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Gaussian Process-Based
Learning Control of
Underactuated Balance Robots
With an External and Internal
Convertible Modeling Structure
External and internal convertible (EIC) form-based motion control is one of the effective
designs of simultaneous trajectory tracking and balance for underactuated balance robots.
Under certain conditions, the EIC-based control design is shown to lead to uncontrolled
robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-
driven learning control for underactuated balance robots with the EIC modeling structure.
TwoGP-based learning controllers are presented by using theEICproperty. The partial EIC
(PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem
and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control
compensates for the uncontrolled motion in a subspace, while the other closed-loop
dynamics are not affected. Under the PEIC- andNEIC-based, the tracking and balance tasks
are guaranteed, and convergence rate and bounded errors are achievedwithout causing any
uncontrolled motion by the original EIC-based control. We validate the results and
demonstrate the GP-based learning control design using two inverted pendulum platforms.
[DOI: 10.1115/1.4065937]

1 Introduction

An underactuated balance robot possesses fewer control inputs
than the number of degrees-of-freedom (DOFs) [1,2]. Motion
control of underactuated balance robots requires both the trajectory
tracking of the actuated subsystem and balance control of the
unactuated, unstable subsystem [3–5]. Inverting the nonminimum
phase unactuated nonlinear dynamics brings additional challenges
in causal feedback control design. Several modeling and control
methods have been proposed for these robots and their applications
[4–10]. Orbital stabilization method was used for balancing
underactuated robots [1,11–13], with applications to bipedal robot
[14] and cart-inverted pendulum [1]. Energy shaping-based control
was also designed for underactuated balance robots [15,16]. One
feature of those methods is that the achieved balance-enforced
trajectory is not unique and cannot be prescribed explicitly
[1,11–13]. In Refs. [5] and [17], a simultaneous trajectory tracking
and balance control of underactuated balance robots was proposed
by using the property of the external and internal convertible (EIC)
form of the robot dynamics. The EIC-based control has been
demonstrated as one of the effective approaches to achieve fast
convergence with guaranteed performance.

The above-mentioned control designs require an accurate model
of robot dynamics, and the control performance would deteriorate
under model uncertainties or external disturbances. Machine
learning-based methods provide an efficient tool for robot modeling
and control [18,19]. In particular, Gaussian process (GP) regression
is an effective learning approach that generates nearly analytical
structure and bounded prediction errors [7,19–21]. Development of
GP-based performance-guaranteed control for underactuated bal-
ance robots has been reported in Refs. [4], [20], and [22]. In Ref. [4],
the control design was conducted in two steps. A GP-based inverse
dynamics controller for unactuated subsystem to achieve balance
and a model predictive control (MPC) was used to simultaneously
track the given reference trajectory and estimate the balance
equilibriummanifold (BEM). The GP prediction uncertainties were
incorporated into the control design to enhance the control
robustness. The work in Ref. [5] followed the sequential control
design in the EIC-based framework, and the controller was adaptive
to the prediction uncertainties. The training data were selected to
reduce the computational complexity.
This work takes advantage of the structured GPmodeling approach

in Refs. [5] and [7] and presents an integration of EIC-based control
with GP models. We first present the conditions under which
uncontrolledmotions exist under the original EIC-based control design
for underactuated balance robots. We identify these conditions and
design the stable GP-based learning control with the properly selected
nominal robot dynamic model. Two different controllers, called
partial- and null-space-EIC (i.e., PEIC- and NEIC), are presented to
improve the closed-loop performance. The PEIC-based control
constructs a virtual inertia matrix to reshape the dynamics coupling
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between the actuated and unactuated subsystems. The EIC-induced
uncontrolledmotion is eliminated, and the robotic system behaves as a
combined fully actuated subsystem and a reduced-order unactuated
subsystem. Alternatively, the compensation effect in the NEIC-based
control is applied to the uncontrolled coordinates in the null space,
while the other part of the stable system motion stays unchanged. The
PEIC- and NEIC-based controls achieve guaranteed robust perform-
ance with a fast convergence of the closed-loop tracking errors.
The control tasks considered in this work include both the

trajectory tracking for the actuated subsystem and platform balance
for the unstable subsystem. The interconnection between these two
subsystems lies in implicit dynamic relationship that needs to be
estimated in real time. The control problem considered here
distinguishes from the work in literature. Most existing approaches,
such as orbital stabilization and energy shaping, focus on
stabilization only, that is, the trajectory of the actuated subsystem
is not prescribed, and themain control task is to stabilize the unstable
subsystem. The main contribution of this work lies in the new GP-
based learning control of underactuated balance robots using the
EIC structural properties. Comparedwith the approaches inRefs. [5]
and [17], this work reveals underlying design properties and
limitations of the original EIC-based control for underactuated
balance robots. Compared with the work in Refs. [4] and [23], the
proposed method takes advantage of the attractive EIC modeling
properties for control design and does not use MPC that requires
high computational demands. Compared with other learning control
methods such as reinforcement learning, the proposed control
integrates the robot’s dynamics property (i.e., EIC structure) and the
GP-based model learning. By integrating physics knowledge into
model learning, we identify the conditions for nominal model
selection, and the proposed control is designed with guaranteed
performance. This paper is an extension of the previous conference
submission [24] with new design, analysis, and experiments.
Particularly, the NEIC-based control design and experiments were
not presented in Ref. [24].
The rest of the paper is outlined as follows.We introduce the EIC-

based control and present the problem statement in Sec. 2. Section 3
presents the GP-based robot dynamics. The PEIC- and NEIC-based
controls are presented in Sec. 4. The stability analysis is discussed in
Sec. 5. The experimental results are presented in Sec. 6, and finally
Sec. 7 summarizes the concluding remarks.

2 External and Internal Convertible-Based Robot

Control and Problem Statement

2.1 Robot Dynamics and External and Internal
Convertible-Based Control. We consider an underactuated bal-
ance robot with ðnþ mÞ DOFs, n,m 2 N, and the generalized

coordinates are denoted as q 2 Rnþm. The robot dynamics is
expressed as

S : DðqÞ€qþ Cðq, _qÞ _qþ GðqÞ ¼ Bu (1)

where DðqÞ, Cðq, _qÞ, and GðqÞ are the inertia matrix, Coriolis, and
gravitymatrix, respectively.B denotes the inputmatrix, and u 2 Rn

is the control input. The coordinates are partitioned as q ¼ ½qTa qTu �T,
with actuated coordinate qa 2 Rn and unactuated coordinate
qu 2 Rm. We focus on the case n � m, and without loss of
generality, we assume thatB ¼ ½In 0�T,where In 2 Rn is the identity
matrix with dimension n. The robot dynamic model in Eq. (1) is
rewritten as

Sa : Daa€qa þ Dau€qu þHa ¼ u (2a)

Su : Dua€qa þ Duu€qu þHu ¼ 0 (2b)

for actuated (Sa) and unactuated (Su) subsystems, respectively.
Subscripts “aa (uu)” and “ua (au)” indicate the variables related to
the actuated (unactuated) coordinates and coupling effects,
respectively. For presentation convenience, we introduce
H ¼ C _qþ G, Ha ¼ Ca _qþ Ga, and Hu ¼ Cu _qþ Gu, and the
dependence of D, C, and G on q and _q is dropped. Subsystems Sa

and Su are also referred to as the external and internal subsystems,
respectively [4,17].
The control goal is to steer actuated coordinate qa to follow a given

desired trajectory qda forSa, while the unactuated, unstable subsystem
Su is balanced at unknown equilibrium qeu. Therefore, we need to
estimate qeu in real time to achieve simultaneously trajectory tracking
(for Sa) and platform balance (for Su). It is noted that not all arbitrary
trajectories can be followed given the underactuated dynamics and
balance requirement. Such a propertyhas been explicitly discussed for
the autonomous bikebot example inRef. [25]. In thiswork,we assume
that the given trajectory qad is well planned and the control exists. In
this work, we assume that the given trajectory qda is well planned and
the control exists. Designing and planning feasible trajectory qda is out
of the scope of this work. qda
The original EIC-based control design is considered in two steps

