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Cascaded Nonlinear Control Design for Highly Underactuated Balance Robots

Feng Han and Jingang Yi

Abstract— This paper presents a nonlinear control design
for highly underactuated balance robots, where the number of
unactuated degree-of-freedom is greater than that of actuated
one. To address the challenge of simultaneously trajectory
tracking and balancing, the control converts a robot dynamics
into a series of cascaded subsystems and each of them is con-
sidered virtually actuated. We sequentially design and update
the virtual and actual control inputs to incorporate the balance
task such that the unactuated coordinates are balanced to their
instantaneous equilibrium. The closed-loop dynamics are shown
to be stable and the tracking errors exponentially converge
towards a neighborhood near the origin. The simulation results
demonstrate the effectiveness of the proposed control design by
using a triple-inverted pendulum cart system.

I. INTRODUCTION

Underactuated robots have less number of control inputs
than that of the degree-of-freedom (DOF). Control design for
underactuated balance robots faces the challenge of limited
control actuation for simultaneous trajectory tracking and
platform balance. Most existing works focus on underactu-
ated balance systems with more actuated coordinates than
unactuated ones. For instance, a cart-pole system has one
input with one unacuated DOF [1], [2], a bipedal robot
has four inputs with one unacuated DOF [3], and an au-
tonomous bicycle robot has two inputs and one unacuated
DOF [4], [5], to name a few examples. There are various
well-developed control frameworks for those including the
external and internal convertible form-based control (i.e.,
EIC-based control) [6], orbital stabilization [7], [8], energy-
shaping based control [9], etc. Both the model-based control
and machine learning-based control approaches are exten-
sively studied [2], [10]. However, for highly underactuated
balance robots with more unactuated coordinates than actu-
ated ones, such as a triple passive inverted pendulum on a
controlled cart (i.e., one input with three unactuated DOFs),
those control approaches do not work properly.

For highly underactuated balance robots, the inherently
unstable property and coupled dynamics impose great chal-
lenges in control system design [11], [12]. With limited
available control actuation, there exist great competing tasks
between trajectory tracking and balance stabilization. To
reduce the design complexity, most of the existing works
focus on stabilization control only. Linearization of nonlinear
system and pole placement/linear quadratic regulator (LQR)
techniques are among popular methods [12]-[15]. The work
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in [13] presented an LQR-based robust control for a triple-
invented pendulum cart system and a fault tolerant control
was proposed for a double-inverted pendulum cart system
using a linearized model [15]. In [16], the authors enhanced
the inversion-based approach (e.g., [17]) towards the stabi-
lization of a periodic orbit of a multi-link triple pendulum on
a cart. However, simultaneous control of trajectory tracking
and platform balance remains a challenge for highly under-
actuated balance robots.

Among the aforementioned control methods, the EIC-
based control has been demonstrated as an effective approach
to achieve tracking and balance. The previously developed
EIC-based control was designed for various types of under-
actuated balance robots that have more numbers of actuated
than unactuated DOFs [2], [4], [10], [18]. The unstable and
unactuated subsystem is balanced onto a balance equilibrium
manifold (BEM) and trajectory tracking and platform balance
control are achieved simultaneously. Given such an attractive
feature, the EIC-based control can be potentially revised for
highly underactuated balance robots.

The EIC-based control design embeds the balance task into
the trajectory tracking. The BEM is associated with the actu-
ated subsystem motion effect and the motion of the actuated
subsystem is used as a virtual input to drive the unactuated
subsystem to its BEM. Inspired by such an observation, we
propose a cascaded EIC form (i.e., CEIC) that transforms a
highly underactuated balance system into a series of cascaded
subsystems, which are virtually actuated. We sequentially
estimate and obtain the BEM and then update the control
input of the subsystem. Each subsystem has been shown
under active control design. Trajectory tracking and balance
control can be achieved. We illustrate and demonstrate the
CIEC-based control through an example of a triple-inverted
pendulum on a cart. The main contribution of this work is
the proposed new cascaded control framework for highly
underactuated balance robots. We also for the first time
reveal the controllable condition of the highly underactuated
balance robots.

