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Abstract— Electromechanical transients in power networks are
mostly caused by a mismatch between power consumption and
production, causing generators to deviate from the nominal
frequency. To that end, feedback control algorithms have been
designed to perform frequency and load/renewable-following
control. In particular, the literature addressed a plethora of
grid- and frequency-control challenges with a focus on linearized,
differential equation models whereby algebraic constraints
[i.e., power flows (PFs)] are eliminated. This is in contrast to the
more realistic nonlinear differential algebraic equation (NDAE)
models. Yet, as grids are increasingly pushed to their limits via
intermittent renewables and varying loads, their physical states
risk escaping operating regions due to either a poor predic-
tion or sudden changes in renewables or demands—deeming
a feedback controller based on a linearization point virtually
unusable. In lieu of linearized differential equation models, the
objective of this article is to design a simple, purely decentralized,
linearization-free, feedback control law for the NDAE models of
power networks. The aim of such a controller is to primarily
stabilize frequency oscillations after a significant, unknown dis-
turbance in renewables or loads. Although the controller design
involves advanced NDAE system theory, the controller itself is
as simple as a decentralized proportional or linear quadratic
regulator (LQR) in its implementation. Case studies demonstrate
that the proposed controller is able to stabilize dynamic and
algebraic states under significant disturbances.

Index Terms— Differential algebraic equations (DAEs), fre-
quency regulation, load-following control (LFC), power networks.

NOMENCLATURE
N :={1,2,...,N} Set of nodes (buses).
ECN XN Set of edges (links).
GCN,|IGl =G Set of generator buses.
RCN,|RI=R Set of buses with renewables.
LCN,|L|=L Set of load buses.
UCN, U =U Set of nonunit buses.
8 == 6;(t) Generator rotor angle (rad).
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w; = w;(t) Generator rotor speed (rad/s).

E] = E[(1) Generator transient voltage (p.u.).

Twmi := Tmi(t)  Generator mechanical input torque
(p.u.).

Etqi := Eggi(t) Generator internal field voltage (p.u.).

T =T (1) Governor reference signal (p.u.).

M; Rotor inertia constant (p.u. x s2).

D; Damping coefficient (p.u. X s).

Xdi Direct-axis  synchronous  reactance
(p-u.).

Xgi Direct-axis  synchronous  reactance
(p.u.).

xc’ll. Direct-axis transient reactance (p.u.).

Ty, Direct-axis open-circuit time constant
(s).

TcHi Chest valve time constant (s).

Rpi Speed governor regulation constant
(Hz/p.u.).

wo Synchronous speed (2760 rad/s).

Pgi, QOgi Generator’s active and reactive power
(p-u.).

Pri, Ori Renewable’s active and reactive power
(p.u.).

Pri, Oui Load’s active and reactive power (p.u.).

b; = vjell Complex bus voltage (p.u.).

xg € R Dynamic states.

x; € R Algebraic states.

u € R™ System’s control inputs.

q € R Demand and renewables generation.

I. INTRODUCTION

VER the years, the trends of global electricity gener-
()ation have been shifting from fuel-based conventional
generators to a mix of such types with fuel-free renewable
energy resources such as wind and photovoltaic (PV) solar
farms. Nowadays, renewable energy sources contribute around
21% of the total generated electricity in the U.S. and it
is projected that their contribution will double to 42% by
2050 [1]. Albeit the increasing penetration of renewables in
bulk power systems plays a vital role in mitigating climate
change [2], it unfortunately presents a major challenge in
power systems operation due to the intermittent and uncertain
nature of renewables and loads. This challenge is met by

1063-6536 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 21,2024 at 21:53:23 UTC from |IEEE Xplore. Restrictions apply.



NUGROHO AND TAHA: LRFC OF LINEARIZATION-FREE DIFFERENTIAL ALGEBRAIC EQUATION POWER SYSTEM MODELS

two main goals in power systems’ control which are: 1)
maintaining the balance between power supply and demand
and 2) preserving the system-wide frequency [3]. Both the
objectives are essential to achieve successful power systems
operation as significant power imbalance and large frequency
deviation can provide adverse impacts which can eventually
result in system collapse [4].

The increasing penetration of renewables makes the afore-
mentioned tasks to be remarkably difficult to achieve, and
with that in mind, this article is dedicated to addressing the
problem of load- and renewable-following control (LRFC),
the focus of which is preserving the power balance and
system’s frequency against unpredictable behavior of power
demand and renewables. This problem is closely related to the
load-following control (LFC), in which power imbalance and
frequency deviations are mainly only attributed to the changes
in power demand only [5]. There exist numerous methods to
address the problem pertaining to LFC. In multiarea power
networks, automatic generation control (AGC) is a secondary,
interarea control architecture, the purpose of which is to
regulate the network’s frequency and interchange of power
flow (PF) [6]. Other than AGC, many proportional—integral—
derivative (PID)-based controllers have also been proposed
in the literature. Although PID is known for its simplic-
ity, it unfortunately requires rigorous tuning, and the results
based on the conventional approaches are often not generally
robust [7].

The shortcomings of the conventional AGC and PID
controllers motivate the development of advanced control
techniques, particularly for power network applications. The
advancement of convex optimization theory and computational
method facilitates the design of linear matrix inequality (LMI)-
based stabilization. Advanced control strategies for power
networks—albeit are not limited solely for LFC—can be
generally categorized into: 1) unified, wide-area control and
2) localized, decentralized control frameworks. Related to the
wide-area control, Chow and Ghiocel [8], Zolotas et al. [9],
and Jain et al. [10], respectively, use the adaptive control,
linear quadratic Gaussian control, and model predictive con-
trol (MPC) frameworks to minimize power oscillations and
improve damping between multiple areas. Since these methods
result in centralized control laws that may not be suitable
for large-scale networks, an optimization-based method is
developed in [11] to synthesize optimal control policies with
sparse stabilizing controller gains.

The study [12] combines the optimal PF problem with
LFC using the linear quadratic regulator (LQR). Recently,
a method developed using the notion of L. stability is
proposed in [13] to implement a robust control architecture
for LRFC in power systems. The behavior of power networks
with respect to the increasing penetration of distributed energy
resources (DERs) including renewables is investigated in [14],
where it is revealed that the increasing number of DERs
connected to the network can reduce the system’s stability.
All the aforementioned studies rely on the linearized ordinary
differential equation (ODE) models of power networks. The
drawbacks of this approach are: 1) the linearization and
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controller synthesis needs to be performed periodically and
2) the resulting control law can only stabilize the system in a
small operating region.