[5,17]. As shown in the top figure in Fig. 1(a), the first step is to
identify and estimate the unknown equilibrium qeu under an external
trajectory tracking control.With the estimated qeu, the external control
design is updated with simultaneously trajectory tracking and
balancing tasks. Following such a concept, we first designs external
input uext to follow qda by temporarily neglecting Su, namely,

uext ¼ Daav
ext þ Dau€qu þHa (3)

Fig. 1 Illustrative diagrams for (a) the original EIC-based control, (b) the PEIC-control design, and (c) the NEIC-based control
design. The top rowshows thegeneral idea for the control design, and thebottom row illustrates the informationflow in thedesign.
In (a), the dashed line indicates the design flow, and the solid line indicates the control flow.
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where vext ¼ qda � kd1 _ea � kp1ea is the auxiliary input under which
the tracking error ea ¼ qa � qda converges to the origin, and kp1, kd1
are diagonal matrices with positive elements. Assuming that uext is
applied to S and Sa follows q

d
a , qu should keep balance around its

equilibrium, which is however unknown. Then, BEM is introduced
and used to capture the equilibrium of qu under €qa ¼ vext, namely,

E ¼ fqeu : Cðqu; vextÞ ¼ 0, _qu ¼ €qu ¼ 0g (4)

where Cðqu; vextÞ ¼ Duu€qu þ Duav
ext þHu. qeu is obtained by

inverting C0 ¼ Cðqu; vextÞj _qu¼€qu¼0 ¼ 0. Obtaining qeu requires accu-
rate system dynamics and needs to invert the nonminimum phase
dynamics Su, which is challenging for noncausal control design.
To stabilize qu onto E, the qa motion is updated as

vint ¼ �Dþ
uaðHu þ Duuv

int
u Þ (5)

where Dþ
ua ¼ ðDT

uaDuaÞ�1DT
ua is the generalized inverse of

Dua, v
int
u ¼ qeu � kd2 _eu � kp2eu is the auxiliary control that drives

error eu ¼ qu � qeu toward zero, and kp2, kd2 are diagonal matrices
with positive elements. The final control is obtained by replacing vext

in Eq. (3) with vint in Eq. (5), that is,

uint ¼ Daav
int þ Dau€qu þHa (6)

where vint is used as the virtual control input in Su, that is, under
€qa ¼ vint, €qu ¼ vintu .
Figure 1(a) illustrates the above sequential EIC-based control

design. It has been shown in Ref. [17] that the control uint guarantees
both ea and eu convergence to a neighborhood of the origin
exponentially if the high-order approximation terms of the closed-
loop systems are affine with error e. Therefore, the EIC-based
control achieves trajectory tracking for Sa and balancing task for Su

simultaneously.

2.2 Motion Property Under External and Internal
Convertible-Based Control. Control design (5) uses a mapping
from low-dimensional (m) to high-dimensional (n) spaces (i.e.,
n � m). Under control (6)with properly selected control gains, it has
been shown in Ref. [17] that there exists a finite time T> 0, and for
small number e > 0, jjquðtÞ � qeuðtÞjj < e for t> T. Therefore, given
the negligible error, we obtain Duaðqa, quÞ � Duaðqa, qeuÞ.
For S in Eq. (2), if rankðDauÞ ¼ m for all q, applying singular

value decomposition (SVD) to Dua and D
þ
ua, we obtain

Dua ¼ UKVT, Dþ
ua ¼ VKþUT (7)

where U ¼ ½u1,…, um� 2 Rm�m and V 2 Rn�n are unitary orthog-
onal matrices. K ¼ ½Km 0� 2 Rm�n, Kþ ¼ ½K�1

m 0�T 2 Rn�m and
Km ¼ diagðr1,…, rmÞ with singular values ri > 0, i ¼ 1,…,m.
We partition V into the block matrix V ¼ ½Vm Vn�, Vm 2 Rn�m and
Vn 2 Rn�ðn�mÞ. Since rankðDauÞ ¼ m, the null space of Dua is
kerðDuaÞ ¼ spanðVnÞ.
Column vectors ofmatrixV serve as a complete set of basis inRn,

and we introduce a coordinate transformation � : x7!VTx for
x 2 Rn. Clearly,� is a linear, time-varying, smooth map. Applying
� to qa and v

ext, we have

pa ¼ VTqa, mext ¼ VTvext (8)

where pa ¼ ½pTam pTan�T, mext ¼ ½ðmextm ÞT ðmextn ÞT�T, and pam, mextm 2 Rm,

pan, m
ext
n 2 Rn�m. Note that ½pTa qTu �T still serves as a complete set of

generalized coordinates forS. Using the new coordinate pa, we have
the following motion property under the original EIC-based control
for S, and the proof is given in Appendix A1.
LEMMA 1. For S in Eq. (2), if rankðDauÞ ¼ m holds for q and all n

control inputs appear in Su dynamics (through €qa), under the EIC-
based control (6), the BEM inEq. (4) is associatedwith only mextm , and
robot dynamics can be written into

SEIC : €pai ¼ � uTi Hu þ Duuv
int
u

� �
ri

, i ¼ 1,…,m (9a)

€paj ¼ 0, j ¼ mþ 1,…, n (9b)

€qu ¼ vintu (9c)

No control input appears for coordinates in kerðDuaÞ as shown in
Eq. (9b), and only m actuated coordinates in spanðVÞ are under
active control, as shown in Eq. (9a). The results in Lemma 1 reveal
the motion property of S under the original EIC-based control
design. The uncontrolled motion happens to a special set of
underactuated balance robots under the conditions in Lemma 1. If
the unactuated motion is only related to m (out of n) control inputs,
the motion (9b) vanishes, and the EIC-based control works well. In
Ref. [5], the EIC-based control worked properly for the rotary
inverted pendulum with n ¼ m ¼ 1. In Refs. [4] and [25], the EIC-
based control also worked well for the bikebot with n¼ 2 (planar
motion) and m¼ 1 (roll motion) but the roll motion depends on
steering control only, that is, no velocity control, and therefore, does
not satisfy the condition for Lemma 1. We will show an example of
the three-link inverted pendulum platform that demonstrates the
uncontrolled motion under the original EIC-based control in Sec. 6.
With the above-discussed motion property under the EIC-based

control, we consider the following problem.
Problem Statement: The goal of robot control is to design an

enhanced EIC-based learning control to drive the actuated
coordinate qa to follow a given profile qda and simultaneously the
unactuated coordinate qu to be stabilized on the estimated qeu. The
uncontrolled motion presented in Lemma 1 should be avoided for
robot dynamics (2).

3 Gaussian Process-Based Robot Dynamics Model

We build a GP-based robot dynamics model that will be used for
control design in Sec. 4.

3.1 Gaussian Process-Based Robot Dynamics Model. To
keep it self-contained, we briefly review the GP regression model.
We consider a multivariate continuously smooth function
y ¼ f ðxÞ þ w, xi 2 Rnx , where w 2 R is the zero-mean Gaussian
noise and nx is the dimension of x. Denote the training data as

D ¼ X,Yf g ¼ fxi, yigNi¼1, where X ¼ xif gNi¼1
, Y ¼ yif gNi¼1

, and

N 2 N is the number of the data point. The GP model is trained by
maximizing posterior probability pðY;X,HÞ over the hyperpara-
meters H, that is, H is obtained by solving

min
H

� log Y;X,Hð Þ ¼ min
H

� 1

2
YTK�1Y � 1

2
log det Kð Þ

where K¼ðKijÞ,Kij¼kðxi,xjÞ¼r2f expð�ð1=2Þðxi�xjÞTWðxi�xjÞÞ
þ#2dij,W¼diag W1,…,Wnxf g>0,dij¼1 for i¼j, and H¼ W,rf ,f
#g are hyperparameters.
The GP agent builds the joint distribution of newmeasurement x�

and the training data as

Y

y

� �
� N 0,

K kT

k k�

" # !
(10)

where k ¼ kðx�,XÞ and k� ¼ kðx�, x�Þ, and Nðl,RÞ denotes the
Gaussian distribution with mean l and variance R. The mean value
and variance for input x� are

lðx�Þ ¼ kTK�1Y, Rðx�Þ ¼ k� � kK�1kT (11)

