidden state and the memory cell for the entire encoder
layer [16] [17].

Sequence-to-sequence training: To train the LSTM-
seq2seq, we use multi-period sinusoidal wave S; as the build-
ing blocks. Each S; defined by a (f;, A;) pair is considered
as a sample. The training input Uy contains K samples
with different (f;, A;) combinations, where the (f;,A;) set
Q can be selected using the aforementioned approach [6].
Different from previous work which use concatenated sinu-
soidal inputs, each sample (i.e., S; and its corresponding
measured PEA output are considered as an independent
time sequence in the training input U, and output Y,
respectively. Then the samples of the entire training set
(U(ss)» Yi5)) are sorted based on the length and divided into
mini-batches evenly with a predefined batch size n (i.e., n
samples per mini-batch, thus K/n mini-batches in total).
The sorting process ensures that the samples with similar
lengths are grouped in the same mini-batch such that the
amount of padding in each mini-batch is minimized. Then the
LSTMseq2seq PEA model is trained batch-by-batch. It can
be trained with the back-propagation method [9], [15], which
uses a gradient descent iterative optimization algorithm to
obtain trainable parameters. A pre-chosen epoch number A is
defined to specify the number of complete pass of each mini-
batch to the model. Thus, the iteration number of the entire
training is AK;/n. The entire architecture of the proposed
LSTMseq2seq for PEA system identification is illustratively
shown in Fig. 4.

III. EXPERIMENT RESULT AND DISCUSSION

To validate and demonstrate the proposed system identi-
fication approach, the proposed LSTMseq2seq was imple-
mented to model the nonlinear dynamics of a PEA stage
(Nano-OP30, Mad City Labs). The voltage input and the
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Fig. 4: Schematic architecture of the proposed LSTM-
seq2seq.

corresponding PEA displacement were collected using a data
acquisition system (NI PCle-6353, National Instruments)
installed in a desktop workstation (Intel Xeon W-2125, RAM
32GB). The LSTMseq2seq model was generated using Mat-
Lab Simulink (MathWorks, Inc) on the same workstation.
The experiment setup is shown in Fig. 5. The sampling rate
was set to 10 Hz.

Training set U generation: To generate the training
set Ujsy), 10000 points were randomly generated in the f—A
plain for the frequency range of 20-375 Hz and PEA input
amplitude range of 0-1.5 V (blue dots in Fig. 6). Then Q ( the
set of 500 (f;, A;), red dots in Fig. 6) were selected using the
k-mean algorithm in [6], i.e., K; = 500. To test the proposed
LSTMseq2seq in handling large data sets, S; samples with
multiple periods (3 and 10 ) were generated to form U,,). The
corresponding PEA output of each S; was measured to form
the output training set ¥{;,). The entire training set (U;y), ¥(15))
was randomly split into 90% training and 10% validation.
For comparison, the concatenated training set using the same
S; samples were generated for each tested period case (see
Fig. 7 as an example for the 3-period case) and applied to
train a vanilla RNN with the same training-validation data
split ratio.

LSTMseq2seq training: The proposed LSTMseq2seq
model was built with 10 hidden units in each en-
coder/decoder layer, respectively. For the total K; = 500
samples, the mini-batch size was set as n = 20. Thus, 25
mini-batches in total. The epoch number was investigated in
terms of validation accuracy. As shown in Fig. 8, for the
chosen LSTMseq2seq structure, the validation accuracy is
small and steady (i.e., does not show further improvement)
when the epoch number is beyond ~ 25. Thus, the epoch
number was selected as A = 32 for the rest of the tests.

LSTMseq2seq vs. RNN training performance: The
training performance in terms of validation accuracy and
training time of LSTMseq2seq and RNN are compared in
Table I. For the two sets of training data in 3 periods and 10
periods, the validation error during training of LSTMseq2seq
is small enough for both training sets, and even for the
10-period training set, the training time was still less than
5 min. However, RNN takes more than twice of the time



Fig. 5: Experimental setup.
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Fig. 6: Q (set of (fi, A;) pairs) selected for generating the
training input Uj,,). Red dots represent the selected (f;, A;)
pairs by the k-means algorithm.