For the decentralized grid control architecture, the works
in [15] and [16] pioneer the design of robust decentralized
stabilization for interconnected multimachine power networks
modeled as nonlinear ODEs. The underlying concept behind
this approach is to treat the nonlinearities of the system as a
source of uncertainty and as such, provided that these non-
linearities are quadratically bounded, a linear state feedback
control gain can be synthesized by solving convex optimiza-
tion problems. This idea has been used in [17] and [18] and
later on is extended to enhance power networks’ transient
dynamics [6] and tackle parametric uncertainties via Heo
control [19]. In addition, a decentralized control based on
the LQR for improving small-signal stability and providing
sufficient damping is proposed in [20]. Albeit the methods
proposed in [15], [16], and [6] are not relying on any lin-
earization either, they: 1) only consider active power transfer
between generators and loads; 2) the model assumes a reduced
network (generator buses only); and 3) the disturbances due
to renewables’ uncertainty are not considered.

To circumvent the limitations of these approaches, efforts
have been made recently to study the properties and the
stability of power systems based on their differential alge-
braic equation (DAE) models. For instance, [21] studies the
structural properties of the linearized DAE model of power
networks—this is extended in [22] to include higher order gen-
erator dynamics. Using the model presented in [21], Datta [23]
presents a condition to determine the small-signal stability
of power networks. Moreover, the problem of characterizing
topological changes in linear DAE systems is investigated
in [24]. A data-driven MPC for linear DAE power system
models is proposed in [25] for frequency regulation purposes.
The main advantage of using a DAE representation of power
networks relative to an ODE is that the behavior of the
network’s dynamics can be tightly linked with the network’s
topology and PF equations. Besides, if the nonlinear DAE
(NDAE) models are used, the dynamical behavior of the
system can be studied across wider operating regions while
regulating both the algebraic and dynamic variables in a power
system.

Motivated by the drawbacks existing in previous studies,
a novel approach for LRFC is presented in this article by
leveraging the classical NDAE models of power networks. The
LRFC is derived based on a more comprehensive fourth-order
generator dynamic model, complete with generator’s complex
power and power balance equations. To the best of our
knowledge, this is the first attempt to provide a secondary
control based on the NDAE models of multimachine power
networks especially for LRFC. The proposed control strategy
is intended to maintain the network’s frequency, the variability
of which is attributed to a sudden change in power demand and
power produced by renewable energy resources. The article’s
contributions are threefold.

1) The introduction of a new state feedback control frame-

work for LRFC using a detailed, high-order NDAE
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model of power networks. The proposed LRFC strategy
does mot require any linearization, and as such, its
gain computation is not linked to any operating point.
Moreover, the resulting state feedback gain matrix has
a purely decentralized structure. This: 1) improves the
practicality of the proposed LRFC especially for larger
networks and 2) eliminates the need for an optimization
strategy to sparsify the controller’s structure.

2) The development of a convex optimization-based
approach for the stabilization of NDAEs. Although the
stability of NDAEs has been studied in the literature
for quite some time (for example, see [26], [27], [28]),
approaches for the stabilization of NDAEs based on
LMIs are, unfortunately, still lacking. Hence, we pro-
pose herein a computationally friendly approach for the
stabilization of NDAEs based on a simple state feedback
control policy using LMIs.

3) We showecase the effectiveness and performance of the
proposed approach to perform LRFC, where it is com-
pared with AGC and LQR-based control (see [29] for a
version where we also compare the proposed approach
with Hso control). Numerical test results indicate the
superiority of our approach to performing LRFC relative
to LQR and AGC, since it can maintain the network’s
frequency and power balance subject to a relatively large
step disturbance.

The remainder of the article is organized as follows.
Section II presents the semi-explicit, NDAE models of power
networks, while Section III discusses the design of the pro-
posed state feedback control strategy for the stabilization of
NDAEs, especially for LRFC. Thorough numerical studies
are provided in Section IV where the results are discussed
accordingly. Finally, the article is concluded in Section V.

Notation: The notations I and O represent the identity
and zero matrices of appropriate dimensions, respectively. The
notations R” and R”*? denote the sets of row vectors with n
elements and matrices with size p x ¢ with elements in R,. The
sets of n-dimensional positive definite matrices and positive
real numbers are denoted by S| | and R, respectively. The
2-norm of x € R” is equal to ||x]; = ()cl2 + - —}—x,%)l/z.
The operator Blkdiag(-) constructs a block diagonal matrix,
while Diag(-) constructs a diagonal matrix from a vector. The
symbol * represents symmetric entries in symmetric matrices.

II. DESCRIPTION OF POWER NETWORK DYNAMICS

We consider a power network consisting N number of
buses, modeled by a graph (N, &) where N is the set of
nodes and £ is the set of edges. Note that N consists
of the traditional synchronous generator, renewable energy
resources, and load buses, i.e., N =G URULUU where G
collects G generator buses, R collects the buses containing R
renewables, £ collects L load buses, and U/ collects U nonunit
buses—see Nomenclature for a description of notations. In this
article, we consider a fourth-order dynamics of synchronous
generators modeled as [13], [30]

(1a)
(1b)

81' = w; — W)
M;w; = Twi — Pgi — Di(w;j — wo)
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/

. Xd; Xdi — X4
T Bl = — 9 gl 4 28 iy cos(8; — 6) + Eggi (o)
Xy X5
di di
TeniTwi = —Twi — R_D(wi —wo) + Ty (1d)
1

The time-varying components in (1) include: generator’s
internal states §;, w;, El’ and Ty; generator’s inputs Erg;
and T;;. The relationships among generator’s internal states
(6i, w;, El’ , Tmi), generator’s supplied power (Pg;, Qg;), and
terminal voltage v; are represented by two algebraic con-
straints below [13]

/

L, Xgi —Xg; o .
Pg; = —E;v; sin(§; — 0;) — ————v; sin(2(8; — 6;))
Xdi 2xg; Xqi
(2a)
1 X"+ Xqi
Ogi = —,El{vj cos(6; — 6;) — dt/—q’v?
Yai 2xgi%qi
/
Xqi — Xy;
- %v? cos(2(8; — 6;)). (2b)
Xdi*aqi

The PF/balance equations—which resemble the power transfer
among generators, renewable energy resources, and loads—are
given as follows [30]:

N
Pgi+ Pri + Pi = Zvivj (Gij cos 0;j + Bjj sin9,-j)
i=1
(3a)