We integrate the GP regression with a nominal model. For S in
Eq. (1), we first build a nominal model
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Sn : �D€qþ �H ¼ Bu (12)

where �D and �H are the nominal inertia and nonlinear matrices,
respectively. Generally, the nominal dynamic model does not hold
for the data sampled from the physical robot systems. The GP
models are built to capture the difference betweenSn andS, namely,

He ¼ D€qþH � �D€q� �H ¼ Bu� �D€q� �H

We build GP models to estimate He ¼ ½ðHe
aÞT ðHe

uÞT�T, where He
a

and He
u are for Sa and Su, respectively. The training data D ¼

X,Yf g are sampled from S as X ¼ q, _q, €qf g and Y ¼ Hef g.
TheGP predictedmean and variance are denoted as ðliðxÞ,RiðxÞÞ

forHe
i , i ¼ a, u. The GP-based robot dynamics models Sgp

a and Sgp
u

are given as

Sgp
a : �Daa€qa þ �Dau€qu þHgp

a ¼ u (13a)

Sgp
u :

�Dua€qa þ �Duu€qu þHgp
u ¼ 0 (13b)

where H
gp
i ¼ �Hi þ liðxÞ, i ¼ a, u. The GP-based model prediction

error is

D ¼ Da

Du

� �
¼ laðxÞ �He

a

luðxÞ �He
u

� �
(14)

To quantify the GP prediction error, the following property for D is
obtained directly from Theorem 6 in Ref. [26].
LEMMA 2.Given training datasetD, if the kernel function kðxi, xjÞ

is chosen such thatHe
a for Sa has a finite reproducing kernel Hilbert

space norm jjHe
ajjk < 1, for given 0 < ga < 1

Pr jjDajj 	 jjjTaR1=2
a ðxÞjj

n o
� ga (15)

where Pr 
f g denotes the probability of an event, ja 2 Rn, and

its ith entry is jai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jjHe

a,ijj2k þ 3001iln
3ððN þ 1Þ=

q
ð1� g1=na ÞÞ,

1i ¼ maxx,x02Xð1=2Þ ln j1þ #�2
i kiðx, x0Þj. A similar conclusion

holds for Du with 0 < gu < 1.

3.2 Nominal Model Selection. The nominal model plays an
important role in the EIC control. We consider the following
conditions for choosing the nominal model Sn to overcome the
uncontrolled motion under the learning control.

C1: �D ¼ �DT is positive definite, jj�Djj 	 d, jj �Hjj 	 h, where constants
0 < d, h < 1;

C2: rankð�DaaÞ ¼ n, rankð�DuuÞ ¼ rankð�DuaÞ ¼ m; and

C3: nonconstant kernel of �Dua.

With C1 and C2, the generalized inversions of �Daa, �Duu, and �Dau

exist, which are used to compute the auxiliary controls. We can

select �D ¼ �DT to ensure �Dau ¼ �DT
ua. To see the requirement of C3,

we rewrite qa ¼
Pn

i¼1paivi. By Eq. (9), under the updated control

vint, €qa ¼
Pm

i¼1€paivi þ
Pn

i¼mþ1€paivi, where vi is the ith column ofV.

Note that the part
Pn

i¼mþ1€paivi of Sa dynamics is free of control ifV

is constant. Although qu is stabilized on q
e
u, qa converges to q

d
a only

in an m-dimensional subspace and the other ðn� mÞ dimensional
motion uncontrolled. If the system is stable, the uncontrolledmotion
cannot be fixed in the configuration space throughout the entire
control process. Therefore, a nonconstant kernel �Dua is needed.
Conditions C1–C3 provide sufficient nominal model selection

criteria. The commonly used nominal model in Refs. [5] and [7] is
�D€q ¼ Bu with �H ¼ 0. The constant nominal model is used in
Ref. [7] as the system is fully actuated. It is not difficult to satisfy the
nominal model conditions in practice. First, the nonlinear term is
canceled by feedback linearization, and �H ¼ 0 can be used. Matrix
�D captures the robots’ inertia property. Themass and length of robot
links are usually available or can be measured. Meanwhile, the

dynamics coupling for revolute joints shows up in the inertia matrix
as trigonometric functions of the relative joint angles. Therefore, the
diagonal elements can be filled with mass or inertia estimates, and
the off-diagonal entries can be constructed with trigonometric
functions multiplying inertia constants.

4 Gaussian Process-Enhanced External and Internal

Convertible-Based Control

In this section, we propose two enhanced controllers using the GP
model Sgp, i.e., PEIC- and NEIC-based control. The PEIC-based
control aims to eliminate uncontrolled motion under the original
EIC-based control by reassigning the dynamics coupling, while the
NEIC-based control directly manages the uncontrolled motion in a
transformed space; see Figs. 1(b) and 1(c).

4.1 Robust Auxiliary Control. With Sgp, we incorporate the
variance from Sgp

a into tracking control as

v̂ext ¼ €qda � k̂p1ea � k̂d1 _ea (16)

where k̂p1 ¼ kp1 þ kn1Ra and k̂d1 ¼ kd1 þ kn2Ra are control gains
with parameters kn1, kn2 � 0. The variance of GP prediction Ra

captures the uncertainty in robot dynamics and is updated online
with sensor measurements.
Given the GP-based dynamics, the BEM is estimated by solving

the following optimization problem rather by inverting the system
dynamics:

q̂eu ¼ argmin
qu

jjC0ðqu; v̂extÞjj (17)

The balance control is then designed as

v̂intu ¼ €̂qeu � k̂p2êu � k̂d2 _̂eu (18)

where êu ¼ qu � q̂eu is the unactuated subsystem tracking error

relative to the estimated BEM. Similar to k̂p2, k̂d2, k̂p2 ¼ kp2 þ
kn3Ru and k̂d2 ¼ kd2 þ kn4Ru depend on Ru with the parameters by
kn3, kn4 � 0.
Let Dqeu ¼ qeu � q̂eu denote the BEM estimation error, and the

actual BEM is qeu ¼ q̂eu þ Dqeu. The control design based on actual

BEM should be vintu ¼ €qeu � k̂p2eu � k̂d2eu, and therefore we have

vintu ¼ v̂intu � Dvintu

where Dvintu ¼ D€qeu þ k̂p2Dqeu þ k̂d2D _qeu. There are two sources
causing the BEM estimation error. First, the learned dynamics Sgp

u
deviates from the actual one due to the prediction error Du.
Therefore, the exact BEM solution using Sgp

u deviates from that
obtained in Eq. (4). Second, there exist differences between the
BEM solved from Sgp

u and that obtained from Eq. (17) due to the
optimization algorithm. Given the bounded GP prediction error and
limited optimization error, it is reasonable to assume that Dqeu is
bounded. Because of the bounded Gaussian kernel function, the GP
prediction variances are also bounded, i.e.,

jjRaðxÞjj 	 ðrmax
a Þ2, jjRuðxÞjj 	 ðrmax

u Þ2 (19)

where rmax
a ¼ maxiðr2fai þ #2

aiÞ1=2, rmax
u ¼ maxiðr2fui þ #2

uiÞ1=2, and
rf and # are the hyperparameters in each channel. Furthermore, we
require the control gains to satisfy the following bounds:

ki1 	 kðk̂i1Þ 	 ki3, ki2 	 kðk̂i2Þ 	 ki4, i ¼ p, d

for constants kpj, kdj > 0, j ¼ 1,…, 4, where kð
Þ denotes the
eigenvalue operator.
The control design should follow the guidelines: (1) the pam and qu

dynamics are preserved (since they are stable under the original
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EIC-based control), and (2) the uncontrolledmotion (inSgp
a ) is either

eliminated or under active control. The second requirement also
implies that themotion of qu should depend on onlym control inputs.
To see this, solving €qa from Sgp

a and plugging it into Sgp
u yields

ð�Duu � �Dua
�D�1
aa

�DauÞ€qu þHgp
u � �Dua

�D�1
aa H

gp
a ¼ ��Dua

�D�1
aa u

Note that �Dua 2 Rm�n, �D�1
aa 2 Rn�n, and qu is overactuated given

n ¼ dimðuÞ � m ¼ dimðquÞ. If qu depends on the same number of

control inputs, ðn� mÞ columnvectors in �Dua
�D�1
aa shouldbezero.Thus,

the EIC-based control is applied between the same number of actuated
and unactuated coordinates. The uncontrolled motion is avoided.

