
1774 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 4, JULY 2023

Load- and Renewable-Following Control of

Linearization-Free Differential Algebraic

Equation Power System Models

Sebastian A. Nugroho , Member, IEEE, and Ahmad F. Taha , Member, IEEE

Abstract— Electromechanical transients in power networks are
mostly caused by a mismatch between power consumption and
production, causing generators to deviate from the nominal
frequency. To that end, feedback control algorithms have been
designed to perform frequency and load/renewable-following
control. In particular, the literature addressed a plethora of
grid- and frequency-control challenges with a focus on linearized,
differential equation models whereby algebraic constraints
[i.e., power flows (PFs)] are eliminated. This is in contrast to the
more realistic nonlinear differential algebraic equation (NDAE)
models. Yet, as grids are increasingly pushed to their limits via
intermittent renewables and varying loads, their physical states
risk escaping operating regions due to either a poor predic-
tion or sudden changes in renewables or demands—deeming
a feedback controller based on a linearization point virtually
unusable. In lieu of linearized differential equation models, the
objective of this article is to design a simple, purely decentralized,
linearization-free, feedback control law for the NDAE models of
power networks. The aim of such a controller is to primarily
stabilize frequency oscillations after a significant, unknown dis-
turbance in renewables or loads. Although the controller design
involves advanced NDAE system theory, the controller itself is
as simple as a decentralized proportional or linear quadratic
regulator (LQR) in its implementation. Case studies demonstrate
that the proposed controller is able to stabilize dynamic and
algebraic states under significant disturbances.

Index Terms— Differential algebraic equations (DAEs), fre-
quency regulation, load-following control (LFC), power networks.

NOMENCLATURE

N := {1, 2, . . . , N } Set of nodes (buses).

E ¦ N × N Set of edges (links).

G ¦ N , |G| = G Set of generator buses.

R ¦ N , |R| = R Set of buses with renewables.

L ¦ N , |L| = L Set of load buses.

U ¦ N , |U | = U Set of nonunit buses.

¶i := ¶i (t) Generator rotor angle (rad).
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Éi := Éi (t) Generator rotor speed (rad/s).

E ′
i := E ′

i (t) Generator transient voltage (p.u.).

TMi := TMi (t) Generator mechanical input torque

(p.u.).

Efdi := Efdi (t) Generator internal field voltage (p.u.).

Tri := Tri (t) Governor reference signal (p.u.).

Mi Rotor inertia constant (p.u.× s2).

Di Damping coefficient (p.u.× s).

xdi Direct-axis synchronous reactance

(p.u.).

xqi Direct-axis synchronous reactance

(p.u.).

x ′
di Direct-axis transient reactance (p.u.).

T ′
d0i Direct-axis open-circuit time constant

(s).

TCHi Chest valve time constant (s).

RDi Speed governor regulation constant

(Hz/p.u.).

É0 Synchronous speed (2Ã60 rad/s).

PGi , QGi Generator’s active and reactive power

(p.u.).

PRi , QRi Renewable’s active and reactive power

(p.u.).

PLi , QLi Load’s active and reactive power (p.u.).

v̄i = vi e
j¹i Complex bus voltage (p.u.).

xd ∈ R
nd Dynamic states.

xa ∈ R
na Algebraic states.

u ∈ R
nu System’s control inputs.

q ∈ R
nq Demand and renewables generation.

I. INTRODUCTION

O
VER the years, the trends of global electricity gener-

ation have been shifting from fuel-based conventional

generators to a mix of such types with fuel-free renewable

energy resources such as wind and photovoltaic (PV) solar

farms. Nowadays, renewable energy sources contribute around

21% of the total generated electricity in the U.S. and it

is projected that their contribution will double to 42% by

2050 [1]. Albeit the increasing penetration of renewables in

bulk power systems plays a vital role in mitigating climate

change [2], it unfortunately presents a major challenge in

power systems operation due to the intermittent and uncertain

nature of renewables and loads. This challenge is met by
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two main goals in power systems’ control which are: 1)

maintaining the balance between power supply and demand

and 2) preserving the system-wide frequency [3]. Both the

objectives are essential to achieve successful power systems

operation as significant power imbalance and large frequency

deviation can provide adverse impacts which can eventually

result in system collapse [4].

The increasing penetration of renewables makes the afore-

mentioned tasks to be remarkably difficult to achieve, and

with that in mind, this article is dedicated to addressing the

problem of load- and renewable-following control (LRFC),

the focus of which is preserving the power balance and

system’s frequency against unpredictable behavior of power

demand and renewables. This problem is closely related to the

load-following control (LFC), in which power imbalance and

frequency deviations are mainly only attributed to the changes

in power demand only [5]. There exist numerous methods to

address the problem pertaining to LFC. In multiarea power

networks, automatic generation control (AGC) is a secondary,

interarea control architecture, the purpose of which is to

regulate the network’s frequency and interchange of power

flow (PF) [6]. Other than AGC, many proportional–integral–

derivative (PID)-based controllers have also been proposed

in the literature. Although PID is known for its simplic-

ity, it unfortunately requires rigorous tuning, and the results

based on the conventional approaches are often not generally

robust [7].

The shortcomings of the conventional AGC and PID

controllers motivate the development of advanced control

techniques, particularly for power network applications. The

advancement of convex optimization theory and computational

method facilitates the design of linear matrix inequality (LMI)-

based stabilization. Advanced control strategies for power

networks—albeit are not limited solely for LFC—can be

generally categorized into: 1) unified, wide-area control and

2) localized, decentralized control frameworks. Related to the

wide-area control, Chow and Ghiocel [8], Zolotas et al. [9],

and Jain et al. [10], respectively, use the adaptive control,

linear quadratic Gaussian control, and model predictive con-

trol (MPC) frameworks to minimize power oscillations and

improve damping between multiple areas. Since these methods

result in centralized control laws that may not be suitable

for large-scale networks, an optimization-based method is

developed in [11] to synthesize optimal control policies with

sparse stabilizing controller gains.

The study [12] combines the optimal PF problem with

LFC using the linear quadratic regulator (LQR). Recently,

a method developed using the notion of L∞ stability is

proposed in [13] to implement a robust control architecture

for LRFC in power systems. The behavior of power networks

with respect to the increasing penetration of distributed energy

resources (DERs) including renewables is investigated in [14],

where it is revealed that the increasing number of DERs

connected to the network can reduce the system’s stability.

All the aforementioned studies rely on the linearized ordinary

differential equation (ODE) models of power networks. The

drawbacks of this approach are: 1) the linearization and

controller synthesis needs to be performed periodically and

2) the resulting control law can only stabilize the system in a

small operating region.

For the decentralized grid control architecture, the works

in [15] and [16] pioneer the design of robust decentralized

stabilization for interconnected multimachine power networks

modeled as nonlinear ODEs. The underlying concept behind

this approach is to treat the nonlinearities of the system as a

source of uncertainty and as such, provided that these non-

linearities are quadratically bounded, a linear state feedback

control gain can be synthesized by solving convex optimiza-

tion problems. This idea has been used in [17] and [18] and

later on is extended to enhance power networks’ transient

dynamics [6] and tackle parametric uncertainties via H∞

control [19]. In addition, a decentralized control based on

the LQR for improving small-signal stability and providing

sufficient damping is proposed in [20]. Albeit the methods

proposed in [15], [16], and [6] are not relying on any lin-

earization either, they: 1) only consider active power transfer

between generators and loads; 2) the model assumes a reduced

network (generator buses only); and 3) the disturbances due

to renewables’ uncertainty are not considered.

