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External and internal convertible (EIC) form-based motion control is one of the effective
designs of simultaneous trajectory tracking and balance for underactuated balance robots.
Under certain conditions, the EIC-based control design is shown to lead to uncontrolled
robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-
driven learning control for underactuated balance robots with the EIC modeling structure.
Two GP-based learning controllers are presented by using the EIC property. The partial EIC
(PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem
and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control
compensates for the uncontrolled motion in a subspace, while the other closed-loop
dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks
are guaranteed, and convergence rate and bounded errors are achieved without causing any
uncontrolled motion by the original EIC-based control. We validate the results and
demonstrate the GP-based learning control design using two inverted pendulum platforms.
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1 Introduction

An underactuated balance robot possesses fewer control inputs
than the number of degrees-of-freedom (DOFs) [1,2]. Motion
control of underactuated balance robots requires both the trajectory
tracking of the actuated subsystem and balance control of the
unactuated, unstable subsystem [3—5]. Inverting the nonminimum
phase unactuated nonlinear dynamics brings additional challenges
in causal feedback control design. Several modeling and control
methods have been proposed for these robots and their applications
[4-10]. Orbital stabilization method was used for balancing
underactuated robots [1,11-13], with applications to bipedal robot
[14] and cart-inverted pendulum [1]. Energy shaping-based control
was also designed for underactuated balance robots [15,16]. One
feature of those methods is that the achieved balance-enforced
trajectory is not unique and cannot be prescribed explicitly
[1,11-13]. In Refs. [5] and [17], a simultaneous trajectory tracking
and balance control of underactuated balance robots was proposed
by using the property of the external and internal convertible (EIC)
form of the robot dynamics. The EIC-based control has been
demonstrated as one of the effective approaches to achieve fast
convergence with guaranteed performance.
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The above-mentioned control designs require an accurate model
of robot dynamics, and the control performance would deteriorate
under model uncertainties or external disturbances. Machine
learning-based methods provide an efficient tool for robot modeling
and control [18,19]. In particular, Gaussian process (GP) regression
is an effective learning approach that generates nearly analytical
structure and bounded prediction errors [7,19-21]. Development of
GP-based performance-guaranteed control for underactuated bal-
ance robots has been reported in Refs. [4], [20], and [22]. In Ref. [4],
the control design was conducted in two steps. A GP-based inverse
dynamics controller for unactuated subsystem to achieve balance
and a model predictive control (MPC) was used to simultaneously
track the given reference trajectory and estimate the balance
equilibrium manifold (BEM). The GP prediction uncertainties were
incorporated into the control design to enhance the control
robustness. The work in Ref. [5] followed the sequential control
design in the EIC-based framework, and the controller was adaptive
to the prediction uncertainties. The training data were selected to
reduce the computational complexity.

This work takes advantage of the structured GP modeling approach
in Refs. [5] and [7] and presents an integration of EIC-based control
with GP models. We first present the conditions under which
uncontrolled motions exist under the original EIC-based control design
for underactuated balance robots. We identify these conditions and
design the stable GP-based learning control with the properly selected
nominal robot dynamic model. Two different controllers, called
partial- and null-space-EIC (i.e., PEIC- and NEIC), are presented to
improve the closed-loop performance. The PEIC-based control
constructs a virtual inertia matrix to reshape the dynamics coupling

NOVEMBER 2024, Vol. 146 / 061106-1

Copyright © 2024 by ASME



between the actuated and unactuated subsystems. The EIC-induced
uncontrolled motion is eliminated, and the robotic system behaves as a
combined fully actuated subsystem and a reduced-order unactuated
subsystem. Alternatively, the compensation effect in the NEIC-based
control is applied to the uncontrolled coordinates in the null space,
while the other part of the stable system motion stays unchanged. The
PEIC- and NEIC-based controls achieve guaranteed robust perform-
ance with a fast convergence of the closed-loop tracking errors.

The control tasks considered in this work include both the
trajectory tracking for the actuated subsystem and platform balance
for the unstable subsystem. The interconnection between these two
subsystems lies in implicit dynamic relationship that needs to be
estimated in real time. The control problem considered here
distinguishes from the work in literature. Most existing approaches,
such as orbital stabilization and energy shaping, focus on
stabilization only, that is, the trajectory of the actuated subsystem
isnot prescribed, and the main control task is to stabilize the unstable
subsystem. The main contribution of this work lies in the new GP-
based learning control of underactuated balance robots using the
EIC structural properties. Compared with the approaches in Refs. [5]
and [17], this work reveals underlying design properties and
limitations of the original EIC-based control for underactuated
balance robots. Compared with the work in Refs. [4] and [23], the
proposed method takes advantage of the attractive EIC modeling
properties for control design and does not use MPC that requires
high computational demands. Compared with other learning control
methods such as reinforcement learning, the proposed control
integrates the robot’s dynamics property (i.e., EIC structure) and the
GP-based model learning. By integrating physics knowledge into
model learning, we identify the conditions for nominal model
selection, and the proposed control is designed with guaranteed
performance. This paper is an extension of the previous conference
submission [24] with new design, analysis, and experiments.
Particularly, the NEIC-based control design and experiments were
not presented in Ref. [24].

The rest of the paper is outlined as follows. We introduce the EIC-
based control and present the problem statement in Sec. 2. Section 3
presents the GP-based robot dynamics. The PEIC- and NEIC-based
controls are presented in Sec. 4. The stability analysis is discussed in
Sec. 5. The experimental results are presented in Sec. 6, and finally
Sec. 7 summarizes the concluding remarks.

2 External and Internal Convertible-Based Robot
Control and Problem Statement

2.1 Robot Dynamics and External and Internal
Convertible-Based Control. We consider an underactuated bal-
ance robot with (n+m) DOFs, n,m € N, and the generalized
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coordinates are denoted as g € R"™. The robot dynamics is
expressed as

S:D(q)§+C(q.4)q +G(q) = Bu )

where D(q), C(q,q), and G(q) are the inertia matrix, Coriolis, and
gravity matrix, respectively. B denotes the input matrix, and u € R”
is the control input. The coordinates are partitioned as g = [q;r qI]T,
with actuated coordinate ¢, € R" and unactuated coordinate
q, € R™. We focus on the case n>m, and without loss of
generality, we assume that B = [I,, O]T,Wherel,, € R"is the identity
matrix with dimension n. The robot dynamic model in Eq. (1) is
rewritten as

Sa . Daaqg +Dauqu +H,=u (2‘1)

’Su : Duaqa +Duuéu +H,=0 (2b)
for actuated (S,) and unactuated (S,) subsystems, respectively.
Subscripts “aa (uu)” and “ua (au)” indicate the variables related to
the actuated (unactuated) coordinates and coupling effects,
respectively. For presentation convenience, we introduce
H=C¢+G,H,=C,q+G,, and H,=C,q+ G,, and the
dependence of D, C, and G on ¢ and ¢ is dropped. Subsystems S,
and S, are also referred to as the external and internal subsystems,
respectively [4,17].

