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Abstract— This paper presents a nonlinear control design
for highly underactuated balance robots, where the number of
unactuated degree-of-freedom is greater than that of actuated
one. To address the challenge of simultaneously trajectory
tracking and balancing, the control converts a robot dynamics
into a series of cascaded subsystems and each of them is con-
sidered virtually actuated. We sequentially design and update
the virtual and actual control inputs to incorporate the balance
task such that the unactuated coordinates are balanced to their
instantaneous equilibrium. The closed-loop dynamics are shown
to be stable and the tracking errors exponentially converge
towards a neighborhood near the origin. The simulation results
demonstrate the effectiveness of the proposed control design by
using a triple-inverted pendulum cart system.

I. INTRODUCTION

Underactuated robots have less number of control inputs

than that of the degree-of-freedom (DOF). Control design for

underactuated balance robots faces the challenge of limited

control actuation for simultaneous trajectory tracking and

platform balance. Most existing works focus on underactu-

ated balance systems with more actuated coordinates than

unactuated ones. For instance, a cart-pole system has one

input with one unacuated DOF [1], [2], a bipedal robot

has four inputs with one unacuated DOF [3], and an au-

tonomous bicycle robot has two inputs and one unacuated

DOF [4], [5], to name a few examples. There are various

well-developed control frameworks for those including the

external and internal convertible form-based control (i.e.,

EIC-based control) [6], orbital stabilization [7], [8], energy-

shaping based control [9], etc. Both the model-based control

and machine learning-based control approaches are exten-

sively studied [2], [10]. However, for highly underactuated

balance robots with more unactuated coordinates than actu-

ated ones, such as a triple passive inverted pendulum on a

controlled cart (i.e., one input with three unactuated DOFs),

those control approaches do not work properly.

For highly underactuated balance robots, the inherently

unstable property and coupled dynamics impose great chal-

lenges in control system design [11], [12]. With limited

available control actuation, there exist great competing tasks

between trajectory tracking and balance stabilization. To

reduce the design complexity, most of the existing works

focus on stabilization control only. Linearization of nonlinear

system and pole placement/linear quadratic regulator (LQR)

techniques are among popular methods [12]–[15]. The work
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in [13] presented an LQR-based robust control for a triple-

invented pendulum cart system and a fault tolerant control

was proposed for a double-inverted pendulum cart system

using a linearized model [15]. In [16], the authors enhanced

the inversion-based approach (e.g., [17]) towards the stabi-

lization of a periodic orbit of a multi-link triple pendulum on

a cart. However, simultaneous control of trajectory tracking

and platform balance remains a challenge for highly under-

actuated balance robots.

Among the aforementioned control methods, the EIC-

based control has been demonstrated as an effective approach

to achieve tracking and balance. The previously developed

EIC-based control was designed for various types of under-

actuated balance robots that have more numbers of actuated

than unactuated DOFs [2], [4], [10], [18]. The unstable and

unactuated subsystem is balanced onto a balance equilibrium

manifold (BEM) and trajectory tracking and platform balance

control are achieved simultaneously. Given such an attractive

feature, the EIC-based control can be potentially revised for

highly underactuated balance robots.

The EIC-based control design embeds the balance task into

the trajectory tracking. The BEM is associated with the actu-

ated subsystem motion effect and the motion of the actuated

subsystem is used as a virtual input to drive the unactuated

subsystem to its BEM. Inspired by such an observation, we

propose a cascaded EIC form (i.e., CEIC) that transforms a

highly underactuated balance system into a series of cascaded

subsystems, which are virtually actuated. We sequentially

estimate and obtain the BEM and then update the control

input of the subsystem. Each subsystem has been shown

under active control design. Trajectory tracking and balance

control can be achieved. We illustrate and demonstrate the

CIEC-based control through an example of a triple-inverted

pendulum on a cart. The main contribution of this work is

the proposed new cascaded control framework for highly

underactuated balance robots. We also for the first time

reveal the controllable condition of the highly underactuated

balance robots.