N
Qci + Ori +0Li = Zvivj (Gij sin6;; — Bij cos ;)
j=1
(3b)

where i € Q N RN ,C, 9,']' = 91' — 91', and (Gij,Bij),
respectively, denote the conductance and susceptance between
buses i and j which can be directly obtained from the
network’s bus admittance matrix [30]. In the above equations,
(PRri, Ori) denote the active and reactive power generated by
the renewables, while (Pr;, Qr;) denote the active and reactive
power consumed by the loads. For the case at which a bus does
not contain generator, renewable, and/or load, the absence of
one or more of these units can be indicated by setting its/their
corresponding active and reactive power in (3) to zero. Now,
let us define x4 as the vector populating all the dynamic states
of the network such that x; := [6—r w' ET T]—\r,[]T in which
8 1= {8i}icg, @ == {wilieg, E' :={E}}ieg, Tm := {Tmi}ieg>
and a is the algebraic state corresponding to generator’s
power such that a := [Pg Qg]—r where Pg = {Pgilieg,
0 = {Qa:i}icg, and v is the algebraic state representing
the network’s complex bus voltages such that ¥ := [v 'l
where v = {vi}icn, and @ := {6;};cn. The input of the
system is considered to be u := [E;El TrT]—r where E¢q =
{Efditieg and T, := {T;;}icg. In addition, define the vector
g as q := [Py Qg Pl Q1" where Pr = {PRi}icRr,
Or = {Orilicr, PL = {PLilicc, and Q@ = {OLi}ics-
Based on the constructed vectors described above, the state-
space, NDAE model of multimachine power networks (1)—(3)
can be written as
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Euxqg = Agxq+ Gy f (x4, x4) + Bau + hay
= Aux, + Gufa (x4, xq) + Baq

(4a)
(4b)

=
|

where x; € R x, := [a' f)T]T € R%, u € R"™, and
q € R"%. The functions f, : R" x R" — R"/4  f :R™ x
R" — R"fa  constant matrices Ay € R"%*"% A, € R"a*"a,
G, € R saxnd G, € R faXna B, € RMuxnd, B, € R"a*Na
and vector h € R" are all detailed in [31, Appendix A]. In
(4), we have E; = I for this model.! The ensuing sections
describe the development of an LRFC law u(t) for power
networks modeled in (4).

III. STATE FEEDBACK CONTROL DESIGN FOR NDAES
A. State Feedback Control Strategy for LRFC

The scheduling of synchronous generators in power net-
works is performed based on the loads and renewables’
demand and production forecasts. These day-ahead forecasts
provide hourly figures of power demand and production [32].
Based on these data and assuming that the power system oper-
ates in a quasi steady-state, the independent system operator
solves the PF or optimal PF (OPF) given in (3) every T
minute—typical value is 15 min or so—to aid the primary,
secondary, and tertiary controls [33]. Each solution obtained
from solving the PF/OPF corresponds to a particular operat-
ing point (also known as equilibrium). To describe how the
proposed LRFC is implemented, consider an ideal case when
the actual demand and power production by the renewables,
denoted by ¢ (¢), are known and static over a short time period
kT where k > 0 indicates the discrete-time index—let g¥
be the predicted demand and renewable generation such that
q(t) = g~ where kT <t < (k + 1)T. As such, the system
rests at equilibrium with (x’;,xﬁ) denoting the steady-state
dynamic and algebraic states, while ufef denoting the steady-
state generators’ inputs.

Since the power supply and demand are balanced, we have
w; = wo for all i € G. Yet, in reality, the values of g(¢) are
highly stochastic and rapidly changing over time. To maintain
the system’s frequency as close to 60 Hz as possible, when
q(t) # g* due to demand and renewables variability, the new
u]r‘ef has to be computed and this must be followed by solving
the PF/OPF. This practice is impractical since ¢(f) # g¢*
might happen during k7 < t < (k + 1)T and especially
when the deviations are relatively small. As a means to sustain
the system’s frequency at 60 Hz while still being able to
solve the PF/OPF within the 15 min interval, we propose
a state feedback control architecture in which the controller
gain matrix is independent of the solution of the PF/OPF. The
power network’s dynamics with such a controller are written
as

Eqxg = Agxq+Gaf g (x4, xq) + Baurrrc + haop  (52)

'The matrix E; is kept in the controller derivations for the sake of
generality since the state-space representation of power networks (1)—(3) is
not unique, and thus, it is possible to have E; # I.
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Power Network
q
""" > &g = Aa®a + Gafy (T, %a) + Byurrrc + hwo .

d

Upor —D OZAaza +Ga.fa (md,za)+Baq

ULRFC
@

Fig. 1. Control architecture for LRFC. Vector ¢ denotes the actual demand

and renewables’ generation, the values of which are generally unknown.

0 =Awxs+Gaf,(xa,xa) + Bagq (5b)

where the control input during k7 <t < (k+ 1)T is given as

ULRFC := ULRpc(t) = ul{{ef + Ky (xd(l) - x’é)

in which K, € R"™>" denotes the associated controller gain
matrix. In this approach, K, is computed based only on the
knowledge of matrices and functions provided in (5) and thus
independent from ufef and (x’é,x’;). The overall structure
of the proposed LRFC is depicted in Fig. 1. This control
architecture only: 1) requires the knowledge of generators’
internal states—thus does not rely on any real-time measure-
ments of algebraic variables (a, v) whatsoever—and 2) not
involving any kind of system’s linearization around (xf,, x’;).
It is worth noting that the control architecture depicted
in Fig. 1 is common in power systems secondary control
[6], [13], [15]. Now, suppose that a disturbance—attributed
to a sudden change in power demands and/or power produced
by the renewables—is applied to the network. This disturbance
will eventually throw the system’s operating point to a new
equilibrium. Let us denote ¢° as the new actual demand and
generated power from the renewables at kT <t < (k+ )T
time instance. Using the proposed LRFC framework described
in (5), the system’s dynamics at the new steady-state operating
point indicated by (x4, x) can be expressed as

0=A4,x5+Guf, (xfi,xf;) + hwy

+ B (g + Ka (x5 - x5)) (6a)
0 = Aux, +Gaf, (x5, x5) + Bag®. (6b)

To analyze the network’s dynamical behavior after the distur-
bance is initiated, let us introduce Ax; € R" and Ax, € R"
as the deviations of the dynamic and algebraic states of the
perturbed system around (x¢, x,), respectively, and they are
given as Axy := x4 — x5 and Ax, := x, — x{. From (5)
and (6), and letting Aq := ¢ — q°, the perturbed network’s
dynamics can be derived as