The control goal is to steer actuated coordinate g, to follow a given
desired trajectory g for S,, while the unactuated, unstable subsystem
S, is balanced at unknown equilibrium g. Therefore, we need to
estimate ¢, in real time to achieve simultaneously trajectory tracking
(for S,) and platform balance (for S,,). It is noted that not all arbitrary
trajectories can be followed given the underactuated dynamics and
balance requirement. Such a property has been explicitly discussed for
the autonomous bikebot example in Ref. [25]. In this work, we assume
that the given trajectory ¢ is well planned and the control exists. In
this work, we assume that the given trajectory ¢? is well planned and
the control exists. Designing and planning feasible trajectory ¢¢ is out
of the scope of this work. qZ

The original EIC-based control design is considered in two steps
[5,17]. As shown in the top figure in Fig. 1(a), the first step is to
identify and estimate the unknown equilibrium ¢¢, under an external
trajectory tracking control. With the estimated ¢, the external control
design is updated with simultaneously trajectory tracking and
balancing tasks. Following such a concept, we first designs external
input #*** to follow ¢ by temporarily neglecting S,,, namely,

u™ = D,V + Dy, + H, 3)

Uncontrolled
&

m unactuated
coordinates
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Fig. 1
design. The top row shows the general idea for the control design, and the bottom row illustrates the information flow in the design.
In (a), the dashed line indicates the design flow, and the solid line indicates the control flow.
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where v*' = ¢4 — kg€, — kp e, is the auxiliary input under which
the tracking error e, = q, — qz converges to the origin, and k,, kg
are diagonal matrices with positive elements. Assuming that u*" is
applied to S and S, follows ¢¢, g, should keep balance around its
equilibrium, which is however unknown. Then, BEM is introduced

and used to capture the equilibrium of ¢, under ¢, = v**', namely,
E={q:

where I'(g,;v*) =D,q, + Dy, +H,. ¢’ is obtained by

inverting I'y = T'(q,; v e"‘)\qﬁq _o = 0. Obtaining ¢, requires accu-

rate system dynamics and needs to invert the nonminimum phase

dynamics S,,, which is challenging for noncausal control design.
To stabilize g, onto &, the ¢, motion is updated as

I(g,;v™) = 0.4, = §, = 0} S

=-D} (H,+ Du,,v"“) (5)
where D/ = (DT D,,a)leIa is the generalized inverse of
D, v ‘u‘“ = q, — kpe, — ke, is the auxiliary control that drives
error e, = ¢, — ¢, toward zero, and k;, kg are diagonal matrices
with positive elements. The final control is obtained by replacing v**
in Eq. (3) with ¥ in Eq. (5), that is,

int

u™ =Dy V"™ + Dy, + H, (6)

where v is used as the virtual control input in S,,, that is, under
q' p— vmt, au p— Vlﬂt

Figure 1(a) 111ustrates the above sequential EIC-based control
design. It has been shown in Ref. [17] that the control #™ guarantees
both e, and e, convergence to a neighborhood of the origin
exponentially if the high-order approximation terms of the closed-
loop systems are affine with error e. Therefore, the EIC-based
control achieves trajectory tracking for S, and balancing task for S,
simultaneously.

2.2 Motion Property Under External and Internal
Convertible-Based Control. Control design (5) uses a mapping
from low-dimensional (m) to high-dimensional (n) spaces (i.e.,
n > m). Under control (6) with properly selected control gains, it has
been shown in Ref. [17] that there exists a finite time 7 > 0, and for
small number e > 0, ||g,(¢) — ¢(¢)|| < efort>T. Therefore, given
the negligible error, we obtain D,,(q,.q,) = Du.(q,.9)-

For S in Eq. (2), if rank(D,,) = m for all ¢, applying singular

value decomposition (SVD) to D, and D}, we obtain

Dy =UAV', D, =VA'U' ™
where U = [uy, ..., uy] € R™™and V € R™" are umtdry orthog-
onal matrices. A [An0] € R™" AT =[A,, -1 0] c Rmxm and
A,, = diag(ay,...,0,) with singular values ¢; >0,i=1,.

We partition V into the block matrix V = [V, V,)], V,, € R and
V, € R0 Since rank(D,,) = m, the null space of D,, is
ker(Dy,) = span(V,).

Column vectors of matrix V serve as a complete set of basis in R”",
and we introduce a coordinate transformation I : x—VTx for
x € R". Clearly, T is a linear, time-varying, smooth map. Applying
T to g, and v**', we have

Do = VTqa, vexl _ VTvexl (8)
wherep, = [py,, pi,]' s v = [(vp)" (vi)']" andp,,, vt € R,
Pans v € R"™™ Note that [pT ¢T]" still serves as a complete set of
generalized coordinates for S. Using the new coordinate p,, we have
the following motion property under the original EIC-based control
for S, and the proof is given in Appendix Al.

Lemma 1. For Sin Eq. (2), if rank(Dy, ) = m holds for q and all n
control inputs appear in S,, dynamics (through q,), under the EIC-
based control (6),the BEM in Eq. (4) is associated with only vCXt nd
robot dynamics can be written into
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ul (H, + Dv™)

SEICIﬁai:—f, i=1,....m (9a)
Paj=0, j=m+1,...,n (9b)
g, =" 90)

No control input appears for coordinates in ker(D,,) as shown in
Eq. (9b), and only m actuated coordinates in span(V) are under
active control, as shown in Eq. (9a). The results in Lemma 1 reveal
the motion property of S under the original EIC-based control
design. The uncontrolled motion happens to a special set of
underactuated balance robots under the conditions in Lemma 1. If
the unactuated motion is only related to m (out of n) control inputs,
the motion (9b) vanishes, and the EIC-based control works well. In
Ref. [5], the EIC-based control worked properly for the rotary
inverted pendulum with n = m = 1. In Refs. [4] and [25], the EIC-
based control also worked well for the bikebot with n =2 (planar
motion) and m=1 (roll motion) but the roll motion depends on
steering control only, that is, no velocity control, and therefore, does
not satisfy the condition for Lemma 1. We will show an example of
the three-link inverted pendulum platform that demonstrates the
uncontrolled motion under the original EIC-based control in Sec. 6.

With the above-discussed motion property under the EIC-based
control, we consider the following problem.

Problem Statement: The goal of robot control is to design an
enhanced EIC-based learning control to drive the actuated
coordinate g, to follow a given profile ¢¢ and simultaneously the
unactuated coordinate g, to be stabilized on the estimated ¢j. The
uncontrolled motion presented in Lemma 1 should be avoided for
robot dynamics (2).

3 Gaussian Process-Based Robot Dynamics Model

We build a GP-based robot dynamics model that will be used for
control design in Sec. 4.