To circumvent the limitations of these approaches, efforts

have been made recently to study the properties and the

stability of power systems based on their differential alge-

braic equation (DAE) models. For instance, [21] studies the

structural properties of the linearized DAE model of power

networks—this is extended in [22] to include higher order gen-

erator dynamics. Using the model presented in [21], Datta [23]

presents a condition to determine the small-signal stability

of power networks. Moreover, the problem of characterizing

topological changes in linear DAE systems is investigated

in [24]. A data-driven MPC for linear DAE power system

models is proposed in [25] for frequency regulation purposes.

The main advantage of using a DAE representation of power

networks relative to an ODE is that the behavior of the

network’s dynamics can be tightly linked with the network’s

topology and PF equations. Besides, if the nonlinear DAE

(NDAE) models are used, the dynamical behavior of the

system can be studied across wider operating regions while

regulating both the algebraic and dynamic variables in a power

system.

Motivated by the drawbacks existing in previous studies,

a novel approach for LRFC is presented in this article by

leveraging the classical NDAE models of power networks. The

LRFC is derived based on a more comprehensive fourth-order

generator dynamic model, complete with generator’s complex

power and power balance equations. To the best of our

knowledge, this is the first attempt to provide a secondary

control based on the NDAE models of multimachine power

networks especially for LRFC. The proposed control strategy

is intended to maintain the network’s frequency, the variability

of which is attributed to a sudden change in power demand and

power produced by renewable energy resources. The article’s

contributions are threefold.

1) The introduction of a new state feedback control frame-

work for LRFC using a detailed, high-order NDAE
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model of power networks. The proposed LRFC strategy

does not require any linearization, and as such, its

gain computation is not linked to any operating point.

Moreover, the resulting state feedback gain matrix has

a purely decentralized structure. This: 1) improves the

practicality of the proposed LRFC especially for larger

networks and 2) eliminates the need for an optimization

strategy to sparsify the controller’s structure.

2) The development of a convex optimization-based

approach for the stabilization of NDAEs. Although the

stability of NDAEs has been studied in the literature

for quite some time (for example, see [26], [27], [28]),

approaches for the stabilization of NDAEs based on

LMIs are, unfortunately, still lacking. Hence, we pro-

pose herein a computationally friendly approach for the

stabilization of NDAEs based on a simple state feedback

control policy using LMIs.

3) We showcase the effectiveness and performance of the

proposed approach to perform LRFC, where it is com-

pared with AGC and LQR-based control (see [29] for a

version where we also compare the proposed approach

with H∞ control). Numerical test results indicate the

superiority of our approach to performing LRFC relative

to LQR and AGC, since it can maintain the network’s

frequency and power balance subject to a relatively large

step disturbance.

The remainder of the article is organized as follows.

Section II presents the semi-explicit, NDAE models of power

networks, while Section III discusses the design of the pro-

posed state feedback control strategy for the stabilization of

NDAEs, especially for LRFC. Thorough numerical studies

are provided in Section IV where the results are discussed

accordingly. Finally, the article is concluded in Section V.

Notation: The notations I and O represent the identity

and zero matrices of appropriate dimensions, respectively. The

notations R
n and R

p×q denote the sets of row vectors with n

elements and matrices with size p×q with elements in R,. The

sets of n-dimensional positive definite matrices and positive

real numbers are denoted by S
n
++ and R++, respectively. The

2-norm of x ∈ R
n is equal to ∥x∥2 := (x2

1 + · · · + x2
n)

1/2.

The operator Blkdiag(·) constructs a block diagonal matrix,

while Diag(·) constructs a diagonal matrix from a vector. The

symbol ∗ represents symmetric entries in symmetric matrices.

II. DESCRIPTION OF POWER NETWORK DYNAMICS

We consider a power network consisting N number of

buses, modeled by a graph (N , E) where N is the set of

nodes and E is the set of edges. Note that N consists

of the traditional synchronous generator, renewable energy

resources, and load buses, i.e., N = G ∪ R ∪ L ∪ U where G

collects G generator buses, R collects the buses containing R

renewables, L collects L load buses, and U collects U nonunit

buses—see Nomenclature for a description of notations. In this

article, we consider a fourth-order dynamics of synchronous

generators modeled as [13], [30]

¶̇i = Éi − É0 (1a)

Mi É̇i = TMi − PGi − Di (Éi − É0) (1b)

T ′
d0i Ė ′

i = −
xdi

x ′
di

E ′
i +

xdi − x ′
di

x ′
di

vi cos(¶i − ¹i )+ Efdi (1c)

TCHi ṪMi = −TMi −
1

RDi

(Éi − É0)+ Tri . (1d)

The time-varying components in (1) include: generator’s

internal states ¶i , Éi , E ′
i , and TMi ; generator’s inputs Efdi

and Tri . The relationships among generator’s internal states

(¶i , Éi , E ′
i , TMi ), generator’s supplied power (PGi , QGi ), and

terminal voltage v̄i are represented by two algebraic con-

straints below [13]

PGi =
1

x ′
di

E ′
ivi sin(¶i − ¹i )−

xqi − x ′
di

2x ′
di xqi

v2
i sin(2(¶i − ¹i ))

(2a)

QGi =
1

x ′
di

E ′
ivi cos(¶i − ¹i )−

x ′
di + xqi

2x ′
di xqi

v2
i

−
xqi − x ′

di

2x ′
di xqi

v2
i cos(2(¶i − ¹i )). (2b)

The PF/balance equations—which resemble the power transfer

among generators, renewable energy resources, and loads—are

given as follows [30]:

PGi + PRi + PLi =

N
∑

j=1

viv j

(

Gi j cos ¹i j + Bi j sin ¹i j

)

(3a)

QGi + QRi + QLi =

N
∑

j=1

viv j

(

Gi j sin ¹i j − Bi j cos ¹i j

)

(3b)

where i ∈ G ∩ R ∩ L, ¹i j := ¹i − ¹ j , and (Gi j , Bi j ),

respectively, denote the conductance and susceptance between

buses i and j which can be directly obtained from the

network’s bus admittance matrix [30]. In the above equations,

(PRi , QRi ) denote the active and reactive power generated by

the renewables, while (PLi , QLi ) denote the active and reactive

power consumed by the loads. For the case at which a bus does

not contain generator, renewable, and/or load, the absence of

one or more of these units can be indicated by setting its/their

corresponding active and reactive power in (3) to zero. Now,

let us define xd as the vector populating all the dynamic states

of the network such that xd := [¶¦
É

¦ E′¦ T¦
M]¦ in which

¶ := {¶i }i∈G , É := {Éi }i∈G , E′ := {E ′
i }i∈G , T M := {TMi }i∈G ,

and a is the algebraic state corresponding to generator’s

power such that a := [P¦
G Q¦

G]¦ where PG := {PGi }i∈G ,

QG := {QGi }i∈G , and ṽ is the algebraic state representing

the network’s complex bus voltages such that ṽ := [v¦
¹

¦]¦

where v := {vi }i∈N , and ¹ := {¹i }i∈N . The input of the

system is considered to be u := [E¦
fd T¦

r ]¦ where Efd :=

{Efdi }i∈G and T r := {Tri }i∈G . In addition, define the vector

q as q := [P¦
R Q¦

R P¦
L Q¦

L ]¦ where PR := {PRi }i∈R,

QR := {QRi }i∈R, PL := {PLi }i∈L, and QL := {QLi }i∈L.

