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Abstract—To satisfy the broad applications and insatiable
hunger for deploying low latency multimedia data classification
and data privacy in a cloud-based setting, federated learning
(FL) has emerged as an important learning paradigm. For the
practical cases involving limited computational power and only
unlabeled data in many wireless communications applications,
this work investigates FL. paradigm in a resource-constrained
and label-missing environment. Specifically, we propose a novel
framework of UFed-GAN: Unsupervised Federated Generative
Adversarial Network, which can capture user-side data distri-
bution without local classification training. We also analyze the
convergence and privacy of the proposed UFed-GAN. Our exper-
imental results demonstrate the strong potential of UFed-GAN in
addressing limited computational resources and unlabeled data
while preserving privacy.

Index Terms—Federated learning, unlabeled data, data pri-
vacy, generative adversarial networks.

I. INTRODUCTION

HE burgeoning rise of deep learning has shown re-
markable achievements in learning, based on the often
voluminous amounts of data for centralized training. However,
in many cases of learning-based wireless connections for
collaboration, decentralized learning is vital to handle the
heterogeneous data distribution among nodes (users). Impor-
tantly, privacy concerns and resource limitations also prevent
direct data sharing. To ensure data privacy and communication
efficiency, federated learning (FL) [1] has emerged as an
important framework to disengage data collection and model
training via local computation and global model aggregation.
Despite reported successes, existing FL frameworks have
certain limitations. One major obstacle of FL in practice
is the heterogeneity of data distribution among participating
FL users. It is known [2] that the accuracy of classic FL
frameworks such as FedAvg [1] could drop by 55% for some
datasets showing non-IID, i.e., not identically and indepen-
dently distributed, data distributions. To combat performance
loss against non-IID datasets, the more general approach of
FedProx [3] may depend on certain unrealistic dissimilarity
assumptions of local functions [4]. Alternatively, generative
adversarial network (GAN) [5] provides another approach to
address data heterogeneity. In GAN-based FL, GAN models
are used as a proxy to share user updates without training
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the global model on the user side. For example, in [6],
a global classifier is trained using a user-shared generator
of the user-end-trained conditional GANs (cGANSs). Another
example is [7], the authors proposed to share the full user-
end GAN for generating a synthetic dataset. However, the
high communication cost and the potential privacy leakage
hinder the performance gain of these known GAN-based FL
frameworks as discussed in [8]. Moreover, the training of
the entire GAN and other learning models sometimes can be
impractical at the user end, especially for nodes with lim-
ited computation resources, such as computation-constrained
sensors and devices [9]. How to develop a more efficient
GAN-sharing strategy to preserve privacy and handle limited
computation remains an open question in generative FL.

In addition to data heterogeneity and limited computation
resources, most of the existing works focus on supervised FL,
where the performance depends heavily on the availability of
labeled training data. In practical applications such as user
clustering and video segmentation [10], the computational
and privacy limitations may prevent user-side data labeling.
Therefore, learning from unlabeled data is equally important
for FL to reach its full potential. Presently, only limited
research works have specifically addressed FL. with unlabeled
data, primarily due to inherent challenges. A typical category
of FL dealing with unlabeled data [11], [12] focuses on clus-
tering tasks, which may limit its generalization to other deep
learning tasks. Another line of FL focuses on unsupervised
representation learning [13], where knowledge distillation and
contrast learning are applied to address heterogeneous user
data distributions. Other FL works on unlabeled data [14]-[16]
leverage the efficiency of latent space and may lack a general
description of the original data. As aforementioned, GAN-
based approaches can be intuitive solutions to capture the
data distributions and assist further applications, even without
annotated labels.

In this work, we develop a novel FL framework, the Un-
supervised Federated Generative Adversarial Network (UFed-
GAN), for resource-limited distributed users without labeled
data. The novelty is an innovative GAN-based FL and data-
sharing strategy to significantly reduce the computational cost
at the user end and to preserve privacy. Note that, instead
of focusing on one specific unsupervised learning task, we
provide a general FL scheme to learn the data distributions
without labels. Our framework can be easily adapted to handle
specific learning tasks, including unsupervised representation
learning, user clustering, and semi-supervised classification.

Our contributions can be summarized as follows:

o We propose a novel UFed-GAN as an FL framework to
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Fig. 1. UFed-GAN in a distributed learning setup in an untrustworthy
communication scenario, where users are assumed with less computational
power. An attacker may eavesdrop to understand the user data.

learn and characterize the non-IID user data distributions
from unlabeled user data. Our UFed-GAN captures the
underlying user data distributions without explicitly train-
ing a local GAN model for each user, thereby signifi-
cantly lowering the computational cost on the user side.
To our best knowledge, this is the first work to address
such constrained computation in GAN-based FL.

o We analyze the convergence of UFed-GAN and prove that
privacy leakage can be prevented by our UFed-GAN, in
comparison to traditional GAN-based FL.

o Our experimental results in several benchmark datasets
demonstrate the performance of UFed-GAN in a semi-
supervised classification setup.