E jAx; = (Ag+ BaKi)Axg + GaAf,; (Axg, Axy)
(7a)
0 = A,Ax, + G, Af, (Axy, Axy) + B, Aq
(7b)
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(zdv za)

i (2, @) )

q
s

(f, xh)

¢

» Time
kT (k+1)T
Fig. 2. LRFC is intended to stabilize the system—the actual state during

kT <t < (k+ 1)T is represented by the blue curve—when the actual power
demand and renewable generation are transiting from the projected qk at time
kT to the new level ¢¢ until (k + 1)T.

where the mappings A f;(-) and A f,(-) are detailed as

Afq (x’xe) = fa(xa,xa) — fa (XZ,JCZ)
Afo (%) = fo(a,%0) = fo (x5, x5)

where x := [x;/,r x;]T (likewise for x¢). In (7), Aq reflects the
deviation of the current demand and renewables’ generation
q from the new operating values g€, and as such, Agq is
considered to be relatively small (Aq = 0). Our objective
herein is to design/compute K, such that all the trajectories
of the solutions of the NDAE (7) will converge asymptotically
toward the zero equilibrium. This is equivalent for the states of
power network (6) to converge toward the new operating point
indicated by (x§, x;). This process is illustrated in Fig. 2.

B. Stabilization of Power Network’s NDAEs

To simplify the notations, let X; = Axy, X, = Axg,,
fa:=Afg and f, := Af, such that (7) can be written as

(Ad + BaKD¥q + Ga fq (¥, x°) (8a)
0 = Au¥, + Gaf, (x,x°). (8b)

Albeit the NDAE (8) assumes that Aq = 0, in Section IV
we study the performance of the LRFC when disturbances are
present, and therefore, the stability of (7) is studied against a
nonzero disturbance. It is also assumed herein that X, € X; C
R" and X, € X, C R", That is, the sets X; and X, represent
the operating region(s) of the power networks and contain the
solution manifold of (8). The following assumptions (which
are standard in the literature on control and stabilization of
DAEs [27], [28]) are crucial for the development of our LRFC
method and therefore considered to hold throughout the article.
Assumption 1: The following properties hold for the map-
pings }d : R x R — R"fd and ]“a : R x R — R"fa,
1) zd(‘) and jv“a(~) are smooth and satisfy jv”d (0,0) =0and
£a(0,0)=0.
2) f4(¢) and f,(-) are quadratically bounded functions
such that given X; € X; and X, € X, it holds that

Eg %, =

|70 0. x0)| < |agea0|;

+ HHZ?:a(r)Hz (%)
H]‘a (x(t),xe(t))”z < |Hi%a0)|3

+ |Hez 03 ©b)
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for some known constant matrices H Z, HY, HY, H.
Assumption 2: This rank equality

M) i (10,

rank (A + G,
0X,
is satisfied for all X; € X; and X, € X,.

It is worth mentioning that Assumption 1 is mild in power
networks—see [6], [15]. In fact, it is shown in [15] that
for a simplified ODE representation of power networks with
turbine governor dynamics, there exist bounding matrices such
that (9a) holds without the presence of ¥,. In principle, the
nonlinearities in the NDAE model are treated as external
disturbances originating from the network’s interconnections,
and as such, since their influence on the system is bounded
according to (9), the designed stabilizing controller attempts
to compensate for the impacts caused by these disturbances.

In the classical DAE systems’ theory, the differentiation
index can be associated with the minimum number of steps
required for expressing the corresponding DAE in an explicit
form [21], [34]. Condition (10) is useful to ensure that the
NDAE (8) is of index one [28]. For a simplified model
of multimachine power networks, it is proven in [21] that
power networks’ DAEs are of index one if every load bus
is connected to at least one generator bus. Since this is the
case in normal conditions (e.g., no tripping in power lines),
then Assumption 2 is easily satisfied. Although the property
introduced in [21] is studied for a simplified model without
involving any renewables, it is revealed that the condition
(10) actually holds for a more comprehensive model of power
networks considered in this article—this is evident from being
able to numerically simulate power networks for various test
cases (see Section IV). Hence, based on the above assump-
tions, we now focus on providing a computational approach
to calculate the state feedback gain matrix K, such that the
NDAE (8) is asymptotically stable. That is, the NDAE (8) is
said to be asymptotically stable if lim;_, o ||X4(#)]l2 = 0 and
lim;— o0 [|X4(¢)]l2 = O [35]. The following result provides a
sufficient condition for the asymptotic stability of NDAE (8)
at the origin.

Theorem 1: Consider the NDAE (8) provided that Assump-
tions 1 and 2 hold. The closed-loop system is asymptotically
stable around the origin if there exist matrices @ € R"*"d,
0, e R and Q5 € R%*" where both O and Q5 are
nonsingular, and a scalar € € R4 such that the following
matrix inequalities are feasible:

Y * * *
4,0, QJA] +A,05+EG,G] *
_ 1
H;Q (4] —el *
_ 1 _ 1
HjQ H;Q; (4] —el
<0 (11a)

EjQ'=0;"E;>0 (11b)
where Y includes the matrix K, and is defined as

Q/A)+A,0,+ Q[ KB} +BsKs0Q,+EG,G.
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The matrices Hy and H, in (11a) are specified as
H;=HY"HY+HYHY H,=H!"H!+H' H"

The complete proof of Theorem 1 is available in
Appendix A. The feasibility of matrix inequalities (11) guar-
antees the existence of K, that asymptotically stabilizes
the NDAE (8) around the zero equilibrium. Realize that
since the states of the NDAE (8) in fact are just the deviations
of the actual states (x4, x,) from the new operating point
(x5, x¢), it can be easily deduced that

lim Axg(r) =0 = lim x4(t) =x
—00 —00
lim Ax,(t) =0 = lim x,(r) =x;.
—00 —>0o0

Since x¢; consists of the synchronous frequency for the rotors
of all rotating machines, we have w; = wo for all i € G.
In short, the proposed state feedback control strategy with
gain matrix K is able to provide LRFC due to the changes
in power demands and renewables’ generation. Unfortunately,
the majority of off-the-shelf optimization packages, e.g.,
YALMIP [36], cannot be used to find solutions for (11) due
to the nonconvexity of the problem, which is partly attributed
to the appearance of Qfl in (11b) along with the existence of
the bilinear term K, Q. To circumvent this design challenge,
the following result is proposed.