Based on the constructed vectors described above, the state-

space, NDAE model of multimachine power networks (1)–(3)

can be written as
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Ed ẋd = Ad xd + Gd f d (xd , xa)+ Bd u + hÉ0 (4a)

0 = Aa xa + Ga f a (xd , xa)+ Baq (4b)

where xd ∈ R
nd , xa := [a¦

ṽ
¦]¦ ∈ R

na , u ∈ R
nu , and

q ∈ R
nq . The functions f d : R

nd × R
na → R

n f d , f a : R
nd ×

R
na → R

n f a , constant matrices Ad ∈ R
nd×nd , Aa ∈ R

na×na ,

Gd ∈ R
n f d×nd , Ga ∈ R

n f a×na , Bd ∈ R
nu×nd , Ba ∈ R

nq×na ,

and vector h ∈ R
nd are all detailed in [31, Appendix A]. In

(4), we have Ed = I for this model.1 The ensuing sections

describe the development of an LRFC law u(t) for power

networks modeled in (4).

III. STATE FEEDBACK CONTROL DESIGN FOR NDAES

A. State Feedback Control Strategy for LRFC

The scheduling of synchronous generators in power net-

works is performed based on the loads and renewables’

demand and production forecasts. These day-ahead forecasts

provide hourly figures of power demand and production [32].

Based on these data and assuming that the power system oper-

ates in a quasi steady-state, the independent system operator

solves the PF or optimal PF (OPF) given in (3) every T

minute—typical value is 15 min or so—to aid the primary,

secondary, and tertiary controls [33]. Each solution obtained

from solving the PF/OPF corresponds to a particular operat-

ing point (also known as equilibrium). To describe how the

proposed LRFC is implemented, consider an ideal case when

the actual demand and power production by the renewables,

denoted by q(t), are known and static over a short time period

kT where k g 0 indicates the discrete-time index—let qk

be the predicted demand and renewable generation such that

q(t) = qk where kT f t f (k + 1)T . As such, the system

rests at equilibrium with (xk
d , xk

a) denoting the steady-state

dynamic and algebraic states, while uk
ref denoting the steady-

state generators’ inputs.

Since the power supply and demand are balanced, we have

Éi = É0 for all i ∈ G. Yet, in reality, the values of q(t) are

highly stochastic and rapidly changing over time. To maintain

the system’s frequency as close to 60 Hz as possible, when

q(t) ̸= qk due to demand and renewables variability, the new

uk
ref has to be computed and this must be followed by solving

the PF/OPF. This practice is impractical since q(t) ̸= qk

might happen during kT f t f (k + 1)T and especially

when the deviations are relatively small. As a means to sustain

the system’s frequency at 60 Hz while still being able to

solve the PF/OPF within the 15 min interval, we propose

a state feedback control architecture in which the controller

gain matrix is independent of the solution of the PF/OPF. The

power network’s dynamics with such a controller are written

as

Ed ẋd = Ad xd + Gd f d (xd , xa)+ Bd uLRFC + hÉ0 (5a)

1The matrix Ed is kept in the controller derivations for the sake of
generality since the state-space representation of power networks (1)–(3) is
not unique, and thus, it is possible to have Ed ̸= I .

Fig. 1. Control architecture for LRFC. Vector q denotes the actual demand
and renewables’ generation, the values of which are generally unknown.

0 = Aa xa + Ga f a (xd , xa)+ Baq (5b)

where the control input during kT f t f (k + 1)T is given as

uLRFC := uLRFC(t) = uk
ref + K d

(

xd(t)− xk
d

)

in which K d ∈ R
nu×nd denotes the associated controller gain

matrix. In this approach, K d is computed based only on the

knowledge of matrices and functions provided in (5) and thus

independent from uk
ref and (xk

d , xk
a). The overall structure

of the proposed LRFC is depicted in Fig. 1. This control

architecture only: 1) requires the knowledge of generators’

internal states—thus does not rely on any real-time measure-

ments of algebraic variables (a, ṽ) whatsoever—and 2) not

involving any kind of system’s linearization around (xk
d , xk

a).

It is worth noting that the control architecture depicted

in Fig. 1 is common in power systems secondary control

[6], [13], [15]. Now, suppose that a disturbance—attributed

to a sudden change in power demands and/or power produced

by the renewables—is applied to the network. This disturbance

will eventually throw the system’s operating point to a new

equilibrium. Let us denote qe as the new actual demand and

generated power from the renewables at kT f t f (k + 1)T

time instance. Using the proposed LRFC framework described

in (5), the system’s dynamics at the new steady-state operating

point indicated by (xe
d , xe

a) can be expressed as

0 = Ad xe
d + Gd f d

(

xe
d , xe

a

)

+ hÉ0

+ Bd

(

uk
ref + K d

(

xe
d − xk

d

))

(6a)

0 = Aa xe
a + Ga f a

(

xe
d , xe

a

)

+ Baqe. (6b)

To analyze the network’s dynamical behavior after the distur-

bance is initiated, let us introduce 1xd ∈ R
nd and 1xa ∈ R

na

as the deviations of the dynamic and algebraic states of the

perturbed system around (xe
d , xe

a), respectively, and they are

given as 1xd := xd − xe
d and 1xa := xa − xe

a . From (5)

and (6), and letting 1q := q − qe, the perturbed network’s

dynamics can be derived as

Ed1ẋd = (Ad + Bd K d)1xd + Gd1 f d (1xd ,1xa)

(7a)

0 = Aa1xa + Ga1 f a (1xd ,1xa)+ Ba1q

(7b)

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 21,2024 at 21:53:23 UTC from IEEE Xplore.  Restrictions apply. 



1778 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 4, JULY 2023

Fig. 2. LRFC is intended to stabilize the system—the actual state during
kT f t f (k + 1)T is represented by the blue curve—when the actual power

demand and renewable generation are transiting from the projected qk at time
kT to the new level qe until (k + 1)T .

where the mappings 1 f d(·) and 1 f a(·) are detailed as

1 f d

(

x, xe
)

:= f d (xd , xa)− f d

(

xe
d , xe

a

)

1 f a

(

x, xe
)

:= f a (xd , xa)− f a

(

xe
d , xe

a

)

where x := [x¦
d x¦

a ]¦ (likewise for xe). In (7), 1q reflects the

deviation of the current demand and renewables’ generation

q from the new operating values qe, and as such, 1q is

considered to be relatively small (1q ≈ 0). Our objective

herein is to design/compute K d such that all the trajectories

of the solutions of the NDAE (7) will converge asymptotically

toward the zero equilibrium. This is equivalent for the states of

power network (6) to converge toward the new operating point

indicated by (xe
d , xe

a). This process is illustrated in Fig. 2.