4.2 Partial External and Internal Convertible-Based Con-
trol Design. The control design vint in Eq. (5) updates the input vext,
and €qa acts as a virtual control to steer qu to q

e
u. The Su dynamics is

rewritten into
€qu ¼ �D�1

uu Hu � D�1
uu Dua€qa

where qu is overactuatedwith respect to €qa.We instead reallocate the
coupling between qa and qu and assign m control inputs for
the unactuated subsystem; see Fig. 1(b). To achieve such a goal,

we partition the actuated coordinates as qa ¼ ½qTaa qTau�T,
qau 2 Rm, qaa 2 Rn�m, and u ¼ ½uTa uTu �T. The Sgp dynamics in
Eq. (13) is rewritten as

�Da
aa

�Dau
aa

�Da
au

�Dua
aa

�Du
aa

�Du
au

�Da
ua

�Du
ua

�Duu

2664
3775

€qaa

€qau

€qu

2664
3775þ

Hgp
aa

Hgp
au

Hgp
u

2664
3775 ¼

ua

uu

0

2664
3775 (20)

where all block matrices are in proper dimensions. We rewrite
Eq. (20) into three groups as

Sgp
aa :

�Da
aa€qaa þHa

an ¼ ua (21a)

Sgp
au : �D

u
aa€qau þ �Du

au€qu þHu
an ¼ uu (21b)

Sgp
u : �Du

ua€qau þ �Duu€qu þHun ¼ 0 (21c)

where Ha
an¼ �Dau

aa€qauþ �Da
au€quþHgp

aa,H
u
an¼ �Dua

aa€qaaþ �Du
au€qu þHgp

au,

and Hun¼ �Da
ua€qaaþHgp

u . Apparently, Sgp
u is virtually independent

of Sgp
aa, and the dynamics coupling exists only between Sgp

u and Sgp
au.

Let v̂ext in Eq. (16) be partitioned into v̂exta and v̂extu corresponding
to qaa and qau, respectively. v̂

ext
a is directly applied to Sgp, and v̂extu is

updated for balance control purpose. As aforementioned, the
condition to eliminate the uncontrolled motion in Sa is that qu
only depends onm inputs. The task of driving qu to q

e
u is assigned to

qau coordinates only. With this observation, the PEIC-based control

takes the form of ûint ¼ ½ûTa ûTu �T with

ûa ¼ �Da
aav̂

ext
a þHa

an, ûu ¼ �Du
aav̂

int þ �Du
au€qu þHu

an (22)

where v̂int ¼ �ð�Du
uaÞ�1ðHun þ �Duuv̂

int
u Þ. Clearly, the unactuated

subsystem only depends on ûu (or qau) under the PEIC design as
illustrated in Fig. 1(b). The following lemma presents the qualitative
assessment of the PEIC-based control, and the proof is given in
Appendix A2.
LEMMA 3. If conditions C1 to C3 are satisfied and Sgp is stable

under the EIC-based control design, Sgp is stable under the PEIC-
based control ûint.

4.3 Null-Space External and Internal Convertible-Based
Control Design. Besides the PEIC-based control, we propose an
alternative method in which the control input for pan is explicitly
designed. Noting that pam 2 spanðVmÞ and pan 2 kerð�DuaÞ ¼
spanðVnÞ, subspaces spanðVmÞ and spanðVnÞ are orthogonal, and
the motion of pan is independent of pam. Therefore, a compensation
is designed in spanðVnÞ for pan, which leaves themotion in spanðVmÞ
unchanged. Based on this observation, theNEIC-based control takes
the form

~uint ¼ �Daa~v
int
a þ �Dau€qu þHgp

a (23)

where ~vinta ¼ ~vint þ ~van, ~van ¼ Vnmn, ~v
int ¼ ��Dþ

uaðHgp
u þ �Duuv̂

int
u Þ,

mn is the control design that drives pai to pdai, i ¼ mþ 1,…, n, and
pda ¼ � ðqdaÞ is transformed reference trajectory. The design of mn
drives ea to the origin in kerð�DuaÞ. A straightforward yet effective
design of mn can be mn ¼ am̂extn , where a > 0. Compared to the PEIC-
based control, pan plays the similar role of qaa coordinates. In the
new coordinate, the qu is associated with pam only.
The following result gives the property of the NEIC-based

control, and the proof is given in Appendix A3.
LEMMA 4. For S, if Sgp satisfies conditions C1 to C3 and Sgp is

stable under the original EIC-based control, Sgp under the NEIC-
based control ~vinta is also stable. Meanwhile, Sgp

u is unchanged
compared to that under the EIC-based control.
The proofs of Lemmas 3 and 4 show that the inputs ûinta and ~uinta

follow the control design guidelines. Both the PEIC- andNEIC-based
controllers preserve the structured form of the EIC design. Figures
1(b) and 1(c) illustrate the overall flowchart of the PEIC- and NEIC-
based control design, respectively. To take advantage of the EIC-
based structure, we follow the design guideline to make sure that
motion of unactuated coordinates only depends on m inputs in
configuration space (PEIC-based control) or transformed space
(NEIC-based control). The input mextn is re-used for uncontrolled
motion under the NEIC-based control. The PEIC-based control
assigns the balance task to a partial group of the actuated coordinates.

5 Control Stability Analysis

5.1 Closed-Loop Dynamics. To investigate the closed-loop
dynamics, we consider the GP prediction error and the BEM
estimation error. The GP prediction error in Eq. (14) is extended to
Daa, Dau, and Du for qaa, qau, and qu dynamics, respectively. Under
the PEIC-based control, the dynamics of S becomes

€qaa ¼ v̂exta � ð�Da
aaÞ�1Daa

€qau ¼ �ð�Du
uaÞ�1ðHun þ �Duuv̂

int
u Þ � ð�Du

aaÞ�1Dau

€qu ¼ v̂intu � �D�1
uu ½Du � �Du

uað�Du
aaÞ�1Dau�

Obtaining BEM with Eq. (17) under ð€qaa, v̂extu Þ is equivalent to

inverting Eq. (21c). Thus, v̂extu ¼ �ð�Du
uaÞ�1Hunjqu¼q̂eu , _qu¼€qu¼0. Sub-

stituting the above equation into the qau dynamics yields

€qau ¼ v̂extu þ Oau, where Oau ¼ �ð�Du
uaÞ�1 �Duuv̂

int
u � ð�Du

aaÞ�1Dau þ
o1 and o1 denotes the higher order terms.
Defining the total error eq ¼ ½eTa eTu �T and e ¼ ½eTq _eTq �T, the closed-

loop error dynamics becomes

_e ¼ 0 Inþm

�k̂p �k̂d

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

eq

_eq

" #
þ 0

Otot

" #
|fflfflffl{zfflfflffl}

O1

¼ Aeþ O1
(24)

with Otot ¼ ½OT
a O

T
u �T,Oa ¼ ½OT

aaO
T
au�T, Oaa ¼�ð�Da

aaÞ�1 Daa,Ou ¼
��D�1

uu ðDu� �Du
ua ð�Du

aaÞ�1DauÞ�Dvintu , k̂p ¼ diagðk̂p1, k̂p2Þ, and k̂d
¼ diagðk̂d1, k̂d2Þ.
Because of bounded �D, there exist constants 0 < da1, da2, du1,

du2 < 1 such that da1 	 jj�Daajj 	 da2 and du1 	 jj�Duujj 	 du2. The
perturbation terms are further bounded as

jOajj j ¼
�����
������ 0

D
u
ua

� ��1
Duubvintu

" #
� D

a
aa

� ��1
Da þ

0

o1

" #�����
�����

	 du2
r1

jjbvintu jj þ 1

da1
jjDajj þ jjo1jj,

and

jjOujj ¼ jj � D
�1

uu Du � D
u
ua D

u
aa

� ��1
Dau

	 

� Dvintu jj

	 1

du1
jjDujj þ

rm
du1da1

jjDajj þ jjDvintu jj

Journal of Dynamic Systems, Measurement, and Control NOVEMBER 2024, Vol. 146 / 061106-5



The perturbation o1 is due to approximation, and Dvintu is the control
difference by the BEM calculation with the GP prediction. They are
both assumed to be affine with e, i.e.,

jjo1jj 	 c1jjejj þ c2, jjDvintu jj 	 c3jjejj þ c4 (25)

with 0 < ci < 1, i ¼ 1,…, 4. From Eq. (19), we have jjjTaR1=2
a jj 	

rmax
a jjjajj and jjjTuR1=2

u jj 	 rmax
u jjjujj. Thus, for 0 < g ¼ gagu < 1,

we can show that

PrfjjO1jj 	 d1 þ d2jjejj þ lu1jjjujj þ la1jjjajjg � g (26)

where d1 ¼ c2 þ ð1þ ðdu2=r1ÞÞ c4, d2 ¼ c1 þ ðdu2=r1Þ c3, la1 ¼
ððrmax

a ðdu1 þ rmÞÞ=du1da1Þ, and lu1 ¼ rmax
u =du1.