Proposition 1: Consider the NDAE (8) given that Assump-
tions 1 and 2 hold. The closed-loop system is asymptotically
stable around the origin if there are matrices X;| € Si" i
X, e Rtaxd R ¢ R'a*Ma Y ¢ RM*Ma W ¢ R™*" and a
scalar € € Ry such that the following LMI is feasible:

v * * *
AXLE] + AY (2] * *
_ 1
HX\E] 0 - <0 12

_ 1 _ 1 _ 1
H:X>E] +HY HR 0 —&l

where W is specified as
E X |A) +AsXE] + E;W'B) + ByWE] +EG,G,)

and ® := RTA] + A,R + éG,G/. Upon solving (12), the
controller gain K, can be recovered as Ky = WX 1_1.

Readers are referred to Appendix B for the proof of Propo-
sition 1. In contrast to matrix inequality (11), the one given
in (12) constitutes an LMI and therefore can be easily solved
through standard convex optimization packages.

For some practical reasons, it is often highly desired to
obtain small feedback gains so that the resulting transient
behaviors can be kept within acceptable bounds and do
not strain the system protection [6]. Contrary, a high-gain
controller is in general undesirable since it could increase
the sensitivity of the closed-loop system against noise and
uncertainty. To that end, we consider solving the following
optimization problem in the interest of obtaining K, with a
reasonable magnitude

(P) _ min Wiz
e,Xl,Xz,R,Y,W
s.t. (12), X1 >0, €>0

where ||W |2 denotes the induced 2-norm of matrix W.
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Algorithm 1 Implementation of the LRFC
1 input: Ad, Aa, Gd, Ga, Bd, Ba, T
2 compute: K, by solving problem P
3 initialize: iteration index £ = 0
4 do
5 obtain: ¢g* from prediction and measurement
6
7
8
9

solve: PF/OPF based on g*

get: x* from the solution of PF/OPF
compute: u” ; and =¥

update: the LRFC in Fig. 1 with (%, u” ;)
10 wait: 7" minutes / OPF Time-Period

11 update: k <+ k + 1

12 while £ < oo

C. Implementation of the Proposed LRFC Strategy

The proposed LRFC strategy can be implemented as fol-
lows. First, based on the matrices describing the network
dynamics (4), the controller gain K, is computed by solving
problem P. Based on the load and renewable forecasts qk s
the steady-state algebraic variables x(’j can be obtained by
solving the PF/OPF. Afterward, (x]fi, u’r‘ef) can be computed
by setting x; = 0 in (4), and from (qk,x/;), the resulting
system of nonlinear equations is numerically solved. The
calculated (xZ,ufef) is then fed to the control architecture
illustrated in Fig. 1. These steps are then repeated once every
T, which is typically around 15 min [33], to continuously
perform LRFC and compensate for any changes in demand
and renewables generation. Algorithm 1 presents a summary
of how the LRFC is implemented. Realize that since the
matrix K4 is only computed once, our approach for LRFC
is much more practical compared with other methods that
rely on the linearization of (4) around the operating point
(x’[j,x’;) because, in addition to solving the PF/OPF and
the set of nonlinear equations mentioned above, the inde-
pendent system operator has to: 1) perform the linearization
and 2) computing the stabilizing controller gain matrix—two
are carried out in each iteration within kT < r < (k +
1)T time interval. This linearization-based approach certainly
necessitates more demanding computational processes to be
performed.

Remark 1: Despite the proposed LRFC strategy does
not consider impacts caused by parametric uncertain-
ties, one can perform sensitivity analyses to predict the
levels of uncertainty propagation within a certain time
period [37], after which the predicted worst case operat-
ing regions can be determined and included in the sets
X, and X,.

IV. NUMERICAL CASE STUDIES

A. Parameters and Setup for Numerical Simulations

This section presents numerical simulations for investigat-
ing the performance of the proposed approach in stabilizing
several IEEE test networks with respect to load and renewable
disturbances. Every numerical simulation is performed using
MATLAB R2020b running on a 64-bit Windows 10 with a
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Fig. 3. Numerical simulation results: (a)—(c) Frequency of Generator 1 for the nine-bus network. (d)—(f) Frequency of Generator 1 for the 14-bus network.
(g) and (h) Frequency of Generator 1 while (i) shows all generators’ frequency for the 39-bus network with the NDAE-control. (j) and (k) Frequency of
Generator 1 while (1) shows all generators’ frequency for the 57-bus network with the NDAE-control. Although the trajectories of the rotor frequency for the
39-bus network given in (g) and (h) seem to converge, the AGC actually fails to stabilize the system for p, = 0.01 and 0.05 while the LQR-control cannot
stabilize the system when pr, = 0.05.

3.0-GHz AMD Ryzen’ 9 4900HS processor and 16 GB 1) Nine-Bus Network: The Western System Coordinat-

of RAM, whereas all convex optimization problems are ing Council (WSCC) nine-bus system with three syn-
solved through YALMIP [36] optimization interface along chronous generators.
with MOSEK [38] solver. All the dynamical simulations for 2) 14-Bus Network: Consisting of 14-bus system with five
NDAEs are performed using MATLAB’s index-one DAEs’ synchronous generators, representing a portion of the
solver ode151i. Four power networks are considered in this American Electric Power System (AEPS) in the Mid-
study. western U.S.

3) 39-Bus Network: Represents the New England ten-

2Trademarked. machine, 39-bus system.
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Fig. 4.  (a) Trajectories of active power produced by Generator 5 and
(b) modulus of the voltage at Bus 2 for the 14-bus power network with
pL. = 0.04. The notations Pg and v0 represent the corresponding initial
steady-state values before disturbance is applied to the network.

4) 57-Bus Network: Consisting of 57 buses with seven
synchronous generators, which again represents a part
of the AEPS.

In this study, the loads are presumed to be of constant power
type while renewable power plants—such as wind farms and
solar PVs—are modeled as loads with negative power, thereby
injecting active power into the network. For the nine-bus and
14-bus networks, every load bus is connected to one renewable
power plant. For the 39-bus and 57-bus networks, one renew-
able power plant is attached to a load bus when the consumed
power is equal to or exceeds 3 and 0.1 p.u., respectively. The
initial conditions and steady-state values of the power network
before disturbance is applied are computed from the solutions
of PF, which is obtained from MATPOWER [39] function
runpf. The power base is chosen to be 100 MVA. The
generator parameters are obtained from Power System Toolbox
(PST) [30], where the regulation and chest time constants are
set to Rp; = 0.02 Hz/p.u. and Tcy; = 0.2 s, respectively, for
alli € G.