B. Stabilization of Power Network’s NDAEs

To simplify the notations, let x̌d := 1xd , x̌a := 1xa ,

f̌ d := 1 f d , and f̌ a := 1 f a such that (7) can be written as

Ed
˙̌xd = (Ad + Bd K d)x̌d + Gd f̌ d

(

x, xe
)

(8a)

0 = Aa x̌a + Ga f̌ a

(

x, xe
)

. (8b)

Albeit the NDAE (8) assumes that 1q = 0, in Section IV

we study the performance of the LRFC when disturbances are

present, and therefore, the stability of (7) is studied against a

nonzero disturbance. It is also assumed herein that x̌d ∈ Xd ¦

R
nd and x̌a ∈ Xa ¦ R

na . That is, the sets Xd and Xa represent

the operating region(s) of the power networks and contain the

solution manifold of (8). The following assumptions (which

are standard in the literature on control and stabilization of

DAEs [27], [28]) are crucial for the development of our LRFC

method and therefore considered to hold throughout the article.

Assumption 1: The following properties hold for the map-

pings f̌ d : R
nd × R

na → R
n f d and f̌ a : R

nd × R
na → R

n f a .

1) f̌ d(·) and f̌ a(·) are smooth and satisfy f̌ d(0, 0) = 0 and

f̌ a(0, 0) = 0.

2) f̌ d(·) and f̌ a(·) are quadratically bounded functions

such that given x̌d ∈ Xd and x̌a ∈ Xa , it holds that

∥

∥

∥ f̌ d

(

x(t), xe(t)
)

∥

∥

∥

2

2
f
∥

∥

∥Hd
d x̌d(t)

∥

∥

∥

2

2

+
∥

∥

∥Hd
a x̌a(t)

∥

∥

∥

2

2
(9a)

∥

∥

∥ f̌ a

(

x(t), xe(t)
)

∥

∥

∥

2

2
f
∥

∥Ha
d x̌d(t)

∥

∥

2

2

+
∥

∥Ha
a x̌a(t)

∥

∥

2

2
(9b)

for some known constant matrices Hd
d , Hd

a , Ha
d , Ha

a .

Assumption 2: This rank equality

rank

(

Aa + Ga

∂ f̌ a (x, xe)

∂ x̌a

)

= na (10)

is satisfied for all x̌d ∈ Xd and x̌a ∈ Xa .

It is worth mentioning that Assumption 1 is mild in power

networks—see [6], [15]. In fact, it is shown in [15] that

for a simplified ODE representation of power networks with

turbine governor dynamics, there exist bounding matrices such

that (9a) holds without the presence of x̌a . In principle, the

nonlinearities in the NDAE model are treated as external

disturbances originating from the network’s interconnections,

and as such, since their influence on the system is bounded

according to (9), the designed stabilizing controller attempts

to compensate for the impacts caused by these disturbances.

In the classical DAE systems’ theory, the differentiation

index can be associated with the minimum number of steps

required for expressing the corresponding DAE in an explicit

form [21], [34]. Condition (10) is useful to ensure that the

NDAE (8) is of index one [28]. For a simplified model

of multimachine power networks, it is proven in [21] that

power networks’ DAEs are of index one if every load bus

is connected to at least one generator bus. Since this is the

case in normal conditions (e.g., no tripping in power lines),

then Assumption 2 is easily satisfied. Although the property

introduced in [21] is studied for a simplified model without

involving any renewables, it is revealed that the condition

(10) actually holds for a more comprehensive model of power

networks considered in this article—this is evident from being

able to numerically simulate power networks for various test

cases (see Section IV). Hence, based on the above assump-

tions, we now focus on providing a computational approach

to calculate the state feedback gain matrix K d such that the

NDAE (8) is asymptotically stable. That is, the NDAE (8) is

said to be asymptotically stable if limt→∞ ∥x̌d(t)∥2 = 0 and

limt→∞ ∥x̌a(t)∥2 = 0 [35]. The following result provides a

sufficient condition for the asymptotic stability of NDAE (8)

at the origin.

Theorem 1: Consider the NDAE (8) provided that Assump-

tions 1 and 2 hold. The closed-loop system is asymptotically

stable around the origin if there exist matrices Q1 ∈ R
nd×nd ,

Q2 ∈ R
na×nd , and Q3 ∈ R

na×na , where both Q1 and Q3 are

nonsingular, and a scalar ϵ̄ ∈ R++ such that the following

matrix inequalities are feasible:













ϒ ∗ ∗ ∗

Aa Q2 Q¦
3 A¦

a + Aa Q3 + ϵ̄Ga G¦
a ∗ ∗

H̄
1
2

d Q1 O −ϵ̄ I ∗

H̄
1
2
a Q2 H̄

1
2

d Q3 O −ϵ̄ I













z 0 (11a)

E¦
d Q−1

1 = Q−¦
1 Ed { 0 (11b)

where ϒ includes the matrix K d and is defined as

Q¦
1 A¦

d + Ad Q1 + Q¦
1 K¦

d B¦
d + Bd K d Q1 + ϵ̄Gd G¦

d .

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 21,2024 at 21:53:23 UTC from IEEE Xplore.  Restrictions apply. 



NUGROHO AND TAHA: LRFC OF LINEARIZATION-FREE DIFFERENTIAL ALGEBRAIC EQUATION POWER SYSTEM MODELS 1779

The matrices H̄d and H̄a in (11a) are specified as

H̄d := Hd¦
d Hd

d + Ha¦
d Ha

d , H̄a := Hd¦
a Hd

a + Ha¦
a Ha

a .

The complete proof of Theorem 1 is available in

Appendix A. The feasibility of matrix inequalities (11) guar-

antees the existence of K d that asymptotically stabilizes

the NDAE (8) around the zero equilibrium. Realize that

since the states of the NDAE (8) in fact are just the deviations

of the actual states (xd , xa) from the new operating point

(xe
d , xe

a), it can be easily deduced that

lim
t→∞

1xd(t) = 0 ⇒ lim
t→∞

xd(t) = xe
d

lim
t→∞

1xa(t) = 0 ⇒ lim
t→∞

xa(t) = xe
a .

Since xe
d consists of the synchronous frequency for the rotors

of all rotating machines, we have Éi = É0 for all i ∈ G.

In short, the proposed state feedback control strategy with

gain matrix K d is able to provide LRFC due to the changes

in power demands and renewables’ generation. Unfortunately,

the majority of off-the-shelf optimization packages, e.g.,

YALMIP [36], cannot be used to find solutions for (11) due

to the nonconvexity of the problem, which is partly attributed

to the appearance of Q−1
1 in (11b) along with the existence of

the bilinear term K d Q1. To circumvent this design challenge,

the following result is proposed.

Proposition 1: Consider the NDAE (8) given that Assump-

tions 1 and 2 hold. The closed-loop system is asymptotically

stable around the origin if there are matrices X1 ∈ S
nd
++,

X2 ∈ R
na×nd , R ∈ R

na×na , Y ∈ R
nd×na , W ∈ R

nu×nd , and a

scalar ϵ̄ ∈ R++ such that the following LMI is feasible:










9 ∗ ∗ ∗

Aa X2 E¦
d + AaY 2 ∗ ∗

H̄
1
2

d X1 E¦
d O −ϵ̄ I ∗

H̄
1
2
a X2 E¦

d + H̄
1
2
a Y H̄

1
2

d R O −ϵ̄ I











z 0 (12)

where 9 is specified as

Ed X1 A¦
d + Ad X1 E¦

d + Ed W¦ B¦
d + Bd W E¦

d + ϵ̄Gd G¦
d

and 2 := R¦ A¦
a + Aa R + ϵ̄Ga G¦

a . Upon solving (12), the

controller gain K d can be recovered as K d = W X−1
1 .