II. HIGHLY UNDERACTUATED BALANCE ROBOTS

A. Robot Dynamics

Let the generalized coordinates of an underactuated bal-

ance robot be q = [q1 · · · qn+m]T ∈ R
n+m, n,m ∈ N. We

partition q into q = [qT
a qT

u ]
T with actuated coordinate

qa ∈ R
n and unactuated qu ∈ R

m. The robot dynamics

for actuated and unactuated subsystems are [19]

Sa : Daaq̈a +Dauq̈u +Caq̇ +Ga = u, (1a)

Su : Duaq̈a +Duuq̈u +Cuq̇ +Gu = 0, (1b)
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where D(q), C(q, q̇) and G(q) are the inertia, Coriolis

and gravity matrices, respectively. The subscripts aa (uu)

and ua and au indicate the variables related to the actuated

(unactuated) coordinates and coupling effects, respectively.

For the convenience of representation, the dependence of

matrices D, C, and G on q and q̇ is dropped and we denote

Ha = Caq̇ +Ga and Hu = Cuq̇ +Gu.

The unactuated dynamics Su in (1b) is intrinsically un-

stable. The control goal for S = {Sa,Su} is to track

the given trajectory qd
a for Sa while balance the unstable

Su around unknown equilibria. Most of the existing works

focus on the robot dynamics with n ≥ m, that is, more

actuated than unactuated DOFs. In this work, we consider

highly underactuated balance robots, i.e., n < m. With less

control actuation than the number of unactuated DOFs, it

becomes challenging for simultaneously trajectory tracking

and platform balance control design [16].

B. EIC-Based Tracking and Balance Control

We first present the EIC-based control and discuss its

limitations for highly underactuated balance robot control.

Given desired trajectory qd
a for Sa, we temporarily neglect

the dynamics of Su and the tracking control is designed as

uext
a = Daav

ext
a +Dauq̈u +Ha, (2)

where vext
a = q̈d

a − kp1ea − kd1ėa is an auxiliary control

design. ea = qa − qd
a is the tracking error and kp1,kd1 ∈

R
n×n are control gains.

The qu coordinate should be stabilized onto the BEM. The

BEM is defined as the instantaneous equilibrium of qu as

E =
{
qe
u : Γ(qu;v

ext
a ) = 0, q̇u = q̈u = 0

}
, (3)

where Γ(qu;v
ext
a ) = Duuq̈u + Duav

ext
a + Hu. The equi-

librium qe
u is obtained by solving Γ(qu;v

ext
a )

∣∣
q̇u=q̈u=0

= 0.

Using qe
u ∈ E as a targeted reference, q̈a profile is redesigned

such that under q̈a, qu → qe
u. The control is updated by

incorporating the Su dynamics as

vint
a = −D+

ua(Hu +Duuv
int
u ), (4)

where vint
u = q̈e

u−kp2eu−kd2eu, D+
ua = (DT

uaDua)
−1DT

ua

is the generalized inverse of Dua, eu = qu − qe
u and

kp2,kd2 ∈ R
m×m are control gains. With the design (4),

the final control becomes

uint
a = Daav

int
a +Dauq̈u +Ha. (5)

The above sequentially designed control, known as EIC-

based control, aims to achieve tracking of Sa and balance

of Su simultaneously [6]. Fig. 1(a) illustrates the design

flowchart of the EIC-based control.

We now inspect the closed-loop dynamics under the EIC-

basad control. Plugging uint
a into dynamics Su, we obtain

q̈u = −D−1
uu (Duaq̈a +Hu)

= −D−1
uu

[−DuaD
+
ua(Hu +Duuv

int
u ) +Hu

]
. (6)

Since Dua ∈ R
m×n and n < m, we have DuaD

+
ua ∈

R
m×m and rank(DuaD

+
ua) = n < m. Therefore, part of the

control effect of vint
u would not appear and the nonlinearity

term Hu cannot be fully canceled at all dimensions. The

unactuated subsystem Su does not approach to E as the

design goal and the balance would not be guaranteed for

highly underactuated balance robot.
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Fig. 1. Illustrative diagram of control design for underactuated baleen
system S based on EIC structure. (a) EIC-based control design. (b) CEIC-
based control design.