II. HIGHLY UNDERACTUATED BALANCE ROBOTS
A. Robot Dynamics

Let the generalized coordinates of an underactuated bal-
ance robot be ¢ = [q1 - Gnim]T € R™™, n,m € N. We
partition g into q = [q] ql]7 with actuated coordinate
g, € R" and unactuated g, € R™. The robot dynamics
for actuated and unactuated subsystems are [19]

Sa : Daada + Daudu + Caq + Ga =u,
Su: Duada + DuuQu + Cuq +G, = 0,

(1)
(1b)



where D(q), C(q,q) and G(q) are the inertia, Coriolis
and gravity matrices, respectively. The subscripts aa (uu)
and ua and au indicate the variables related to the actuated
(unactuated) coordinates and coupling effects, respectively.
For the convenience of representation, the dependence of
matrices D, C, and G on q and q is dropped and we denote
H,=C,q+G, and H, =C,q+ G,.

The unactuated dynamics S,, in (1b) is intrinsically un-
stable. The control goal for S {84, 8.} is to track
the given trajectory q? for S, while balance the unstable
S, around unknown equilibria. Most of the existing works
focus on the robot dynamics with n > m, that is, more
actuated than unactuated DOFs. In this work, we consider
highly underactuated balance robots, i.e., n < m. With less
control actuation than the number of unactuated DOFs, it
becomes challenging for simultaneously trajectory tracking
and platform balance control design [16].

B. EIC-Based Tracking and Balance Control

We first present the EIC-based control and discuss its
limitations for highly underactuated balance robot control.
Given desired trajectory g for S,, we temporarily neglect
the dynamics of S, and the tracking control is designed as

2)
ext

where vo*' = (jfll — kpieq — kq1€, is an auxiliary control
design. e, = q, — qg is the tracking error and k,1,kq1 €
R™*"™ are control gains.

The g, coordinate should be stabilized onto the BEM. The
BEM is defined as the instantaneous equilibrium of q,, as

ext __
uy ' =D

aa’ngt + DouGy + Hg,

&= {qz : F(Qu;vZXt) =0,q, =Gy = 0} ) (3
where T'(q,; v™") = DGy + Dyovs™® + H,. The equi-
librium ¢¢, is obtained by solving I'(gy; vg"t)| =0.

. .. 4y =4u=0,
Using g, € £ as a targeted reference, g, profile is redesigned

such that under q,, q, — q;. The control is updated by
incorporating the S,, dynamics as

int __

o —

D;_a(Hu + Duuvitnt%

4)
where vi' = G¢ —k,2e,—kaze,, D, = (DI, D,,) DI,

is the generalized inverse of D,,, e, = q, — q. and
kpo, kg € R™*™ are control gains. With the design (4),
the final control becomes

int
u, =D

aa'vtiznt + Daudu + Ha- (5)

The above sequentially designed control, known as EIC-
based control, aims to achieve tracking of S, and balance
of S, simultaneously [6]. Fig. 1(a) illustrates the design
flowchart of the EIC-based control.

We now inspect the closed-loop dynamics under the EIC-
basad control. Plugging u!"* into dynamics S,,, we obtain

du = _D/;ul(Duada + Hu)

=-D,, [-Du.D},(H, + Dy, o) + H,| . (6)

Since D,, € R™*™ and n < m, we have D,, D], €
R™*™ and rank(D,,D;,) = n < m. Therefore, part of the
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control effect of v!™ would not appear and the nonlinearity
term H, cannot be fully canceled at all dimensions. The
unactuated subsystem S, does not approach to &£ as the
design goal and the balance would not be guaranteed for

highly underactuated balance robot.

Updating

(a)

S;_l - -BEM & Balance — ----> Dynamics Decomposition
- ( ~
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3. Update control v, = v ! !
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(b)

Fig. 1. Illustrative diagram of control design for underactuated baleen
system S based on EIC structure. (a) EIC-based control design. (b) CEIC-
based control design.

III. CASCADED EIC FORM FOR HIGHLY
UNDERACTUATED SYSTEM

The EIC-based control has been successfully demonstrated
for underactuated balance robots with n > m [20]. In EIC-
based control, the designed motion effects ¢, = v!™* is used
as a virtual control when incorporating the balance control
'v,Ln” into final control; see (4). However, the S, dynamics
with respect to ¢, is indeed an underactuated system with
m coordinates and n inputs. For such an underactuated
subsystem, we can perform the EIC-based control again to
S, Following such an inspiration, we formally present the
CEIC design.