Readers are referred to Appendix B for the proof of Propo-

sition 1. In contrast to matrix inequality (11), the one given

in (12) constitutes an LMI and therefore can be easily solved

through standard convex optimization packages.

For some practical reasons, it is often highly desired to

obtain small feedback gains so that the resulting transient

behaviors can be kept within acceptable bounds and do

not strain the system protection [6]. Contrary, a high-gain

controller is in general undesirable since it could increase

the sensitivity of the closed-loop system against noise and

uncertainty. To that end, we consider solving the following

optimization problem in the interest of obtaining K d with a

reasonable magnitude

(P) min
ϵ̄,X1,X2,R,Y ,W

∥W∥2

s. t. (12), X1 { 0, ϵ̄ > 0

where ∥W∥2 denotes the induced 2-norm of matrix W .

Algorithm 1 Implementation of the LRFC

C. Implementation of the Proposed LRFC Strategy

The proposed LRFC strategy can be implemented as fol-

lows. First, based on the matrices describing the network

dynamics (4), the controller gain K d is computed by solving

problem P. Based on the load and renewable forecasts qk ,

the steady-state algebraic variables xk
a can be obtained by

solving the PF/OPF. Afterward, (xk
d , uk

ref) can be computed

by setting ẋd = 0 in (4), and from (qk, xk
a), the resulting

system of nonlinear equations is numerically solved. The

calculated (xk
d , uk

ref) is then fed to the control architecture

illustrated in Fig. 1. These steps are then repeated once every

T , which is typically around 15 min [33], to continuously

perform LRFC and compensate for any changes in demand

and renewables generation. Algorithm 1 presents a summary

of how the LRFC is implemented. Realize that since the

matrix K d is only computed once, our approach for LRFC

is much more practical compared with other methods that

rely on the linearization of (4) around the operating point

(xk
d , xk

a) because, in addition to solving the PF/OPF and

the set of nonlinear equations mentioned above, the inde-

pendent system operator has to: 1) perform the linearization

and 2) computing the stabilizing controller gain matrix—two

are carried out in each iteration within kT f t f (k +

1)T time interval. This linearization-based approach certainly

necessitates more demanding computational processes to be

performed.

Remark 1: Despite the proposed LRFC strategy does

not consider impacts caused by parametric uncertain-

ties, one can perform sensitivity analyses to predict the

levels of uncertainty propagation within a certain time

period [37], after which the predicted worst case operat-

ing regions can be determined and included in the sets

Xd and Xa .

IV. NUMERICAL CASE STUDIES

A. Parameters and Setup for Numerical Simulations

This section presents numerical simulations for investigat-

ing the performance of the proposed approach in stabilizing

several IEEE test networks with respect to load and renewable

disturbances. Every numerical simulation is performed using

MATLAB R2020b running on a 64-bit Windows 10 with a
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Fig. 3. Numerical simulation results: (a)–(c) Frequency of Generator 1 for the nine-bus network. (d)–(f) Frequency of Generator 1 for the 14-bus network.
(g) and (h) Frequency of Generator 1 while (i) shows all generators’ frequency for the 39-bus network with the NDAE-control. (j) and (k) Frequency of
Generator 1 while (l) shows all generators’ frequency for the 57-bus network with the NDAE-control. Although the trajectories of the rotor frequency for the
39-bus network given in (g) and (h) seem to converge, the AGC actually fails to stabilize the system for ÄL = 0.01 and 0.05 while the LQR-control cannot
stabilize the system when ÄL = 0.05.

3.0-GHz AMD Ryzen2 9 4900HS processor and 16 GB

of RAM, whereas all convex optimization problems are

solved through YALMIP [36] optimization interface along

with MOSEK [38] solver. All the dynamical simulations for

NDAEs are performed using MATLAB’s index-one DAEs’

solver ode15i. Four power networks are considered in this

study.

2Trademarked.

1) Nine-Bus Network: The Western System Coordinat-

ing Council (WSCC) nine-bus system with three syn-

chronous generators.

2) 14-Bus Network: Consisting of 14-bus system with five

synchronous generators, representing a portion of the

American Electric Power System (AEPS) in the Mid-

western U.S.

3) 39-Bus Network: Represents the New England ten-

machine, 39-bus system.
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Fig. 4. (a) Trajectories of active power produced by Generator 5 and
(b) modulus of the voltage at Bus 2 for the 14-bus power network with

ÄL = 0.04. The notations P0
G

and v0 represent the corresponding initial
steady-state values before disturbance is applied to the network.

4) 57-Bus Network: Consisting of 57 buses with seven

synchronous generators, which again represents a part

of the AEPS.

In this study, the loads are presumed to be of constant power

type while renewable power plants—such as wind farms and

solar PVs—are modeled as loads with negative power, thereby

injecting active power into the network. For the nine-bus and

14-bus networks, every load bus is connected to one renewable

power plant. For the 39-bus and 57-bus networks, one renew-

able power plant is attached to a load bus when the consumed

power is equal to or exceeds 3 and 0.1 p.u., respectively. The

initial conditions and steady-state values of the power network

before disturbance is applied are computed from the solutions

of PF, which is obtained from MATPOWER [39] function

runpf. The power base is chosen to be 100 MVA. The

generator parameters are obtained from Power System Toolbox

(PST) [30], where the regulation and chest time constants are

set to RDi = 0.02 Hz/p.u. and TCHi = 0.2 s, respectively, for

all i ∈ G.

B. LRFC Under Different Levels of Step Disturbances

Herein, we analyze the performance of the proposed control

strategy—which is referred to as NDAE-control—in perform-

ing LRFC for the aforementioned power network test cases

against two control strategies prominent in power systems

literature, namely, the AGC and LQR control (referred to

as LQR-control). We do not compare our method with the

ones proposed in [15], [16], and [6] since these methods are

designed for the simplified nonlinear ODE model of power

networks and thus are not applicable for performing LRFC

using the model given in (4). The controller gain for the

NDAE-control is obtained from solving problem P. Since

TABLE I

COMPARISON OF THE TOTAL ROTOR SPEED DEVIATIONS WITH RESPECT

TO DIFFERENT LEVELS OF DISTURBANCE TAKEN AT t = 15 s, EXCEPT

FOR THE NINE-BUS NETWORK WHERE t = 10 s. THE DASH

SYMBOL “−” INDICATES THAT THE ROTOR SPEED DOES NOT

CONVERGE AND BOLD NUMBERS INDICATE THE

MINIMUM VALUES

the form of nonlinearities in f d(·) and f a(·) is much more

complex than the ones in [15] and [6], the associated bounding

matrices are instead chosen to be
(

Hd
d

)2
= I,

(

Hd
a

)2
= I,

(

Ha
d

)2
= I,

(

Ha
a

)2
= I

for the nine-bus and 14-bus networks while the following

values:
(

Hd
d

)2
= 10I,

(

Hd
a

)2
= 10I,

(

Ha
d

)2
= 10I

(

Ha
a

)2
= 10I

are selected for the 39-bus and 57-bus networks. The bounding

matrices for the 39-bus and 57-bus networks are set to be larger

than those for the nine-bus and 14-bus networks since the

39-bus and 57-bus networks comprise significantly larger

nodes and interconnections. For the AGC, it is implemented

based on the method described in [13] and [40], where it

provides a set of control inputs for the governor reference

signals only. The AGC calculates such input signals by adding

an extra dynamic state Ç to the power network model (4),

specified as

Ç̇ = KG

(

−Ç − ACE +

G
∑

i=1

(

PGi − P0
Gi

)

)

(13)

where KG is an integrator gain for the AGC dynamics, the

value of which is set to be 1000, and P0
Gi is the i th steady-

state generator active power before disturbance. The term ACE

in (13) stands for area control error and defined as [13]

ACE :=
1

G

G
∑

i=1

(

1

RDi

+ Di

)

(Éi − É0).