III. CASCADED EIC FORM FOR HIGHLY

UNDERACTUATED SYSTEM

The EIC-based control has been successfully demonstrated

for underactuated balance robots with n ≥ m [20]. In EIC-

based control, the designed motion effects q̈a = vint
a is used

as a virtual control when incorporating the balance control

vint
u into final control; see (4). However, the Su dynamics

with respect to q̈a is indeed an underactuated system with

m coordinates and n inputs. For such an underactuated

subsystem, we can perform the EIC-based control again to

Su. Following such an inspiration, we formally present the

CEIC design.

The Sa dynamics under the control u can be solved as

q̈a = D−1
aa (u−Dauq̈u −Ha) . (7)

Plugging (7) into (1b) yields

S1 : D(1)q̈(1) +H(1) = B(1)u, (8)

where q(1) = qu and D(1) = Duu−DuaD
−1
aa Dau, H(1) =

Hu − DuaD
−1
aa Ha, B(1) = −DuaD

−1
aa . We note Dua ∈

R
m×n and B(1) ∈ R

m×n. Equation (8) represents another

underactuated system with m generalized coordinates and n
control inputs.

We partition the q(1) coordinates into two parts as q(1) =[
(q

(1)
a )T (q

(1)
u )T

]T
, where q

(1)
a denotes the first n unactu-

ated coordinates, such that dim(q
(1)
a ) = n, dim(q

(1)
u ) =
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m− n. We rewrite the S1 dynamics

S1
a : D(1)

aa q̈
(1)
a +D(1)

au q̈
(1)
u +H(1)

a = B(1)
a u, (9a)

S1
u : D(1)

ua q̈
(1)
a +D(1)

uu q̈
(1)
u +H(1)

u = B(1)
u u, (9b)

where D(1), H(1) and B(1) are partitioned into block

matrices with appropriate dimensions. Similar to (1), (9) is in

the form of an underactuated robot model. The input matrix

B(1) in S1 is no longer a constant and the selection of

dim(u) = n generalized coordinates as the actuated ones

out of q(1) is arbitrary, as long as rank(B
(1)
a ) = n.

We solve q̈
(1)
a = D

(1)
aa

(
B

(1)
a u−D

(1)
au q̈

(1)
u −H

(1)
a

)
us-

ing S1
a . Substituting q̈

(1)
a into S1

u yields

S2 : D(2)q̈(2) +H(2) = B(2)u,

where q(2) = q
(1)
u and D(2) = D

(1)
uu−D

(1)
ua

(
D

(1)
aa

)−1

D
(1)
au ,

H(2) = H
(1)
u −D

(1)
ua

(
D

(1)
aa

)−1

H
(1)
a , and B(2) = B

(1)
u −

D
(1)
ua

(
D

(1)
aa

)−1

B
(1)
a . If dim(q

(2)
u ) > dim(u), S2 is also an

underactuated balance system. We can continue to perform

such a transformation. We assume that there are in total k
actuated subsystems (each contains n coordinates) and (k+
1)-th subsystem is fully actuated (contain last z coordinates,

i.e., m = kn+ z, 0 < z < n, k, z ∈ N).

The Si
a dynamics only contains the first n coordinates. Si

u

dynamics is used to obtain Si+1. Hence, Si = {Si
a,Si+1}

holds. Recursively, the Si dynamics is written as

Si
a : D(i)

aaq
(i)
a +D(i)

auq
(i)
u +H(i)

a = B(i)
a u,

Si
u =

{Si+1
a , ...,Sk

a ,Sk+1
}
, i = 0, · · · , k

where q
(i)
u is composed by q

(i+1)
a , · · · q(k)

a , q(k+1). The orig-

inal system S then is rewritten into a series of cascaded

subsystems as

S ≡ {S0
a ,S1

a ,S2
a , . . . ,Sk

a ,Sk+1︸ ︷︷ ︸
Sk

}

︸ ︷︷ ︸
S2︸ ︷︷ ︸

S1

(10)

where Sk+1
a = Sk+1 = Sk

u . The original system can be

viewed as S0.