B. LRFC Under Different Levels of Step Disturbances

Herein, we analyze the performance of the proposed control
strategy—which is referred to as NDAE-control—in perform-
ing LRFC for the aforementioned power network test cases
against two control strategies prominent in power systems
literature, namely, the AGC and LQR control (referred to
as LOR-control). We do not compare our method with the
ones proposed in [15], [16], and [6] since these methods are
designed for the simplified nonlinear ODE model of power
networks and thus are not applicable for performing LRFC
using the model given in (4). The controller gain for the
NDAE-control is obtained from solving problem P. Since
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TABLE I

COMPARISON OF THE TOTAL ROTOR SPEED DEVIATIONS WITH RESPECT
TO DIFFERENT LEVELS OF DISTURBANCE TAKEN AT ¢t = 15 s, EXCEPT
FOR THE NINE-BUS NETWORK WHERE ¢t = 10 s. THE DASH
SYMBOL “—” INDICATES THAT THE ROTOR SPEED DOES NOT
CONVERGE AND BOLD NUMBERS INDICATE THE
MINIMUM VALUES

wo X 1 — w(fx ><103)
Network | pr, = —pr (H ° ( k)Hz
NDAE-control ‘ LQR-control ‘ AGC
0.04 0.177 1.656 1.575
9-bus 0.08 0.354 3.538 -
0.12 0.543 - —
0.04 6.437 x 107 3.046 3.406
14-bus 0.08 9.409 x 10~¢ 6.152 -
0.12 4.433 x 107° - -
0.01 2.027 x 10~° 10.820 -
39-bus
0.05 5.130 x 10~° - —
0.005 8.092 x 10~° 1.534 -
57-bus
0.01 1.592 x 107° - —

the form of nonlinearities in f,(-) and f,(-) is much more
complex than the ones in [15] and [6], the associated bounding
matrices are instead chosen to be

(Hj)2 =1, (H;’)2 =1, (HY =1, (H’ =1

for the nine-bus and 14-bus networks while the following
values:

(Hg)2 = 101, (Hg’)2 =101, (HY)® =101
(H%)® = 101

are selected for the 39-bus and 57-bus networks. The bounding
matrices for the 39-bus and 57-bus networks are set to be larger
than those for the nine-bus and 14-bus networks since the
39-bus and 57-bus networks comprise significantly larger
nodes and interconnections. For the AGC, it is implemented
based on the method described in [13] and [40], where it
provides a set of control inputs for the governor reference
signals only. The AGC calculates such input signals by adding
an extra dynamic state x to the power network model (4),
specified as

G
% =Kol —x—ACE+ > (Pai — P§)

i=1

13)

where K¢ is an integrator gain for the AGC dynamics, the
value of which is set to be 1000, and Pgi is the ith steady-
state generator active power before disturbance. The term ACE
in (13) stands for area control error and defined as [13]

G
1 1
ACE := — — 4+ D; ) (w; — wop).
G ; ( RDi 1) ( i 0)
Following [41], each power network is treated as a single area.
The governor reference signal for each generator i € G is given
as Toyi = TgHi—l—K,')(, where K; := Pg;/ ZiG=1 Pg;, for every
i € G, indicates the participation factor of each generator such
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Fig. 5. Numerical simulation results for the 14-bus network with renewables’ uncertainty. (a)—(c) Overall frequency figure of all generators while

(d)—(f) illustrates the overall modulus of bus voltage for all buses using the NDAE-control, LQR-control, and AGC, respectively.

that ZiG=1 K; =1, and TgHi is the corresponding steady-state
governor reference signal before disturbance. However, since
AGC only provides value for Tcy;, the control inputs for
the internal field voltage are calculated with the aid of LQR-
control. It is important to mention that the controller gain for
LQR-control is retrieved from solving the corresponding LMI
specified in [ [42], Th. 1], which is reliant on the linearized
dynamics corresponding to the initial operating point.

The numerical simulation is performed as follows. Initially,
the system operates with total load of (PI?, QE) and total
generated power from renewables of (P, Qg). For each of
the power network test cases, the following values are chosen:
PO+ jO) = 3.15+ j1.15 and P + jO% = 0.63 p.u.
for the nine-bus network, PB + jQE 3.15 + j1.15 and
PJ+ jO% = 0.63 p.u. for the 14-bus network, P’ + jOY =
62.5423 + j13.871 and P§ + jQOY = 8.1712 p.u. for the
39-bus network, while P’ + jO? = 12.508 + j3.364 and
Plg +j QOR = 2.2888 p.u. for the 57-bus network. Immediately
after ¢+ > 0, the loads and renewables are experiencing an
abrupt step change in the amount of consumed and produced
power, which triggers the system to depart from its initial
equilibrium point. The new values of complex power for
loads and renewables are specified as P’ + jQf = (1 +
pL(PL + jO7) and Pg + jOR = (1 + pr)(PR + jQR),
respectively, where p € R determines the quantity of the
disturbance. In this numerical simulation, we consider different
levels of disturbance: pr, = 0.04, 0.08, and 0.12 for the nine-
bus network and 14-bus network, p;, = 0.01 and 0.05 for
the 39-bus network, and pr 0.005 and 0.01 for the
57-bus network. For the disturbance coming from renewables,
we select pr = —pL.

The results of the numerical simulation are illustrated in
Fig. 3. For the nine-bus network, the proposed NDAE-control

is able to stabilize the system even when the disturbance is
considerably high (12% for this network). This is in contrast
to the AGC and LQR-control, as they are only able to
maintain stability with relatively low (4%) and moderate (8%)
disturbances. A similar behavior is also observed from the sim-
ulation results for the 14-bus, 39-bus, and 57-bus networks: the
LQR-control is not able to maintain frequency stability when
the disturbance achieves 12%, 5%, and 1% while the AGC
fails even with 8%, 1%, and 0.5% disturbance, respectively, for
the 14-bus, 39-bus, and 57-bus networks. It can be seen from
Fig. 3 that the frequency trajectories due to the NDAE-control
converge rapidly to the synchronous frequency wy, unlike the
other controllers. Table I presents the norm of rotor speed
deviations for all the generators with respect to various levels
of disturbance. It is evident that the NDAE-control can provide
stabilization for the power networks with a decent convergence
rate. It is also observed that each controller brings the system’s
operating point to a new equilibrium—this can be seen from
the trajectories of active power and bus voltage for the 14-bus
network with low disturbance as shown in Fig. 4.