Following [41], each power network is treated as a single area.

The governor reference signal for each generator i ∈ G is given

as TCHi = T 0
CHi +KiÇ , where Ki := PGi/

∑G
i=1 PGi , for every

i ∈ G, indicates the participation factor of each generator such
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Fig. 5. Numerical simulation results for the 14-bus network with renewables’ uncertainty. (a)–(c) Overall frequency figure of all generators while
(d)–(f) illustrates the overall modulus of bus voltage for all buses using the NDAE-control, LQR-control, and AGC, respectively.

that
∑G

i=1 Ki = 1, and T 0
CHi is the corresponding steady-state

governor reference signal before disturbance. However, since

AGC only provides value for TCHi , the control inputs for

the internal field voltage are calculated with the aid of LQR-

control. It is important to mention that the controller gain for

LQR-control is retrieved from solving the corresponding LMI

specified in [ [42], Th. 1], which is reliant on the linearized

dynamics corresponding to the initial operating point.

The numerical simulation is performed as follows. Initially,

the system operates with total load of (P0
L , Q0

L) and total

generated power from renewables of (P0
R, Q0

R). For each of

the power network test cases, the following values are chosen:

P0
L + j Q0

L = 3.15 + j1.15 and P0
R + j Q0

R = 0.63 p.u.

for the nine-bus network, P0
L + j Q0

L = 3.15 + j1.15 and

P0
R + j Q0

R = 0.63 p.u. for the 14-bus network, P0
L + j Q0

L =

62.5423 + j13.871 and P0
R + j Q0

R = 8.1712 p.u. for the

39-bus network, while P0
L + j Q0

L = 12.508 + j3.364 and

P0
R + j Q0

R = 2.2888 p.u. for the 57-bus network. Immediately

after t > 0, the loads and renewables are experiencing an

abrupt step change in the amount of consumed and produced

power, which triggers the system to depart from its initial

equilibrium point. The new values of complex power for

loads and renewables are specified as Pe
L + j Qe

L := (1 +

ÄL)(P
0
L + j Q0

L) and Pe
R + j Qe

R := (1 + ÄR)(P
0
R + j Q0

R),

respectively, where Ä ∈ R determines the quantity of the

disturbance. In this numerical simulation, we consider different

levels of disturbance: ÄL = 0.04, 0.08, and 0.12 for the nine-

bus network and 14-bus network, ÄL = 0.01 and 0.05 for

the 39-bus network, and ÄL = 0.005 and 0.01 for the

57-bus network. For the disturbance coming from renewables,

we select ÄR = −ÄL.

The results of the numerical simulation are illustrated in

Fig. 3. For the nine-bus network, the proposed NDAE-control

is able to stabilize the system even when the disturbance is

considerably high (12% for this network). This is in contrast

to the AGC and LQR-control, as they are only able to

maintain stability with relatively low (4%) and moderate (8%)

disturbances. A similar behavior is also observed from the sim-

ulation results for the 14-bus, 39-bus, and 57-bus networks: the

LQR-control is not able to maintain frequency stability when

the disturbance achieves 12%, 5%, and 1% while the AGC

fails even with 8%, 1%, and 0.5% disturbance, respectively, for

the 14-bus, 39-bus, and 57-bus networks. It can be seen from

Fig. 3 that the frequency trajectories due to the NDAE-control

converge rapidly to the synchronous frequency É0, unlike the

other controllers. Table I presents the norm of rotor speed

deviations for all the generators with respect to various levels

of disturbance. It is evident that the NDAE-control can provide

stabilization for the power networks with a decent convergence

rate. It is also observed that each controller brings the system’s

operating point to a new equilibrium—this can be seen from

the trajectories of active power and bus voltage for the 14-bus

network with low disturbance as shown in Fig. 4.

C. Assessment Against Renewable Generation Uncertainties

In this section, we study the 14-bus network while injecting

the generated power from renewables with random Gaussian

noise zi (t) with zero mean and variance of 0.01(P0
Ri + j Q0

Ri)

for each i ∈ R such that

Pe
Ri + j Qe

Ri := (1 + ÄR)
(

P0
Ri + j Q0

Ri

)

+ (1 + j)zi (t)

∀i ∈ R.

To compensate for the random noise, the simulation is per-

formed ten times and the resulting outcomes are averaged. The

results of this numerical simulation with low step disturbance
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Fig. 6. Sparsity patterns of the controller gain matrix K d for (a) nine-bus
and (b) 14-bus networks. The red circles represent entries with significant
magnitudes. Similar patterns are also found on the remaining larger networks.

ÄL = 0.04 are illustrated in Fig. 5, from which it can be

seen that the maximum and minimum frequency deviations for

the NDAE-control are experiencing much mode fluctuations

compared with those from the LQR-control and AGC. The

NDAE-control is able to maintain generators’ frequency close

to 60 Hz without exhibiting significant oscillations. It is also

indicated from this figure that for the NDAE-control, the

average bus voltage across the network has a roughly flat

profile. This result can be attributed to the centralized control

structure in the LQR-control and AGC, while the proposed

DAE-control implements a decentralized control framework—

discussed in Section IV-D.

D. On the Controller Gain’s Sparsity Structure

A decentralized control is much preferable to a centralized

control since in the former type of control, stabilization

can be maintained using local measurements only. As such,

our NDAE-control is more practical than AGC and LQR

since the NDAE-control implements a decentralized control

structure—this is indicated by the certain sparsity pattern on

the feedback gain matrix K d . The patterns for the nine-bus

and 14-bus networks are described in Fig. 6. The small red

circles denote entries with significant magnitudes, i.e., entries

whose magnitudes are greater or equal to 10−6. Note that

the dynamic states are ordered as xd := [¶¦
É

¦ E′¦ T¦
M]¦

according to Section II. Based on this ordering, the patterns

depicted in Fig. 6 suggest that the inputs for each generator can

be constructed from local measurements (or estimation) of its

internal states. The decentralized control structure allows the

internal field voltage to be constructed by Efdi = K D(i,2G+i)E
′
i

while the governor reference signal to be given by

Tri = K D(G+i,i)¶i + K D(G+i,G+i)Éi + K D(G+i,3G+i)TMi

for all i ∈ G where K D(i, j) is the (i, j)th element of K d . The

sparsity structure of K d is suspected to be caused by the use of

(8) when the matrix K d is synthesized for the NDAE-control

since the NDAE model in (8) retains the structure of the

power network while, in contrast, this structure is lost in the

linearized power network’s model used in AGC and LQR.