The BEM is still used to characterize the balance target

profile of each subsystem. The BEM of S is obtained by

using its unaccentuated subsystem. The BEM Ei used as the

reference trajectory of q
(i)
a is defined

Ei =
{
q(i),e
u : Γi

(
q(i)
a ;u

)
= 0, q̇(i)

a , q̈(i)
a = 0

}
, (11)

where Γi = D
(i)
aa q̈

(i)
a + D

(i)
au q̈

(i)
u + H

(i)
a − B

(i)
a u. Ei

follows the BEM definition but only accounts for q
(i)
a (i.e.,

n coordinates in q
(i−1)
u ). While the rest of the unactuated

coordinates q
(i−1)
u is unchanged.

IV. CASCADED CONTROL DESIGN

A. Control Design

1) Virtual Control Design: Starting from S0
a , we sequen-

tially design the control input and obtain the BEM. The

control input to drive q
(0)
a → q

(0),d
a is designed as

uext
0 =

(
B(0)

a

)−1 (
D(0)

aa v
ext
0 +D(0)

au q̈
(0)
u +H(0)

a

)
, (12)

where vext
0 = q̈

(0),d
a − a0e0 − b0ė0, e0 = q

(0)
a − q

(0),d
a is

the tracking error, and a0, b0 are control gains.

Now let’s consider the general case. If the control input

for Si is known, denoted as uext
i , we need to design

the control for Si+1. Within CIEC form, the immediate

connection between Si and Si+1 is the dynamics of the first

n unactuated coordinates in Si
u. Therefore, we only concern

the first n unactuated coordinates in q
(i)
u (i.e., q

(i+1)
a ).

Obtaining the BEM for q
(i+1)
a is equivalently to inverting

the Si+1
a dynamics under the control design u = uext

i and

the condition q̇
(i+1)
a = q̈

(i+1)
a = 0. Precisely, we obtain

BEM by solving the implicit equation Γi+1 = 0 and let the

solution be q
(i+1),e
a . The control input is then updated to

enforce q
(i+1)
a → q

(i+1),e
a . We design the uext

i+1

uext
i+1 =

(
B(i+1)

a

)−1 (
D(i+1)

aa vext
i+1 + H̄(i+1)

a

)
, (13)

where H̄
(i+1)
a = D

(i+1)
au q̈

(i+1)
u + H

(i+1)
a , vext

i+1 =

q̈
(i+1),e
a − ai+1ei+1 − bi+1ėi+1 is the auxiliary control

and ai+1, bi+1 ∈ R
n×n. The tracking error is defined as

ei+1 = q̈
(i+1)
a − q̈

(i+1),e
a .

Recursively, we obtain the control design for Sk+1 as

uint
k+1 =

(
B(k+1)

)+ (
D(k+1)vint

k+1 +H(k+1)
)
,

where vint
k+1 = q̈(k+1),e − ak+1ek+1 − bk+1ėk+1,

ai+1, bi+1 ∈ R
z×z . vint

k+1 is the auxiliary control design that

drives q(k+1) to q(k+1),e.

2) Control Updating: The dynamics Sk is the simplest

subsystem with the property dim(q
(k)
a ) ≥ dim(q

(k)
u ). Given

the balance control uint
k+1, incorporating the balance control

of q(k+1) can be achieved by the EIC-based controller.