In terms of organization, we first introduce the architecture
of UFed-GAN and a training strategy in Section II. Following
the study on model convergence and the privacy analysis in
Section III. We present the experimental results of UFed-GAN
on several well-known datasets in Section IV. We provide
concluding remarks in Section V.

II. METHOD AND ARCHITECTURE
A. Problem Setup

As a typical example of a resource-limited FL setup in
Fig. 1, a server aims to learn from user nodes, each with
limited computational resources whereas attackers may at-
tempt to eavesdrop on the network links. Users may not be
able to annotate their raw data. Moreover, since the target
tasks may be different among users and the data may also be
skewed, a non-IID data distribution shall be considered in this
scenario. Different from local users, the server has sufficient
computational resources to obtain a model that learns a global
data distribution from all the local data, without initial training
data. Such a setup is applicable in many distributed learning
scenarios. For example, a distributed camera/sensor system
placed for object detection can benefit from the collaboration
of different cameras for better feature extraction, where each
digital camera or sensor may have limited computation power.

To demonstrate the privacy protection offered by UFed-
GAN, we consider an attacker that has access to the vulnerable
communication links between distributed users and the central
server. Such attacks try to gain users’ data features based on
the information shared through the channels.

Note that, we aim to develop a novel data/model-sharing
strategy for FL. The strategy could handle unlabeled data and
capture user data distributions in the scenario with limited
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Fig. 2. Communication rounds till the convergence of UFed-GAN. We use
the inception score (IS) as the measure of convergence.

local computation resources. The proposed framework should
offer flexible integration with various unsupervised and semi-
supervised learning tasks, such as latent representation learn-
ing, user clustering, and semi-supervised classification [13].

B. UFed-GAN

We now explain the framework and training process of
UFed-GAN, which allows private and secure learning from
unlabeled data in a distributed learning setup. Our proposed
UFed-GAN aims to train a GAN model on the server to
capture the underlying user data distributions without imple-
menting complex GAN training on the user side.

First, for each user w, we initiate a GAN model on the
server, including a generator (G,) and a discriminator (D,,).
Due to label inaccessibility, we select deep convolutional
GANs (DCGANS) [17] as the backbone. The details of choices
for GAN architecture will be elaborated in Section II-D.

The GAN training comes in three steps, which contains
two steps of D training and one step of G training. We split
the dual-step D training into the server side and the user
side. On one side, the server initiates a discriminator D, and
then shares the initiated model with the corresponding user w.
Subsequently, on the other end, the user performs a forward
pass (FP) on D, using a single batch of real local data I,,.
The gradients and loss are calculated and then shared with
the server. Compared with training a full GAN on the user
side, this step can significantly reduce the computational cost
and be easily deployed in computation-constrained devices.
Upon receiving the updated information of D,, from the user
u, the server completes the training of D,,. It generates a noise
vector z to pass through G,,. Finally, synthetic data G, (z) is
generated from the generator. G, (z) is then sent to D, to
calculate the corresponding gradients and loss. These received
gradient updates are combined with the gradient updates of the
previous step and then back-propagated through D,, to update
the parameters.

Similar to conventional GAN training, starting with a
noise vector z’, we train (G, with forward- and backward-
propagation to update its parameters. In each communication
round, the above process repeats until GAN convergence to a
favorable point. We illustrate this training process further in
Fig. 2. For model convergence monitoring and the stopping
criterion, we use inception score (IS) [18], which measures
the characteristics of the generated images. After convergence,
we create a synthetic dataset using the trained D,. With



the generated synthetic dataset, we can design correspond-
ing unsupervised or semi-supervised algorithms to implement
specific learning tasks. For example, in a semi-supervised
classification task, we could apply the MoCo [19], which uses
dictionary lookups in contrastive learning to obtain the global
classifier. The pseudocode of the proposed training strategy is
presented in Algorithm 1.