3.1 Gaussian Process-Based Robot Dynamics Model. To
keep it self-contained, we briefly review the GP regression model.
We consider a multivariate continuously smooth function
y=f(x) +w, x; € R™, where w € R is the zero-mean Gaussian
noise and n, is the dimension of x. Denote the training data as

= {X.¥} = {xiy}il). where X = {x;}) . ¥ = {y}}'. and
N € N is the number of the data point. The GP model is trained by
maximizing posterior probability p(Y; X, ®) over the hyperpara-
meters @, that is, @ is obtained by solving

ngn —log(Y; X, 0)

1 1
=min — -YTK~'Y — —log det(K
min — > 5 log et(K)

where K= (Kj).K;=k(x;.x;)=c%exp(—(1/2)(xi—x;) W(x;—x;))
+1925ij,W:diag{W1,...,WnA}>O,5,-j:1 for i=j, and @={W,oy,
¥} are hyperparameters.

The GP agent builds the joint distribution of new measurement x*
and the training data as
> (10)

Y
y
where k = k(x*,X) and k* = k(x*,x*), and N'(u,X) denotes the

Gaussian distribution with mean g and variance X. The mean value
and variance for input x* are

w(x")

We integrate the GP regression with a nominal model. For S in
Eq. (1), we first build a nominal model

K k'
kK

=K'K'Y,2(x") = k" — kK 'k" an
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S": Dg+H = Bu (12)
where D and H are the nominal inertia and nonlinear matrices,
respectively. Generally, the nominal dynamic model does not hold
for the data sampled from the physical robot systems. The GP
models are built to capture the difference between S” and S, namely,

H®=Dij+H—Dij—H~—Bu—Dj—H

We build GP models to estimate H® = [(H%)" (H¢)"]", where H,
and H¢, are for S, and S,, respectively. The training data D =
{X,Y} are sampled from S as X = {q, ¢, ¢} and Y = {H*}.

The GP predicted mean and variance are denoted as (g, (x), X;(x))
for H{, i = a,u. The GP-based robot dynamics models S&° and S%°
are given as

S§p5 Daaqa +Dauéu +H§p =u (13a)

Sﬁp: Duaéa +Duuqu +H§p =0 (13b)

where H¥ = H; + p,(x), i = a,u. The GP-based model prediction

error is
A #,(x) —H “}
A=|=|" a (14)
|:A14 :| |:”u (x) - HLI
To quantify the GP prediction error, the following property for A is
obtained directly from Theorem 6 in Ref. [26].
LemMa 2. Given training dataset D, if the kernel function k(x;, x;)
is chosen such that H, for S, has a finite reproducing kernel Hilbert
space norm ||HS||, < oo, for given 0 < n, < 1

Pr{JIAd| < [IKTEV2 @)1} > n, (1)

where Pr{-} denotes the probability of an event, x, € R", and
its ith entry is K4 = \/2||H““Hi +300¢,In* (N + 1)/ (1 — n¥/™)),

¢ = maxypex(1/2)In |1 + 97 %k (x,x')|. A similar conclusion
holds for A, with 0 <1, < 1.

3.2 Nominal Model Selection. The nominal model plays an
important role in the EIC control. We consider the following
conditions for choosing the nominal model §" to overcome the
uncontrolled motion under the learning control.

C,: D = D" is positive definite, ||D|| < d, ||H|| < h, where constants
0<d,h<oc;

Cy: rank(D,,) = n, rank(D,,) = rank(D,,) = m; and
C3: nonconstant kernel of D,,,.

With C; and C,, the generalized inversions of D,,, D,,, and D,
exist, which are used to compute the auxiliary controls. We can
select D = DT to ensure D, = DT . To see the requirement of Cs,
we rewrite q, = Z;’Zl Paivi- By Eq. (9), under the updated control
VO G, = SO0 PaiVi + ot i1 Paivi, Where v; is the ith column of V.
Note that the part Z,’-’Zm 1Paivi of S, dynamics is free of control if V
is constant. Although g, is stabilized on ¢, g, converges to qj only
in an m-dimensional subspace and the other (n — m) dimensional
motion uncontrolled. If the system is stable, the uncontrolled motion
cannot be fixed in the configuration space throughout the entire
control process. Therefore, a nonconstant kernel D, is needed.

Conditions C;—C; provide sufficient nominal model selection
criteria. The commonly used nominal model in Refs. [5] and [7] is
Dg = Bu with H = 0. The constant nominal model is used in
Ref. [7] as the system is fully actuated. It is not difficult to satisfy the
nominal model conditions in practice. First, the nonlinear term is
canceled by feedback linearization, and H = 0 can be used. Matrix
D captures the robots’ inertia property. The mass and length of robot
links are usually available or can be measured. Meanwhile, the
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dynamics coupling for revolute joints shows up in the inertia matrix
as trigonometric functions of the relative joint angles. Therefore, the
diagonal elements can be filled with mass or inertia estimates, and
the off-diagonal entries can be constructed with trigonometric
functions multiplying inertia constants.

4 Gaussian Process-Enhanced External and Internal
Convertible-Based Control

In this section, we propose two enhanced controllers using the GP
model S*P, i.e., PEIC- and NEIC-based control. The PEIC-based
control aims to eliminate uncontrolled motion under the original
EIC-based control by reassigning the dynamics coupling, while the
NEIC-based control directly manages the uncontrolled motion in a
transformed space; see Figs. 1(b) and 1(c).

4.1 Robust Auxiliary Control. With S®, we incorporate the
variance from S% into tracking control as

~ext d 7 [
Ve =49, — kplea —kae,

(16)
where I}pl = ky1 +kn X, and ka1 = ka1 + kX, are control gains
with parameters k,;,k,» > 0. The variance of GP prediction X,
captures the uncertainty in robot dynamics and is updated online
with sensor measurements.

Given the GP-based dynamics, the BEM is estimated by solving
the following optimization problem rather by inverting the system
dynamics:

¢¢ = argmin||To(g,; »™)|| (17)
4,
The balance control is then designed as
‘A)Lm = @:‘t - ]}pZéu - i‘dZéu (18)

where e, = ¢, — ¢¢ is the unactuated subsystem tracking error
relative to the estimated BEM. Similar to lAc,,z,lAcdg, I}pz =k +
kX, and IAcdz = kg + kX, depend on X, with the parameters by
kn37 kn4 > 0.

Let Ag, = ¢ — ¢, denote the BEM estimation error, and the
actual BEM is ¢¢ = ¢ + Ag¢. The control design based on actual
BEM should be vL“‘ =q — I}pzell — lAcdzeu, and therefore we have

int __ sint int
Vi =Vy — Avu

where Avi™ = AGC + knAg, + kpnAGS. There are two sources
causing the BEM estimation error. First, the learned dynamics S5
deviates from the actual one due to the prediction error A,.
Therefore, the exact BEM solution using S§° deviates from that
obtained in Eq. (4). Second, there exist differences between the
BEM solved from St and that obtained from Eq. (17) due to the
optimization algorithm. Given the bounded GP prediction error and
limited optimization error, it is reasonable to assume that Agf, is
bounded. Because of the bounded Gaussian kernel function, the GP
prediction variances are also bounded, i.e.,

IZa()]] < (a5, [[Zu(®)]] < (a3™)?

a

(19)

1/2 1/2

max
a

max

where ¢ o

= max,-(afz-m + 192) = max,'(a%“ + 195,.) , and
arand 1 are the hyperparameters in each channel. Furthermore, we

require the control gains to satisfy the following bounds:

, 0

kit < Akin) < kiso ki < Akin) < ki, i = pod
for constants ky;, kg >0,j=1,...,4, where A(-) denotes the
eigenvalue operator.