Inserting uint
k+1 and vint

k+1 into Sk
a dynamics leads to

D(k)
aa q̈(k)

a +D(k)
au vint

k+1 +H(k)
a = B(k)

a uint
k+1. (14)

Clearly, in order to achieve q
(k)
u = vint

k+1, we need to revise

q
(k)
a dynamics, which is realized by redesigning the control

input

uint
k =

(
B(k)

a

)−1 (
D(k)

aa vint
k +D

(k)
au,k+1q

(i)
u +H(k)

a

)
,

vint
k =

(
D(k)

aa

)−1 (
B(k)

a uint
k+1 −D

(k)
au,kv

int
k+1 −H(k)

a

)
.

It is straightforward to verify q
(k)
u = vint

k+1 by inserting

above control into (14). The control updating for uint
k follows

a similar idea in (4). Under uint
k , the balance of q(k) is

guaranteed.

For Si, uint
i is obtained by replacing k with i. In partic-

ular, the vint
i is designed to update the virtually “actuated”
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coordinate q
(i+1)
a dynamics so that it drives q

(i+1)
a to the

BEM. The control vint
i is

vint
i =

(
D(i)

aa

)−1 (
B(i)

a uint
i+1 −D

(i)
au,i+1v

int
i+1

−
∑k

j=i+1
D

(i)
au,j+1q̈

(j+1)
a −H(i)

a

)
(15)

for i = 0, · · · , k. We denote the final control as uint
0 .

Fig. 1(b) illustrates the structure of the proposed CEIC con-

trol design. We sequentially decompose the system Si and

design control for the actuated subsystem. When updating

the control input, the Si+1 dynamics is recognized as the

internal subsystem of Si as shown in Fig. 1(b). However,

in EIC-based control, the BEM is solved at once and the

updated control needs to take of all unactuated coordinates

(see Fig. 1(a)). The CEIC structure takes a similar form as

the backstepping control [21]. However CEIC structure is

one dynamcis property of system dynamics and does not

depend on the control design.

B. Stability Analysis

We show that all coordinates of Si under uint
i are with

active control. The convergence of the tracking error for Si

is also proved. The result in the following lemma confirms

that each subsystem is under active control with the CEIC

design. The proof is given in Appendix VII.

Lemma 1: Given the highly underactuated balance system

S , if S can be written into the CEIC form (10), under the

control input uint
i , the closed-loop dynamics of Si becomes

q̈(j)
a = vint

j , i ≤ j ≤ k, and q̈(k+1) = vint
k+1.

Next, we show q converges to {Ei, ..., Ek+1} (qd
a is viewed

as E0). The control uext
i is used to obtain Ei+1. Γi+1 = 0

can be explicitly written as

D(i+1)
au q̈(i+1)

u +H(i+1)
a −B(i+1)

a uext
i = 0 (16)

under x
(i+1),e
q = [(q

(i+1)
a )T (q̈

(i+1)
a )T (q̈

(i+1)
a )T ]T =

[(q
(i+1),e
a )T 0T 0T ]T . The above relationship (16) shall play

a significant role in showing the convergence of q
(i)
a . The

control input uint
i+1 is used to update uint

i . We rewrite uint
i+1

around x
(i+1),e
q ,

uint
i+1 =

(
B(i+1)

a

)−1 (
D(i+1)

au q̈(i+1)
u +H(i+1)

a

) ∣∣
x

(i+1),e
q

+ oi

=
(
B(i+1)

a

)−1

B(i+1)
a uext

i

∣∣
x

(i+1),e
q

+ oi

= uext
i + oi, (17)

where (16) is used to simplify the above equation and oi

denotes perturbations containing the higher order term and(
B

(i+1)
a

)−1

D
(i+1)
aa vext

i+1.

To proceed, substituting (17) into q̈
(i)
a = vint

i and using

Lemma 1 yields q̈
(i)
a = vint

i = vext
i + Oi, where Oi =(

D
(i)
aa

)−1

B
(i)
a oi. The closed-loop dynamics becomes

ëi = −aiei − biei +Oi, i ≤ k, (18a)

ëk+1 = −ak+1ek+1 − bk+1ek+1. (18b)

Let ξ = [eT0 ėT0 ... eTk+1 ėTk+1]
T be the error vector. We

rewrite the error dynamics into the following compact form

Se : ξ̇ =

⎡
⎢⎢⎢⎢⎢⎣

0 I · · · 0 0
−a0 −b0 · · · 0 0

. . .