The S, dynamics under the control w can be solved as

(ja :Da_al (U_Dauiju_Ha)~ (7)
Plugging (7) into (1b) yields
St DWGM 4+ HO = BNy, (8)

where ¢V = q, and DY) = D, — D, D; ! Dy,, HY =
H,- D,D;'H, BY = -D,,D;!'. We note D,, €
R™*" and B e R™*"™. Equation (8) represents another
underactuated system with m generalized coordinates and n
control inputs.

We partition the g(*) coordinates into two parts as q(t) =
T
(@) (@)7] " where g

al) denotes the first n unactu-
ated coordinates, such that dim(g

) = n. dim(ql") =



m — n. We rewrite the S! dynamics

Sk D(l) (1) + D(l) (1) + H,El) - B((ll)'u, (9a)
sts DALY + DG + HY — Bu, o)

where DU, H® and B(M) are partitioned into block
matrices with appropriate dimensions. Similar to (1), (9) is in
the form of an underactuated robot model. The input matrix
B® in S is no longer a constant and the selection of
dim(u) = n generalized coordinates as the actuated ones

out of g'!) is arbitrary, as long as rank(B 1)) =n
£ = DI (Bu - DG — HY)
(1)

«  into S} yields

We solve g

ing S! . Substituting ¢

§?2:DPg? + H? = B@y

-1
where q(?) = q&l) and D) = Df}u) —Dfﬁl) (Dé})) Dfﬁ),

H® = 7 - DY) (Dgy)‘l HY, and B® = B -

DY (Dé}} "BY. 1f dim(q) > dim(w), S? is also an
underactuated balance system. We can continue to perform
such a transformation. We assume that there are in total k
actuated subsystems (each contains n coordinates) and (k +
1)-th subsystem is fully actuated (contain last z coordinates,
ie.m=kn+z 0<z<n,k,zeN).

The S! dynamics only contains the first n coordinates. S’
dynamics is used to obtain S**1. Hence, ' = {Si, S"*1}
holds. Recursively, the S* dynamics is written as

SZ . aaql(lz) + D((quq(l) +H(§i) _ Bgi)’u,
Si={SH . Sk S i=0,-- k
where q( D is composed by q(“’l) k)7 g5+ The orig-

inal system S then is rewritten into a series of cascaded
subsystems as

———

Sk
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St

where SF+1 = Sk+1 — SF. The original system can be
viewed as S°.

The BEM is still used to characterize the balance target
profile of each subsystem. The BEM of S is obtained by
using its unaccentuated subsystem. The BEM &; used as the

reference trajectory of q,(f) is defined
& ={a":Ti (¢%5u) = 0,404 =0}, an
where T; = D¢\ + DGGY + HY - B“ u. &

follows the BEM deﬁnltlon but only accounts for g @ (.e.,
n coordinates in qu ) While the rest of the unactuated
coordinates qft Vs unchanged.
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IV. CASCADED CONTROL DESIGN
A. Control Design

1) Virtual Control Design: Starting from S, we sequen-
tially design the control input and obtain the BEM. The

control input to drive qéo) — q((10)7d is designed as

ugt = (BgO>) ' (Dg?vgxt + DWW 4 H;O)) . (12)
ext . (0)
where vi*" = — ageg — bpég, eg = qo’ —
the tracking error, and ag, by are control gains.
Now let’s consider the general case. If the control input
for S* is known, denoted as uf"t, we need to design
the control for S**!'. Within CIEC form, the immediate
connection between S? and S**! is the dynamics of the first
n unactuated coordinates in S?. Therefore, we only concern
the first n unactuated coordmates in qu) (.e., q(H'l))
Obtaining the BEM for qt(lZ Y s equivalently to inverting
the Si*! dynamics under the control design u = u$** and
the condition g™ = g™ = 0. Precisely, we obtain
BEM by solving the 1mplicit equation I'; ;1 = 0 and let the
solution be S“)’e. The control input is then updated to

enforce q(Hl) — gt We design the u

i A i

ext
i+1

:<B((1i+1)) (D(z+1) ext H(H—l))

ext

ud (13)

i41) w(it1 i+1
DEMVGEY - BT, e
— az+1ez+1 — biy1€;41 is the auxiliary control

R™>™  The tracking error is defined as
(z+1)

where FI,gH_l)
~.(i+1),e
and aH_l, tl S

€it+1 = q
Recursively, we obtam the control design for S¥*+1 as

_ (B(k+1))+ (D(k+1)vﬁl _|_H(k+1)) ’