To obtain the closed-loop dynamics under the NEIC-based
control, plugging the NEIC-based control into Sgp, we obtain

€pam ¼ �K�1
m UTðHgp

u þ �Duuv̂
int
u Þ � K�1

m UTDu � VT
m
�D�1
aa Da (27a)

€pan ¼ mextn � VT
n
�D�1
aa Da (27b)

€qu ¼ v̂intu � �D�1
uu ðDu � �Dua

�D�1
aa DaÞ (27c)

To obtain the error dynamics, we take advantage of the definition of
BEM. From Eq. (A3), we have mexta ¼ �K�1

m UTHgp
u jqu¼q̂eu , _qu¼€qu¼0.

Then, we rewrite Eq. (27a) into

€pam ¼ �K�1
m UTHgp

u

��� qu ¼ q̂eu

_qu ¼ €qu ¼ 0

þ o2 � K�1
m UT �Duuv̂

int
u

� K�1
m UTDu � VT

m
�D�1
aa Da ¼ mextm þ Om (28)

where o2 is the residual that contains higher order terms. Oam

¼ o2 � K�1
m UT �Duuv̂

int
u � K�1

m UTDu � VT
m
�D�1
aa Da denotes the total

perturbations.
The Sgp

u dynamics keeps the same form as that in the PEIC-based
control. We write the error dynamics under the NEIC-based control
as

€eam ¼ �k̂p1eam � k̂d1eam þ Oam (29a)

€ean ¼ �k̂p1ean � k̂d1ean þ Oan (29b)

€eu ¼ �k̂p2eu � k̂d2eu þ Ou (29c)

where eam ¼ pam � pdam, ean ¼ pan � pdan, and Oan ¼ �VT
n
�D�1
aa Da.

Applying inverse mapping ��1 to Eqs. (29a) and (29b), the error
dynamics in q is obtained as

Se,NEIC : _e ¼ Aeþ O2 (30)

where O2 is the transformed perturbations of ½OT
an O

T
am OT

u �T.
Following the same steps to obtain Eq. (26), we have

PrfjjO2jj 	 d1 þ d2jjejj þ lu2jjjujj þ la2jjjajjg � g (31)

where lu2 ¼ ru,maxððr1 þ du1Þ=r1du1Þ, and la2 ¼ ra,maxððrm þ
du1Þ= da1du1Þ.

5.2 Stability Results. To show the stability, we consider the
Lyapunov function candidate V ¼ eTPe � 0, where positive
definite matrix P ¼ PT is the solution of

AT
0Pþ PA0 þ Q ¼ 0, A0 ¼ 0 Inþm

�kp �kd

� �
(32)

for given positive definite matrix Q ¼ QT, where A0 is the constant
part of A in Eq. (24) and does not depend on variances Ra or Ru.
kp ¼ diagðkp1, kp2Þ and kd ¼ diagðkd1, kd2Þ.

We denote the corresponding Lyapunov function candidates for
the NEIC- and PEIC-based controls as V1 and V2, respectively. The
stability results are summarized as follows with the proof given in
Appendix A4.
THEOREM 1. For robot dynamics (2), using the GP-based model

(13) that satisfies conditions C1–C3, under the PEIC- and NEIC-
based control, the Lyapunov function under each controller satisfies

Prf _Vi 	 �ciVi þ qi þ -ig � g, i ¼ 1, 2 (33)

and the error e converges to a small ball around the origin, where ci is
the convergence rate, qi and -i are the perturbation terms, and
0 < g ¼ gagu < 1.

6 Experimental Results

Two inverted pendulum platforms are used to conduct experi-
ments to validate the control design. The results from each platform
demonstrate different aspects of the control design.2

6.1 Two Degree-of-Freedom Rotary Inverted Pendulum
Figure 2(a) shows a 2DOF rotary inverted pendulum that was
fabricated by Quanser Inc., Markham, ON, Canada. The base joint
(h1) is actuated by a DCmotor, and the inverted pendulum joint (h2)
is unactuated, i.e., n ¼ m ¼ 1. We use this platform to illustrate the
original EIC-based control and also compare the performance under
different nominal models and controllers. The robot dynamic model
is given in Ref. [27] and is also found in Appendix B1.
Since m ¼ n ¼ 1, there is no uncontrolled motion when the

original EIC-based control is applied. Therefore, either a constant or
time-varying nominal model would work for the GP-based learning
control. We created the following two nominal models:

Sn1 : D1 ¼ 1

100

5 �2c2

�2c2 2

" #
, H1 ¼

0

�s2

" #

Sn2 : D2 ¼ 1

100

2 1

1 2

" #
, H2 ¼ 0

where ci ¼ cos hi, si ¼ sin hi for angle hi, i¼ 1, 2. The training data
were sampled and obtained by applying control input

u ¼ kT½h1 � ht1 h2 _h1 � _ht1 _h2�T, where k 2 R4�1 and ht1 was the
combination of sinusoidal waves with different amplitudes and
frequencies. We chose this input to excite the system, and the gain k
was selected without the need to balance the platform. It is difficult
to guarantee that the system is fully excited. However, we changed
the frequency of sinusoidal waves and obtained the motion data
around the target trajectory.

Fig. 2 (a) A Furuta pendulum. The base link joint h1 is actuated,
and the pendulum link joint h2 is unactuated. (b) A three-link
inverted pendulum with actuated joints h1 and h2 and unactuated
joint h3. The rotation axis of link is perpendicular to that of link 2
and link 3.

2The video of the experiment is available at https://www.youtube.com/watch?
v=ZOYb0UW3KS8
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We trained the GP regression models using a total of 500 data
points randomly selected from a large dataset. We designed the

control gains as k̂p1 ¼ 10þ 50Ra, k̂d1 ¼ 3þ 10Ra, k̂p2 ¼ 1000

þ500Ru, and k̂d2 ¼ 100þ 200Ru. The variances Ra and Ru were
updated online with new measurements in real time. The reference

trajectory was hd1 ¼ 0:5 sin tþ 0:3 sin 1:5t rad. The control was
implemented at 400Hz in MATLAB/SIMULINK real-time system. Both
the velocity and acceleration are needed for control design and GP
training and prediction. To reduce the influence of measurement
noise on control design, BEM estimation, and GP agent training, a
sliding window was used to filter the velocity measurement online.
The acceleration was obtained through real-time differentiation.
The same technique was also used for the three-link inverted
pendulum in Sec. 6.2.
Figures 3(a) and 3(b) show the tracking of h1 and balance of h2

under the EIC-based control. With either Sn1 or Sn2 , the base link
joint h1 closely followed the reference trajectory hd1, and the
pendulum link joint h2 was stabilized around its equilibrium he2 as
well. The tracking error was reduced further, and the pendulum
closely followed the small variation under Sn1 .WithSn2 , the tracking
errors became large when the base link changed rotation direction;
see Fig. 3(c) at t¼ 10, 17, and 22 s. Both the time-varying and
constant nominalmodelsworked for theEIC-based learning control.
Table 1 further lists the tracking errors (mean and one standard

deviation) under both GPmodels. For comparison purposes, we also
conducted additional experiments to implement the original EIC-
based control and the GP-based MPC design in Ref. [4]. The
tracking and balance errors under the EIC-based learning control
with model Sn1 are the smallest. In particular, with the time-varying
model Sn1 , the mean values of tracking errors e1 and e2 were reduced

by 75% and 65%, respectively, in comparison with those under the
original EIC-based control. Compared with the MPC method in
Ref. [4], the tracking errors with nominal model Sn2 are at the same
level.
Figure 3(d) shows the control performance with nominal model