0 0 · · · 0 I
0 0 · · · −ak+1 −bk+1

⎤
⎥⎥⎥⎥⎥⎦ ξ +

⎡
⎢⎢⎢⎢⎢⎣

0
O0

...

0
0

⎤
⎥⎥⎥⎥⎥⎦

� Aξ +Oξ. (19)

We assume that the perturbation term is affine with track-

ing errors, that is, ‖Oξ‖ ≤ c1 ‖ξ‖ + c2 for c1 and c2 > 0.

If the control gains {aj , bj}, j = i, · · · , k + 1 are properly

selected such that A is Hurwitz, ξ can be shown converging

to zero under perturbations. We take the Lyapunov function

candidate V = ξT ξ and obtain

V̇ = ξTAξ + ξTOξ ≤ λ1(A) ‖ξ‖2 + ‖ξ‖ (c1 ‖ξ‖+ c2)

= [λ1(A) + c1] ‖ξ‖2 + c2 ‖ξ‖ ,
where λ1(A) denotes the greatest eigenvalue of A. If

λ1(A)+ c1 < 0, the tracking error is exponentially decreas-

ing under perturbation.

The control design is based on the CIEC form and thus

the system dynamics should satisfy certain conditions. Here

we summarize the conditions:

• Fully ranked matrix for each sub-order underactuated

system rank(D
(i)
aa ) = rank(D

(i)
au) = rank(B

(i)
a ) =

n, i ≤ k and rank(D
(k+1)
aa ) = rank(D

(k+1)
au ) =

rank(B
(k+1)
a ) = z;

• The matrix D
(i+1)
aa − B

(i+1)
a

(
B

(i)
a

)−1

D
(i)
au,i+1 �= 0

is fully ranked to guarantee that the each actuated

subsystem can display the designed dynamics.

V. SIMULATION RESULTS

We present the simulation result to demonstrate and val-

idate the proposed control design. Fig. 2 shows a triple-

inverted pendulum system on a moving cart. Three joint

angles and the car position are denoted as θi, i = 1, 2, 3, and

x, respectively. With four DOFs, only the cart is actuated by

external force F to follow the given reference trajectory xd.

Defining q = [x θ1 θ2 θ3]
T , the dynamics model is written

as Dq̈ +Cq̇ +G = Bu [13] with u = F and

D =

⎡
⎢⎢⎣

Mt −M1 c1 −M2 c2 −M3 c3
−M1 c1 I1 M2l1 c21 M3l1 c31
−M2 c2 M2l1 c21 I2 M3l2 c32
−M3 c3 M3l1 c31 M3l2 c32 I3

⎤
⎥⎥⎦ ,

G =

⎡
⎢⎢⎣

0
−M1g s1
−M2g s2
−M3g s3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ ,

where si = sin θi, ci = cos θi, sij = sin(θi − θj), and cij =
cos(θi − θj). The model parameters are defined as Mt =
mc +m1 +m2 +m3, M1 = m1a1 + (m2 +m3)l1, M2 =
m2a2+m3l2, M3 = m3a3, I1 = J1+m1a

2
1+(m2+m3)l

2
1,

I2 = J2 +m2a
2
2 +m3l

2
2, I3 = J3 +m3a

2
3. The length and
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Tracking control of a triple-inverted pendulum cart. (a) and (b) shows the cart position and pendulum angles under the proposed control. (c) and
(d) shows the tracking errors. (e) and (f) shows the cart position and pendulum rotation angles under the EIC-based control.

distance from the joint to each link’s center of mass are li
and ai, and the mass and the moment of inertia of each link

are mi and Ji, i = 1, 2, 3, respectively. Variable g is the

gravity constant.