The control design should follow the guidelines: (1) the p,,,,, and q,,
dynamics are preserved (since they are stable under the original

Transactions of the ASME



EIC-based control), and (2) the uncontrolled motion (in S5°) is either
eliminated or under active control. The second requirement also
implies that the motion of g, should depend on only m control inputs.
To see this, solving g, from S5 and plugging it into S5 yields

-D,.D 'u

(DW - Dual_)z:all_)ﬂ“)éu + Hﬁp - D“al_);ale%p - aa

Note that D,, € R™*", D! € R™", and g, is overactuated given
n = dim(u) > m = dim(q,). If q,, depends on the same number of
control inputs, (n — m) column vectorsinD,,,D_,! should be zero. Thus,
the EIC-based control is applied between the same number of actuated

and unactuated coordinates. The uncontrolled motion is avoided.

4.2 Partial External and Internal Convertible-Based Con-
trol Design. The control design v™ in Eq. (5) updates the input v**',
and g, acts as a virtual control to steer g, to ¢¢. The S, dynamics is
rewritten into

au - _D;ulHH - D;ztlDana

where ¢, is overactuated with respect to ¢,. We instead reallocate the
coupling between ¢, and ¢, and assign m control inputs for
the unactuated subsystem; see Fig. 1(b). To achieve such a goal
we partition the actuated coordinates as ¢, = [q], q(m] ,
Qau € Rm’ 9aa € Rnim’ and u = [ . T}
Eq. (13) is rewritten as

The S dynamics in

D, Dgg D4 [ daa HE, 1
Dua Dtuza DZU éﬂll + H%E = uy, (20)
D(le DZ,, Duu éu Hﬁp 0

where all block matrices are in proper dimensions. We rewrite
Eq. (20) into three groups as

Sig : DZuéaa +HZ,1 = Uq (210)
Sgp DZaqau + DZuéu + Hﬁn - (2”7)
Sip : Dzaqau +Duuéu +H, =0 (21¢)

where HY, =DAtd,,+ D%, + HE, HY, =D, + Dl i, +HE,
and H,, _Duaqaa +H. Apparently, S is virtually independent
of S, and the dynamics coupling exists only between St and S%P.
Let # in Eq. (16) be partitioned into »*' and X' corresponding
to q,, and g,,,,, respectively. ¥<*' is directly apphed to S, and ¥ is
updated for balance control purpose. As aforementioned, the
condition to eliminate the uncontrolled motion in S, is that g,
only depends on m inputs. The task of driving g, to ¢;, is assigned to
q,, coordinates only. With this observation, the PEIC-based control

takes the form of & = [ &]" with

_DZa zeIXt+HZn’ _Du mt+DZuéu+HZn (22)
where " = f(Dﬁ“f (H,, + Dy, ™). Clearly, the unactuated

subsystem only depends on #, (or g,,) under the PEIC design as
illustrated in Fig. 1(b). The following lemma presents the qualitative
assessment of the PEIC-based control, and the proof is given in
Appendix A2.

LemMA 3. If conditions Cy to Cs are satisfied and S® is stable
under the EIC-based control design, S is stable under the PEIC-
based control ™.

4.3 Null-Space External and Internal Convertible-Based
Control Design. Besides the PEIC-based control, we propose an
alternative method in which the control input for p,, is explicitly
designed. Noting that p,, € span(V,,) and p,, € ker(D,,) =
span(V,), subspaces span(V,,) and span(V,) are orthogonal, and
the motion of p,, is independent of p,,,. Therefore, a compensation
is designed in span(V,,) for p,,,, which leaves the motion in span(V,)
unchanged. Based on this observation, the NEIC-based control takes
the form

Journal of Dynamic Systems, Measurement, and Control

™ = D™ + D, + HE® (23)
where ¥ =" 4§, ¥, = V,v,, ¥ = —D! (HE® + D, ™),
v,, is the control design that drives p,; to pa,, i=m+1,...,n, and
p? =7 (q?) is transformed reference trajectory. The d651gn of v,
drives e, to the origin in ker(D,,). A straightforward yet effective
design of v, canbe v, = av®*, where o > 0. Compared to the PEIC-
based control, p,, plays the similar role of g,, coordinates. In the
new coordinate, the g, is associated with p,, only.

The following result gives the property of the NEIC-based
control, and the proof is given in Appendix A3.

Lemma 4. For S, if 8¥ satisfies conditions Cy to C; and S* is
stable under the original EIC-based control, S¥ under the NEIC-
based control v““ is also stable. Meanwhile, S is unchanged
compared to that under the EIC-based control.

The proofs of Lemmas 3 and 4 show that the inputs &™ and %™
follow the control design guidelines. Both the PEIC- and NEIC based
controllers preserve the structured form of the EIC design. Figures
1(b) and 1(c) illustrate the overall flowchart of the PEIC- and NEIC-
based control design, respectively. To take advantage of the EIC-
based structure, we follow the design guideline to make sure that
motion of unactuated coordinates only depends on m inputs in
configuration space (PEIC-based control) or transformed space
(NEIC-based control). The input v¢* is re-used for uncontrolled
motion under the NEIC-based control. The PEIC-based control
assigns the balance task to a partial group of the actuated coordinates.

5 Control Stability Analysis

~int

5.1 Closed-Loop Dynamics. To investigate the closed-loop
dynamics, we consider the GP prediction error and the BEM
estimation error. The GP prediction error in Eq. (14) is extended to
Auas Agy, and A, for q,,,,q,,,,and g, dynamics, respectively. Under
the PEIC-based control, the dynamlcs of S becomes

q-a _ ‘A}exl ( D ) aa
qau = 7(Dua)7 (Hun +Duuﬁmt)
q _ ‘A}ml o D’:ul [Au Du (Dga)71

ua

(DZa ) - A
Aau]

Obtaining BEM with Eq. (17) under (qaa, vX') is equivalent to
inverting Eq. (21¢). Thus, ¥ = —(D" )~ H,m\q it i, —0- Sub-
stituting the above equatlon into the ¢, dynamlcs yields

oy = V2 + Oy, where O, = —(D",) "Dy ™ — (Dga)*lAW +
0; and o0, denotes the higher order terms
Defining the total error e, = [e !]" and e = [e T the closed-
loop error dynamics becomes
0 I e
e=| . "L+ —Ae+0,
7kp 7kd €y tot (24)
A 0,

with O =0T 01",
_D;ul (AAH _pZa (DZa)
:diag(kdl,kdg). _

Because of bounded D, there exist constants 0 < d,1,d»,dy,
dp < cosuchthatd, < ||Du|l < dpandd, < ||Du|| < dio- The
perturbation terms are further bounded as

a*[OT OT] 5 Oaa:_(bza)71 Aamou:

au

Awd) — AV™ ki, = diag (k1. ky2), and kg

a
aa

10a]] =

U
ua

—a \—1
1 . — (D A
D) D |~ Paa) At |

dip —~int 1
< Bl G| Aa) + oy
and
! P (P -1 o int
104 = |~ Dut (A Dua@aa) Aar) — M|