Sn1 under disturbance. At t¼ 17 s, an impact disturbance (by
manually pushing the pendulum link) was applied, and the joint
angles changed rapidly with Dh1 ¼ 0:7 rad and Dh2 ¼ 0:3 rad. The
control gains increased (k̂p2 ¼ 1215, k̂d2 ¼ 143) to respond to the
disturbance. As a result, the pendulum motion tracked the BEM
closely and maintained the pendulum balance after the impact
disturbance. Figure 3(e) shows the calculated Lyapunov function
candidate V(t) and its envelope (i.e., VðtÞ ¼ Vð0Þe�ct, c ¼ 0:1898)
during the experiment. Figure 3(f) shows the error trajectory in the
jjeqjj–jj _eqjj plane. The solid/dashed line shows the error trajectory
before/after impact disturbance. The tracking error converged
quickly into the error bound. After the disturbance was applied at
t¼ 17 s, both the Lyapunov function and errors grew dramatically.
As the control gains increased, the errors quickly converged back to
the estimated bound again.

6.2 Three Degree-of-Freedom Rotary Inverted Pendulum.
Figure 2(b) for a 3DOF inverted pendulum with two actuated joints
(h1 and h2) and one unactuated joint (h3), namely, n ¼ 2,m ¼ 1. The
physical model of the robot dynamics was obtained using the
Lagrangian method and is given in Appendix B2. All controllers
were implemented at an updating frequency of 200Hz through the
Robot Operating System. The time-varying nominal model was
selected as

�D ¼
0:15 0:025c2 0:025c3

0:025c2 0:15 0:05c2�3

0:025c3 0:05c2�3 0:1

264
375, �H ¼

0

0:2c2
0:1s3

264
375

where ci6j ¼ cosðhi6hjÞ. The control gains were k̂p1 ¼ 15I2þ20

Ra, k̂d1 ¼ 3I2þ10Ra, k̂p2 ¼ 25þ20Ru,and k̂d2 ¼ 5:5þ10Ru, where
GP variances Ra and Ru were updated online in real-time. The

Fig. 3 Experiment results with guaranteed performance: (a) arm rotation angle, (b) pendulum rotation angle, (c) tracking control
error under GP-based control, (d) pendulum motion profile, (e) profile of Lyapunov function, and (f) trajectory error motion. At
t517s, an impact disturbance is applied. The dashed arrow in (f) indicates the direction inwhich the error grows after disturbance
is applied.

Table 1 Tracking errors comparison under various controllers
(31021 rad)

Sn1 Sn2 GP-based MPC [4] Physical EIC

je1j 0.246 0.17 0.966 0.34 0.876 0.52 1.096 0.40
je2j 0.096 0.05 0.096 0.39 0.076 0.06 0.266 0.15
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reference trajectory was chosen as hd1 ¼ 0:5sin1:5t and hd2 ¼
0:4sin3t rad.
For the PEIC-based control, we chose qaa ¼ h1 and qau ¼ h2, and

the NEIC-based control was mn ¼ m̂extn . Figure 4 shows the
experimental results under the PEIC- and NEIC-based control.
Under both controllers, the actuated joints (h1 and h2) followed the
given reference trajectories (hd1 and h

d
2) closely, and the unactuated

joint (h3) was balanced around the BEM (he3) as shown in Figs. 4(a)
and 4(b). The pendulum link motion displayed a similar pattern for
both controllers. However, the tracking error e1 under the PEIC-
based control (i.e., from �0.05 to 0.05 rad) was much smaller than
that under the NEIC-based control (i.e., from�0.15 to 0.15 rad); see
Figs. 4(c) and 4(d). The balance task in the PEIC-based control was
assigned to joint h2, and joint h1 is viewed as virtually independent of
h2 and h3. Joint h1 achieved almost-perfect tracking control
regardless of the errors for h2 and h3. The compensation effect in
the null space appeared in the entire configuration space, and any

Fig. 4 Experiment results with the 3DOF inverted pendulum: (a) and (b) Motion profiles under the PEIC- and NEIC-based control,
(c) and (d) tracking errors under thePEIC- andNEIC-basedcontrol, (e) error trajectory in the jjeq jj–jj _eq jjplane, and (f) comparisonof
the estimated Lyapunov function profile with the actual one

Fig. 5 Motionprofilesof robotic leg in transformedspaceunder (a) PEIC-basedcontrol, (b) NEIC-basedcontrol, and (c) EIC-based
control

Fig. 6 The tracking errors in coordinate pa under the NEIC-
based control with various a values
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motion error in the unactuated joints affected the motion of all
actuated joints. Similar to the previous example, Fig. 4(e) shows the
error trajectory profile in the jjeqjj–jj _eqjj plane. Figure 4(f) shows the
Lyapunov function profiles under the PEIC- and NEIC-based
controls.
Figure 5 shows the motion of the actuated coordinate in the

transformed coordinate pa under various controllers. Under
the PEIC- and NEIC-based controls, the pa variables followed the
reference profile pda as shown in Figs. 5(a) and 5(b). Figure 5(c)
shows themotion profile under the original EIC-based control. In the
first 2 s, joint h3 followed the BEMunder the EIC-based control, and
pa1 coordinates displayed a similar motion pattern. However, pa2
coordinate showed diverge behavior and led to a failure completely.
Therefore, as analyzed previously, the system became unstable
under the EIC-based control though conditions C1 to C3 were
satisfied.
InNEIC-based control, vn drives the uncontrolledmotion variable

to its reference trajectory. To further reduce the tracking error, we
can increase a values. Figure 6 shows the experiment results of the pa
error profiles under various a values varying from 0.5 to 1.5. With a
large a value, the tracking error of the actuated coordinates was
reduced. Table 2 further lists the steady-state errors (in joint angles)
under theNEIC-based controlwith various a values, the PEIC-based
control and the physical model-based control design. Under the
NEIC-based control with a ¼ 0:5, the system was stabilized; when
increasing a values to 1 and 1.5, the mean tracking errors were
reduced 50% and 70% for h1, respectively, and 40% for h2. Since
control input mn did not affect the balance task of the unactuated
subsystem, the tracking errors for h3 maintained the same level. It is
of interest that the control effort (i.e., last column in Table 2) only
shows a slight increase with large a values.

6.3 Discussion. For the rotary pendulum example, we have
n¼m, and the null space kerðDauÞ vanishes. The compensation

effect is no longer needed by the NEIC-based control, i.e., ~vinta ¼ ~vint

and ~uint ¼ �Daa~v
int
a þ �Dau€qu þHgp

a ¼ uint. In this case, the PEIC- and
NEIC-based controls are degenerated to the EIC-based control. For
the 3DOF inverted pendulum, the control inputs u1 and u2 act on h3
joints through €h1 and €h2. Therefore, as shown in Lemma 1, the
uncontrolled motion exists since all controls show up in Su

dynamics. This observation explains why the original EIC-based
control failed to balance the three-link inverted pendulum. If the Su

dynamics is related tom control inputs (through €qa) for n>m such as
the bikebot dynamics in Refs. [4] and [25], onlym external controls
were updated, and the EIC-based control worked well without any
uncontrolled motion.
For the PEIC-based control, the robot dynamics were partitioned

into Sgp ¼ fSgp
aa, Sgp

au,Sgp
u

� �g, which contains a fully actuated
system Sgp

aa, and a reduced-order underactuated system Sgp
au,Sgp

u

� �
.

The EIC-based control is applied to Sgp
au and Sgp

u only. The dynamics
of qu in general does not depend on any specific m actuated
coordinates, since the mapping � is time-varying across different
control cycles. In theNEIC-based control design, pam and qu become
an underactuated subsystem, and pan is fully actuated.