V. SUMMARY AND FUTURE DIRECTIONS

A novel approach for LRFC in multimachine power net-

works is proposed. In contrast to other methods from the lit-

erature, our approach is based on the NDAE representation of

power networks, and accordingly, we develop a computational

approach based on LMI to construct the stabilizing controller

gain matrix. The proposed approach stands out in the following

manner: 1) its independence from any linearization around any

operating points; 2) the resulting controller gain matrix can

sufficiently maintain the system’s frequency around the desired

equilibrium against significant disturbances originating from

the loads and renewables; and 3) although our approach relies

on advanced DAE systems theory, the proposed LRFC strategy

is as simple as proportional decentralized control framework

and therefore can be implemented to large-scale power systems

without the need for any special tools.

In our future work, we are planning to: 1) extend the

proposed NDAE-control and develop a robust control method

to handle adverse impacts caused by parametric uncertainties;

2) investigate the cause of decentralized sparsity patterns in the

controller gain resulting from the NDAE-control; and 3) study

the controller’s applicability to perform wide-area damping

control in inverter-based, renewable-heavy power networks.

APPENDIX A

PROOF OF THEOREM 1

The following lemma is presented first due to its importance

in the proof of Theorem 1.

Lemma 1: For any matrix M ∈ R
r×s with r < s and scalars

a, b ∈ R++, the following holds:

M¦(a M M¦ + bI)−1 M − a I ¯ 0. (14)

Proof: Consider the singular value decomposition of M

written as M = U
[

3 O
]

V¦ where 3 ∈ R
r×r is a diagonal

matrix populating all the singular values of M while U ∈ R
r×r

and V ∈ R
s×s are two orthogonal matrices. As the term

a M M¦ + bI for positive scalars a and b can be written as

a M M¦ + bI = U
(

a3
2 + bI

)

U¦

then it can be shown that the term M¦(a M M¦ + bI)−1 M is

equal to

V

(

Blkdiag

(

a3
2

(

3
2 +

b

a
I

)−1

, O

))

V¦.

Nevertheless, since the inequality (32 + (b/a)I)−1 ¯ 3
−2

implies a3
2(32 + (b/a)I)−1 ¯ a I , (14) is inferred.

Now we are ready to prove Theorem 1, which is decom-

posed into four parts.

1) Showing that the dynamic state is asymptotically stable.

2) Demonstrating that the matrices associated with the

Lyapunov function are nonsingular.

3) Showing that the algebraic state is asymptotically stable.

4) Establishing the matrix inequalities in (11).

1) Let V : R
nd → R+ be a Lyapunov function candidate

such that V (t) = x̌
¦
d E¦

d P1 x̌d where P1 ∈ R
nd×nd is assumed

(for now) to be nonsingular and E¦
d P1 = P¦

1 Ed { 0. The

time derivative of V (·) is equivalent to

V̇ (t) =
(

Ād x̌d + Gd f̌ d(x, xe)
)¦

P1 x̌d

+ x̌
¦
d P¦

1

(

Ād x̌d + Gd f̌ d(x, xe)
)

(15)
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where Ā
d

d := Ad + Bd K d . For any DAE of index H , then for

any function 0i (·), i ∈ {0, 1, . . . , H − 1}, we have [28]

H−1
∑

i=0

0i (x̌d , x̌a)
d i h(x̌d , x̌a)

dt i
= 0 ∀x̌d ∈ Xd , x̌a ∈ Xa

(16)

where the function h(·) represents all the terms on the

right-hand side of (8b). Since the DAE is of index-one, thanks

to Assumption 2, the following choice of 00(x̌d , x̌a) such that:

00(x̌d , x̌a) := x̌
¦
d P¦

2 + x̌
¦
a P¦

3 (17)

for some P2 ∈ R
na×nd and P3 ∈ R

na×na is sufficient. Adding

(16) to (15), using (17), allows (15) to be expressed into

V̇ (t) =
(

Ād x̌d + Gd f̌ d(x, xe)
)¦

P1 x̌d

+ x̌
¦
d P¦

1

(

Ād x̌d + Gd f̌ d(x, xe)
)

+
(

Aa xa + Ga f̌ a

(

x, xe
)

)¦
(P2 x̌d + P3 x̌a)

+
(

x̌
¦
d P¦

2 + x̌
¦
a P¦

3

) (

Aa xa + Ga f̌ a

(

x, xe
)

)

.

(18)

From (9), the following inequalities are obtained:

0 f ϵ x̌
¦
d H̄d x̌d − ϵ f̌ d

(

x, xe
)¦

f̌ d

(

x, xe
)

+ ϵ x̌
¦
a H̄a x̌a − ϵ f̌ a

(

x, xe
)¦

f̌ a

(

x, xe
)

(19)

for a scalar ϵ ∈ R++. Next, adding (19) to the right-hand side

of (18) yields the inequality

V̇ (t) f É
¦
�É (20)

where É := [x̌¦
d x̌

¦
a f̌

¦

d (x, xe) f̌
¦

a (x, xe)]¦ and

� :=











�(1,1) ∗ ∗ ∗

A¦
a P2 �(2,2) ∗ ∗

G¦
d P1 O −ϵ I ∗

G¦
a P2 G¦

a P3 O −ϵ I











(21)

where the block diagonal matrices are specified as

�(1,1) := Ā
¦
d P1 + P¦

1 Ād + ϵ H̄d

�(2,2) := A¦
a P3 + P¦

3 Aa + ϵ H̄a .

It will be demonstrated in the sequel that the system of NDAEs

(7) is asymptotically stable around the origin if É
¦
�É < 0 for

any É ̸= 0. Realize that this condition is equivalent to � z 0.

Using the Raleigh inequality, we have

É
¦
�É f ¼max(�)∥É∥2

2. (22)

Since the following also holds:

∥É∥2
2 f (1 + ¼max(H̄d))∥x̌d∥2

2 + (1 + ¼max(H̄a))∥x̌a∥2
2

thanks to (9), then from (22) one can simply obtain

É
¦
�É f −¸1∥x̌d∥2

2 − ¸2∥x̌a∥2
2 (23)

where in (23), ¸1, ¸2 ∈ R++ defined as ¸1 := −¼max(�)(1 +

¼max(H̄d)) and ¸2 := −¼max(�)(1 + ¼max(H̄a)). Now,

as P1 being nonsingular implies

−¸1∥x̌d∥2
2 − ¸2∥x̌a∥2

2 f −¸1¼
−1
max

(

E¦
d P1

)

V (t)

then (20) and (23) lead to

V̇ (t) f −¸1¼
−1
max

(

E¦
d P1

)

V (t)

⇒

∫ t

t0

1

V (Ä )
dV (Ä ) f

∫ t

t0

−¸1¼
−1
max

(

E¦
d P1

)

dÄ

ô V (t) f e
−¸1¼

−1
max

(

E¦
d P1

)

(t−t0)V (t0). (24)

Since ∥x̌d∥2
2 f ¼−1

min(E
¦
d P1)V (t), from (24) we obtain

∥x̌d(t)∥2 f Èe
− 1

2 ¸1¼
−1
max

(

E¦
d P1

)

(t−t0)∥x̌d(t0)∥2 (25)

where È > 0 is a residual term given as

È :=

√

¼−1
min

(

E¦
d P1

)

¼max

(

E¦
d P1

)

.