Fig. 2. Schematics of a triple-inverted pendulum on a cart. The three joints
θ1, θ2, and θ3 are unactuated.

Let q
(0)
a = x, q

(1)
a = θ1, q

(2)
a = θ2, q(3) = θ3,

we rewrite the system dynamics into the CIEC form.

For instance, S1
a dynamics is (J1Mt − M2

1 c21)θ̈1 +
M2(c21 l1Mt − c2 c1 M1)θ̈2 + M3(c32 l2Mt −
c3 c1 M1)θ̈3 − (M2l1θ̇

2
2 s12 +M3l1θ̇

2
3 s32 +M1g s1)Mt +

M1 c1(M1θ̇
2
1 s1 +M2θ̇

2
2 s2 −M3θ̇

2
3 s3) = M1 c1 u. The

matrix J1Mt − M2
1 c21 and the input matrix M1 c1 can be

shown away from 0 for appropriate trajectory. The inverse

of those matrixes exists. S2
a and S3 can be obtained.

The reference trajectory of the cart is xd = 2 sin(0.8t).

TABLE I

TRACKING ERRORS (ex = x− xd , ei = θi − θei , i = 1, 2, 3) OF THE

TRIPLE-INVERTED PENDULUM

|ex| |e1| |e2| |e3|
Absolute (m or rad) 0.31± 0.15 0.06± 0.03 0.04± 0.02 0.02± 0.01

Relative (%) 15.6± 7.4 35.2± 17.2 22.7± 11.1 12.4± 6.0

The control gains are a0 = 0.8, b0 = 2.5, a1 = 35, b1 =
3.5, a2 = 38, b2 = 4.85, a3 = 50, b3 = 15. The initial

position of the system q(0) = [2 − 0.1 0.1 0.35]T is

far away from the static equilibrium. Fig. 3 shows the

simulation results under EIC-based control and the proposed

control design. Under the CIEC-based control design, the

cart follows the given reference trajectory, and all three

unactuated links were kept balanced on the BEM as shown

in Figs. 3(a) and 3(b). The system became unstable (see

Figs. 3(e) and 3(f)) when the EIC-based control was applied,

which validates the analysis in Section II. In the EIC-

based control, the cart position coordinates carry the task

of balancing all three links. While the CIEC-based control

only assigns the task of balancing link 1 to the cart motion.

The tracking errors are shown in Figs. 3(c) and 3(d). We

further summarize the steady tracking error in Table. I (mean

and standard deviation). The relative error is obtained by

normalizing the tracking error with the reference’ (or BEM

profile) amplitude. Since the system is in a cascaded form,

the tracking error in the internal system would affect the
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tracking performance in the external system. It is observed in

Table I that |e1| > |e2| > |e3| in terms of the mean errors for

both absolute and relative errors. The partial motion effect of

q
(i)
a serves as the control input to drive q

(i−1)
a to its BEM.

q
(2)
a (θ2) would not achieve the best tracking performance

until the q
(3)
a (θ3) perfectly follows its BEM. In such a way,

the task of balancing θ3 is placed at the highest priority

and all other unactuated systems are balanced one by one

sequentially.

VI. CONCLUSION

This paper proposed a cascaded nonlinear control frame-

work for highly underactuated balance robots. To achieve

simultaneous trajectory tracking and balance control, the

proposed framework converted a highly underactuated robot

system to a series of cascaded virtually actuated subsystems.

The tracking controls were sequentially designed layer-by-

layer until the last subsystem. The control input was then

updated from the last subsystem to the first one to incorporate

the balance task. Under such a design, we showed the closed-

loop system dynamics was stable. We validated the control

design with numerical simulation on a triple-inverted pendu-

lum cart system. We plan to extend such a framework with

machine learning-based techniques to achieve guaranteed

performance when the accurate system model is unavailable.