1nt

Ukt1
where v}, _
a;iq, bi+1 € R#*=, ’U}gr:t_l
drives g(*t1) to gk+1)e,
2) Control Updating: The dynamics S* is the simplest
subsystem with the property dim(q (k)) > dim(q (k)) Given
the balance control u}ﬁrl, incorporating the balance control
of gF+h can be achieved by the EIC-based controller.

Inserting wj™ | and v}™, into S¥ dynamics leads to

--k 1 .
GFDe — apiiepyr — briiéri,

is the auxiliary control design that

D(k) (k) +D(k) lnt L+ H(k) _ B(k)umt
(k) _

(14)
= vt

( ) dynamics, which is realized by redesigning the control
1nput

Clearly, in order to achieve g, we need to revise

. -1 .
ulkm = (Bc(zk)> (Dz(z]fz)v;cnt + D((Ll;)k-'rlq( D4 H(k))
it = (D(k)) ! (Br(ek)u}antrl _ Dz(zlz?k int H(k))
It is straightforward to verify q&k) = v}jil by inserting

above control into (14). The control updating for ui follows
a similar idea in (4). Under 'u,mt the balance of q(k) is
guaranteed.

For S%, ul™ is obtained by replacing k with i. In partic-
ular, the vi"* is designed to update the virtually “actuated”



coordinate qt(liﬂ) dynamics so that it drives g

BEM. The control v is

(i41)

a

to the

(Z) int

int (i -1 (i), int
v, = (Daa) (Ba Uiy — D

au,i+lvi+1
(@) S+ i
- Zj:i-i—l Dau,j—i—lqz(zj ) — H(S, )) 15)
for i = 0,---,k. We denote the final control as wui't.

Fig. 1(b) illustrates the structure of the proposed CEIC con-
trol design. We sequentially decompose the system S* and
design control for the actuated subsystem. When updating
the control input, the Si*1 dynamics is recognized as the
internal subsystem of S? as shown in Fig. 1(b). However,
in EIC-based control, the BEM is solved at once and the
updated control needs to take of all unactuated coordinates
(see Fig. 1(a)). The CEIC structure takes a similar form as
the backstepping control [21]. However CEIC structure is
one dynamcis property of system dynamics and does not
depend on the control design.

B. Stability Analysis
int

We show that all coordinates of S under u!"* are with
active control. The convergence of the tracking error for S°
is also proved. The result in the following lemma confirms
that each subsystem is under active control with the CEIC
design. The proof is given in Appendix VIIL.

Lemma 1: Given the highly underactuated balance system
S, if § can be written into the CEIC form (10), under the
control input ui", the closed-loop dynamics of 8¢ becomes

i
G =M, i <j <k, and gD = ot
Next, we show g converges to {&;, ..., Ex11} (g is viewed
as &y). The control u$** is used to obtain &41. I'ip1 =0
can be explicitly written as
D,

i+1
under ng e

[(q((fﬂ)’e)T 07 07]". The above relationship (16) shall play
a significant role in showing the convergence of qél). The

control in(put )ui‘jfl is used to update ui™. We rewrite u!"';
i+1),e

q

. . —1
it = (me)” (o

i+1)d7(j+1) _|_ H[Si+1) _ B ugxt — 0 (16)

(@)™ (&)™ (gt

(i+1)

a

around x

bl

(

. -1 .
= (B(gl+1)) Bé“rl)’u,‘iSXt Llithe + 0;
q
= u™ + o,

A7)

where (16) is used to simplify the above equation and o;
denotes perturbations containing the higher order term and

(B((Liﬂ))’l DSJ%
To proceed, substituting (17) into (.1.((;') = %“t and using
Lemma 1 yields rj((f) = vi" = ™" + O, where O; =
. —1 .
(Dﬁ) BYo,. The closed-loop dynamics becomes

ext

i+1°
v

—a;e; — biei + Oi,i < k’, (188.)