1
a7 1A H+ a1+ llAv]
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The perturbation o; is due to approximation, and Ay is the control
difference by the BEM calculation with the GP prediction. They are
both assumed to be affine with e, i.e.,

llorl| < cullell + 2. AV < csllell +ea (25)
with0 < ¢; < 00, i = 1,...,4. From Eq. (19), we have | [k Z!/2|| <
03 |Kal| and ||y Z,/?[| < o} |se,||. Thus, for 0 < 5 = nn, < 1,
we can show that

Pr{[|0:]| < di + da|le]| + L |[xul| + La|[ka|[} =0 (26)
where di = ¢y + (1 + (din/01)) ¢4, dy = ¢1 + (dia/01) €35l =
((U?ax (dul + G'm))/duldul)’ and /,; = O'Znax/dul-

To obtain the closed-loop dynamics under the NEIC-based
control, plugging the NEIC-based control into S®, we obtain

Pam = —AUN(HE + D, ™) — A UTA, — VIDIA, (27a)

m™~ aa

Py =V = VIDIA, (27b)

g, =" — D, (A, — DD, A,) (27¢)
To obtain the error dynamics, we take advanta%e of the definition of
BEM. From Eq. (A3), we have v& = —A "UTH|, ... ; .
Then, we rewrite Eq. (274) into !
ﬁam = 7A;1UTHEP =4 —+ 0y — A,;l UTDuuf’i?t
4, =4,=0
—~AJUTA, —VID A, = v + 0,

m~aa (28)
where 0, is the residual that contains higher order terms. O,
=0, —A,'U'D, ™ — A,'U'A, — VID_,!A, denotes the total
perturbations.

The S dynamics keeps the same form as that in the PEIC-based
control. We write the error dynamics under the NEIC-based control
as

éam = _Apleam - icdleam + Oam (29a)
éan = _i(plean - i‘a’lean + Oun (29b)
éu = 7Ap2eu - i‘d2eu +0, (296)
_ d _ d _ Tp—1
where €. = Py — Pons €an = Pan — Pap» a0d Oy = =V, D_ A,

Applying inverse mapping 2 to Eqgs. (29a) and (29b), the error
dynamics in ¢ is obtained as
Seneic : € =Ae+ 0, (30)
where 0, is the transformed perturbations of [0T 0T OT]".
Following the same steps to obtain Eq. (26), we have
Pr{[|0af| < di + dalle]| + Lol[kul| + Lall®al [} = BD)

where [, = O-u,max((o'l + dul)/Uldul), and [, = au,max((Um +
dul)/daldul)-

5.2 Stability Results. To show the stability, we consider the
Lyapunov function candidate V = eTPe >0, where positive
definite matrix P = PT is the solution of

(32)

I
AP +PA+Q =0, Aoz[ 0 *]

7kp 7kd
for given positive definite matrix Q@ = Q7, where A is the constant

part of A in Eq. (24) and does not depend on variances X, or X,.
kp = diag(k,,l ,kpz) and kd = diag(kdl 7kd2)-
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Fig.2 (a) A Furuta pendulum. The base link joint 0, is actuated,
and the pendulum link joint 0, is unactuated. (b) A three-link
inverted pendulum with actuated joints 0, and 0, and unactuated
joint 03. The rotation axis of link is perpendicular to that of link 2
and link 3.

We denote the corresponding Lyapunov function candidates for
the NEIC- and PEIC-based controls as V; and V5, respectively. The
stability results are summarized as follows with the proof given in
Appendix A4.

THEOREM 1. For robot dynamics (2), using the GP-based model
(13) that satisfies conditions C,—Cs, under the PEIC- and NEIC-
based control, the Lyapunov function under each controller satisfies

Pr{V, < —y,Vi+pi+wi} >ni=12 (33)
and the error e converges to a small ball around the origin, where y;is
the convergence rate, p; and w; are the perturbation terms, and
0<n=mnum, <L

6 Experimental Results

Two inverted pendulum platforms are used to conduct experi-
ments to validate the control design. The results from each platform
demonstrate different aspects of the control design.”

6.1 Two Degree-of-Freedom Rotary Inverted Pendulum
Figure 2(a) shows a 2DOF rotary inverted pendulum that was
fabricated by Quanser Inc., Markham, ON, Canada. The base joint
(0y) is actuated by a DC motor, and the inverted pendulum joint (6,)
is unactuated, i.e., n = m = 1. We use this platform to illustrate the
original EIC-based control and also compare the performance under
different nominal models and controllers. The robot dynamic model
is given in Ref. [27] and is also found in Appendix B1.

Since m = n =1, there is no uncontrolled motion when the
original EIC-based control is applied. Therefore, either a constant or
time-varying nominal model would work for the GP-based learning
control. We created the following two nominal models:

op o L[5 ) o 0
CTPTI00 | —2e, 2 |0 T | s,
S Dy —— 2! H, =0
. 2*100 1 ) 5 2 =

where ¢; = cos 0;, s; = sin 0; for angle 0;, i = 1, 2. The training data
were sampled and obtained by applying control input
u=k"0, -0, 0,0, -0 GQ]T, where k € R*! and 6} was the
combination of sinusoidal waves with different amplitudes and
frequencies. We chose this input to excite the system, and the gain k
was selected without the need to balance the platform. It is difficult
to guarantee that the system is fully excited. However, we changed
the frequency of sinusoidal waves and obtained the motion data
around the target trajectory.

>The video of the experiment is available at https://www.youtube.com/watch?
v=Z0YbOUW3KS8
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Fig. 3 Experiment results with guaranteed performance: (a) arm rotation angle, (b) pendulum rotation angle, (c) tracking control
error under GP-based control, (d) pendulum motion profile, (e) profile of Lyapunov function, and (f) trajectory error motion. At
t=17s, an impact disturbance is applied. The dashed arrow in (f) indicates the direction in which the error grows after disturbance

is applied.

We trained the GP regression models using a total of 500 data
points randomly selected from a large dataset. We designed the
control gains as K, = 10 + 50X, kn = 3 + 10Z,, ky = 1000
+500%,, and /€d2 = 100 + 200Z,,. The variances X, and X, were
updated online with new measurements in real time. The reference
trajectory was 0‘11 = 0.5sin7+ 0.3sin 1.5¢ rad. The control was
implemented at 400 Hz in MATLAB/SIMULINK real-time system. Both
the velocity and acceleration are needed for control design and GP
training and prediction. To reduce the influence of measurement
noise on control design, BEM estimation, and GP agent training, a
sliding window was used to filter the velocity measurement online.
The acceleration was obtained through real-time differentiation.
The same technique was also used for the three-link inverted
pendulum in Sec. 6.2.