C. Assessment Against Renewable Generation Uncertainties

In this section, we study the 14-bus network while injecting
the generated power from renewables with random Gaussian
noise z;(t) with zero mean and variance of O.OI(PI% +j Q%i)
for each i € R such that

P +J O = (1 + ) (PRy + j Qi) + (1 + )z (1)
Vi e R.
To compensate for the random noise, the simulation is per-

formed ten times and the resulting outcomes are averaged. The
results of this numerical simulation with low step disturbance
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Fig. 6. Sparsity patterns of the controller gain matrix K4 for (a) nine-bus

and (b) 14-bus networks. The red circles represent entries with significant
magnitudes. Similar patterns are also found on the remaining larger networks.

oL = 0.04 are illustrated in Fig. 5, from which it can be
seen that the maximum and minimum frequency deviations for
the NDAE-control are experiencing much mode fluctuations
compared with those from the LQR-control and AGC. The
NDAE-control is able to maintain generators’ frequency close
to 60 Hz without exhibiting significant oscillations. It is also
indicated from this figure that for the NDAE-control, the
average bus voltage across the network has a roughly flat
profile. This result can be attributed to the centralized control
structure in the LQR-control and AGC, while the proposed
DAE-control implements a decentralized control framework—
discussed in Section IV-D.

D. On the Controller Gain’s Sparsity Structure

A decentralized control is much preferable to a centralized
control since in the former type of control, stabilization
can be maintained using local measurements only. As such,
our NDAE-control is more practical than AGC and LQR
since the NDAE-control implements a decentralized control
structure—this is indicated by the certain sparsity pattern on
the feedback gain matrix K,. The patterns for the nine-bus
and 14-bus networks are described in Fig. 6. The small red
circles denote entries with significant magnitudes, i.e., entries
whose magnitudes are greater or equal to 107°. Note that
the dynamic states are ordered as x4 := [8T o' ET TI—\F,I]T
according to Section II. Based on this ordering, the patterns
depicted in Fig. 6 suggest that the inputs for each generator can
be constructed from local measurements (or estimation) of its
internal states. The decentralized control structure allows the
internal field voltage to be constructed by Egg; = K D(i’zG_H)E;
while the governor reference signal to be given by

Tii = KpG+i,i)di + KpG+i,6+i)@i + Kp(G+i,36+i) Tmi

for all i € G where Kpy;,j) is the (i, j)th element of K ;. The
sparsity structure of K 4 is suspected to be caused by the use of
(8) when the matrix K is synthesized for the NDAE-control
since the NDAE model in (8) retains the structure of the
power network while, in contrast, this structure is lost in the
linearized power network’s model used in AGC and LQR.

V. SUMMARY AND FUTURE DIRECTIONS

A novel approach for LRFC in multimachine power net-
works is proposed. In contrast to other methods from the lit-
erature, our approach is based on the NDAE representation of
power networks, and accordingly, we develop a computational
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approach based on LMI to construct the stabilizing controller
gain matrix. The proposed approach stands out in the following
manner: 1) its independence from any linearization around any
operating points; 2) the resulting controller gain matrix can
sufficiently maintain the system’s frequency around the desired
equilibrium against significant disturbances originating from
the loads and renewables; and 3) although our approach relies
on advanced DAE systems theory, the proposed LRFC strategy
is as simple as proportional decentralized control framework
and therefore can be implemented to large-scale power systems
without the need for any special tools.

In our future work, we are planning to: 1) extend the
proposed NDAE-control and develop a robust control method
to handle adverse impacts caused by parametric uncertainties;
2) investigate the cause of decentralized sparsity patterns in the
controller gain resulting from the NDAE-control; and 3) study
the controller’s applicability to perform wide-area damping
control in inverter-based, renewable-heavy power networks.

APPENDIX A
PROOF OF THEOREM 1

The following lemma is presented first due to its importance
in the proof of Theorem 1.

Lemma 1: For any matrix M € R"™** with r < s and scalars
a,b € R4y, the following holds:

M"@MM" +bI)"'M —al <0. (14)

Proof: Consider the singular value decomposition of M
written as M = U [A O] VT where A € R™" is a diagonal
matrix populating all the singular values of M while U € R™*"
and V € R*** are two orthogonal matrices. As the term
aMM?" + bI for positive scalars a and b can be written as

aMMT bl =U (aA2 + bl) Al

then it can be shown that the term M " (aMM " +bI)"'M is
equal to

-1
14 (Blkdiag (aA2 (A2 + é1) , 0)) v,
a

Nevertheless, since the inequality (A2 + (b/a)l -l < A2
implies aA%(A® + (b/a)I)~' < al, (14) is inferred. [ |

Now we are ready to prove Theorem 1, which is decom-
posed into four parts.

1) Showing that the dynamic state is asymptotically stable.

2) Demonstrating that the matrices associated with the

Lyapunov function are nonsingular.

3) Showing that the algebraic state is asymptotically stable.

4) Establishing the matrix inequalities in (11).

1) Let V : R"™ — R, be a Lyapunov function candidate
such that V (r) = i;EIPlid where P € R"*"d is assumed
(for now) to be nonsingular and E;Pl = PlTEd > 0. The
time derivative of V (-) is equivalent to

. - . T .
V() = (Aaka + GaFalx.x)) Pida

+55 P] (Agka + Gafalw,x))  (15)
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where AZ = Ag+ B4K,. For any DAE of index H, then for
any function I';(-), i € {0, 1, ..., H — 1}, we have [28]

H-1

dlh(xdvxa)
E rz(xd,xa)—dt 0 Vx;e Xy, x,€X,
i=0

(16)

where the function h(-) represents all the terms on the
right-hand side of (8b). Since the DAE is of index-one, thanks
to Assumption 2, the following choice of T'o(X4, X,) such that:

To(¥4,¥%,) =%, P3 + %, P] (17)

for some P, € R"*" and P3 € R"*" is sufficient. Adding
(16) to (15), using (17), allows (15) to be expressed into

. . . T
V) = (Adxd FGaf xe)) Py

+xd P (Adxd + Gdfd(x X ))

+ (Aaxa +Gof, (x, xe)) (Pyx4 + P3x,)

+ ()?J,—PT +xTPT) (Aaxa +G.f, (x, xe)).

(18)
From (9), the following inequalities are obtained:
0< ef}fldid —efy (x, xe)T fu (x,x¢)
+ei;rl_iaita —ef, (x, x‘f)—r fa (x,x¢)  (19)

for a scalar € € Ry . Next, adding (19) to the right-hand side
of (18) yields the inequality

V() <w' Qo (20)
where @ := [¥] % f;(x,xe) f;(x,xe)]T
9(1’1) *k k *k
AP, @ *
Q=" 2 e @1)
G, P, 0 —el
G/P, G/P; O —eI

where the block diagonal matrices are specified as
- T - -
Qa1 =A,P1+ PTAd +eHy
Q02 = Al P3+ P, A, +€H,.