In practice, no specific rules are defined to select qau out of qa
coordinates, and therefore, there are a total ofCm

n ¼ n!=ðm!ðn� mÞ!Þ
options to select different coordinates. We take advantage of such a
property to optimize tracking performance for selected coordinates.
In the 3DOF pendulum case, we assigned the balance task of h3 to h2
motion. The length of link 1 was only 0.09m and was much shorter
than the length of link 2 (0.23m). The coupling effect between h2
and h3 was much stronger than that between h1 and h3; see D13 and
D23 inAppendixB2. Thus, it was efficient to use themotion of h2 as a
virtual control input to balance h3. When implementing the PEIC-
based controller with qau ¼ h1, the system cannot achieve the
desired performance and becomes unstable. We also implemented
the proposed controller with the physical model. The control errors
are listed in Table 2. Compared with the learning-based controllers,
the model-based control resulted in larger errors. Since the
mechanical frictions and other unstructured effects were not
considered, the physical model might not capture and reflect the
accurate robot dynamics. The results confirmed the advantages of
the proposed learning-based control approaches.
The unique feature of the proposed control lies in integration of

the robot’s inherent dynamics property (EIC structure) and the GP-
based model learning, compared with other learning-based control
approach [18,22]. By integrating physics knowledge into model
learning, we identified the conditions for nominal model selection.
The overall model learning and control design framework forms a
white-box-like, physics knowledge involved control, which differs
from the reinforcement learning-based policy search approach [18].
The solution also has the potential to further incorporate the bounded
GP prediction error for a robust control [4].

7 Conclusion

This paper presented a new learning-based modeling and control
framework for underactuated balance robots. The proposed design
was an extension and improvement of the EIC-based control with
GP-enabled robot dynamics. The proposed new robot controllers
preserved the structural design of the original EIC-based control and
achieved both tracking and balance tasks. The PEIC-based control
reshaped the coupling between the actuated and unactuated
coordinates. The robot dynamics was transferred into a fully
actuated subsystem and one reduced-order underactuated balance
subsystem. The NEIC-based control compensated for uncontrolled
motion in a subspace. We validated and demonstrated the new
control design on two experimental platforms and confirmed that
stability and balance were guaranteed. The comparison with the
physical model-based EIC control and the MPC design confirmed
superior performance in terms of the error bound. Extension of the
GP-based learning control design for highly underactuated balance
robots is one of the ongoing research directions.
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Table 2 Statistical analysis of tracking performance (mean and standard deviation for errors) under different controllers

je1j (rad) je2j (rad) je3j (rad) jjejj
ð
uTudt

PEIC (GP) 0.03026 0.0178 0.05666 0.0685 0.11826 0.0160 0.13436 0.0166 5.7659
NEIC (GP, a ¼ 0:5) 0.13956 0.0946 0.11666 0.0512 0.03036 0.0209 0.20016 0.0770 5.9022
NEIC (GP, a ¼ 1:0) 0:06516 0:0416 0.07566 0.0481 0.01956 0.0152 0.11016 0.0499 5.7089
NEIC (GP, a ¼ 1:5) 0.03766 0.0302 0.07926 0.0482 0.02076 0.0169 0.09726 0.0470 5.7305
PEIC (model) 0.21686 0.1165 0.23986 0.1649 0.01796 0.0140 0.35876 0.1307 5.7978
NEIC (model, a ¼ 1:0) 0.13746 0.0922 0.12376 0.0597 0.04556 0.0385 0.20956 0.0769 5.8452
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Nomenclature

ea, eu, e ¼ tracking, balance, and overall errors
pa, m

ext ¼ transformed qa and v
ext in p coordinates

pam, pan ¼ controlled and uncontrolled coordinates
qa, qu ¼ coordinates for actuated and unactuated subsystems

qaa, qau ¼ partitioned actuated coordinates in (n�m)- and
m-dimensions

qeu, q̂
e
u ¼ actual and estimated BEMs
S ¼ robot dynamics

Sn,Sgp ¼ nominal and GP-based robot dynamics
uint, ûint, ~uint ¼ EIC-, PEIC-, NEIC-based control inputs

vext, vint ¼ trajectory tracking and balanced-embedded control
inputs

vintu ¼ BEM stabilization control input

v̂exta , v̂extu ¼ trajectory tracking control inputs for qaa and qau

~vinta ¼ control input for pam
c, r ¼ convergence rate and error bound

Da,Du ¼ estimation errors of actuated and unactuated
dynamics

Appendix A: Proofs

A1 Proof of Lemma 1. The system dynamics S under control
uext is

€qa ¼ vext, €qu ¼ �D�1
uu ðDuav

ext þHuÞ (A1)

When rankðDauÞ ¼ m holds for q, the SVD in Eq. (7) exists and allm
singular values are great than zero, i.e., ri > 0. Thus, kerðDauÞ ¼
Vn contains ðn� mÞ column vectors. Plugging Eq. (7) into Eq. (A1)
and considering the coordinate transformation, we obtain

€pa ¼ mext, €qu ¼ �D�1
uu ðUKmm

ext
m þHuÞ (A2)

where UKVTvext ¼ UKmm
ext
m is used based on the fact that K 2

Rm�n is a rectangular diagonal matrix.
Given the definition of E, qeu is obtained by solving the algebraic

equationC0ðqu; vextÞ ¼ 0.We substituteDuaðqeuÞwithDuaðquÞ inC0,
and therefore, using Eq. (7), C0 ¼ 0 is rewritten into

Kmm
ext
m þ UTHgp

u jqu¼qeu , _qu¼€qu¼0 ¼ 0 (A3)

The BEM E depends only on mextm , that is, the control effect in
kerðDuaÞ is not used when obtaining the BEM.
Furthermore, since all controls show up in Su dynamics, the control

inputs should be updated, and the EIC-based control in Eq. (6) exists.
We substitute Eqs. (7) and (6) into Sa dynamics and obtain

€qa ¼ vint ¼ �Dþ
uaðHu þ Duuv

int
u Þ ¼ �VKþUTðHu þ �Duv

int
u Þ

Multiplying the above equation on both sides with VT and
considering Eq. (8), S under the EIC-based control becomes
Eq. (9), and the ðn� mÞ coordinates are free of control.

A2 Proof of Lemma 3. Under input uu, €qau ¼ vintau , we solve €qu
by Eq. (21c)

€qu ¼ ��D�1
uu ½�Du

uav
int
au þHun�

¼ ��D�1
uu ½Hun � �Du

uað�Du
uaÞ�1ðHun þ �Duuv̂

int
u Þ� ¼ v̂intu

Clearly, the unperturbed subsystem Sgp
u remains the same as that

under the original EIC-based control. With the designed control, qaa
dynamics is unchanged, and €qaa ¼ v̂exta holds regardless of v̂intu . For

qaa and qau, we obtain €qaa ¼ v̂exta and €qau ¼ v̂intu . The relationship in

Eq. (9) indicates that if the unactuated subsystem dynamics is

written into €qu ¼ vintu , the dynamics €qa under the transformation �
must contain the portion (9a). Similarly, we obtain

SPEIC : €pai ¼ � uTi Hgp
u þ Duubvintu

� �
ri

, i ¼ 1,…,m (A4a)

€paj ¼ vTj v̂
int
a , j ¼ mþ 1,…, n (A4b)

€qu ¼ v̂intu (A4c)

where v̂inta ¼ ½ðv̂exta ÞT ðv̂intu ÞT�T. Since v̂inta is not obtained in the way as

in Eq. (5), i.e., v̂inta 62 kerð�DuaÞ, vTmþjv̂
int
a 6¼ 0 and pan is under active

control. Meanwhile, vTmþjv̂
int
a drives qa ! qda in kerð�DauÞ, given that

v̂exta and v̂intu are designed to drive qa ! qda . Therefore, if the
unperturbed system under the original EIC-based control is stable, it
is also stable under the PEIC-based control.