Figures 3(a) and 3(b) show the tracking of 6; and balance of 0,
under the EIC-based control. With either S™ or 8™, the base link
joint 0; closely followed the reference trajectory 0‘,’, and the
pendulum link joint 0, was stabilized around its equilibrium 05 as
well. The tracking error was reduced further, and the pendulum
closely followed the small variation under S™'. With §™, the tracking
errors became large when the base link changed rotation direction;
see Fig. 3(c) at r=10, 17, and 22s. Both the time-varying and
constant nominal models worked for the EIC-based learning control.

Table 1 further lists the tracking errors (mean and one standard
deviation) under both GP models. For comparison purposes, we also
conducted additional experiments to implement the original EIC-
based control and the GP-based MPC design in Ref. [4]. The
tracking and balance errors under the EIC-based learning control
with model $"' are the smallest. In particular, with the time-varying
model S, the mean values of tracking errors e¢; and e, were reduced

Table 1 Tracking errors comparison under various controllers
(x107" rad)

S S"” GP-based MPC [4] Physical EIC
ler]  024*0.17 0.96*0.34 0.87 = 0.52 1.09 = 0.40
lea] 0.09 £0.05 0.09 £0.39 0.07 = 0.06 0.26 £0.15

Journal of Dynamic Systems, Measurement, and Control

by 75% and 65%, respectively, in comparison with those under the
original EIC-based control. Compared with the MPC method in
Ref. [4], the tracking errors with nominal model 8" are at the same
level.

Figure 3(d) shows the control performance with nominal model
8™ under disturbance. At r=17s, an impact disturbance (by
manually pushing the pendulum link) was applied, and the joint
angles changed rapidly with A0; = 0.7 rad and A0, = 0.3 rad. The
control gains increased (k,» = 1215, ks> = 143) to respond to the
disturbance. As a result, the pendulum motion tracked the BEM
closely and maintained the pendulum balance after the impact
disturbance. Figure 3(e¢) shows the calculated Lyapunov function
candidate V(¢) and its envelope (i.e., V() = V(0)e™", y = 0.1898)
during the experiment. Figure 3(f) shows the error trajectory in the
lle4||-||é4|| plane. The solid/dashed line shows the error trajectory
before/after impact disturbance. The tracking error converged
quickly into the error bound. After the disturbance was applied at
t=17s, both the Lyapunov function and errors grew dramatically.
As the control gains increased, the errors quickly converged back to
the estimated bound again.

6.2 Three Degree-of-Freedom Rotary Inverted Pendulum.
Figure 2(b) for a 3DOF inverted pendulum with two actuated joints
(0 and 0,) and one unactuated joint (05), namely,n = 2,m = 1. The
physical model of the robot dynamics was obtained using the
Lagrangian method and is given in Appendix B2. All controllers
were implemented at an updating frequency of 200 Hz through the
Robot Operating System. The time-varying nominal model was
selected as

0.15  0.025c, 0.025c; 0
D = | 0.025¢, 0.15 0.05c2.3 |, H= |0.2¢c,
0‘02503 0.05C2_3 0.1 0.1S3

where c;-; = cos(0;%0;). The control gains were IAcI,l =151, +20
Yo kg =31, + IOZa,k,,z =25+20%,,and k;» =5.5+ 10X, where
GP variances X, and X, were updated online in real-time. The
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control

reference trajectory was chosen as 0‘11 =0.5sin1.5t and 0 =
0.4sin3¢ rad.

For the PEIC-based control, we chose ¢, = 01 and q,, = 0,, and
the NEIC-based control was v, = v:*. Figure 4 shows the
experimental results under the PEIC- and NEIC-based control.
Under both controllers, the actuated joints (0; and 0,) followed the
given reference trajectories (0? and 9‘21) closely, and the unactuated
joint (03) was balanced around the BEM (0%) as shown in Figs. 4(a)
and 4(b). The pendulum link motion displayed a similar pattern for
both controllers. However, the tracking error e; under the PEIC-
based control (i.e., from —0.05 to 0.05 rad) was much smaller than
that under the NEIC-based control (i.e., from —0.15 to 0.15 rad); see
Figs. 4(c) and 4(d). The balance task in the PEIC-based control was
assigned to joint 0,, and joint 0 is viewed as virtually independent of
0, and 0. Joint 0; achieved almost-perfect tracking control
regardless of the errors for 0, and 0;. The compensation effect in
the null space appeared in the entire configuration space, and any

061106-8 / Vol. 146, NOVEMBER 2024

ep1 (rad)

ey (rad)

Time (s)

Fig. 6 The tracking errors in coordinate p, under the NEIC-
based control with various « values
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Table 2 Statistical analysis of tracking performance (mean and standard deviation for errors) under different controllers

T
ey | (rad) le2| (rad) les| (rad) [le|| [ w udt
PEIC (GP) 0.0302 = 0.0178 0.0566 £ 0.0685 0.1182 +0.0160 0.1343 +0.0166 5.7659
NEIC (GP, o = 0.5) 0.1395 = 0.0946 0.1166 = 0.0512 0.0303 = 0.0209 0.2001 = 0.0770 5.9022
NEIC (GP, « = 1.0) 0.0651 £0.0416 0.0756 £ 0.0481 0.0195 = 0.0152 0.1101 = 0.0499 5.7089
NEIC (GP, o = 1.5) 0.0376 = 0.0302 0.0792 £ 0.0482 0.0207 = 0.0169 0.0972 = 0.0470 5.7305
PEIC (model) 0.2168 = 0.1165 0.2398 + 0.1649 0.0179 =0.0140 0.3587 = 0.1307 5.7978
NEIC (model, o = 1.0) 0.1374 = 0.0922 0.1237 £ 0.0597 0.0455 +0.0385 0.2095 = 0.0769 5.8452

motion error in the unactuated joints affected the motion of all
actuated joints. Similar to the previous example, Fig. 4(e) shows the
error trajectory profile in the ||e,||-||€,|| plane. Figure 4(f) shows the
Lyapunov function profiles under the PEIC- and NEIC-based
controls.

Figure 5 shows the motion of the actuated coordinate in the
transformed coordinate p, under various controllers. Under
the PEIC- and NEIC-based controls, the p, variables followed the
reference profile pﬁ as shown in Figs. 5(a) and 5(b). Figure 5(¢)
shows the motion profile under the original EIC-based control. In the
first 2 s, joint 03 followed the BEM under the EIC-based control, and
Pa1 coordinates displayed a similar motion pattern. However, p,»
coordinate showed diverge behavior and led to a failure completely.
Therefore, as analyzed previously, the system became unstable
under the EIC-based control though conditions C; to C3 were
satisfied.

In NEIC-based control, v, drives the uncontrolled motion variable
to its reference trajectory. To further reduce the tracking error, we
canincrease o values. Figure 6 shows the experiment results of the p,,
error profiles under various « values varying from 0.5 to 1.5. With a
large o value, the tracking error of the actuated coordinates was
reduced. Table 2 further lists the steady-state errors (in joint angles)
under the NEIC-based control with various « values, the PEIC-based
control and the physical model-based control design. Under the
NEIC-based control with oo = 0.5, the system was stabilized; when
increasing o values to 1 and 1.5, the mean tracking errors were
reduced 50% and 70% for 0, respectively, and 40% for 0,. Since
control input v, did not affect the balance task of the unactuated
subsystem, the tracking errors for 05 maintained the same level. It is
of interest that the control effort (i.e., last column in Table 2) only
shows a slight increase with large o values.