It will be demonstrated in the sequel that the system of NDAEs
(7) is asymptotically stable around the origin if @' Q@ < 0 for
any @ # 0. Realize that this condition is equivalent to € < 0.
Using the Raleigh inequality, we have

©' Q0 < hnax (R @]3. (22)
Since the following also holds:

l@l13 < (14 hmax (H) I%all3 + (1 + Amax (Ha) [ %all3
thanks to (9), then from (22) one can simply obtain

@' Qo < —n %413 — ml¥al3 (23)
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where in (23), n1, 72 € Ry defined as 1 := — max(SZ)(l
de(Hd)) and 72 = —Amax(R)(1 + )\mdx(Ha)) Now,
as P being nonsingular implies

—nilEall3 = mlEal} < —mArnh (EJ PV (@)
then (20) and (23) lead to

V(t) < =ihmax (Eg P1) V()
t t
= —dV(r) </ - maX(Ed Py)drt
fo V( ) o
& V() < e ETP) 0y ) 04
Since [|¥4]3 < Al (E] P1)V (1), from (24) we obtain
1 _
1EaOl < we b ETP) 02 a0y, 25)

where ¢ > 0 is a residual term given as

- \/xmm E)Py) imax (E] P1).

The inequality (25) implies that ||X4(f)|l2 — 0 as t — oo.

2) Second, since we require £ < 0, it holds that the
pair [Blkdiag(E4, 0), Blkdiag(A4, A,)] is both regular and
impulse-free [43]. As such, there exist nonsingular matrices
M, N € R™*" where n, := ng + n, such that [34]

- [E;, 0], [I o0
Eou[% Ow-[b 9] ew
<~ [a; 07, [A;s o0
A_M[O AJN_[O 1} (26b)

with M, N partitioned as follows:

M=[M] M. N=[N N

where M; € R%*" M, € RW*" N; € R%W*X" N, €
R"x*"a In addition, define the transformed state X € R" as

-1 [’ff‘] %4 €RY, ¥, eR. (27)

Xa

It then can be directly shown the existence of matrices P| €
R*d P, e R"*"a and P53 € R"*" guch that

P, O <[Py o0
- S l=M N

|:P2 P3i| |:P2 P;
w1th P, being symmetric. Since V(1) = Jvch Px; =
X, TP%4, Py > 0. Using the Schur complement, it is straight-

forward to show that £ < 0 is equivalent to € < 0 where €
is defined as

(28)

@:=A' P+P A+eNTH N+eP MGGTMTP
where H := Blkdiag(H4, H,), G := Blkdiag(G4, G,), and
Pis equal to the left-hand side of (28). It can be shown from
the (2, 2) block of Q that < 0 implies P3 + P3 < 0. Now

let us define a matrix measure function [44] v : R"a*" — R
as follows:

N I+6P3|r—1
v (P3) = lim %
>0+ %
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Due to [ [44], Lemma 2.4], then the inequality below holds

~ - 1 ~ ~T
Amax (PS) =v (PS) = Exmax (PS + P3 ) (29)
ThTe above inequality suggests that P3 is nonsingular as P3 +
P3 < 0 infers that the rigl}t-hand side of (29) is negative.
This shows that the matrix P defined in (28) is nonsingular.
However, since M, N are also nonsingular, it can be inferred
from (28) that P and P3 are nonsingular—this confirms the
validity of the previous assumption. y
3) Third, from the fact that the (2, 2) block of 2 is negative

definite, then for a constant § > 0, we have

~ ~T _ ~ T ~

P34+ Py +eNJHN,+P;EP3; <0 (30)
where E := eM>GG " M>+41 is nonsingular. Note that (30)
can be written as [45]

z " z 1 1 Tq
(Ps+57") 2(Ps+E7") -2~ +eNJAN, <0.
Since we have (P53 + E-HTE(P3; + E~1) = 0, from the
above equation, there exists ¢ > 0 such that [45]

(e+¢)NJHN, —E7' <0. (31)

It then can be shown from (31) and Lemma 1 that

2
_ 1 v
HHzNzMsz(x,xe)

2
1. .
me(x,xe)GTMzTE”Mch(x,xe)

€ > T e\ ¥ e
< mf (x, x%) f(x,x%)

Voo . v T v T A .
where f(X4,¥%,) :=[f,(x,x°) f,(x,x)]T, implying

€+
¢

Using (32), it is straightforward to show that

gt
< H HINy| |IZ4113. (32)
F

T

€+ s -
T”M2G”F H>Ny| X4l

F

[%all2 =

which, according to (25), leads to

[#a)], < oo™ 3 b ETP)C0) 5 o], 33)

where ¢ > 0 is a residual term. The inequality (33) indicates
that ||X,()||lo — 0 as t — oo.

4) Finally, since P and P3 are nonsingular, we can define
0, e RW>md Q, e R"*" and Q5 € R"*" such that

—1
Ql::Pl R

Using congruence transformation, given the new matrices
defined in (34), and applying the Schur complement, the
condition 2 < 0 can be shown equivalent to (11a) where
€ := (1/€). Note that substituting Q; = Pl_1 into E;—Pl =
PlTEd > 0 establishes (11b). This completes the proof. M

Q,:=-P;'PP', Q;:=P;'. (39
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APPENDIX B
PROOF OF PROPOSITION 1

Note that from (26a) and (28), we have

T
E, O _o-T|I O T
5 o] =vlo olm

-1
p, 01" . [m o], -
AR

=1 o ~
where Il := P, , II; := —P5; P,P, , and II3 := P;
The second equation can be written as

-1
P, O _ nm, ol||l1 o T
[Pz PJ —N[o 1} [0 O]M
(0] _

+N [1} [, MM (35
Since N "Blkdiag(E |, O)M T [0 I]=0, then there exists a
full-rank matrix @ € R"«*"« guch that [26]
E, O]T

o ol =9

which allows (35) to be expressed as

[pl or:N[n1 o}NTN_T[I o]M_T

o0 I]NT[

P, Pj 0o I 0O O

(]
1

Following [26], it is not difficult to show that the above ensures
the existence of matrices X| € Siﬂ_, X, € Rtexd R ¢
Ra*na and Y € R"*" gych that

Q,=X\E], Q,=XE]+Y, Q;=R. (36)

Finally, by substituting (36) into (11a) and defining W :=
K X for a matrix W e R™>*" (12) is established. Since
(36) indeed satisfies (11b), we are done. [ |

+N[ }@Tqu (M, MM
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