TABLE I: Training performance comparison of vanilla RNN
and LSTMseq2seq.

Ulys) size 3 periods 10 periods
Approach LSTMseq2seq RNN | LSTMseq2seq RNN
Validation RMSE 0.027 0.054 0.026 0.045
Training time (min) 2.5 5.5 5 19

to finish training yet with nearly twice of the validation er-
ror, comparing to LSTMseq2seq. Therefore, the comparison
demonstrated that the proposed LSTMseq2seq achieves more
accurate and efficient training compared to RNN, especially
for large data sets.

LSTMseq2seq vs. RNN PEA displacement prediction:
To further demonstrate the system identification accuracy,
we also tested the accuracy of the LSTMseq2seq and vanilla
RNN (both trained with the training sets with 500 3-period
S; samples) in predicting the PEA displacement (i.e., PEA
output). Specifically, sinusoidal and triangle signals in 30Hz,
60Hz, and 120Hz were used to measure the actual PEA
displacements, respectively. To get convincing results, it
was our intention to select these three frequencies because
they did not overlap with those in the training set. The
prediction performances of the RNN and the LSTMseq2seq
are compared in Table II. The RMS prediction error, &q
was quantified as

||Ym_Yp||2
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Fig. 8: Training validation accuracy vs. epoch numbers of
LSTMseq2seq.

where Y, and Y, are the model predicted and actual measured
PEA displacements, respectively.

Clearly, the proposed LSTMseq2seq is more accurate in
predicting the PEA displacement for all three frequencies.
For detailed comparison, the prediction result for the 30Hz
triangle input in the time domain is shown in Fig. 9, in which
it can be easily seen that the RNN prediction fluctuates above
and below the actual PEA output while the LSTMseq2seq
prediction was able to reduce the prediction by more than
50%. Moreover, Fig. 10 shows the comparison of the two
neural networks in modeling the nonlinear PEA hysteresis at
30 Hz vs. the experimentally measured result. It is obvious
that the LSTMseq2seq is more accurate (closer to the actual
PEA curve) than RNN in modeling the PEA nonlinear
hysteresis.

Therefore, according to the results, it is convincing that
the proposed LSTMseq2seq2 is more accurate and computa-
tionally efficient in dynamic system identification and more
capable of handling large data sets. However, restricted by
the sampling rate of the current hardware, training data size
at frequency range is limited; thus the improvement of the



TABLE 1II: Prediction Performance Comparison between
vanilla RNN & LSTMseq2seq.

PEA input waveform Sinusoidal Triangle
Frequency (Hz) 30Hz 60Hz 120Hz | 30Hz 60Hz 120Hz

& rins—LST Mseq2seq (%) 29 27 1.4 34 3.6 1.9
Crms—rnN (%) 64 49 48 72 59 32
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Fig. 9: Comparison of the PEA output prediction for 30 Hz
triangle drive input: (a) LSTMseq2seq and RNN predicted
PEA output, and (b) the corresponding prediction error
(compare to the actual PEA output).
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Fig. 10: Comparison of the PEA hysteresis at 30 Hz mod-
eled using LSTMseq2seq and RNN vs. the experimentally
measured result.

proposed LSTMseqZ2seq is not at significant as the lower fre-
quency cases. As for future work, we will investigate the op-
tions and use faster hardware, such as the field-programmable
gate array (FPGA), and integrate LSTMseq2seq with a real-
time controller for high-speed nano-positioning applications.

IV. CONCLUSION

In this paper, a new concept, an LSTM sequence to
sequence learning structure for dynamic system identification
of PEA has been proposed. This approach takes advantages
of both LSTM and sequence-to-sequence learning simulta-
neously in time series processing: the former can eliminate
the common learning issues in traditional RNN and the latter
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can increase the learning efficiency significantly. Therefore,
the proposed system identification model is capable of han-
dling large data set in training with superior accuracy and
computation efficiency. This has been demonstrated by the
experiment results in system identification and the displace-
ment prediction of a PEA stage. In addition, the proposed
LSTMseq2seq architecture can be adapted to improve the
system identification accuracy for any dynamic system that
can be modelled using RNN.
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