(18b)

€; =

€rt1 = —Qpt1€54+1 — bppr1€p41-

Gy + H,SHU) | +v.e + 0
q
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Let £ = [ef éf ... e}, €], ,]" be the error vector. We
rewrite the error dynamics into the following compact form
0 I 0 0 0
—Q —bo 0 0 OO
Se: €= £+ ¢
0 0 0 I 0
0 0 —apy1 —bpyy 0
£ A€+ O¢. (19)

We assume that the perturbation term is affine with track-
ing errors, that is, ||O¢|| < ¢1 [|€]| + c2 for ¢; and ¢ > 0.
If the control gains {a;,b;},j =1, -,k + 1 are properly
selected such that A is Hurwitz, £ can be shown converging
to zero under perturbations. We take the Lyapunov function
candidate V = £7'¢ and obtain

V =¢TAE+ €70 < M(A) €7+ II€]| (ca €]l + c2)
= [M(A) + ] 1€l + ez |IE]

where A;(A) denotes the greatest eigenvalue of A. If
A1 (A) + 1 <0, the tracking error is exponentially decreas-
ing under perturbation.

The control design is based on the CIEC form and thus
the system dynamics should satisfy certain conditions. Here
we summarize the conditions:

o Fully ranked matrix for each sub-order underactuated
system rank(Dc(fcz) = rank(D,(jJ) _ rank(Bé’)) _

n, i < k and rank(D((L]fLJrl)) = rank(D,(,,]ffl))
rank(Bt(lkH)) =z
. . N1
« The matrix D& — BU+Y B((zz)) DC(LZJ;H # 0

is fully ranked to guarantee that the each actuated
subsystem can display the designed dynamics.

V. SIMULATION RESULTS

We present the simulation result to demonstrate and val-
idate the proposed control design. Fig. 2 shows a triple-
inverted pendulum system on a moving cart. Three joint
angles and the car position are denoted as 6;, i = 1,2, 3, and
z, respectively. With four DOFs, only the cart is actuated by
external force F' to follow the given reference trajectory x,.
Defining q = [z 01 0 65]7, the dynamics model is written
as DG+ Cq+ G = Bu [13] with v = F and

M; —Micy —Maco —Mscs
D —Mj ¢ I, Myl cor Msly c3q
—Mjycy  Maly ey I M3l c39
| —Msc3  Mslycsi Mslacso I3
0 1
—Migs 0
G = —Msgso |’ 7 |0
_—Mgg S3 0

where s; = sin6;, ¢; = cosb;, s;; = sin(#; — 0;), and ¢;; =
cos(#; — 6;). The model parameters are defined as M; =
me +mq +mo + ms, M1 =miay + (TTLQ + mg)ll, M2 =
maas +msla, My = maas, [y = Jy +miaf+ (ma+ms3)l3,
Iy = Jy + maa3 + msl3, I3 = J3 + maa3. The length and
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Fig. 3. Tracking control of a triple-inverted pendulum cart. (a) and (b) shows the cart position and pendulum angles under the proposed control. (c) and

(d) shows the tracking errors. (e) and (f) shows the cart position and pendulum rotation angles under the EIC-based control.

distance from the joint to each link’s center of mass are [;
and a;, and the mass and the moment of inertia of each link
are m; and J;, ¢ = 1,2,3, respectively. Variable g is the
gravity constant.

Fig. 2. Schematics of a triple-inverted pendulum on a cart. The three joints
01, 02, and 03 are unactuated.

Let q((lo) = x, q((zl) = 6, (Jc(?) = 6o, q(s) = 03,
we rewrite the system dynamics into the CIEC form.
For instance, S} dynamics is (JiM; — MPc3)f, +
Mo(coy 11 M cacy My)0y  +  Mz(cszlaM,;
cgcy My)ls — (Maly03 519 +Msli03 530 +Migsy) M, +
M1 Cl(Mlg% S1 +M20§ So —Mg@% Sg) M1 C1U. The
matrix JyM; — M12 c% and the input matrix M; c; can be
shown away from O for appropriate trajectory. The inverse
of those matrixes exists. S? and S* can be obtained.