Algorithm 1 UFed-GAN: Training Algorithm
for each user u do
Server initialization of G,, and D,,
end for
for each communication round 7, until the GAN conver-
gence do
for each step t do
Share D,, with user u.
Perform FP in D, with user data Z,, and share the
gradient updates VIV,,.
Perform FP in D, with fake data G(z;) where z; is
a random noise vector and get the gradient updates
V..
Update D,, with (VIWV,, + VIV,).
Train GG, with trained D, and random noise vectors.
end for
Generate an unlabeled dataset using each G,,.
end for

C. Attacker Model

We now introduce the attacker model to quantify the privacy
leakage of UFed-GAN. It is highly challenging, if not impos-
sible, to obtain access to the global generator GG given a secure
server or to guess the exact architecture of G, regardless of the
computation prowess of the attacker. Therefore, as suggested
in [8], we focus on a reconstruction attack [20] in this
work, where an attacker attempts to reconstruct the training
data. Let 6 be the parameters released to the communication
channel by the user. We denote the releasing mechanism by
M and the information that an attacker A could obtain by
M(6). According to the UFed-GAN framework, M (6) is the
discriminator gradients and the loss values. Let Z represent
the reconstructed data, we have

A M) — T. (1)

Suppose that the generator G 4 of attacker A has the same
architecture as G' but with initial weights W 4 different from
those of G, represented by We. In parallel to the server
training, we train G 4 at the attacker’s end.

D. GAN Architecture

Due to label inaccessibility and resource constraints, we
adopt the unsupervised DCGANSs [17] over cGANs [8] which
saves extra computation needs for any pseudo-labeling. The
generator architecture follows five transposed convolutional
layers. The first layer takes an input with 100 channels and
maps it to 1024 channels. Every subsequent layer reduces the
number of channels by half. Every layer uses ReLU activation

except for the Tanh activation for the final layer. All the layers
in both the generator and the discriminator use 4 x 4 kernels
and batch normalization for each layer before the final layer.
For the discriminator model, we use four convolutional layers.
The first layer accepts similar channel sizes of the data samples
and maps to 256 channels. Every subsequent layer doubles
the number of channels except the final layer, which outputs
a single channel. The final layer uses a Sigmoid activation
whereas all other layers use LeakyReLU activation.

III. CONVERGECE AND PRIVACY ANALYSIS OF
UFED-GAN

In this section, we present the convergence and privacy
analysis of the proposed UFed-GAN. We introduce the major
proof steps and refer those interested to our corresponding
references for more details.

A. Convergence of the discriminator

Let G and D be the generator and the discriminator of
a GAN, respectively. Assume G is capable of capturing
a distribution pggs on the server and we are interested in
learning a user distribution pgqta ().

Proposition 1. Any D initiated on a server and trained in
accordance to Algorithm 1 with G and pgaiq () converges to
a unique D* for the given G as presented in [5], i.e.,
D* — Pdata(x) (2)

Pdata(x) + pas
Since UFed-GAN merely splits the GAN training, the
proof of Proposition 1 shall directly follow that in [5]. This
proposition serves as a guarantee of the convergence of the
server-side discriminator. It shows that the discriminator is
still capable of capturing the user side’s data distribution. This
helps the generator on the server-side to generate user-like data

as illustrated in the following proposition.

B. Convergence of the generator

Proposition 2. Any G initiated on a server and trained in
accordance to Algorithm I with D and pgqiq(x) converges to
a unique G* which captures pgata (). i.e. Pas = Pdata(T).

Since UFed-GAN does not alter the training of G, we can
imitate and adopt the proof steps in [5]. Proposition 2 suggests
that the server-side generator converges to the same generator
that could have been trained locally. Therefore, on the server,
we are able to regenerate synthetic samples which resemble
the user data in terms of data distribution.

C. Divergence of any discriminator other than G

Proposition 3. Any generator G, other than G trained in
accordance to the Algorithm 1 with D diverges from unique

G*. i.e. pgs # Pdata(T).

To prove Proposition 3, we adopt a similar proof process
as provided in [8]. Following Proposition 1 and Proposition
2, the pair of G and D is unique. Therefore, at each training
step G = G’ must be asserted. Hence, any G difference from
G at any step fails to capture pgqtq ().



TABLE I
CLASSIFICATION ACCURACY COMPARISON OF DIFFERENT FL
APPROACHES OVER THREE DATASETS. PART OF THE RESULTS IN THIS
TABLE ARE REPORTED FROM [13].

Method CIFAR 10 SVHN FashionMNIST
FedSimCLR 52.88 76.50 79.44
+ FedX 57.95 77.70 82.47
FedMoCo 57.82 70.99 83.58
+ FedX 59.43 73.92 84.65
FedBYOL 53.14 67.32 82.37
+ FedX 57.79 69.05 84.30
FedProtoCL 52.12 50.19 83.57
+ FedX 56.76 69.75 83.34
FedU 50.79 66.22 82.03
+ FedX 57.26 68.39 84.12
Full GAN 68.77 80.17 86.25
UFed-GAN 67.0 80.109 86.33

IV. RESULTS AND DISCUSSION

In this section, we present the experimental results on both
utility and privacy.