A3 Proof of Lemma 4. Under the NEIC-based control input,
the Sgp

a becomes

€qa ¼ ~vinta ¼ ~vint þ ~vexta ¼ ��Dþ
uaðHgp

u þ �Duuv̂
int
u Þ þ Vnmn (A5)

Plugging above equation into Sgp
u , we obtain

€qu ¼ ��D�1
uu ð�Dua€qa þHgp

u Þ ¼ ��D�1
uu ½��Dua

�Dþ
uaðHgp

u

þ �Duuv̂
int
u Þ þ �DuaVnmn þHgp

u � ¼ v̂intu � �D�1
uu

�DuaVnmn

Using the SVD form of �Dua in Eq. (7) and KVTVn � 0, the above
equation is further simplified as

€qu ¼ v̂intu � �D�1
uu UKV

TVnmn ¼ v̂intu (A6)

Clearly, Sgp
u dynamics is unchanged compared to Eq. (9).

We further apply the transformation� to qa and SVD to �Dþ
ua. TheSu dynamics (A5) and (A6) become

SNEIC: €pai ¼ � uTi Hgp
u þ Duubvintu

� �
ri

, i ¼ 1,…,m (A7a)

€paj ¼ �nj, j ¼ mþ 1,…, n (A7b)

€qu ¼ v̂intu (A7c)

Compared to Eq. (9), we add control ~vexta to drive qa ! qda in the
subspace kerð�DuaÞ. Therefore, if the system (9) is stable, Eq. (A4) is
also stable, as the pam and qu dynamics are unchanged.

A4 Proof for Theorem 1. We present the stability proof for the
PEIC- and NEIC-based controls using the Lyapunov method.
PEIC-Based Control: Plugging Eq. (24) into V1 ¼ V and

considering Eq. (32), we obtain _V1 ¼ eTðATPþ PAÞeþ
2eTPO1 ¼ �eTQeþ eTQReþ 2eTPO1, where QR ¼ ðA� A0ÞT
Pþ PðA� A0Þ. The bounded variance leads to the bounded

eigenvalue of matrix QR. Given the fact that QR ¼ QT
R, the

eigenvalues of QR are real numbers.
Noting thatQR is bounded and P,Q are constant, the perturbation

term O1 is bounded as shown in Eq. (26). Then, _V1 is rewritten as

_V1 	 �½kminðQÞ � kmaxðQRÞ�jjejj2 þ 2kmaxðPÞjjejjðd1
þ d2jjejjÞ þ 2kmaxðPÞjjejjðlu1jjjujj þ la1jjjajjÞ

¼ �½kminðQÞ � kminðQRÞ � 2d2kmaxðPÞ�jjejj2
þ 2ðd1 þ x1ÞkmaxðPÞjjejj

where x1 ¼ lu1jjjujj þ la1jjjajj denotes the uncertainties related to
GP prediction errors. kminð
Þ and kmaxð
Þ denote the smallest and
greatest eigenvalues of a matrix, respectively. Considering

kminðPÞjjejj2 	 V1 	 kmaxðPÞjjejj2, we define
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c1 ¼
kmin Qð Þ � kmax QRð Þ � 2d2kmax Pð Þ

kmax Pð Þ
q1 ¼ 2d1kmaxðPÞjjejj, -1 ¼ 2x1kmaxðPÞjjejj. With the bounded
perturbations q1 and x1, the closed-loop system dynamics can be
shown stable in probability as Pr V1 	 �c1V1 þ q1 þ -1f g > g.
Taking further analysis, we obtain a nominal estimation of the error

convergence as Pr _V1 	 V1ð0Þe�c1 t
� �

> g and the error bound
estimation Pr jjejj 	 r1f g > g with r1 ¼ ð2d1kmaxðPÞÞ= ðkminðQÞ
�kmaxðQRÞ � 2d2kmaxðPÞÞ.
NEIC-Basd Control: Without the loss of generality, we select

mn ¼ VT
n v̂

ext. We take V2 ¼ V as the Lyapunov function candidate
forSe,NEIC. If the control gains are the same as that in the PEIC-based
control and a¼ 1 for compensation effect, c2 ¼ c1. We choose
control gains properly such that c2 > 0. The system can be shown
stable as Pr _V2 	 �c2V2 þ q2 þ -2

� �
> g, where q2 ¼ 2d1

kmaxðPÞ jjejj, -2 ¼ 2x2kmaxðPÞjjejj, and x2 ¼ lu2jjjujj þ la2jjjajj
is defined same as x1 containing the GP prediction uncertainties. A
nominal estimation of error convergence and final error bound can
also be obtained.
To show ci > 0, i¼ 1, 2, the control gains should be properly

selected. With a small predefined error limit as a stop criterion in
BEM estimation, ci values can be shown as ci 
 1. Given the
explicit form, di are estimated forA0 andQ,P is obtained by solving
Eq. (32). ThematrixQR depends on the control gains associatedwith
the reduction variance. Since the variance is bounded, we design kni
such that kmaxðQRÞ satisfies the inequality kminðQÞ � kmaxðQRÞ �
2d2kmaxðPÞ > 0 and then c1 > 0. Thus, the stability is obtained.

Appendix B: Dynamics Model of Underactuated Balance

Robots

B1 Rotary Inverted Pendulum. The dynamics model for the
rotary pendulum is in the form of Eq. (1) with qa ¼ h1 and qu ¼ h2.
The model parameters are B ¼ ½1 0�T and

Daa ¼ Cðmpl
2
r þ 0:25mpl

2
ps

2
2 þ JrÞ

Dau ¼ Dua ¼ �0:5Cmplplrc2, Duu ¼ CðJp þ 0:25mpl
2
pÞ

Ha ¼ Cð0:5mpl
2
p
_h1 _h2s2c2 þ 0:5mplplr _h

2
2s2

þ dr _h1 þ k2gktkm
_h1=RmÞ þ Kgkt _h2

Hu ¼ Cðdp _h2 � 0:25mpl
2
pc2s2

_h2 � 0:5mplpgs2Þ

where lr, Jr, and dr are the length, mass inertia, and viscous damping
coefficient of the base link, lp, Jp, and dp are corresponding
parameters of the pendulum, mp is the pendulum mass, g is the
gravitational constant, and kt, km,KG,Rm, andC are robot constant.
The values of these parameters can be found inRef. [27]. The control
input is the motor voltage, i.e., u¼Vm.

B2 Three-Link InvertedPendulum. Themodel parameters in
Eq. (1) are

D11 ¼ ðm3ðl22 þ 0:25l23Þ þ 0:25m2l
2
2 � 0:5m3l

2
3c

2
3 � m3l2l3s3Þc22

þ ð0:5m3s3l
2
3 � m3l2l3Þs2c3c2 þ 0:25m3c

2
3l
2
3

þ ð0:25m1 þ m2 þ m3Þl21 þ J1

D12 ¼ D21 ¼ �ðm3l2 þ 0:5m2l2Þl1s2 � 0:5m3l1l3c2þ3

D13 ¼ D31 ¼ 0:5m3l1l3c2þ3

D22 ¼ J2 þ ðm3 þ 0:25m2Þl22 þ 0:25m3l
2
3 � m3l2l3s3

D23 ¼ D32 ¼ ð0:25l3 � 0:5l2s3Þm3l3, D33 ¼ J3 þ 0:25m3l
2
3

G1 ¼ 0, G2 ¼ �ð0:5m2 þ m3Þc2l2gþ 0:5m3l3s2þ3g

G3 ¼ �0:5m3l3s2þ3g

wheremi, li, and Ji are themass, length, andmass inertia of each link,
and siþj ¼ sinðhi þ hjÞ. Matrix C is obtained as Cij ¼

P3
k¼1cijk

_hk,
where Christoffel symbols cijk ¼ 1

2
ðð@Dij= @hkÞ þ ð@Dik=

@hjÞ � ð@Djk=@hiÞÞ. The physical parameters arem1 ¼ 0:7 kg,m2 ¼
1:3 kg, m3 ¼ 0:3 kg, l1 ¼ 0:065 m, l2 ¼ 0:23 m, l3 ¼ 0:25 m, J1 ¼
0:0008 kg m2, J2 ¼ 0:005 kg m2, and J3 ¼ 0:003 kg m2.
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