6.3 Discussion. For the rotary pendulum example, we have
n=m, and the null space ker(D,,) vanishes. The compensation
effect is no longer needed by the NEIC-based control, i.e., 7" = "
and #™ = D, v + D, + HE = u'™. In this case, the PEIC- and
NEIC-based controls are degenerated to the EIC-based control. For
the 3DOF inverted pendulum, the control inputs u; and u, act on 05
joints through 0, and 0,. Therefore, as shown in Lemma 1, the
uncontrolled motion exists since all controls show up in S,
dynamics. This observation explains why the original EIC-based
control failed to balance the three-link inverted pendulum. If the S,
dynamics is related to m control inputs (through g,,) for n > m such as
the bikebot dynamics in Refs. [4] and [25], only m external controls
were updated, and the EIC-based control worked well without any
uncontrolled motion.

For the PEIC-based control, the robot dynamics were partitioned
into S = {S%® {S% SP1}, which contains a fully actuated

system S, and a reduced-order underactuated system {S%, S }.

The EIC-based control is applied to S& and S%° only. The dynamics
of g, in general does not depend on any specific m actuated
coordinates, since the mapping 7" is time-varying across different
control cycles. In the NEIC-based control design, p,,,,, and g, become

an underactuated subsystem, and p,,,, is fully actuated.

Journal of Dynamic Systems, Measurement, and Control

In practice, no specific rules are defined to select gq,, out of ¢,
coordinates, and therefore, there are a total of C) = n!/(m!(n — m)!)
options to select different coordinates. We take advantage of such a
property to optimize tracking performance for selected coordinates.
In the 3DOF pendulum case, we assigned the balance task of 05 to 0,
motion. The length of link 1 was only 0.09 m and was much shorter
than the length of link 2 (0.23 m). The coupling effect between 0,
and 03 was much stronger than that between 0 and 03; see D5 and
D3 in Appendix B2. Thus, it was efficient to use the motion of 6, as a
virtual control input to balance 03. When implementing the PEIC-
based controller with ¢,, = 0;, the system cannot achieve the
desired performance and becomes unstable. We also implemented
the proposed controller with the physical model. The control errors
are listed in Table 2. Compared with the learning-based controllers,
the model-based control resulted in larger errors. Since the
mechanical frictions and other unstructured effects were not
considered, the physical model might not capture and reflect the
accurate robot dynamics. The results confirmed the advantages of
the proposed learning-based control approaches.

The unique feature of the proposed control lies in integration of
the robot’s inherent dynamics property (EIC structure) and the GP-
based model learning, compared with other learning-based control
approach [18,22]. By integrating physics knowledge into model
learning, we identified the conditions for nominal model selection.
The overall model learning and control design framework forms a
white-box-like, physics knowledge involved control, which differs
from the reinforcement learning-based policy search approach [18].
The solution also has the potential to further incorporate the bounded
GP prediction error for a robust control [4].

7 Conclusion

This paper presented a new learning-based modeling and control
framework for underactuated balance robots. The proposed design
was an extension and improvement of the EIC-based control with
GP-enabled robot dynamics. The proposed new robot controllers
preserved the structural design of the original EIC-based control and
achieved both tracking and balance tasks. The PEIC-based control
reshaped the coupling between the actuated and unactuated
coordinates. The robot dynamics was transferred into a fully
actuated subsystem and one reduced-order underactuated balance
subsystem. The NEIC-based control compensated for uncontrolled
motion in a subspace. We validated and demonstrated the new
control design on two experimental platforms and confirmed that
stability and balance were guaranteed. The comparison with the
physical model-based EIC control and the MPC design confirmed
superior performance in terms of the error bound. Extension of the
GP-based learning control design for highly underactuated balance
robots is one of the ongoing research directions.
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Nomenclature

e, e,, e = tracking, balance, and overall errors
Py, v = transformed ¢, and v**' in p coordinates
Pun>Pan = controlled and uncontrolled coordinates
q,,q, = coordinates for actuated and unactuated subsystems
q4u- 9., = Partitioned actuated coordinates in (n — m)- and
m-dimensions
q¢.. 4, = actual and estimated BEMs
S = robot dynamics
S", 8% = nominal and GP-based robot dynamics
u™, #™ @™ = EIC-, PEIC-, NEIC-based control inputs
y*, pint — trajectory tracking and balanced-embedded control
inputs
vyt — BEM stabilization control input

u

PeXU P = trajectory tracking control inputs for ¢, and g,

¥i" = control input for p,,
y,r = convergence rate and error bound
A, A, = estimation errors of actuated and unactuated

dynamics

Appendix A: Proofs

Al Proof of Lemma 1. The system dynamics S under control
st is

éa — ch, éu —_D I(Duavcxt +H ) (Al)

uu

When rank(D,,) = m holds for ¢, the SVD in Eq. (7) exists and all m

singular values are great than zero, i.e., ; > 0. Thus, ker(D,,) =

V, contains (n — m) column vectors. Plugging Eq. (7) into Eq. (A1)

and considering the coordinate transformation, we obtain

po=v", §,=-D, (UAV +H,) (A2)

where UAVTy* = UA,,v&" is used based on the fact that A €
R™" is a rectangular diagonal matrix.

Given the definition of £, ¢, is obtained by solving the algebraic
equation I'y(g,; v**') = 0. We substitute D,, (¢’ ) withD,,(g,) in Ty,
and therefore, using Eq. (7), I'g = 0 is rewritten into

AV + U H g g0 = 0 (A3)
The BEM & depends only on v$¥, that is, the control effect in
ker(D,,) is not used when obtaining the BEM.

Furthermore, since all controls show up in S,, dynamics, the control
inputs should be updated, and the EIC-based control in Eq. (6) exists.
We substitute Egs. (7) and (6) into S, dynamics and obtain

i, =v" =-D} (H,+D,") = -VA'U (H, + D)
Multiplying the above equation on both sides with VT and
considering Eq. (8), S under the EIC-based control becomes
Eq. (9), and the (n — m) coordinates are free of control.

int
au’

A2 Proof of Lemma 3. Under input u,, q,, = v
by Eq. (21¢)

é“ uu [DZa :tnu1 + H“”}
= _Dl:u [HW' _DZa(DZa)il(Hun +Duuvlm)] Alm

we solve g,

Clearly, the unperturbed subsystem S5 remains the same as that
under the original EIC-based control. With the designed control, g,
dynamics is unchanged, and g, = ¥ holds regardless of #™. For
4., and q,,,, we obtain g,, = v dnd ., = V™. The relationship in
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Eq. (9) indicates that if the unactuated subsystem dynamics is
written into §, = vi™, the dynamics §, under the transformation 1
must contain the portion (9a). Similarly, we obtain

ul (H® + D, ™)