The reference trajectory of the cart is x4 = 2sin(0.8¢).
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TABLE I
TRACKING ERRORS (g =« — xg, €; = 8; — 05,4 =1,2,3) OF THE
TRIPLE-INVERTED PENDULUM

lex| le] le2| les]
Absolute (m or rad)|0.31 % 0.15]0.06 = 0.03]0.04 = 0.02]0.02 £ 0.01
Relative (%) | 15.6 £ 7.4 |35.2 £ 17.2(22.7 £ 11.1| 12.4 £ 6.0

The control gains are ag = 0.8,bp = 2.5,a7 = 35,01 =
3.5,as = 38,by = 4.85,a3 = 50,b3 = 15. The initial
position of the system g(0) [2 — 0.1 0.1 0.35]T is
far away from the static equilibrium. Fig. 3 shows the
simulation results under EIC-based control and the proposed
control design. Under the CIEC-based control design, the
cart follows the given reference trajectory, and all three
unactuated links were kept balanced on the BEM as shown
in Figs. 3(a) and 3(b). The system became unstable (see
Figs. 3(e) and 3(f)) when the EIC-based control was applied,
which validates the analysis in Section II. In the EIC-
based control, the cart position coordinates carry the task
of balancing all three links. While the CIEC-based control
only assigns the task of balancing link 1 to the cart motion.

The tracking errors are shown in Figs. 3(c) and 3(d). We
further summarize the steady tracking error in Table. I (mean
and standard deviation). The relative error is obtained by
normalizing the tracking error with the reference’ (or BEM
profile) amplitude. Since the system is in a cascaded form,
the tracking error in the internal system would affect the



tracking performance in the external system. It is observed in
Table I that |e;| > |ea| > |es| in terms of the mean errors for
both absolute and relative errors. The partial motion effect of
qt(li) serves as the control input to drive qg’;l) to its BEM.
q,(f) (f2) would not achieve the best tracking performance
until the qc(f) (03) perfectly follows its BEM. In such a way,
the task of balancing 63 is placed at the highest priority
and all other unactuated systems are balanced one by one
sequentially.

VI. CONCLUSION

This paper proposed a cascaded nonlinear control frame-
work for highly underactuated balance robots. To achieve
simultaneous trajectory tracking and balance control, the
proposed framework converted a highly underactuated robot
system to a series of cascaded virtually actuated subsystems.
The tracking controls were sequentially designed layer-by-
layer until the last subsystem. The control input was then
updated from the last subsystem to the first one to incorporate
the balance task. Under such a design, we showed the closed-
loop system dynamics was stable. We validated the control
design with numerical simulation on a triple-inverted pendu-
lum cart system. We plan to extend such a framework with
machine learning-based techniques to achieve guaranteed
performance when the accurate system model is unavailable.

VII. PROOF FOR LEMMA 1
Substituting ul™ into S! yields DYG" + DY GD +
. , -1 , L .

H = B (BY) ' (Dido + DA + ). A
ter simplification, we can obtain that tj((f) = vint.
Next we show that S¢*! under the control u}™ displays
the dynamics behavior g& ™ Substituting »i"* into
Sit1 yields

DUHD G+ | DU gli+) | fii+1) — Bty ine (o)

_ ayint
= Vit

The right hand side of (20) is further simplified by consid-
ering ul" as

Rits = B+ (BY) (Dol + DAY+ HL),
where

BSH) (Bgi)) -1 ng;nt

int
Vit1

= B(+yin, — BU+Y (ng) D priasy +HY
= DY+ DA+ B
_ int
i i i) | Vi1 i
By (BY) (| | g
qu
Thus, the right-hand side of (20) becomes
RHS :Dz(zl:_l)’u}cril + Dc(lz;jl)i(jﬂ) _|_H(§i+1)
_ "(7;+1) int
_ B+ (ij)) IDC(;;) da  — U

0
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Using above equation, (20) is rewritten into
) . .\ —1 ) .
D - B (BE) T DL (a0 - oith) —o.

(@)

au,i+

0
au,i
it DY — BitY (Bff))_l D
(1)

a

1 is fully ranked, the

solution becomes ¢ vi’fl, which is exactly the

designed control input. The proof is continued until S*+1,
Due to the page limit, we omit the detailed derivation here.
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