The inequality (25) implies that ∥x̌d(t)∥2 → 0 as t → ∞.

2) Second, since we require � z 0, it holds that the

pair [Blkdiag(Ed , O),Blkdiag( Ād , Aa)] is both regular and

impulse-free [43]. As such, there exist nonsingular matrices

M, N ∈ R
nx ×nx where nx := nd + na such that [34]

Ẽ = M

[

Ed O

O O

]

N =

[

I O

O O

]

(26a)

Ã = M

[

Ād O

O Aa

]

N =

[

Ãd O

O I

]

(26b)

with M, N partitioned as follows:

M =
[

M¦
1 M¦

2

]¦
, N =

[

N1 N2

]

where M1 ∈ R
nd×nx , M2 ∈ R

na×nx , N1 ∈ R
nx ×nd , N2 ∈

R
nx ×na . In addition, define the transformed state x̃ ∈ R

nx as

x̃ =

[

x̃d

x̃a

]

:= N−1

[

x̌d

x̌a

]

, x̃d ∈ R
nd , x̃a ∈ R

na . (27)

It then can be directly shown the existence of matrices P̃1 ∈

R
nd×nd , P̃2 ∈ R

nd×na , and P̃3 ∈ R
na×na such that

[

P̃1 O

P̃2 P̃3

]

= M−¦

[

P1 O

P2 P3

]

N (28)

with P̃1 being symmetric. Since V (t) = x̌
¦
d E¦

d P1 x̌d =

x̃¦
d P̃1 x̃d , P̃1 { 0. Using the Schur complement, it is straight-

forward to show that � z 0 is equivalent to �̃ z 0 where �̃

is defined as

�̃ := Ã
¦

P̃ + P̃
¦

Ã + ϵN¦ H̄
¦

N + ϵ P̃
¦

MGG¦ M¦ P̃

where H̄ := Blkdiag(H̄d , H̄a), G := Blkdiag(Ḡd , Ḡa), and

P̃ is equal to the left-hand side of (28). It can be shown from

the (2, 2) block of �̃ that �̃ z 0 implies P̃3 + P̃
¦

3 z 0. Now

let us define a matrix measure function [44] ¿ : R
na×na → R

as follows:

¿
(

P̃3

)

:= lim
¹→0+

∥I + ¹ P̃3∥2 − 1

¹
.
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Due to [ [44], Lemma 2.4], then the inequality below holds

¼max

(

P̃3

)

f ¿
(

P̃3

)

=
1

2
¼max

(

P̃3 + P̃
¦

3

)

. (29)

The above inequality suggests that P̃3 is nonsingular as P̃3 +

P̃
¦

3 z 0 infers that the right-hand side of (29) is negative.

This shows that the matrix P̃ defined in (28) is nonsingular.

However, since M, N are also nonsingular, it can be inferred

from (28) that P1 and P3 are nonsingular—this confirms the

validity of the previous assumption.

3) Third, from the fact that the (2, 2) block of �̃ is negative

definite, then for a constant ¶ > 0, we have

P̃3 + P̃
¦

3 + ϵN¦
2 H̄ N2 + P̃

¦

3 4 P̃3 z 0 (30)

where 4 := ϵM2GG¦ M2 + ¶ I is nonsingular. Note that (30)

can be written as [45]

(

P̃3 + 4
−1
)¦

4

(

P̃3 + 4
−1
)

− 4
−1 + ϵN¦

2 H̄ N2 z 0.

Since we have ( P̃3 + 4
−1)¦4( P̃3 + 4

−1) { 0, from the

above equation, there exists · > 0 such that [45]

(ϵ + · )N¦
2 H̄ N2 − 4

−1 z 0. (31)

It then can be shown from (31) and Lemma 1 that

∥

∥

∥

∥

H̄
1
2 N2 M2G f̌ (x, xe)

∥

∥

∥

∥

2

2

f
1

ϵ + ·
f̌

¦
(x, xe)G¦ M¦

2 4
−1 M2G f̌ (x, xe)

f
ϵ

ϵ + ·
f̌

¦
(x, xe) f̌ (x, xe)

where f̌ (x̌d , x̌a) := [ f̌
¦

d (x, xe) f̌
¦

a (x, xe)]¦, implying

∥

∥

∥ f̌ (x, xe)

∥

∥

∥

2

2
f
ϵ + ·

·

∥

∥

∥

∥

H̄
1
2 N2

∥

∥

∥

∥

2

F

∥x̃d∥2
2 . (32)

Using (32), it is straightforward to show that

∥x̃a∥2 f

√

ϵ + ·

·
∥M2G∥F

∥

∥

∥

∥

H̄
1
2 N2

∥

∥

∥

∥

F

∥x̃d∥2

which, according to (25), leads to

∥

∥x̌a(t)
∥

∥

2
f ϱe

− 1
2 ¸1¼

−1
max

(

E¦
d P1

)

(t−t0)
∥

∥x̌d(t0)
∥

∥

2
(33)

where ϱ > 0 is a residual term. The inequality (33) indicates

that ∥x̌a(t)∥2 → 0 as t → ∞.

4) Finally, since P1 and P3 are nonsingular, we can define

Q1 ∈ R
nd×nd , Q2 ∈ R

nd×na , and Q3 ∈ R
na×na such that

Q1 := P−1
1 , Q2 := −P−1

3 P2 P−1
1 , Q3 := P−1

3 . (34)

Using congruence transformation, given the new matrices

defined in (34), and applying the Schur complement, the

condition � z 0 can be shown equivalent to (11a) where

ϵ̄ := (1/ϵ). Note that substituting Q1 = P−1
1 into E¦

d P1 =

P¦
1 Ed { 0 establishes (11b). This completes the proof. ■

APPENDIX B

PROOF OF PROPOSITION 1

Note that from (26a) and (28), we have
[

Ed O

O O

]¦

= N−¦

[

I O

O O

]

M−¦

[

P1 O

P2 P3

]−1

= N

[

51 O

52 53

]

M−¦

where 51 := P̃
−1

1 , 52 := − P̃
−1

3 P̃2 P̃
−1

1 , and 53 := P̃
−1

3 .

The second equation can be written as
[

P1 O

P2 P3

]−1

= N

[

51 O

O I

] [

I O

O O

]

M−¦

+ N

[

O

I

]

[

52 53

]

M−¦. (35)

Since N¦Blkdiag(E¦
d , O)M¦

[

O I
]

= 0, then there exists a

full-rank matrix 8 ∈ R
na×na such that [26]

8
[

O I
]

N¦

[

Ed O

O O

]¦

= 0

which allows (35) to be expressed as
[

P1 O

P2 P3

]−1

= N

[

51 O

O I

]

N¦N−¦

[

I O

O O

]

M−¦

+ N

[

O

I

]

8
¦
8

−¦
[

52 53

]

M−¦.

Following [26], it is not difficult to show that the above ensures

the existence of matrices X1 ∈ S
nd
++, X2 ∈ R

na×nd , R ∈

R
na×na , and Y ∈ R

nd×na such that

Q1 = X1 E¦
d , Q2 = X2 E¦

d + Y , Q3 = R. (36)

Finally, by substituting (36) into (11a) and defining W :=

K d X1 for a matrix W ∈ R
nu×nd (12) is established. Since

(36) indeed satisfies (11b), we are done. ■
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