VII. PROOF FOR LEMMA 1

Substituting uint
i into Si

a yields D
(i)
aa q̈

(i)
a + D

(i)
aa q̈

(i)
u +

H
(i)
a = B

(i)
a

(
B

(i)
a

)−1 (
D

(i)
aavint

i +D
(i)
au q̈

(i)
u +H

(i)
a

)
. Af-

ter simplification, we can obtain that q̈
(i)
a = vint

i .

Next we show that Si+1
a under the control uint

i displays

the dynamics behavior q̈
(i+1)
a = vint

i+1. Substituting uint
i into

Si+1
a yields

D(i+1)
aa q̈(i+1)

a +D(i+1)
au q̈(i+1)

u +H(i+1)
a = B(i+1)

a uint
i (20)

The right hand side of (20) is further simplified by consid-

ering uint
i as

RHS = B(i+1)
a

(
B(i)

a

)−1 (
D(i)

aav
int
i +D(i)

au q̈
(i)
u +H(i)

a

)
,

where

B(i+1)
a

(
B(i)

a

)−1

D(i)
aav

int
i

= B(i+1)
a uint

i+1 −B(i+1)
a

(
B(i)

a

)−1
(
D(i)

au

[
vint
i+1

q̈
(i+1)
u

]
+H(i)

a

)

= D(i+1)
aa vint

k+1 +D(i+1)
au q̈(i+1)

u +H(i+1)
a

−B(i+1)
a

(
B(i)

a

)−1
(
D(i)

au

[
vint
i+1

q̈
(i+1)
u

]
+H(i)

a

)
.

Thus, the right-hand side of (20) becomes

RHS =D(i+1)
aa vint

k+1 +D(i+1)
au q̈(i+1)

u +H(i+1)
a

−B(i+1)
a

(
B(i)

a

)−1

D(i)
au

[
q̈
(i+1)
a − vint

i+1

0

]
.

Using above equation, (20) is rewritten into[
D(i+1)

aa −B(i+1)
a

(
B(i)

a

)−1

D
(i)
au,i+1

](
q̈(i+1)
a − vint

i+1

)
= 0.

If D
(i+1)
aa − B

(i+1)
a

(
B

(i)
a

)−1

D
(i)
au,i+1 is fully ranked, the

solution becomes q̈
(i+1)
a = vint

i+1, which is exactly the

designed control input. The proof is continued until Sk+1.

Due to the page limit, we omit the detailed derivation here.

REFERENCES

[1] B. Karg and S. Lucia, “Efficient representation and approximation
of model predictive control laws via deep learning,” IEEE Trans.
Cybernetics, vol. 50, no. 9, pp. 3866–3878, 2020.

[2] F. Han and J. Yi, “Stable learning-based tracking control of underac-
tuated balance robots,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp.
1543–1550, 2021.

[3] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Trans. Automat. Contr.,
vol. 48, no. 1, pp. 42–56, 2003.

[4] F. Han, X. Huang, Z. Wang, J. Yi, and T. Liu, “Autonomous bikebot
control for crossing obstacles with assistive leg impulsive actuation,”
IEEE/ASME Trans. Mechatronics, vol. 27, no. 4, pp. 1882–1890, 2022.

[5] K. Chen, Y. Zhang, J. Yi, and T. Liu, “An integrated physical-learning
model of physical human-robot interactions with application to pose
estimation in bikebot riding,” Int. J. Robot. Res., vol. 35, no. 12, pp.
1459–1476, 2016.

[6] N. Getz, “Dynamic inversion of nonlinear maps with applications to
nonlinear control and robotics,” Ph.D. dissertation, Dept. Electr. Eng.
and Comp. Sci., Univ. Calif., Berkeley, CA, 1995.

[7] M. Maggiore and L. Consolini, “Virtual holonomic constraints for
euler–lagrange systems,” IEEE Trans. Automat. Contr., vol. 58, no. 4,
pp. 1001–1008, 2013.

[8] N. Kant and R. Mukherjee, “Orbital stabilization of underactuated
systems using virtual holonomic constraints and impulse controlled
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