SPEIC:ﬁai:_f, i=1,....m (Ada)
1

Pa =V j=m+ 1.0 (A4b)

g, = (Adc)

where 9 = ()T (pint)T } . Since #M is not obtained in the way as

in Eq. (5), i.e., " ¢ ker( a)s VY ‘“‘ # 0 and p,,, is under active

m+1 a
control. Meanwhﬂe I drives ¢, — ¢%in ker(Dau) given that

1m
m-+j a
sext

ve and ¥" are designed to drive g, — qa. Therefore, if the
unperturbed system under the original EIC-based control is stable, it
is also stable under the PEIC-based control.

sint

A3 Proof of Lemma 4. Under the NEIC-based control input,
the S& becomes

G, =" = V" + 3 = —D} (H® + D, ") + Vv, (AS)
Plugging above equation into S, we obtain
4, = D, (Duad, +HF) = =D, [-DyiD;}, (H
+ D) + DyaVavy + HEP) = 3" — D, ' D iV,

Using the SVD form of D, in Eq. (7) and AVTV, =0, the above
equation is further simplified as

g, =" - D 'UAV'V,y, =™ (A6)

M u

Clearly, S5 dynamics is unchanged compared to Eq. (9).
We further apply the transformation ¥ to g, and SVD to D}, . The
S, dynamics (AS5) and (A6) become

uf (HY + D)

SNEIC! Pai = I — i=1,....m (A7a)
Paj =Vuj» J=m+1,..,n (A7b)
é 7i‘)ln1 (A7c)

Compared to Eq. (9), we add control ¥ to drive g, — qa in the
subspace ker(D,,). Therefore, if the system (9) is stable, Eq. (A4) is
also stable, as the p,,, and ¢, dynamics are unchanged.

A4 Proof for Theorem 1. We present the stability proof for the
PEIC- and NEIC-based controls using the Lyapunov method.

PEIC-Based Control: Plugging Eq. (24) into V; =V and
considering Eq. (32), we obtain V; =e'(ATP + PA)e+
2¢"PO, = —¢"Qe + €' Qze + 2¢"PO,, where Qs = (A —Ag)"
P+ P(A —Ap). The bounded variance leads to the bounded
eigenvalue of matrix Qy. Given the fact that Qs = QI, the
eigenvalues of Qz are real numbers.

Noting that Qy is bounded and P, Q are constant, the perturbation
term O, is bounded as shown in Eq. (26). Then, V), is rewritten as

Vl < —[Amin(@) — ’“maX(Q):)]HeH + 27max (P)]]e]|(d1
+ dalel]) + 2/max (P)|le]| (L | [Kul] + Lt [1641])

= _[;“min(Q) — min(Qs) — 2d2)~maX(P)meH2
+2(d) + 1) Zmax (P)|le]|

where @ = L,1||%,|| + lu1]|%,|| denotes the uncertainties related to
GP prediction errors. Apin(+) and Amax(-) denote the smallest and
greatest eigenvalues of a matrix, respectively. Considering

Jamin(P)|[€]]* < Vi < max (P)||€]|, we define
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_ )vmin(Q) - ;~max(Q2) - 2d2)“max(P)
B j~max (P)

p1 = 2d1 max (P)||€]], @1 = 201 Amax (P)||e]]. With the bounded
perturbations p; and w,, the closed-loop system dynamics can be
shown stable in probability as Pr{V, < —y, Vi + p; + @} > 1.
Taking further analysis, we obtain a nominal estimation of the error
convergence as Pr{Vl <V (O)e’”/l’} > 1 and the error bound
estimation Pr{|le|| < r} > 5 with r; = (2diAmax(P))/ (Zmin(Q)
_/lmax (QZ) - 2dZAmax (P))

NEIC-Basd Control: Without the loss of generality, we select
v, = V;ﬁe’“. We take V, =V as the Lyapunov function candidate
for S, Nerc. If the control gains are the same as that in the PEIC-based
control and a=1 for compensation effect, y, = 7,. We choose
control gains properly such that y, > 0. The system can be shown
stable as Pr{Vz < = Vo+pr+ wz} >, where p, =2d,
Jmax (P) |le]|, @2 = 202 Amax (P)]le]|, and wy = Lo ||wu|| + Loz ||%4||
is defined same as w, containing the GP prediction uncertainties. A
nominal estimation of error convergence and final error bound can
also be obtained.

To show 7, > 0, i=1, 2, the control gains should be properly
selected. With a small predefined error limit as a stop criterion in
BEM estimation, ¢; values can be shown as ¢; < 1. Given the
explicit form, d; are estimated for Ay and @, P is obtained by solving
Eq. (32). The matrix Qs depends on the control gains associated with
the reduction variance. Since the variance is bounded, we design k,,;
such that Ay, (Qs) satisfies the inequality pmin(Q) — Amax(Qs) —
2d5 Amax (P) > 0 and then y; > 0. Thus, the stability is obtained.
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Appendix B: Dynamics Model of Underactuated Balance
Robots

B1 Rotary Inverted Pendulum. The dynamics model for the
rotary pendulum is in the form of Eq. (1) with ¢, = 0, and g, = 0,.
The model parameters are B = [1 0] and

Daa = C(mylZ +0.25m, 053 +J,)
Day = Dyg = —0.5Cmplyl,ca, Dy = C(J, +0.25m,12)
H, = C(0.5m, 10,0255 + 0.5m, 11,035,
+dy 0y + k2 kikin 0y /R) + K ohi02
H, = C(dy0, — 0.25m,2¢35,0° — 0.5m, ,,5>)

where /,,/,, and d, are the length, mass inertia, and viscous damping

coefficient of the base link, /,, J,, and d, are corresponding

parameters of the pendulum, m, is the pendulum mass, g is the
gravitational constant, and k;, k,,, Kg, R, andC are robot constant.
The values of these parameters can be found in Ref. [27]. The control
input is the motor voltage, i.e., u=V,,.

B2 Three-Link Inverted Pendulum. The model parameters in
Eq. (1) are
Dy = (ms(53 4+ 0.258) + 0.25my15 — 0.5m3l5¢5 — mylal3s3)c3
+ (0.5m38305 — m3lals)sacscy + 0.25m3c3 3
+(0.25my + my + m3) B 47,
Dy, = Dyy = —(m3ly + 0.5myy) 18, — 0.5m3lil3¢043
D3 = D31 = 0.5m3l115¢243
Dy = Jy 4 (m3 + 0.25my) 3 4 0.25m313 — mslylzs;
Doz = D3 = (0.2515 — 0.5ls3)msls, Dy = J3 +0.25m313
Gy =0, Gy=—(0.5my+ m3)cahrg + 0.5m3l352438
Gy = —0.5m3138213¢
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where m;, [;, and J; are the mass, length, and mass inertia of each link,
and s;;; = sin(0; + 0;). Matrix C is obtained as C;; = Z,f:lcl-jk@k,
where Christoffel symbols cj =3((0Dy/ 00k) + (ODi/
00;) — (0Dj./00;)). The physical parameters are m; = 0.7kg,my =
1.3kg, m3 =03kg,/; =0.065m,/, =023 m, /3 =0.25m,J; =
0.0008 kg m?, J, = 0.005 kg m?, and J3 = 0.003 kg m>.
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