A. Evaluation of the Utility

In a common semi-supervised setting as [13], let N be
the number of users, 5 be the concentration parameter of
Dirichlet distribution (Dirx(/5)), and s;; be a sample taken
from Diry(B). We assign s;; in proportion to the i-th class
size of the user j. We pick N = 10 and S = 0.5 in accordance
with [13]. All model comparisons are based on the linear
evaluation protocol, which trains a linear classifier on top of
representations or regenerated fake data [21].

We consider three well-known datasets: CIFAR10 [22],
SVHN [23] and FashionMNIST [24]. Comparative results
against five other FL algorithms are presented in Table IV-A.
These algorithms are: FedSimCLR [25], FedMoco [19], Fed-
BYOL [26], FedProtoCL [27] and FedU [28]. For each
method, we present their accuracy on the respective dataset,
together with their accuracy when further applying FedX [13].
We also compare the results with “full GAN” sharing.

From the results, UFed-GAN outperforms all other FL
methods in the benchmark group, with an improvement of
around 8% in CIFARI10, 3% in SVHN, and 2% in Fashion-
MNIST. The accuracy gain arises from the power of GANs
to understand the underlying data distribution of users and
to generate synthetic data by preserving essential features.
Another observation is that UFed-GAN is dataset-agnostic
in terms of performance, delivering the best outputs in all
tested datasets. This observation promotes the generalizability
of the proposed method. In fact, UFed-GAN achieves similar
performance as with full GAN sharing. However, full GAN
sharing is prone to severe privacy leakage as shown in [8]
and additionally requires heavy computation at each user
node, which is in conflict with the FL objective of privacy
preservation and conserving computation resources for users.

B. Evaluation of Privacy

We now evaluate the privacy leakage of the proposed UFed-
GAN with respect to the attacker .4 as described in Section
II-C. Suppose that A has access to each communication round.

; ()

Fig. 3. Generated images from (a) cloud-server’s model. (b) attacker’s model.

TABLE 1T
FID SCORE, IS SCORE, AND SSIM OF THE A AND THE CLOUD SERVER
AFTER 100 COMMUNICATION ROUNDS ON THE FASHIONMNIST DATASET.

Metric Attaker Cloud Server
FID 566.83 172.06
IS 1.01 3.15
SSIM 0.0067 0.8191

We initialize the generator of A as G4, with some random
weights and eavesdrop on user uplink and access M(6). A
trains G 4 similarly as with the server-side training. The design
of G4 is constrained by two parameters, the exact generator
architecture and the initial weights W of the generator at the
server. Therefore, any attacker selecting the accurate generator
architecture and initial weights is practically unachievable.
However, in our experiments, we assume A knows the exact
architecture of G, but with different random initial weights
W4 # We. We compare the generated images of the G and
G 4 trained on the FashionMNIST dataset in Fig. 3. It can be
clearly seen that the generator G on the cloud server captures
the user’s underlying data distribution, whereas G 4 converges
to a trivial point. Moreover, almost no useful visualization
information is gained by the attacker as shown in Fig. 3.
The main reason is the uniqueness of the generator and the
discriminator pair as presented in Proposition 1.

To examine privacy leakage quantitatively, we use the
Frechet Inception Distance (FID) score [29], IS, and structural
similarity index measure (SSIM) [30]. As discussed in the
paper [31], the similarity between the generated images and
real data quantifies the privacy leakage. In table IV-B, we
record average FID, IS, and SSIM scores for the data generated
by A and the cloud server. Lower FID values, higher SSIM,
and larger IS values represent better reconstruction quality.
The FID score for A is higher than the cloud server by a
great margin. This shows that, compared to the cloud server,
A generated data carries less information about the training
data. We further corroborate this observation by comparing
the SSIM and IS values as well. The experimental results
demonstrate the privacy preservation of UFed-GAN against
full-GAN sharing.

V. CONCLUSION

In this work, we develop a novel framework of UFed-
GAN to address the challenges imposed by the lack of labeled
data and by limited local computation resources in federated
learning. Moreover, we propose a separate training strategy
and a sharing scheme based on DCGANs. We provide an anal-
ysis of the convergence and privacy leakage of the proposed



framework. Our empirical results demonstrate the superior per-
formance of UFed-GAN in comparison against benchmark FL
methods. We plan to investigate the communication overhead
reduction for GAN-based FL and the application of semantic
learning in distributed learning in future works.
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